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Quasi-Bernoulli statistics of string-induced fluctuations
of cosmic microwave background radiation
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A new kind of statistical distribution, a quasi-Bernoulli distribution, is suggested to describe the non-
Gaussian string-induced perturbations of the cosmic microwave background radiation. Good agreement be-
tween predictions based on this statistics and data of numerical and laboratory simulations using some sim-
plified models is established, and a possible relation of this statistic to a large-scale galaxy distribution is
briefly discussed.S0556-282(98)02222-X]

PACS numbes): 98.80.Cq, 98.70.Vc

[. INTRODUCTION logical monofractality-multifractality phase transition, may

turn out to be a statistical distribution relevant to the string-

Most inflationary models produce random Gaussian deninduced fluctuations of CMB radiation. To emphasize the
sity fluctuations, and therefore one might hope to find a nongeneral character of this non-Gaussian distribution, we com-
Gaussian signature to distinguish cosmic string models fronare this result with results of a laboratory simulation of the
inflationary models. The non-Gaussian spatial distribution oftring-induced fluctuations of temperature gradients. This
the cosmic string networks could be a basis for such expecimulation is based on a two-dimensional temperature gradi-
tations[1,2]. However, if many different strings contribute €Nt Map generated by a stochastic flow of mercury in a very

significantly to each resolution element of the temperatur$trong external magnetic fie[d6]. It is known (see, for in-

pattern, then the conditions for the central limit theorem areS:anﬁe'[tl_ﬂ ant(_JI re;erences tthere)c;mhat n su<|:h adfloyv_theh
satisfied and the temperature pattern is close to Gaussi ochastic motion becomes two dimensional and mixing has

Indeed, recent calculatioig;icluding all the relevant physi- een ge_nerated by a.network of stochastically moving strings
cal effecty show that realistic string models can produce(vortex filaments; which are orthogonal to the plane of mo-

G ian-like fluctuationgat least at | d tatistical tion and are parallel to the external magnetic field. Our cal-
aussian-iike fluctuationsat least at low-order stalistical . |ations show that the laboratory data are also in good
analysis [3,4,5. Moreover, it is shown in Ref[6] that a

. . . ) agreement with the quasi-Bernoulli distribution and that pa-
most favored cosmic string model is unlikely to produce agmeters of the laboratory-obtained generalized dimension
significant increase in the sheetlike nature of the matter d'sspectrum are close to those obtained from the numerical
tribution beyond that which occurs in Gaussian modwish simulation performed ifi15] (cf. Figs. 1 and 2

the same power spectryrdue to the formation of Zeldovich Finally, we discuss briefly an idea of Re#] that the
pancakes. Thus the non-Gaussian features of the realistigring-dominated statistics could be also useful for an inter-
string models are rather hidden for the observers. There ajgretation of the observed large-scale galaxy distributions.
even indications of a serious problem for the defect theories

reconciling the amplitude of large-scale cosmic microwave Il. QUASI-BERNOULLI DISTRIBUTION
backgroundCMB) anisotropies with that in the matter dis- o ]
tribution in a large flat universg,g]. Let us start from some standard definitions. Given a scalar

On the other hand, it is suggested in some recent papefgnal AT/T along the scan line, the generalized box-
[9,10,1] that it is still possible to find a non-Gaussian sig- counting partition function is defined as
nature of string-induced fluctuations even in Gaussian-like N
CMB radiation if one uses &igh-order statistical analysis _ (1\19
(see alsd6] and Sec. IV. Interval of scales, chosen for the Za(D 2’1 LT @
analysis, could be also crucial for the probl€f10,13. To
understand this phenomenon it could be useful to study som&hereN is the minimum number of one-dimensional seg-
String modelgeven if they ardessrealistic than those men- ments with dimensionless Ienglthvhlch are needed to cover
tioned abovgin which this phenomenon could be seen morethe set(the total length of the scan Ig,=1) andu;(l) is a
clear (i.e., already at a low-order statistical analysi®ne = measure on the line determined as follows:
such model is suggested [ih3,14] and is studied in a recent M2
paper[15] by application of the multifractal analysis. This (= i) @
approach is suitable just for high-order statistical analysis, M i=i—MIz2 m
but as it is shown below the multifractal analysis of this
specific string model gives good agreement between lowand
and high-order non-Gaussian statistics. A new type of non-
Gaussian statistic, a quasi-Bernoulli distribution, which ap-
pears in this model as a general consequence of a morpho-

