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SUSY QM and solitons from two coupled scalar fields in two dimensions
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An analysis and application of the supersymmetry~SUSY! in nonrelativistic quantum mechanics involving
two-component wave functions for a stability equation corresponding to two coupled real scalar fields is
considered. A general positive potential for two coupled real scalar fields in 111 dimensions with a SUSY
form is investigated in which the associated two-component normal modes are non-negative, which leads to
classically stable soliton solutions, and an example is explicitly considered.@S0556-2821~98!02322-4#
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I. INTRODUCTION

Supersymmetry~SUSY! in nonrelativistic quantum me
chanics~QM! was originally formulated in a unidimensiona
coordinate space@1#. The SUSY algebra has received ma
applications in order to construct the spectral resolution
solvable potentials and this has been recently reviewed@2#.
The formalism of SUSY has also been used to realize
peroscillators@3# and to solve the Schro¨dinger equation of
partially solvable potentials so as to yield the eigenfunctio
that allow one to compute the eigenvalues using the va
tional method@4#. Recently, the connection between SUS
QM and the topological and nontopological solitons has b
established@5–9#. The shape-invariance conditions in SUS
@10# have been generalized for systems described by t
component wave functions@11#.

The soliton solutions have been investigated for fi
equations defined in a space-time of dimension equal to
higher than 111. The kink of a field theory is an example o
a soliton in 111 dimensions@12–18#. It is a static, nonsin-
gular, classically stable, and of finite localized energy solu
tion of the equation of motion, which is sometimes used
quantum corrections to implement the stability of classica
unstable solutions@17#. A recent overview@18# shows how a
quantum field theory has topological and nontopologi
soliton solutions in higher spatial dimensions. For solitons
two coupled scalar fields in 111 dimensions, there are n
general rules for finding analytic solutions since the non
earity in the potential increases the difficulties in solving t
field equations.

This paper relies on known connections between
theory of Darboux operators in factorizable essentially i
spectral partner Hamiltonians~often called as ‘‘SUSY QM’’!
and the likewise first-order Bogomol’nyi-type classical equ
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tions of simple scalar field theories such as the one exam
here. It replicates, in a tensor product 232^232 structure,
Witten’s evident supersymmetry formulation via the conne
tion between stability of soliton solutions and Hermitian fa
torization of 232 matrix fluctuation operators. This leads
434 supercharges and supersymmetric Hamiltonians wh
bosonic sector has one two-component zero-mode gro
state associated with the matrix fluctuation operator of tw
soliton solutions. Some applications are suggested but o
one of them is explicitly considered.

This present work is organized in the following way.
Sec. II we start by summarizing the essential features of
standard supersymmetry in quantum mechanics. We es
lish in Sec. III the close connection between the SUSY Q
for two-component wave functions and stability equations
solitons of bidimensional relativistic systems. When cons
ering only static solutions, we show that the 232 matrix
Hermitian superpotential can be realized from classical
bility equations of nonlinear systems with two coupled re
scalar fields in 111 dimensions. Section IV contains the co
cluding remarks.

II. STANDARD SUPERSYMMETRY
IN QUANTUM MECHANICS

Let H2 be the Hamiltonian of the unidimensional Schr¨-
dinger equation with the zero-mode eigenstatec2

(0)(x) for
E2

(0)50. Since c2
(0)(x) is nodeless and vanishes in th

asymptotic regionuxu→`, we can realize a factorization o
H2 , viz.,

H252
d2

dx2
1V2~x!5A1A2, ~1!

with

V2~x!5W2~x!1W8~x!, ~2!
©1998 The American Physical Society23-1
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where the prime means a derivative with respect to the a
ment and the superpotential is given by

W~x!5
d

dx
ln c2

~0!~x!. ~3!

Note thatW†5W becauseW(x) is a real function. The op-
eratorA2 annihilates the ground state ofH2 ,

A2c2
~0!~x!50, ~4!

and is formally given by

A25c2
~0!~x!S 2

d

dxD 1

c2
~0!~x!

52
d

dx
1W~x! ~5!

andA1 is defined as its Hermitian conjugate.
The partner Hamiltonian ofH2 is given by

H152
d2

dx2
1V1~x!5A2A1, ~6!

with

V1~x!5W2~x!2W8~x!, ~7!

which has the same spectrum ofH2 , except for the ground
state. In fact, in such case we have

A1c1
~0!~x!50, A15c1

~0!~x!S d

dxD 1

c1
~0!~x!

