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Quasi-Bernoulli statistics of string-induced fluctuations
of cosmic microwave background radiation

A. Bershadskii
ICAR, P.O. Box 39953, Ramat-Aviv 61398, Tel-Aviv, Israel

~Received 24 April 1998; published 12 November 1998!

A new kind of statistical distribution, a quasi-Bernoulli distribution, is suggested to describe the non-
Gaussian string-induced perturbations of the cosmic microwave background radiation. Good agreement be-
tween predictions based on this statistics and data of numerical and laboratory simulations using some sim-
plified models is established, and a possible relation of this statistic to a large-scale galaxy distribution is
briefly discussed.@S0556-2821~98!02222-X#

PACS number~s!: 98.80.Cq, 98.70.Vc
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I. INTRODUCTION

Most inflationary models produce random Gaussian d
sity fluctuations, and therefore one might hope to find a n
Gaussian signature to distinguish cosmic string models f
inflationary models. The non-Gaussian spatial distribution
the cosmic string networks could be a basis for such exp
tations @1,2#. However, if many different strings contribut
significantly to each resolution element of the temperat
pattern, then the conditions for the central limit theorem
satisfied and the temperature pattern is close to Gaus
Indeed, recent calculations~including all the relevant physi
cal effects! show that realistic string models can produ
Gaussian-like fluctuations~at least at low-order statistica
analysis! @3,4,5#. Moreover, it is shown in Ref.@6# that a
most favored cosmic string model is unlikely to produce
significant increase in the sheetlike nature of the matter
tribution beyond that which occurs in Gaussian models~with
the same power spectrum! due to the formation of Zeldovich
pancakes. Thus the non-Gaussian features of the rea
string models are rather hidden for the observers. There
even indications of a serious problem for the defect theo
reconciling the amplitude of large-scale cosmic microwa
background~CMB! anisotropies with that in the matter dis
tribution in a large flat universe@7,8#.

On the other hand, it is suggested in some recent pa
@9,10,11# that it is still possible to find a non-Gaussian si
nature of string-induced fluctuations even in Gaussian-
CMB radiation if one uses ahigh-order statistical analysis
~see also@6# and Sec. IV!. Interval of scales, chosen for th
analysis, could be also crucial for the problem@7,10,12#. To
understand this phenomenon it could be useful to study s
string models~even if they arelessrealistic than those men
tioned above! in which this phenomenon could be seen mo
clear ~i.e., already at a low-order statistical analysis!. One
such model is suggested in@13,14# and is studied in a recen
paper@15# by application of the multifractal analysis. Th
approach is suitable just for high-order statistical analy
but as it is shown below the multifractal analysis of th
specific string model gives good agreement between l
and high-order non-Gaussian statistics. A new type of n
Gaussian statistic, a quasi-Bernoulli distribution, which a
pears in this model as a general consequence of a mor
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logical monofractality-multifractality phase transition, ma
turn out to be a statistical distribution relevant to the strin
induced fluctuations of CMB radiation. To emphasize t
general character of this non-Gaussian distribution, we co
pare this result with results of a laboratory simulation of t
string-induced fluctuations of temperature gradients. T
simulation is based on a two-dimensional temperature gr
ent map generated by a stochastic flow of mercury in a v
strong external magnetic field@16#. It is known ~see, for in-
stance,@17# and references therein! that in such a flow the
stochastic motion becomes two dimensional and mixing
been generated by a network of stochastically moving stri
~vortex filaments!, which are orthogonal to the plane of mo
tion and are parallel to the external magnetic field. Our c
culations show that the laboratory data are also in go
agreement with the quasi-Bernoulli distribution and that p
rameters of the laboratory-obtained generalized dimens
spectrum are close to those obtained from the numer
simulation performed in@15# ~cf. Figs. 1 and 2!.

Finally, we discuss briefly an idea of Ref.@6# that the
string-dominated statistics could be also useful for an in
pretation of the observed large-scale galaxy distributions

II. QUASI-BERNOULLI DISTRIBUTION

Let us start from some standard definitions. Given a sc
signal DT/T along the scan line, the generalized bo
counting partition function is defined as

Zq~ l !5(
i 51

N

@m i~ l !#q, ~1!

where N is the minimum number of one-dimensional se
ments with dimensionless lengthl which are needed to cove
the set~the total length of the scan isl m51) andm i( l ) is a
measure on the line determined as follows:

m i~ l !5 (
j 5 i 2Ml /2

i 1Ml /2

m~ j ! ~2!

and

m~ j !5FDT

T
~ j !2

DT

T
~ j 11!G2

.
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In this definitionM is the total number of points in the da
set, and (i 2ML/2) and (i 1Ml /2) are the lower and uppe
edges of thei th segment withMl points, centered on thei th
point of the scan. At the minimal resolutionl min51/M , one
hasm i( l min)5m(i). The generalized dimensionsDq are then
formally defined by

Dq5
1

~q21!
lim
l→0

log ( i 51
N @m i~ l !#q

log l
. ~3!

