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two-component wave functions for a stability equation corresponding to two coupled real scalar fields is
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[. INTRODUCTION tions of simple scalar field theories such as the one examined
here. It replicates, in a tensor produck292X2 structure,

Supersymmetry(SUSY) in nonrelativistic quantum me- Witten's evident supersymmetry formulation via the connec-
chanics(QM) was originally formulated in a unidimensional tion between stability of soliton solutions and Hermitian fac-
coordinate spacfl]. The SUSY algebra has received manytorization of 2<2 matrix fluctuation operators. This leads to
applications in order to construct the spectral resolution oft<4 supercharges and supersymmetric Hamiltonians whose
solvable potentials and this has been recently reviej@gd POSOnic sector has one two-component zero-mode ground
The formalism of SUSY has also been used to realize sustate associated with the matrix fluctuation operator of two-
peroscillators{3] and to solve the Schdinger equation of Soliton solutions. Some applications are suggested but only
partially solvable potentials so as to yield the eigenfunction®n€ of them is explicitly considered. _
that allow one to compute the eigenvalues using the varia- ThiS present work is organized in the following way. In
tional method[4]. Recently, the connection between SUSY Sec. Il we start by summarizing the essential f_eatures of the
QM and the topological and nontopological solitons has beegtandard supersymmetry in quantum mechanics. We estab-
established5-9]. The shape-invariance conditions in SUSY lish in Sec. lll the close connection between the SUSY QM

[10] have been generalized for systems described by twd©r two-component wave functions and stability equations of
component wave functiorfd 1. solitons of bidimensional relativistic systems. When consid-

The soliton solutions have been investigated for field€"ng only static solutions, we show that the&2 matrix
equations defined in a space-time of dimension equal to drérmitian superpotentlal can be reallze_d from classical sta-
higher than % 1. The kink of a field theory is an example of Pility equations of nonlinear systems with two coupled real
a soliton in 11 dimensiond12-1§. It is a static, nonsin- scalgr fields in 1 dimensions. Section IV contains the con-
gular, classically stableand of finite localized energy solu- cluding remarks.
tion of the equation of motion, which is sometimes used in
quantum corrections to implement the stability of classically Il. STANDARD SUPERSYMMETRY
unstable solutiongl7]. A recent overviewW18] shows how a IN QUANTUM MECHANICS
guantum field theory has topological and nontopological I - . .
soliton solutions in higher spatial dimensions. For solitons of . LetH_ be_the I—!amﬂtoman of the un|_d|menS|o)naI Schro
two coupled scalar fields in41 dimensions, there are no dl(r(l)?er equation \(/g;th the zero-mode elgensta'rﬁB (x) for
general rules for finding analytic solutions since the nonlin-E="=0. Since y=*(x) is nodeless and vanishes in the
earity in the potential increases the difficulties in solving the@Symptotic regiorjx| -, we can realize a factorization of
field equations. H_, viz.,

This paper relies on known connections between the

theory of Darboux operators in factorizable essentially iso- H o= d—2+V (X)=A*A" o
spectral partner Hamiltoniarieften called as “SUSY QMY T g9 -\ '
and the likewise first-order Bogomol'nyi-type classical equa-
with
*Email address: rafael@fisica.ufpb.br V_(X)=W?(x)+ W' (x), (2
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where the prime means a derivative with respect to the arguample at the end of this section.

ment and the superpotential is given by The Lagrangian density for such a nonlinear system in the
q natural system of unitscEA=1), in (1+1)-dimensional
W(X)= d_xln JO(x). 3) space-time with Lorentz invariance is written as
1 1
— 2 2
Note thatW'=W becauseéN(x) is a real function. The op- L(b:x:0ub,0,x)= 5(9,$)"F 5 (3, x)"= V(. x),
eratorA~ annihilates the ground state Bf_ , (10)
A=y 9(x)=0, (4 whered,=oalox*, x*=(t,x) with u=0,1, x,=17,,X*; ¢
) ) =¢(x,t), x=x(x,t) are real scalar fields, ang*” is the
A——¢<°>(x)( : ) - wo [T 0 11
- dx/ 9 (x) 7 "lo -1/ (D
d Here the potentiaV=V(¢,x) is any positive semidefinite
4w ©) p (¢.x) yp

function of ¢ and y, which must have at least two different
zeros in order to present solitons as solutions. The general
andA™" is defined as its Hermitian conjugate. classical configurations obey the equations

The partner Hamiltonian dfl _ is given by

dx

2 azqs 7 o+ aV—O i i + aV—O

H,=— d_ +V,.(x)=A"AT, (6) a2 x> d¢ Coat? ¢9X2X Ix ,
dx? (12

with which, for static soliton solutions, become the following sys-
) tem of nonlinear differential equations:
Vi (X)=W=(x) —W'(x), (7)
J

which has the same spectrumléf , except for the ground "= ﬁV, X'= EV' (13

state. In fact, in such case we have

where primes represent differentiations with respect to the
®) space variable. There is in the literature a trial orbit method
¢(f)(x)' for finding static solutions for certain positive potentials,
which constitutes a “trial and error” technique. This method
and from Eq.(5) we get yields at best some solutions to Ef3) and by no means for
all the potentiald13]. Recently the trial orbit method has
At = (A-)T= (_) 0) been applied to systems of two coupled scalar fields contain-
=(A7)'= #O(x) | dx Y= (). ing up to sixth-order powers in the fiel@$9]. However, the
principal result obtained in Refl9] is wrong. There the
Thus we readily obtain the following relation between theauthors have found the minimum of energy as the sum of the
normalizable zero-mode eigenfunction ldf. and the non- asymptotic behavior of the modulus of two real scalar func-

