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The adiabatic particle number in mean field theory obeys a quantum Vlasov equation which is nonlocal in
time. For weak, slowly varying electric fields this particle number can be identified with the single particle
distribution function in phase space, and its time rate of change is the appropriate effective source term for the
Boltzmann-Vlasov equation. By analyzing the evolution of the particle number we exhibit the time structure of
the particle creation process in a constant electric field, and derive the local form of the source term due to pair
creation. In order to capture the secular Schwinger creation rate, the source term requires an asymptotic
expansion which is uniform in time, and whose longitudinal momentum dependence can be approximated by
a delta function only on time scales much longer thﬁ +m?c?/eE. The local Vlasov source term amounts
to a kind of Markov limit of field theory, where information about quantum phase correlations in the created
pairs is ignored and a reversible Hamiltonian evolution is replaced by an irreversible kinetic one. This replace-
ment has a precise counterpart in the density matrix description, where it corresponds to disregarding the
rapidly varying off-diagonal terms in the adiabatic number basis and treating the more slowly varying diagonal
elements as the probabilities of creating pairs in a stochastic process. A numerical comparison between the
guantum and local kinetic approaches to the dynamical back reaction problem shows remarkably good agree-
ment, even in quite strong electric fieldsE=m?c%/#, over a large range of timegS0556-282(98)04520-7

PACS numbgs): 11.15.Kc, 05.20.Dd, 05.368.d, 12.20-m

[. INTRODUCTION and transport theory has been a subject of discussion since
the very early days of the quantum theory. Several important

In recent years there has been considerable interest in edevelopments which laid out clearly the general principles

tablishing the precise connection between quantum fieldequired to derive transport equations from the Liouville
theory and classical kinetic theory. This interest is motivatedequation appeared in the 1950g. However, the first steps
by the wide variety of problems in different fields of physicsin the practical numerical solution of nonequilibrium prob-
which require a consistent description of quantum manyems in the context of quantum field theory have been taken
body phenomena far from equilibrium. Examples includeonly relatively recentlyf2—4]. With these developments and
chiral symmetry restoration and the quark-gluon plasmahe increasing variety of applications requiring a proper field
phase of QCD, soon to be probed by relativistic heavy-iortheoretic treatment, establishing the precise relationship be-
colliders, baryogenesis at the electroweak phase transitiomween the field theory and kinetic theory approaches to non-
and the formation and decay of topological defects or Bosequilibrium systems in situations of practical interest has
condensates, whether in the hot, dense early universe, ortaken on a new urgency.
cryogenic laboratory environment. As a practical matter the kinetic description is certainly
At their root all these systems may be treated as fieldhe simpler one to formulate and implement numerically on a
theories with well-defined Hamiltonian evolutions af@k-  computer. However, the Boltzmann-Vlasov equation essen-
cept for the case of explicf€ P violation in the electroweak tially describes classical point particles, and extensions to
theory microscopic time reversal invariance. Yet, a largequantum collective phenomena, time-evolving mean fields
body of experience confirms the macroscopically irreversibleand off-shell virtual processes, which are quite natural in
behavior of such systems far from equilibrium, so that itfield theory, present considerable difficulties for a purely ki-
should be possible to approximate the unitary Hamiltoniametic approach. Also lost in the kinetic description from the
evolution of such systems by an irreversible kinetic descripvery outset is a detailed understanding of how time revers-
tion, under suitable circumstances. In addition to the numerible Hamiltonian evolution comes to be replaced by time
ous potential applications, this raises the fundamental issuereversible dissipative behavior. For these reasons of both
of the precise connection between microscopic reversibilitfundamental interest and practical application, our purpose in
and macroscopic irreversibility which lies at the heart ofthis paper is to expose the relationship between the two ap-
much of nonequilibrium statistical mechanics. proaches in a concrete example.

The nature of the relationship between quantum theory In the interest of being as clear and specific as possible we
focus our attention in this paper on charged particle creation
in electric fields, a phenomenon which was discussed nearly