For a continuous signal along lineN; l 21, i.e., D051.
The above definition implies a scaling behavior of t

partition functionZq( l ) for small l, i.e.,

Zq~ l !} l tq, ~4!

where

tq5Dq~q21!. ~5!

Then, if one uses standard averaging, one obtains

^mq&5
( i 51

N @m i~ l !#q

N
} l ~tq11!. ~6!

Let us define

m i5m i /max
i

$m i%. ~7!

Then

^m̄p&5
1

N (
i

m i
p. ~8!

The simplest structure that can be used for fractal descrip
is a system for whichm i can take only two values 0 and 1.
follows from Eqs.~7! and ~8! that, for such a system~with
p.0),

^m̄p&5^m̄&, ~9!

and fluctuations in this system can be identified as Berno
fluctuations@18#. It is clear that the Bernoulli fluctuation
can bemonofractalonly.

Generalization Eq.~9! in the form of a generalized scalin

^m̄p&;^m̄& f ~p! ~10!

can be used to describe more complex~multifractal! systems.
We use invariance of the generalized scaling~10! with di-
mension transform@19#

m i→m i
l ~11!

to find f (p). This invariance means that

^~m̄l!p&;^~m̄l!& f ~p! ~12!

for all positive l. Then, it follows from Eqs.~10! and ~12!
that
12730
n

lli

^~m̄ !lp&;^m̄& f ~lp!;^m̄& f ~l! f ~p!. ~13!

Hence

f ~lp!5 f ~l! f ~p!. ~14!

A general solution of the functional equation~14! is

f ~p!5pg, ~15!

whereg is a positive number. This relationship can be co
sidered as a generalization of the Havlin-Bunde multifrac
hypothesis@20#. It should be noted that the caseg51 corre-
sponds to Gauss fluctuations@21#. We, however, shall con-
sider limit g→0 ~i.e., the transition to the Bernoulli fluctua
tions!. This transition is nontrivial. Indeed, let us consid
the generalized scaling

Fqm;Fkm
a~q,k,m! , ~16!

where

Fqm5^m̄q&/^m̄m&. ~17!

Substituting Eq.~10! into Eqs.~16!, ~17! and using Eq.~15!,
we obtain

a~q,k,m!5
qg2mg

kg2mg .

Hence

lim
g→0

a~q,k,m!5
ln~q/m!

ln~k/m!
. ~18!

If there is ordinary scaling

^m̄p&;~ l /L !zp, ~19!

then

a~q,k,m!5
zq2zm

zk2zm
. ~20!

From a comparison of Eqs.~18! and ~20!, we obtain, at the
limit g→0,

zq2zm

zk2zm
5

ln~q/m!

ln~k/m!
. ~21!

A general solution of the functional equation~21! is

zq5a1c ln q, ~22!

wherea andc are some constants.
If we use the relationship

max
i

$m i%;~ l /L !D` ~23!

~see, for instance,@22#!, then it follows from Eqs.~3!, ~7! and
~19!, ~22!, ~23! that
1-2
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BRIEF REPORTS PHYSICAL REVIEW D 58 127301
Dq5D`1c
ln q

~q21!
~24!

for the multifractal Bernoulli fluctuations~i.e., for the fluc-
tuations which appear at the limitg→0).

From Eqs.~10!, ~19!, and ~22! we can findf (p) corre-
sponding to the multifractal Bernoulli fluctuations

f ~p!511
c

a
ln p, ~25!

wherea5d2D` . One can see that for finitec the dimen-
sion invariance is broken at the limitg→0.

Let us find the characteristic function of the multifract
Bernoulli distribution. It is known that the characterist
functionx~l! can be represented by the following series~see,
for instance,@18#!:

x~l!5 (
p50

`
~ il!p

p!
^m̄p&. ~26!