ATy D (x)=0, A+=w$’)<x>(%>

In Ref.[19] a positive potentiaV(¢,x) is considered in
OO x)=C, (9)  the following SUSY form, analogous to the case with one

single field only[8]:
whereC is a real constant.
However, when we conside??(x) as two-component d 9G)\ 2
wave functions, Egs(8) and (9) are no longer valid and Viox)=3 F+¢£+Xﬁ
hence another approach is neces$aty

lll. SOLITONS AND SUSY 3

FROM TWO COUPLED SCALAR FIELDS

IF  9G\?
G+¢p—+

o X ax (14

. . . . Let us define
We now consider the classical soliton solutions of two

coupled real scalar fields i+l dimensions. They are static, I'=T(¢,x)=F+G, (15)
nonsingular classically stable solutions of the field equations

with finite localized energy. Here we consider an approach tavhere 7= F(¢,x) = ¢F and G=G(¢,x)=xG. In this case
the general case of such two-coupled-field systems, indepeBogomol’'nyi form of the energy consisting of a sum of
dent of the spatial coordinate, presenting a particular exsquares and the surface term becomes
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B ]
Es—f dx—= TTo(x),x(x)] (16)

if we require that¢ and y satisfy the Bogomol'nyi condi-
tions

¢'==M(d.x), x'=—N(¢,x) 17
and the functiod'[ ¢(x),x(x)] satisfy
ar ar
%—M(qﬁ,x), a—N(qﬁ,x), (18)

where the functiol” (¢, x) leads to the correct value for a

Bogomol'nyi minimum energy.
Then we see that only

>I[é(X),x(X) Ix=+-, One may put

ER"=ITLA(), X0 Txm 42~ TT S0, X (X0 = -l

if TLp(X),x(X) Ix=

(19

Therefore, only in the particular case that

FLP(X), X (X) Jx= 4 <FLA(X), X (X) Jx=— 0 and
G0, x(X) Iz +=<GLA(X), X(X) Ix= - May we put
5= [T 400, X0 Ix= 40— FL ), X () = -
+1GLP(X), X () Ix= 10— GLAX), X (X) Ix= —=ol,
whereI'[ (X), x(X) 1= FL (X), x(X) ]+ GL b(X), x(X) .

Since the conserved topological curreaf, (#=0) can be
written in terms of the continuously twice differentiable
functionT'(¢,x), viz.,

je=e""9,I'(b.x), 10=

%= (1= S
(20)

€

the topological charge of such a system is equivalent to th

aforementioned minimum value of the energy.
Let V(¢,x) be written in the following SUSY form,
analogous to the case with one single field drd}:

1 1
V(6= 5MAb 0+ 3Nbx). (2D

Now let us analyze the classical stability of the soliton
solutions in this nonlinear systej@,15], which is ensured by
considering small perturbations arougdx) and y(x):

d(x,1)=p(X) + n(X,1) (22

and

x(X,1) = x(X) + £(x,1). (23

1This issue has been treated incorrectly in E8).in Ref.[19] as
the minimum value of the Bogomol'nyi energy. A full analysis of
the work considered in Reff19] has been submitted for publication
in another relevant journgR0].
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Next let us expand the fluctuationg(x,t) and &(x,t) in
terms of the normal modes:

n(x,t>=§ €nn(x) €l “nt (24)

and

EX,) =2, Crén(x)eient, (25)

n

wheree, andc,, are chosen so that,(x) andy,(x) are real.
By choosingw/= w, the equation for the field becomes a
Schralinger-like equation for two-component wave func-

tions ¥, :

Hﬁ/n:wﬁﬁrn,n=0,l,2,. .. (26)
where
g2 P 92
A a2 xdd
H: (?2 2 (92
ddax Tal o
X b= b(x).x=x(X)
(27)
and
- 77n(x))
- ) (28)
" ( &n(X)

The two-component normal modes in E@8) satisfy w?
=0 so that the stability of the Schiimger-like equation is
gnsured. Note that, if

& V= J J M|+M i M
axop \ax  |\ag Ixd¢
+ J N J N|+N i N
ax |\op Ixd¢
az
el (29

then’® is Hermitian. Hence the eigenvalueg of A are all

real ones. We will now show that,? are non-negative, the
proof of which takes us to a realization of the SUSY QM
algebra. Making an extension for the case of only one single
real scalar field we can realize, priori, the 2<x2 matrix
superpotential in the following manner:

J M J
d dx
wW=— (30
Jd N J
o ax

b= d(X), x=x(X)
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But according to Ref[9] we must impose the Hermiticity
condition WT=W) on it so that it is satisfied if and only if

1%
—N,

ﬂM_
_ =34

o (31
which is in accordance with Eq18). In this case we have a
bilinear form for’H given by

H=A"A", (32
where
A= 1OI w
d—X"r‘
a~ &N
i
B 3
——N b~
(7¢ ¢=d(X), x=x(X)
=AM, (33

with the following first-order differential operators that ap-
pear in the analysis of classical stability associated with onl

one single field 8]:

d&M
dx  d¢

B Jd
a =- N.

biz—&—a (39

From Egs.(21) and(31) we have

2 2
+N—N,
p?