*Deceased. seventy years ago by Klein and Sauter, and twenty years
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later by Schwinger as a prime example of the then newlyelativistic field theory in Hamiltonian terms is necessarily
developed theory of quantum electrodynami6$ The re- noncovariant in form, but the evolution equations are com-
sults of this Schwinger mechanism which are relevant for theletely equivalent to those derived from a covariant action
present paper are reviewed in Sec. IV. Over the years thengrinciple[4]. In any case, a firm conclusion about the source
has developed an extensive literature on this tdgie9], term has not been obtained by these investigations either.
which has continued to attract interest up to the present tim€inally, the general projection formalism of ZwanZig2]
[10-18. Several monographs summarizing this activity havehas been advocated as a route to a transport description of
also appearefi19]. Given this background it might be sup- particle creatiof16—1§, although the time structure of the
posed that no aspect of particle creation in electric fields hasreation process itself has not been investigated in detail in
been left unresolved. However, this is not quite the case¢his approach, and the conditions of validity of the delta
since attempts to incorporate the real time evolution of parfunction approximation for a local source term in the Vlasov
ticle creation into the transport description by an effectiveequation has remained obscure.
source term in the Vlasov equation is relatively recent, and By revisiting the electrodynamic pair creation problem
these have met with some problems. our purpose in this paper is to elucidate fully the precise
In many treatments of particle creation, analytic continu-connection between the field theoretic and kinetic treatments
ation of the amplitudes to complex time have been emin this particular case. Application and extension of our
ployed. Though elegant and useful in other contexts, commethods of incorporating particle creation into a kinetic de-
plex continuation methods cannot address directly the realcription for the other situations of interest will then become
time evolution of the particle creation event and thus caspossible. Our first step will be to specify completely the adia-
little light on the source term for a kinetic description. A batic particle number basis in which particle creation can be
suggestion of how to incorporate the Schwinger pair creatiodescribed as a phase interfererioe dephasing phenom-
mechanism in the context of kinetic theory was first made inenon of the quantum theory from the effective Hamiltonian
1979, based on an intuitively appealing picture of the instanpoint of view [4]. Writing the explicit Bogoliubov transfor-
taneous semiclassical creation evght]. This mechanism mation to this adiabatic particle basis then identifies a time-
has been a subject of renewed interest in the context of heavdependent particle number whose total change recaptures the
ion collisions and QCD due to the suggestion that the recedSchwinger formula in a constant, uniform electric field, and
ing ions might produce a strong chromoelectric flux tubewhose time derivative yields the appropriate source term for
between them which shorts itself out by the creation quarkthe Boltzmann-Viasov equation. The adiabatic particle num-
anti-quark pairgsee, e.g., Ref.3], and references thergin ber obeys a nonlocal quantum Vlasov equation, and in this
The ansatz of Ref11] has been taken over to the QCD flux sense is completely consistent with the general approach ad-
tube model as well. Yet it should be clear from the outsetvocated in Refs|16—18. The relationship of our method to
that a delta function source term which requires that thehat of the projection formalism may be seen most clearly by
charged particles be created at precisely zero momentum, aonsidering the density matrix in the adiabatic particle num-
a definite instant of time can only be an approximation to theber basis. However, we have no need for the general projec-
rapid but continuous evolution of wave amplitudes in thetion formalism, since the source term for the Vlasov equation
underlying quantum theory. Calculations of the back reactiortan be written in closed form in terms of the wave functions
of the charged particle pairs on the electric field in QED in aof the charged particle modes in the background constant
well defined continuous evolution were compared with theelectric field. In this way we derive for the first time a local
ad hockinetic theory, according to the ansatz of Rgf1].  form for the source term, which explicitly exhibits the rela-
Reasonable qualitative agreement between the mean fietnship to the semiclassical picture of particles spontane-
evolutions in the two approaches was found, although thepusly appearing out of the vacuum in real time. The electro-
certainly differ in quantitative detail, such as in the distribu- magnetic current of the charged particle pairs also has a
tions of created particleg3]. In these numerical investiga- simple form in this basis, corresponding to a clear physical
tions the time structure of the individual creation events wadnterpretation in terms of a quasiclassical conduction current
not addressed, leaving open the question of the limit of vaand the quantum polarization current of particle creation.
lidity of the delta function ansatz for the source term. The fact that the current grows linearly in time for a fixed
The Wigner function formalism has also been proposedxternal electric field and that therefore back reaction must
[20,21] as a method for deriving relativistic transport equa-eventually become important even for arbitrarily small cou-
tions from the underlying field theory. It has become increaspling is also easy to see in the adiabatic particle basis. This
ingly clear, however, that the covariant Wigner function doeswill also serve to clarify the nature of the “time diver-
not readily lend itself to practical calculation, because covagences” discussed in Ref10].
riance requires splitting the time variable in the Wigner The essential physical ingredient in passing from the
transformation in parallel to the splitting of the spatial vari- quantum unitary evolution to the irreversible Vlasov descrip-
able, with the consequence that the problem ceases to be wéihn is the dephasing phenomenon, i.e., the near exact can-
posed as an evolution from initial data. More recently, ancellation of the rapidly varying phases of the quantum mode