 [AT AT 2
M(J):7(J)—7(J+l) :
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In this definitionM is the total number of points in the data () Py~ () FOP) — () fOOT ) (13
set, and {(—ML/2) and {+ MI/2) are the lower and upper
edges of theth segment witiMI points, centered on thigeh Hence
point of the scan. At the minimal resolutidp;,=1/M, one
has wi(l min)=u(i). The generalized dimensior, are then f(Ap)=f(\)f(p). (14)
formally defined by A general solution of the functional equati¢id) is
1 log =N [ wi(1)]9
Dq= lim g Ifl[Ml( )] . (3) f(p):p'y, (15)
(q_ 1) 10 Iog I

wherey is a positive number. This relationship can be con-
For a continuous signal along liné~171, i.e., Dy=1. sidered as a generalization of the Havlin-Bunde multifractal
The above definition implies a scaling behavior of thehypothesig20]. It should be noted that the cage=1 corre-
partition functionZ(1) for smalll, i.e., sponds to Gauss fluctuatiohgl]. We, however, shall con-
sider limit y—O0 (i.e., the transition to the Bernoulli fluctua-

Zy(1)l T, (4)  tions). This transition is nontrivial. Indeed, let us consider
the generalized scaling
where
Fqm~ Fiadkm (16)
74=Dq(q—1). (5) am T km
Then, if one uses standard averaging, one obtains where
Fam={(uNH/ (™). (17
gy Sl ] am= )
()= N . 6) Substituting Eq(10) into Eqs.(16), (17) and using Eq(15),
we obtain
Let us define
Y—m”
wi= i/ ma pi}. (7) a(q.km =155
I
Hence
Then
1 li (g,k,m) In(a/m) (18
_ — im Kom)y= ———.
(uP)= N 2 wiP. (8) 0 «q In(k/m)
1
. .. If there is ordinary scaling
The simplest structure that can be used for fractal description
is a system for whichu; can take only two values 0 and 1. It (uPy~(1/L)%, (19
follows from Eqgs.(7) and (8) that, for such a systerfwith
p>0), then
Py = (7 _
(&)= (), © a(qk,m)= 224m, (20
{k—m

and fluctuations in this system can be identified as Bernoulli
fluctuations[18]. It is clear that the Bernoulli fluctuations From a comparison of Eq$18) and (20), we obtain, at the
can bemonofractalonly. limit y—0,
Generalization Eq9) in the form of a generalized scaling
é’q_ Cm _ In(q/m)

_ — _

<:U“p>~</“> (P) (10 L— L In(kim) (21)
can be used t(_) describe more com!:(lmultifractab sy_stems. A general solution of the functional equati¢l) is
We use invariance of the generalized scalia§) with di-
mension transform19] {q=a+cing, (22)

i i (1)  wherea andc are some constants.
If we use the relationship
to find f(p). This invariance means that
max{ i}~ (1/L)°= (23
((MP)~ (™))" P (12) i

for all positive \. Then, it follows from Eqs(10) and (12)
that

(see, for instancg?22]), then it follows from Eqs(3), (7) and
(19), (22), (23) that
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FIG. 1. Spectrum of generalized dimensiddg (dotg obtained
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FIG. 2. Spectrum of generalized dimensidhg (dot9 obtained
in a laboratory simulation of the string-induced perturbations of

in a numerical simulation of the string-induced CMBR perturba-temperature gradients fief@5]. The straight line is drawn for com-
tions (adapted fronj15]). The straight line is drawn for comparison parison with the quasi-Bernoulli representati@d).

with the quasi-Bernoulli representatig®4).

Inq

D,=D.,+C———
a (g—1)

(24)

for the multifractal Bernoulli fluctuation§i.e., for the fluc-
tuations which appear at the limjt—0).