Then, using Eqs.~10! and ~25!, we obtain, from Eq.~26!,

x~l!511^m̄& (
p51

`
~ il!p

p!
pb, ~27!

where

b5
c

~d2D`!
ln^m̄&. ~28!

The characteristic function~27! gives a complete descriptio
of the multifractal Bernoulli distribution and when thec
50 distribution~27! and~28! coincides with the simple Ber
noulli distribution @18#. The multifractality-monofractality
phase transition~with g→0) corresponds to a gap fromc
50 to a finite nonzero value ofc. If we use a thermodynamic
interpretation of the multifractality represented in Ref.@23#,
then the constantc can be interpreted as the multifractal sp
cific heat of the system. The gap of the multifractal spec

FIG. 1. Spectrum of generalized dimensionsDq ~dots! obtained
in a numerical simulation of the string-induced CMBR perturb
tions ~adapted from@15#!. The straight line is drawn for compariso
with the quasi-Bernoulli representation~24!.
12730
-
c

heat at the multifractality-monofractality transition~i.e., with
g→0) allows us consider this transition as a thermodynam
phase transition@24#.

III. SIMULATIONS

The authors of a recent paper@15# used the temperatur
maps produced by Bouchet, Bennet, and Stebbins@13,14# to
simulate a CMBR anisotropy experiment in the presence
network of cosmic strings. Figure 1~adapted from@15#!
shows a spectrum of generalized dimensions obtained at
simulation. The axes in this figure are chosen for compari
with the quasi-Bernoulli representation~24! @the straight line
is drawn to indicate agreement between the data~dots! and
representation~24!#. One can calculate the multifractal sp
cific heatc.0.5 andD`.0.07 from this figure.

We can also use data obtained in a laboratory simula
of string-induced temperature mixing in a stochastic flow
mercury ~a well electricity conducting liquid! in a very
strong (B50.9 T) transversal magnetic field@16#. It is
known ~see, for instance,@17#! that such mixing has bee
generated by a network of strings~vortex filaments! aligned
along the magnetic field. The results of this laboratory sim
lation @25# are shown in Fig. 2. The straight line in this figu
indicates agreement between the data~dots! and the quasi-

-

FIG. 2. Spectrum of generalized dimensionsDq ~dots! obtained
in a laboratory simulation of the string-induced perturbations
temperature gradients field@25#. The straight line is drawn for com
parison with the quasi-Bernoulli representation~24!.

FIG. 3. Spectrum of generalized dimensionsDq ~dots! obtained
from a version of the CfA catalog of Huchra’s compilation of re
shifts@26#. The straight line is drawn for comparison with the qua
Bernoulli representation~24!.
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BRIEF REPORTS PHYSICAL REVIEW D 58 127301
Bernoulli representation~24!. One can also calculate th
multifractal specific heatc.0.6 andD`.0.05 from this fig-
ure. These parameters are close to those calculated from
1.

Thus both the numerical and laboratory simulations g
an indication that the quasi-Bernoulli statistics could be u
to describe the string-induced perturbations of the temp
ture fields. Ana priori reason for the applicability of the
quasi-Bernoulli distribution to these perturbations could
related to the existence of the morphological phase trans
at a generation stage.

IV. DISCUSSION

To understand the nature of the Gaussian-like behavio
the realistic CMB distribution~see the Introduction!, it is
useful to note that cosmic string models are unlikely to p
duce a significant increase in the sheetlike nature of the m
ter distribution beyond that which occurs in Gaussian mod
with the same power spectrum~see@6# for details!, although
it is suggested in Ref.@6# that string-dominated statistic
could be useful for the interpretation of the observed gal
distributions, so that it is interesting to compare the qua
Bernoulli statistic with some observed galaxy distribution
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In Fig. 3 we show a multifractal spectrum~dots! calculated
in Ref. @26# using a version of the CfA catalog of Huchra
compilation of redshifts. The axes in this figure are chos
for comparison with the quasi-Bernoulli distribution~24!
~straight line!.

It is clear that examples given in this Brief Report have
illustrative character only. We hope, however, that the g
eral nature of the quasi-Bernoulli distribution~related to the
morphological phase transition! could be a reason to use th
distribution for the cases where one can expect a transi
from Gaussian to a new statistic just at high-order statist
analysis. Since analysis of realistic models indicates tha
the case of the CMB radiation we are dealing with this si
ation~see the Introduction!, then to check the applicability o
the quasi-Bernoulli distribution to more realistic data s
~for high-order moments! seems to be an interesting proble
for future investigations.
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