alternative, noncovariant formalism, in which the time vari- functions contributing to the mean electric current of the
able is not split has been suggesfédd,15. As has been created pairs. This cancellation depends in turn upon a clean
emphasized in earlier work the lack of manifest covariance iseparation of the time scal¢$) 7, of the very rapidly os-
not a problem since the initial value description of even acillating modes of the microscopic quantum thed8), 7 of
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the more slowly varying mean number of particles in thereview (scalaj QED mean field theory in the leading order
adiabatic number basis, ait@) 7, of the collective plasma of the largeN expansion. By exhibiting explicitly the Hamil-
oscillations of the electric current and mean electric fieldtonian structure of these equations we demonstrate that they
produced by those particles. In the limif, <7, quantum are completely time reversible. In Sec. Ill we define the adia-
coherence between the created pairs can be neglected Hatic particle number basis which is selected by the Hamil-
cause of efficient dephasing and(ggm)dassica] local ki- tonian evolution and derive the exact nonlocal form of the
netic approximation to the underlying quantum theory be-quantum Vlasov equation for this quantity. The quantum
comes possible. In the limit,< 7, the electric field may be den3|ty matrix |n.th|s basis is _also derived. In Sec. IV we
treated as approximateb()nstantover the interva' of par- review the SChWIngeI’ mechar“sm and SOIVe f0r the source
ticle creation. Thus when both inequalities apply we can reterm of the Viasov equation in the limit of constant mean
place the true nonlocal source term which describes particlglectric field, studying the pair creation process for this case
Crea‘tion in f|e|d theory by one that depends On'y on the injn some deta” It is shown that particle Creatilon in a f|Xed
stantaneous value of the quasistationary electric field, at leagiternal field produces an electric current which grows lin-
over very long intervals of time. early with time, so that any amount of particle creationo
The essential mathematical ingredient in the exploitatiormatter how smajleventually requires a substantial back re-
Of th|s hierarchy Of t|me Sca|es iS an asymptotic expansion OﬁCtion on the field in any self-consistent treatment. In Sec. V
the wave functions and particle number for constant electriéhe technique of uniform asymptotic expansions for the
fields uniformly valid on the real time axis, so that secularmode functions and adiabatic particle number is brought to
particle creation effectéwhich are lost in the usual nonuni- bear. The source term for particle creation in a constant field
form WKB expansioare retained. It is this precise sense ofiS calculated to leading order in this asymptotic expansion in
evaluating the effect of rapid degrees of freedom on slowferms of Airy functions and yields an effectively Markovian
degrees of freedom by treating the latter as constant in leagource term for thdocal Vlasov equation describing pair
ing order of a uniform asymptotic expansi(]mhich recalls creation in Wea.k, SIOWIy Varying ele.CtriC.fieldS. The .CirCUm'
the Born-Oppenheimer approximation in atomic and molecustances under which further approximation of the Airy func-
lar physic$ and by so doing, deriving a local effective source tion source term by an instantaneous delta function source
term for the change of adiabatic particle number, that weerm becomes permissible is also discussed. In Sec. VI the
refer to as the Markov limit of the quantum Vlasov equation.dynamical back reaction problem for the charged particles
The importance of aniform asymptotic expansion of the Whose current is self-consistently coupled to the mean elec-
wave functions is that secular particle creation effects ardfic field is compared to the twAiry and delta function
retained in an expansion valid everywhere on the real timéocal approximations for the Vlasov source term in the ki-
axis. The true wave functions exhibit a sharp change in ambetic description, and relatively good agreement is obtained.
plitude, on the time scaley, at or near the time of the We close with a summary of our results and some conclud-
semiclassical creation event which is captured very well by a"g remarks on possible generalizations of the analysis to
uniform asymptotic expansion in terms of Airy functions. As Other systems of interest. The derivation of the density ma-
we shall see, if one is interested only in the collective phedrix in th.e adiabatic particle number basis is relegated to the
nomena on time scales of; or longer, then the details of the Appendix.
particle creation process on the time scalgare unimpor-
tant and one can replace the momentum distribution of the
source term by one localized at zero kinetic momentum, as
has been the practice in the earlier phenomenological ap- Let us begin by reviewing the equations of motion for
proaches, provided only that the integrated distribution givescalar QED in a uniform electric field in the semiclassical
the correct total creation rate. This will clarify the preciselimit in which the matter field is fully quantized and the
conditions of validity of such instantaneosisdze for the  electromagnetic field is treated classically. This limit can be
first time. obtained in a consistent way by taking the leading order of a
Since an asymptoti¢not a convergentexpansion is in- largeN expansior(whereN is the number of identical copies
volved, the limit of the ratio of time scaleg,,/7,—0 for  of the charged matter field2,3]. We take the electric field
fixedt and the long time limit—co of the evolution for fixed spatially homogeneous, and express the vector potential in
ratio 74,/ 7 do notcommute in general. Hence for any small the gauge,
but finite ratio 7,/ 7 there can be eventually a very large
but finite t at which the quantum phases reassemble and the
irreversible local kinetic description breaks down. Up to this
very long (typically exponential and possibly infinjteecur-
rence time the system behaves in many practical respect® that the electric field is
similar to an irreversible one, in which the quantum phase
coherence between the created pairs appears to have been
lost. In this way the apparent incongruity of an effectively
irreversible time evolution emerging from a unitary Hamil-
tonian field theory is removed. The charged scalar field operator is expanded in Fourier
The paper is organized as follows. In the next section wanodes in Fock space in the usual way,