From Egs.(10), (19), and (22) we can findf(p) corre-
sponding to the multifractal Bernoulli fluctuations

c
f(p)=1+gln P, (25

wherea=d—D, . One can see that for finite the dimen-
sion invariance is broken at the limjt—0.

heat at the multifractality-monofractality transitidire., with
v—0) allows us consider this transition as a thermodynamic
phase transitioh24].

Ill. SIMULATIONS

The authors of a recent papgi5] used the temperature
maps produced by Bouchet, Bennet, and StebHifsl4] to
simulate a CMBR anisotropy experiment in the presence of a
network of cosmic strings. Figure (adapted from[15])
shows a spectrum of generalized dimensions obtained at this
simulation. The axes in this figure are chosen for comparison
with the quasi-Bernoulli representati¢®4) [the straight line
is drawn to indicate agreement between the ddts and

Let us find the characteristic function of the multifractal fepresentatiori24)]. One can calculate the multifractal spe-
Bernoulli distribution. It is known that the characteristic cific heatc=0.5 andD.,=0.07 from this figure.

function y(\) can be represented by the following sefiese,
for instance[18]):

oo

o ()P
xM=2 =5

(KP). (26)

Then, using Eqs(10) and(25), we obtain, from Eq(26),

. oo .A p
=1+ S, .) p*, 27)
p=1 p:
where
o c _
B=a—p, M) (28)

The characteristic functio(27) gives a complete description
of the multifractal Bernoulli distribution and when the
=0 distribution(27) and(28) coincides with the simple Ber-
noulli distribution [18]. The multifractality-monofractality
phase transitioqwith y—0) corresponds to a gap from
=0 to afinite nonzero value af If we use a thermodynamic
interpretation of the multifractality represented in Ref3],

We can also use data obtained in a laboratory simulation
of string-induced temperature mixing in a stochastic flow of
mercury (a well electricity conducting liquidin a very
strong B=0.9T) transversal magnetic fielffl6]. It is
known (see, for instancd,17]) that such mixing has been
generated by a network of stringgortex filaments aligned
along the magnetic field. The results of this laboratory simu-
lation[25] are shown in Fig. 2. The straight line in this figure
indicates agreement between the dataty and the quasi-
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FIG. 3. Spectrum of generalized dimensidhg (dots obtained
from a version of the CfA catalog of Huchra’'s compilation of red-

then the constart can be interpreted as the multifractal spe- shifts[26]. The straight line is drawn for comparison with the quasi-
cific heat of the system. The gap of the multifractal specificBernoulli representatio(24).
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Bernoulli representatiorf24). One can also calculate the In Fig. 3 we show a multifractal spectrufdoty calculated
multifractal specific heat=0.6 andD..=0.05 from this fig- in Ref.[26] using a version of the CfA catalog of Huchra’'s
ure. These parameters are close to those calculated from Figompilation of redshifts. The axes in this figure are chosen
1. for comparison with the quasi-Bernoulli distributiaf24)
Thus both the numerical and laboratory simulations give(straight line.
an indication that the quasi-Bernoulli statistics could be used It is clear that examples given in this Brief Report have an
to describe the string-induced perturbations of the temperalustrative character only. We hope, however, that the gen-
ture fields. Ana priori reason for the applicability of the eral nature of the quasi-Bernoulli distributidrelated to the
quasi-Bernoulli distribution to these perturbations could bemorphological phase transitiboould be a reason to use this
related to the existence of the morphological phase transitiodistribution for the cases where one can expect a transition

at a generation stage. from Gaussian to a new statistic just at high-order statistical
analysis. Since analysis of realistic models indicates that in
IV. DISCUSSION the case of the CMB radiation we are dealing with this situ-

o _ation(see the Introductionthen to check the applicability of
To understand the nature of the Gaussian-like behavior ofe quasi-Bernoulli distribution to more realistic data sets

useful to note that cosmic string models are unlikely to pro<or future investigations.

duce a significant increase in the sheetlike nature of the mat-

ter distribution beyond that which occurs in G_aussmn models ACKNOWLEDGMENTS

with the same power spectru(see[6] for detailg, although
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