, ~8!

and from Eq.~5! we get

A15~A2!†5
1

c2
~0!~x!

S d

dxDc2
~0!~x!.

Thus we readily obtain the following relation between t
normalizable zero-mode eigenfunction ofH2 and the non-
normalizable zero-mode solution ofH1 :

c1
~0!~x!c2

~0!~x!5C, ~9!

whereC is a real constant.
However, when we considerC6

(0)(x) as two-componen
wave functions, Eqs.~8! and ~9! are no longer valid and
hence another approach is necessary@9#.

III. SOLITONS AND SUSY
FROM TWO COUPLED SCALAR FIELDS

We now consider the classical soliton solutions of tw
coupled real scalar fields in 111 dimensions. They are static
nonsingular classically stable solutions of the field equati
with finite localized energy. Here we consider an approac
the general case of such two-coupled-field systems, inde
dent of the spatial coordinate, presenting a particular
12502
u-

s
to
n-

x-

ample at the end of this section.
The Lagrangian density for such a nonlinear system in

natural system of units (c5\51), in ~111!-dimensional
space-time with Lorentz invariance is written as

L~f,x,]mf,]mx!5
1

2
~]mf!21

1

2
~]mx!22V~f,x!,

~10!

where ]m5]/]xm , xm5(t,x) with m50,1, xn5hnmxm; f
5f(x,t), x5x(x,t) are real scalar fields, andhmn is the
metric tensor given by

hmn5S 1 0

0 21D . ~11!

Here the potentialV5V(f,x) is any positive semidefinite
function of f andx, which must have at least two differen
zeros in order to present solitons as solutions. The gen
classical configurations obey the equations

]2

]t2
f2

]2

]x2
f1

]

]f
V50,

]2

]t2
x2

]2

]x2
x1

]

]x
V50,

~12!

which, for static soliton solutions, become the following sy
tem of nonlinear differential equations:

f95
]

]f
V, x95

]

]x
V, ~13!

where primes represent differentiations with respect to
space variable. There is in the literature a trial orbit meth
for finding static solutions for certain positive potentia
which constitutes a ‘‘trial and error’’ technique. This metho
yields at best some solutions to Eq.~13! and by no means for
all the potentials@13#. Recently the trial orbit method ha
been applied to systems of two coupled scalar fields cont
ing up to sixth-order powers in the fields@19#. However, the
principal result obtained in Ref.@19# is wrong. There the
authors have found the minimum of energy as the sum of
asymptotic behavior of the modulus of two real scalar fun
tions, which is not mathematical acceptable.

In Ref. @19# a positive potentialV(f,x) is considered in
the following SUSY form, analogous to the case with o
single field only@8#:

V~f,x!5
1

2S F1f
]F

]f
1x

]G

]f D 2

1
1

2S G1f
]F

]x
1x

]G

]x D 2

. ~14!

Let us define

G5G~f,x!5F1G, ~15!

whereF5F(f,x)5fF andG5G(f,x)5xG. In this case
Bogomol’nyi form of the energy consisting of a sum
squares and the surface term becomes
3-2
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EB5E dx
]

]x
G@f~x!,x~x!# ~16!

if we require thatf and x satisfy the Bogomol’nyi condi-
tions

f852M ~f,x!, x852N~f,x! ~17!

and the functionG@f(x),x(x)# satisfy

]G

]f
5M ~f,x!,

]G

]x
5N~f,x!, ~18!

where the functionG(f,x) leads to the correct value for
Bogomol’nyi minimum energy.

Then we see that only if G@f(x),x(x)#x52`

.G@f(x),x(x)#x51`, one may put

EB
min5uG@f~x!,x~x!#x51`2G@f~x!,x~x!#x52`u.

~19!

Therefore, only in the particular case th
F@f(x),x(x)#x51`,F@f(x),x(x)#x52` and
G@f(x),x(x)#x51`,G@f(x),x(x)#x52` may we put1

EB
min5uF@f~x!,x~x!#x51`2F@f~x!,x~x!#x52`u

1uG@f~x!,x~x!#x51`2G@f~x!,x~x!#x52`u,

whereG@f(x),x(x)#5F@f(x),x(x)#1G@f(x),x(x)#.
Since the conserved topological current (]m j m50) can be

written in terms of the continuously twice differentiab
function G(f,x), viz.,

j m5emn]nG~f,x!, e005e1150, e1052e01521,
~20!

the topological charge of such a system is equivalent to
aforementioned minimum value of the energy.