Il. SCALAR QED IN THE LARGE N LIMIT

A=A()z, Ay=0, (2.1

E=—-Az=Ez (2.2
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<I>(x,t>=%; e Xp(t) j(t)=2e J [dK][k—eA(t)]
X (OP[1+N (K +N_(-k)], (212
= L ik-x —ik-Xg* t
\/_V; {e* X (Da+e ™ XF* (Db} where
23 N. (k)=(afay),
The time-independent creation and destruction operators N_(k)E<bIbk) 2.13

obey the commutation relations
are the mean numbers of particles and antiparticles in the

[ak ,al,]=[bk ,bl,]= Sk k' (2.4  time-independent basis and
in the finite large volumeé/, and the Fourier components 1 d3k
R @14
o) =Fi(Da+ i (Hb", (2.5 k (2m)

may be regarded asomplex generalized coordinates of the in the infi.nite v.ol_ume cont_ir)uum limit. We make use of fthe
field ® for the purposes of the Hamiltonian description. Thefreedom in defining the initial phases of the mode functions

momentum canonically conjugate to this coordinate is to set the correlation densitiggyay)=(byby)=0, without
any loss of generality.

m(H)=@l(t)=FF (H)af+F (t)b_y, (2.6) The mean charge density must vanish,
which obeys the canonical commutation relation j°(t)=ef [dK][N,(K)=N_(—k)]=0, (2.19
y ’ =|ﬁ5 7y 2. . . .
Lo me] ok @7 by the Gauss law for a spatially homogeneous electric field
provided that the mode functions satisfy the Wronskian con{i.e., V-E=0). We shall further restrict ourselves to the sub-
dition space of states for which
fft —f fr=ih, (2.9 N4 (k)=N_(=k)=N (2.16

for simplicity in what follows, although this is a stronger

and Eq.(2.4) is used. . . .
Theqtime)dependence in this basis is carried by the com(-:Ondltlon than is required by E@.15. Clearly the vacuum

plex mode functionsf,(t) which satisfy the equations of N+(k)=N__(—k)=0 (as well as a thermal mixed statie-
motion longs to this class of states.

Self-consistent evolution of the mean electric field re-

quires coupling it to the expectation value of the current of

f(t)=0, (2.9  the charged field by the only nontrivial Maxwell equation
remaining in this homogeneous example, namely,

2

d 2
W"’wk(t)

where the time-dependent frequermf/(t) is given by o
—E=A=j=2eJ [dk][k—eA(t)]|f(t)]2(1+2Ny).

(2.17

. ] oA For the analysis of the source term in a constant electric field
Herek is the constant canonical momentum in theiirection  and jts uniform expansion in the next three sections we will

which should be clearly distinguished from the gauge-reat the electric field as fixed and nondynamical, returning

w2(t)=(k—eA)2+ m?=[Kk—eA(t) ]2+ k2 +m?.
(2.10

invariant but time-dependeftnetic momentum, to Eq. (2.17 and the dynamical back reaction problem in
. . Sec. VI
p(t)=k—eAlt), p=-eA=eE (211 By a slight change of notation it is possible to recast the

mean field evolution equatiori2.9) and(2.17) together with

which reflects the acceleration of the charged particle due tg,o quantum Wronskian conditid®.8) as Hamilton's equa-
the electric field. In the directions transverse to the electric[iOn for an effective classical Hamiltonian in whidh ap-

field the kinetic and_canpnlcal momenta are the same andi ears as a parameter. Defining the real quantities
not need to be distinguished, i.e., we shall use the notatio

p, =k, interchangeably. When expressed as a function of 0 =1+N,(K)+N_(—K)=1+2N,,

the kinetic momenta we use the notation(p,p,)

= p?+p?+m?, or simply w. ) =ofu(D]?, (2.18
The mean value of electromagnetic current in ztdirec- _

tion is () =&(1),
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we find that the mode equatid@.9) can be rewritten in the from field theory principleg20,21], we shall not require

form these unequal time correlators or Wigner functions.
The constant parametesg= 1+ 2N,=1 measure the ex-
. ) ﬁzaﬁ tent that the quantum state is a mixed stateN}=0, o
k=M= — wk§k+4_§i,’ (2.19 =1 and the state is pure, as is evident from the vanishing of

the last term in Eq(2.22, so that the density matrix be-

when account is taken of Eq2.8). This last equation to- Comes a simple produ¢t/)(y|. In either the pure or more
gether with the Maxwell equatiof2.17) will be recognized ~9eneral mixed state the density mati2.22 possesses a

as Hamilton’s equations for the Hamiltonian U(1) symmetry under
Hert(APa;{&k {7t i{owd) Pk pr eXPi {i),
\% fl20'2 (NN :
- §E2+; ( n2+ wlEl+ 4§2k) . (2.20 er— e explidy) (2.24
k

for eachk. This is a reflection of the fact that the generator
wherep,=—E is the momentum conjugate ®and 5, is  of the local Ul) gauge transformation of electrodynamics
the momentum conjugate t . for a spatially uniform electric field is the charge density
Moreover, the quantum statistical density matrix of the(2.15, and we have restricted ourselves to charge symmetric
charged scalar field corresponding to the mean field evolustates obeying Eq2.16), so that the density matrix has this
tion can be written as a product of Gaussians in FourietJ(1) invariance in each Fourier mode independently.

space, viz. In this leading order of the largd expansion the density
matrix of the electric field is also a Gaussian and multiplies
, . p . _ the matter field Gaussian above, so that the evolution of the
<{¢k}|p|{¢"}>_1;[ <{(p"}|p(§k’”k’ak”{@k})_l;[ Pk closed system with the back reaction E@.17) is also