2 (?2
+M—M+
ap?

> _(iM 2N
a2 \dd ¢

2 (92
+N—2N.

ax
(35

3 d 2 32 J
= M| +M—M+|—M
ax

ax? _(aX ax?

Sincea™=(a")",b*=(b™)", and using the aforementioned

conditions of Hermiticity, we obtain
N G
ata + ﬁN) =— @4‘ ?&V’
g \? d> &
b*b™+ %N =—&+6—X2V, (36)

which are exactly the diagonal elements?of Therefore, it
is easy to show that the linear stability is satisfied, iaﬁ,
=(H)=(A*A")=(A T )"(A" T )=|A T [>>0, as
has been affirmed.

Indeed the bosonic sector Hamiltoniankb§ sy is given
exactly by, which as obtained in stability equatid@6)
has the following ground state:
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70(X)
£o(X)

AT Ox)=0=2TO(x) =

M(¢(X),X(X))>

N((x),x(x)) }’
(37

which represents the two-component zero mode.

Now, we consider an example. LR{ ¢, x) andM (¢, x)
be given by

N(¢,x)=nd’x+ vx,

+ndx?, (39

M(g0=10| g2 ]

where y=0,0=0 and\>0. In this case, a simple typical
potential for two coupled real scalar fields becomes

2

I |

1
SO+ PGP XP) + Pt x P 2y P
(39

Note that this potential has a discrete symmetrybas — ¢
and y— — x so that we have a necessary conditibat not

ysufﬁcienb that it must have at least two zeros in order that

solitons can exist.
In this case we have the zero-mode ground state given by

m
w(x)(&(x)—; PN

(X)X (X) + yx(X)

T = -

(40)
associated with the following>22 matrix superpotential:

W:_(3>\¢>Z(X)+MX2(X)—m 2 (X)X (X)
2ud(X) x(X) wd?(X)+y

where the soliton solutions satisfy the following system of
two first-order differential equations, analogous to the
Bogomol'nyi conditions for only one single soliton
[8,15,21, viz.,

. (41

d ( 2 m) 2_
axPTA| &7 T rox =0,

d

XX T YX=0. (42
This generalized system can be solved by the trial orbit de-
velopment considered ifiL3]. However, a possible soliton
solution occurs when we chooge=0, so that it implies a
soliton solution in -1 dimensions, which is the soliton of

the ¢® model, viz., ¢p(x)= \/%(m/)\){1+tanr[m(x+x0)]},
wherexg is obtained from the integration constant that rep-

resents the soliton center. Therefore the superpotential and
the zero-mode ground state for our example become

125023-4
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g{l—tank[m(x+x0)]} 0
W(x)= (43
0 —ﬂ{1+tanr[m(x+x -
2\ 0 Y
and
m)\\/m
O =N - E{1+tank[m(x+xo)]}{tanr[m(x+x0)]—1} , 44)

0

whereN is the normalization constant. A detailed analysis ofcomponent eigenstate, one cannot writé”) in terms of

this application will be published elsewhere.

¥ in a similar manner to ordinary supersymmetric quan-

The graded Lie algebra of the supersymmetry in quantunym mechanicgas in Eq.(9)]. This is can be seen in the

mechanics can be readily realized as
ATAT 0

HSUSY:[QvQJr]Jr:( 0 AA*)
4x4

-['s )
Lo M)
[HSUSYaQr]—:OZ(Q—)ZZ(Q+)2-

The supercharge®.. written in terms of the operators™
andb™ become &4 matrix differential operators, i.e.,

(49)

(46)

0 0 0 0
0 0 0 0
Q. =| a _ N0 o0 . Q.=QT,
¢
P

(47)

which establishes the connection of SUSY QM with two

soliton solutions.

IV. CONCLUSION

example treated here of the classical stability analysis for
two coupled real scalar fields. The Hermiticity condition sat-
isfied by the superpotential associated with the positive po-
tentials with a SUSY form considered here leads to the two-
component normal modes to be non—negativaaﬁéo,
analogous to the case with only one single fig8#) so that

the linear stability of the Schdinger-like equations is en-
sured. The Bogomol'nyi condition leads us to a set of first-
order differential equation€l7) which have solutions which
are also solutions of the second-order differential equations
(13).

Our approach can easily be applied to the soliton solu-
tions to specific systems considered in terms of two coupled
scalar fields in[13,15,19. However, we have considered
only an application for a particular case associated with a
generalization of the® model in 1+1 dimensions which, in
the general case, can be solved by the trial orbit method
treated in[13].
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