Let V(f,x) be written in the following SUSY form,
analogous to the case with one single field only@8#:

V~f,x!5
1

2
M2~f,x!1

1

2
N2~f,x!. ~21!

Now let us analyze the classical stability of the solit
solutions in this nonlinear system@8,15#, which is ensured by
considering small perturbations aroundf(x) andx(x):

f~x,t !5f~x!1h~x,t ! ~22!

and

x~x,t !5x~x!1j~x,t !. ~23!

1This issue has been treated incorrectly in Eq.~8! in Ref. @19# as
the minimum value of the Bogomol’nyi energy. A full analysis
the work considered in Ref.@19# has been submitted for publicatio
in another relevant journal@20#.
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Next let us expand the fluctuationsh(x,t) and j(x,t) in
terms of the normal modes:

h~x,t !5(
n

enhn~x!eivnt ~24!

and

j~x,t !5(
n

cnjn~x!eivn8t, ~25!

whereen andcn are chosen so thathn(x) andxn(x) are real.
By choosingvn85vn the equation for the field becomes
Schrödinger-like equation for two-component wave fun
tions C̃n :

HC̃n5vn
2C̃n ,n50,1,2,. . . , ~26!

where

H5S 2
d2

dx2
1

]2

]f2
V

]2

]x]f
V

]2

]f]x
V 2

d2

dx2
1

]2

]x2
V
DU

f5f~x!,x5x~x!
~27!

and

C̃n5S hn~x!

jn~x!
D . ~28!

The two-component normal modes in Eq.~28! satisfy vn
2

>0 so that the stability of the Schro¨dinger-like equation is
ensured. Note that, if

]2

]x]f
V5S ]

]x
M D S ]

]f
M D1M

]2

]x]f
M

1S ]

]x
ND S ]

]f
ND1N

]2

]x]f
N

5
]2

]f]x
V, ~29!

thenH is Hermitian. Hence the eigenvaluesvn
2 of H are all

real ones. We will now show thatvn
2 are non-negative, the

proof of which takes us to a realization of the SUSY Q
algebra. Making an extension for the case of only one sin
real scalar field we can realize,a priori, the 232 matrix
superpotential in the following manner:

W52S ]

]f
M

]

]x
M

]

]f
N

]

]x
N
D U

f5f~x!,x5x~x!

. ~30!
3-3



f

p-
n

d

l

at

by

of
he
n

de-

f

p-
and

de LIMA RODRIGUES, da SILVA FILHO, AND VAIDYA PHYSICAL REVIEW D 58 125023
But according to Ref.@9# we must impose the Hermiticity
condition (W†5W) on it so that it is satisfied if and only i

]

]x
M5

]

]f
N, ~31!

which is in accordance with Eq.~18!. In this case we have a
bilinear form forH given by

H5A1A2, ~32!

where

A2521
d

dx
1W

5S a2
2

]

]f
N

2
]

]f
N b2

D U
f5f~x!,x5x~x!

5~A1!†, ~33!

with the following first-order differential operators that a
pear in the analysis of classical stability associated with o
one single field@8#:

a252
d

dx
2

]

]f
M , b252

d

dx
2

]

]x
N. ~34!

From Eqs.~21! and ~31! we have

]2

]f2
V5S ]

]f
M D 2

1M
]2

]f2
M1S ]

]f
ND 2

1N
]2

]f2
N,

]2

]x2
V5S ]

]x
M D 2

1M
]2

]x2
M1S ]

]x
M D 2

1N
]2

]x2
N.

~35!

Sincea15(a2)†,b15(b2)†, and using the aforementione
conditions of Hermiticity, we obtain

a1a21S ]

]f
ND 2

52
d2

dx2
1

]2

]f2
V,

b1b21S ]

]f
ND 2

52
d2

dx2
1

]2

]x2
V, ~36!

which are exactly the diagonal elements ofH. Therefore, it
is easy to show that the linear stability is satisfied, i.e.,vn

2

5^H&5^A1A2&5(A2C̃n)†(A2C̃n)5uA2C̃nu2>0, as
has been affirmed.