(2.2)  Hamiltonian. Clearly the Hamiltonian evolution equations
(2.9), with or without the Maxwell Eq(2.17), are completely
with time reversible upon reversing the signs of all the momenta.
Forgetting for the moment the Maxwell equation of back

— (27 £2) Y2ayp| — ﬁ e 1 % reaction on the electric field we see that the mean field evo-
pi=(2m&) X 422 oK™ it eic ol lution is equivalent to a set of time-dependent harmonic os-
k cillators, with a different time-dependent frequengy(t) for
M e . 05_1 . . each Fourier modék. Tre_ating thgse frequencies: as arbi-
+i g[cpk ek— ek el —— Lok Pt ekei ]| trary, slowly varying functions of time we may write down
K 48k the Hamilton-Jacobi equation corresponding to the effective

(2.22 classical HamiltoniaH ., namely,

and ¢, is the complex generalized coordinate of the classical dw 2 205
field in Fourier space, defined by E@.5) (with a, andb_ (E +opbet ——5 =&, (2.25
treated a numbers. The Liouville equation for the evolu- k 4§

tion of this density matrix according to the quantum Hamil- _ _ o _
tonian of a free charged scalar field in a background electri@nd find that the Hamilton principal functiow, evaluated
potential, over one full period,

. 1 2 2
: W, 1 heo € T
p=—i[Hq.pl, Hu=5> (mmi+wiepl+H.c) _k:_3§ e 22 Ok & ok
* "2k re e AV 4g2  2hw, 2

(2.23 (2.26

gives precisely the equations of moti¢h19 for the width . L . L . ) .
parameters of the time-dependent Gaussian. The effectiyé a1 adiabatic invariant of the periodic motion. Singgis
classical Hamiltoniar(2.20 is nothing else than the expec- Strictly a constant for alk, this implies that

tation value of the quantum Hamiltonian of scalar QBR),

in the Gaussian density matrix i.e., Heg=Tr(pHg,). No- ex(t) =N () +1 (2.27)
tice that in this Schidinger representation of the time evo- fiw(t) k '

lution all the equations are local in time, i.e., they involve a

single time argument, and there is no need to introducés an adiabatic invariant of the motion for slowly varying
Wigner functions with two time arguments, although thesew(t). It is this adiabatic invariant that defines a time-
correlation functions at unequal times may be calculated eastependent particle number basis which becomes the appro-
ily enough from knowledge of the density matrix, if desired. priate one for making contact with the Boltzmann-Vlasov
In contrast to several earlier approaches to kinetic theorkinetic description of particle creation.
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ll. THE ADIABATIC NUMBER BASIS the mode equatiofR.9) is the equation of motion of &om-
. . lex) harmonic oscillator with time varying frequenay(t),
From the field theory development of the last section Wegoverned by the effective classical Hamiltonieig of Eq.

note Fhaﬂ\” N, andk, appear qujte naturally in eithe.r_ the (2.20 classical Hamilton-Jacobi theory informs us that there
time-independeniHeisenbery or time-dependentSchro 5 o adiabatic invariant proportional to the energy of the

dingen descriptions as constants of motion under the Hamilygcijiator divided by its frequency, given by E@.27). It is
tonian evolution. However, kinetic theory is expressed inyyjs quantity which defines the adiabatic particle number and
terms of time-evolving quantitied/, (t), N_(t), andp(t)  allows us to make the connection with classical kinetic
which must be clearly distinguished from the analogousheory. Corresponding to this slowly varying action variable
time-independent quantities above. The difference betweethere is a conjugate angle variable which is rapidly varying,
the canonical and kinetic momerkandp(t) in Eq.(2.10) is  of which classical kinetic theory takes no account.
clear enough on basic kinematic grounds. The specification The adiabatic basis is defined by first constructing the
of the time-dependent particle numbeks, (t) and AV/_(t)  adiabatic mode functions
may not be quite as obvious, but as they provide the essential - t
connection between the field theory and kinetic descriptions F o o] F<_J / ,)
we must take special care to be equally clear and explicit (0= 2wk(t)ex H] edt)dt ). S
about their definition. This requires that we introduce a Bo- . )
goliubov transformation from the time-independent to aWe will make use of the shorthand notation for the phase
time-dependentbut adiabatit number basis. ¢

The observation underlying the introduction of this basis @k(t)zf w,(t")dt’, (3.2
is that the mode equatiof2.9) generally possesses time-

dependent solutions which have no cleapriori physical  gyppressing the explicit dependencetofand occasionally
meaning in terms of particles or antiparticles. The familiary g the momentum inde) except when needed for clarity
notion that positive energy solutions to the wave equation, most of the following. The lower limit of the integral in

correspond to particles while negative energy solutions COTEq. (3.2) and therefore also the absolute phase of the mode

respond to antiparticles is quite meaningless in tirne'functionT‘ are left arbitrary for the moment, to be fixed in a
dependent background fields where the energy of individual . ; y . L o
onvenient way in the next section. In the limit of arbitrarily

particle-antiparticle modes is not conserved, and no suchi cak electric fieldswy(t) becomes nearly independent of
neat invariant separation into positive and negative energ k 1early indep
ime and can be removed from the integral in E82). In

solutions of the wave equation is possible. This is just hat limit the adiabatic mode function becomes the usual
reflection of the fact that physical particle number does not. . . . . .
ositive energy plane wave solution with respect to which

correspond to a sharp operator which commutes with th e usual definition of particle number is taken. Otherwise
Hamiltonian, i.e., particle-antiparticle pairs are created or de P '

; . . “the adiabatic mode functiort8.1) will not be exact solutions
;g:gnggggeﬁth %Z'gsérgﬁ:ﬂjdﬁelgimber Is not conserved “ﬁ)f the mode equatiof2.9), but we are still free to specify a

Given this fact, one possible point of view is to forget basis with respect to them, provided only tha(t) remains

completely about particle number in time-dependent back[eal and positive fo_r alk an(_it. . - .
grounds and deal only with conserved physical currents such Th_e_ transformatlon_ to this ba_13|s from the original one is
asj(t) in Eqg.(2.12. Indeed, in arbitrarily strong and rapidly specified by the two linear relations

time-varying fields this is the only possible point of view,
since all notion of even an approximately conserved particle
number disappears, and there is no possibility whatsoever of . ) ~ . -y
a classical kinetic description in such extreme situations. One (1) = —Tokar(O (D +HToBr(D T (1) 33

must rely then exclusively on the field theoretic framework.between the exact and adiabatic mode functions. When the
When the fields are not quite so strong and/or so rapidly '

varying in time we would expect to be able to define a parphasg .oﬂ‘ is fixed these relation_s completely fix the complex
ticle number which varies slowly enough for the comparisoncP€fficientsa,(t) and B(t). It is straightforward to solve
to an effective semiclassical kinetic description to be meanfor the Bogoliubov coefficients directly in the form

ingful. Clearly this physical slowly varying particle number
is not the N of the time-independent Heisenberg basis de-
fined by Eq.(2.13 above, since thid\, is part of the initial ) ~
data, a strict constant of the equations of motion, no matter Bk=—i(ftiof)f. (3.9
how strong or rapidly varying the electric field is. The physi-
cal particle number at timé must be defined instead with
respect to a time-dependent baklse adiabatic number ba-
sis) which permits a semiclassical correspondence limit to

fl (1) = a (DT (D + B(DTF (1),

ak:i(fk_iwkfkﬁ:,

An equivalent form of this Bogoliubov transformation in the
Fock space of creation and destruction operators is

_ kT _ pr i\t
ordinary positive energy plane wave solutions in the limit of =y (Da(t) = By (Db (V),
slowly varyingw,(t), and which is related to the Heisenberg + =t ~
basis by a time-dependent Bogoliubov transformation. Since b= a(t)bZ (1) — Br(t)ak(t), (3.9
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so that the field coordinate,(t) may be expressed equally a kinetic description, becoming the ordinary asymptotic con-
well in the time-independent basis by E@.5 or in the stant particle number in the limit of slowly varying,(t).

time-dependent basis by This adiabatic definition of particle number which diagonal-
L L izes the time-dependent Hamiltonian has been considered be-
<pk(t)=fk(t)ak(t)+f§(t)bik(t), (3.6 fore, most recently in the context of particle creation in

o _ ) o ) curved space backgroun{i3,24. Although this choice of
and likewise the field momentum variable is given either bypasis is not unique, since we could have chosen a different
Eq. (2.6) or by condition onf, in Eq. (3.3), it is the only basis where the

. e . RN ratio ./ wy is simply related to particle numbéwithout the

()=~ (O (OB + T ok OT(UB_ (D). ekl Is simply re part o

(3.7 appearance ofy, or higher derivative terms, for example
which is the standard adiabatic invariant of the harmonic
In this basis the Hamiltonian of the set of time-dependenbscillator with time-dependent frequency as in E2j27). In

oscillators in Eq.(2.23 becomes diagonal, different contextgsuch as particle creation in external gravi-
" tational fields where even the Hamiltonian is not uniquely

H o= At aai +b Bt BB L) defined it may be appropriate to consider a somewhqt dif-
au 2; OByt AT D b= tboyb ) ferent definition of the adiabatic number basis, depending on

(3.8  the application.
) o Now that we have completely specified the time-
The transformation from the time-independeag b’y ba-  dependent particle number basis it is straightforward to de-
sis to the time-dependent adiabatic basiﬁ,bik) requires rive the equation of motion which it obeys. We note that
two independent relation@.3) or (3.5), corresponding to a from the explicit representatio(8.4) by differentiation and
canonical transformation in a two dimension@bmplex use of the mode equatig2.9) we have
phase space, for which

2_ 2_ . w

|ak| |ﬁk| 1 (3.9 ag= ﬁﬁkexﬂm ®k),
for eachk. It is easily verified that Eq(3.4) satisfies this “

relation when the Wronskian conditiof2.8) is used. Be-

cause of Eq(3.9) the magnitude of the Bogoliubov transfor- . W )
mation to the adiabatic number basigt) may be specified B= Z—wkakeXFi—ZI 0. (3.13
by
| ()| = coshy,(t), These two first order differential equations are entirely
equivalent to the second order mode equation in Hamiltonian
| B (1) =sinhy, (). (3.10  form. We now obtain by differentiating E¢3.11)

We now define the adiabatic particle number to be

d .
N =@l (030 = (BT ((0B_i(1) ate=2(1F 2NIRL AL Bi)

=l Xaja) + | Bl X(b_ bl
= (14| B AN (K) +| B L+ N_(—k)]
=N+ (1+2Ny) | Be(D)]?