Indeed the bosonic sector Hamiltonian ofHSUSY is given
exactly byH, which as obtained in stability equation~26!
has the following ground state:
12502
ly

A2C̃2
~0!~x!50⇒C̃2

~0!~x!5S h0~x!

j0~x!
D 52S M „f~x!,x~x!…

N„f~x!,x~x!…
D ,

~37!

which represents the two-component zero mode.
Now, we consider an example. LetN(f,x) andM (f,x)

be given by

N~f,x!5mf2x1gx,

M ~f,x!5lfS f22
m

l D1mfx2, ~38!

whereg>0,m>0 andl.0. In this case, a simple typica
potential for two coupled real scalar fields becomes

V~f,x!5
1

2 H l2f2S f22
m

l D 2

12mlx2f2S f22
m

l D J
1

1

2
$x2~g21m2f2x2!1m2f4x212mgf2x2%.

~39!

Note that this potential has a discrete symmetry asf→2f
andx→2x so that we have a necessary condition~but not
sufficient! that it must have at least two zeros in order th
solitons can exist.

In this case we have the zero-mode ground state given

C̃2
~0!~x!52S lf~x!S f2~x!2

m

l D1mf~x!x2~x!

mf2~x!x~x!1gx~x!
D ,

~40!

associated with the following 232 matrix superpotential:

W52S 3lf2~x!1mx2~x!2m 2mf~x!x~x!

2mf~x!x~x! mf2~x!1g D , ~41!

where the soliton solutions satisfy the following system
two first-order differential equations, analogous to t
Bogomol’nyi conditions for only one single solito
@8,15,21#, viz.,

d

dx
f1lfS f22

m

l D1mfx250,

d

dx
x1mf2x1gx50. ~42!

This generalized system can be solved by the trial orbit
velopment considered in@13#. However, a possible soliton
solution occurs when we choosex50, so that it implies a
soliton solution in 111 dimensions, which is the soliton o

the f6 model, viz., f(x)5A1
2 (m/l) $11tanh@m(x1x0)#%,

wherex0 is obtained from the integration constant that re
resents the soliton center. Therefore the superpotential
the zero-mode ground state for our example become
3-4



W~x!5

m

2
$12tanh@m~x1x0!#% 0

~43!
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S
0 2

mm

2l
$11tanh@m~x1x0!#%2g

D
and

C̃2
~0!~x!5NS ml

2
Am

2
$11tanh@m~x1x0!#%$tanh@m~x1x0!#21%

0
D , ~44!
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whereN is the normalization constant. A detailed analysis
this application will be published elsewhere.

The graded Lie algebra of the supersymmetry in quan
mechanics can be readily realized as

HSUSY5@Q2 ,Q1#15SA1A2 0

0 A2A1D
434

5SH2 0

0 H1
D , ~45!

@HSUSY,Q6#2505~Q2!25~Q1!2. ~46!

The superchargesQ6 written in terms of the operatorsa6

andb6 become 434 matrix differential operators, i.e.,

Q25S 0 0 0 0

0 0 0 0

a2
2

]

]f
N 0 0

2
]

]f
N b2 0 0

D , Q15Q2
† ,

~47!

which establishes the connection of SUSY QM with tw
soliton solutions.

IV. CONCLUSION

The connection between supersymmetric quantum
chanics with two-component wave functions and the stab
equations associated with soliton solutions of simple mod
of two coupled real scalar fields in 111 dimensions has bee
presented and an application has been given.

In @9# we have seen that ifC2
(0) is a normalizable two-
12502
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component eigenstate, one cannot writeC1
(0) in terms of

C2
(0) in a similar manner to ordinary supersymmetric qua

tum mechanics@as in Eq.~9!#. This is can be seen in th
example treated here of the classical stability analysis
two coupled real scalar fields. The Hermiticity condition s
isfied by the superpotential associated with the positive
tentials with a SUSY form considered here leads to the tw
component normal modes to be non-negative (vn

2>0,
analogous to the case with only one single field@8#! so that
the linear stability of the Schro¨dinger-like equations is en
sured. The Bogomol’nyi condition leads us to a set of fir
order differential equations~17! which have solutions which
are also solutions of the second-order differential equati
~13!.

Our approach can easily be applied to the soliton so
tions to specific systems considered in terms of two coup
scalar fields in@13,15,19#. However, we have considere
only an application for a particular case associated wit
generalization of thef6 model in 111 dimensions which, in
the general case, can be solved by the trial orbit met
treated in@13#.
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