= 24 (14 2N Re{ay B X~ 21 0]
k

= ﬂRe{CkexlfJ(—ZiG)k)}, (3.149
=N+ (1+2N,) sinfy,(1). (3.11 Wk

The second of the relation@.3) is essential to define the \where we have defined the time-dependent pair correlation
adiabatic basis in which particle number is given by the ratiocfynction

of energy to frequency. In fact,

ﬁ2(2> :(1+2Nk)_(|fk|2+ wil fil?) G =(a®b_k(1))=(1+2N B . (3.19
k

hwy
Thus the time derivative of the adiabatically slowly varying
= (142N (1+2B?) particle number involves the pair correlation functig(t)
=1+2N,(t). (3.12 which is itself very rapidly varying, since the time-dependent
phases on the right side of E@.15 addrather than cancel,
Hence the particle numbe¥,(t), though time dependent, although the phases do nearly cancel in the final combination
is an adiabatic invariant of the motion. Consequently, it isof Eq. (3.14). The time derivative of the pair correlation
the natural candidate for a particle density in phase space fdunction
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d o) gained by this rewriting. In other words, the projection
&Ck=£(1+2Nk)exq2i®k) (1+ 2|83 method is essentially free of any physical content, until and
k unless one makes further approximations that replace the
o nonlocal relations satisfied by the relevant observables by
= g(1+2Nk)exp(2i®k), (3.16  local ones. It is at this point that great care must be exer-
k cised, since the precise form of the local approximation
made will determine the usefulness and range of validity of
the resulting truncation.
A natural suggestion might be to replace the Bose en-
d o [t [('Ok hancement factor £2A,(t’) by 1+2M\,(t) and remove it
—Nk=—f dt’ \ —(t)H[1+ 2N (t")] from the integral, on the basis that it is slowly varying func-
dt 2011 @k tion for realt’, and attempt t form th ining integral
, pt to perform the remaining integra
over the rapidly varying phase by the method of stationary

XCOE{Z@k(t)_Z@k(t,)]}- (3.17  phase. However, the phase becomes stationa®,atwy
=0 which is precisely where the integrand has a pole in the
where we have assumed thaI vanishes at Some:to complext’ plane. At such a turning point the adiabatic
(which could be taken te- ). (WKB) approximation certainly breaks down. Hence the sta-
Equation(3.17 may be called a “quantum Vlasov equa- tionary phase method is somewhat less straightforward in
tion,” in the sense that it gives the quantum creation rate othis case, and a naive application of the method results in the
particle number in an arbitrary time varying mean field. Letcorrect exponential factor but thiacorrect prefactor[7].
us remark that the Bose enhancement factot 2V,) ap-  More seriously, the stationary phase method is of no general
pears in Eq.3.17), so that both spontaneous and inducedutility unless one already possesses detailed knowledge of
particle creation are included automatically in the quantunthe analytic structure of the integrand in Eg.17) in the
treatment. The most important feature of E§.17 for our ~ complext’ plane, and in particular, the location of the turn-
present purpose is that it is nonlocal in time, the particleing points wheraw, vanishes.
creation rate depending on the entire previous history of the The importance of the complex turning pds)tfor deter-
system. In that sense the particle creation process is certainiyining the asymptotic mixing between particle and antipar-
non-Markovian in generdll6,18. Equation(3.17) becomes ticle modes a$— *« has been emphasized by Marinov and
exact in the limit in which the electric field can be treated Popov in Ref[8]. In their method the analytic continuation
classically, i.e., the larg®l limit in which real and virtual of the solutions of the mode equation around the Stokes lines
photon emission is neglected, and there is no scattering. Iremanating from the turning point in the complex time plane
clusion of scattering processes lead to collision terms on thdetermines the subdominant component of the wave function
right side of Eq.(3.17 which are also nonlocal in general. with the opposite sign of the frequency on the real axis. The
This nonlocality is essential to the quantum description inamplitude of this exponentially subdominant component of
which phase information is retained for all times. The phaseantiparticle waves in the wave function is the Schwinger par-
oscillations in the cosine term are a result of the quantunticle creation effect. However, the method outlined by these
coherence between the created pairs, which must be presemithors does not seem to be applicable to the integral in Eq.
in principle in any unitary evolution. However, precisely be- (3.17) directly, since it is designed for calculating the particle
cause these phase oscillations are so rapid it is clear that tleeeation asymptotically over infinite time, not for determin-
integral in Eq.(3.17 receives most of its contribution from ing the evolution of the particle creation process in finite real
t’ close tot, which suggests that some local approximationtimet, which is what we require for the transport description.
to the integral should be possible, provided that we are not If one takes no account of the stationary phase point in the
interested in resolving the short time structure or measuringomplext’ plane but attempts to approximate the integral in
the phase coherence effects. The time scale for these quae. (3.17) entirely in real time, for example by integrating
tum phase coherence effects to wash out is the time scale e rapidly varying cosine function by parts any number of
several oscillations of the phase fact@r,(t)—0,(t'), times, it is easy to see that an asymptotic series is generated
which is of orderry,=2m/w=2mhle, wheree, is the in which the exponentially small subdominant solution can
single particle energy. never appear after any finite number of such steps. Any
The steps we have just performed to arrive at 8417 asymptotic expansion of the wave function on the real axis
are a special case of the general projection formalism ofvhich discards the exponentially small antiparticle compo-
Zwanzig[22], where some subset of fast dynamical variablesnent will miss the Schwinger creation effect at late times.
deemed “irrelevant”(in this caseCy) are eliminated in favor From this discussion we see that the essential difficulty
of slow variables deemed “relevant(in this caseV,). Be-  with Eq. (3.17) is that the poir(s) in the complext’ plane
cause the two variables are coupled by the underlying Hamilwhere the phas®, is stationary must play the critical role in
tonian equations of motion the result of solving for somedetermining the particle creation for asymptotically late
variables in terms of others is generally nonlocal in time. Thetimes, but we cannot evaluate the contribution to the integral
nonlocal form(3.17) is still completely equivalent to the of these stationary phase points wherg vanishes without
mode equatiori2.9) and absolutely nothing has been I¢st  in effect knowing the full\V, w,, and®, as analytic func-

brings us back again t&} . This last equation may be solved
formally for C, and substituted into E43.14) to obtain
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tions in the entire complek plane before we even begin. If and are therefore much more slowly varying functions of
we were in possession of these analytic functions we wouldime. The average number of positively charged parti@bes
already have the full solution to our dynamical problem,negatively charged antiparticlesn this basis is given of
without any need to make any approximations to the integralcourse by

This is clearly impossible except for a small number of spe-

cial cases where the complete analytic structure is knawn o
priori. Thus the nonlocal form of the quantum Vlasov equa- > /kpas, =N (3.21
tion (3.17 makes it difficult to extract any useful informa- k=0

tion about a source term for a kinetic description in general.

Consideration of this difficulty immediately suggests aThus the diagonal and off-diagonal elements of the density
different approach. Instead of trying to work with the nonlo- matrix in the adiabatic particle number basis stand in pre-
cal equation(3.17), in the next section we evaluate the spon-cisely the same relationship to each other and contain the
taneous pair creation rate/dt) Vi (t) for aconstantelectric ~ same information as the particle numb¥g and pair corre-
field analytically and directly in real time, thereby assuringlation C,, respectively.
agreement with the Schwinger result in both its exponential Using the representatiof8.18 or (3.20 we can under-
and nonexponential factors. This is one of special casestand how entropy can increase and the evolution become
where NV, and its time derivative can be evaluated analyti-time irreversible if we replace the exact nonlocal guantum
cally in local form, directly from the definitioi3.11) with- Vlasov equation(3.17) by a local expression in which the
out any need for the nonlocal integral representat®iti?). rapid phase variableg, 9, or the off-diagonal matrix el-
Then by making use of an asymptotic expansion of the exa@ments ofp no longer appear. Time reversal in the field
analytic result for constant fields, uniformly valid every- theory requires that both the slow and fast variables be time
where on the real time axis, we obtain a usédehl approxi-  reversed, which involves the full density matrix If we
mation to the spontaneous pair creation rate for the slowlyestrict attention to only the diagonal matrix elementg af
varying electric fields, without any need for analytic continu-the adiabatic particle number basis without any account of
ation or stationary phase methods in complex time. By suclhe phase information present in the rapidly varying off-
an approach we shall bypass completely the difficulties otliagonal elements, then time reversal no longer holds. In the
dealing with the nonlocal integral equati¢8.17) resulting  effective density matrix3.20 the diagonal element;az/k

from the projection method. o _ may be interprete¢for o,=1) as the independent probabili-
_The transformation to the adiabatic number basis angieg of creating/, pairs of charged particles with canonical
elimination of the rapid variableg in favor of the slow o mentumk from the vacuum. This corresponds to disre-
variables\ by Egs.(3.19—(3.17) has its counterpart in the - garqing the intricate quantum phase correlations between the
density matrix description as well. It is shown in the Appen-created pairs in the unitary Hamiltonian evolution, and treat-
dix that the density matrix2.22 may be transformed to the hg the creation events as essentially independent in a sto-
adiabatic number basis, with the general form of the nonvagnastic Markovian processes. Thus the Markov approxima-
nishing matrix elements given by EGp27). In the pure state  {jon o the field theory arises quite naturally when the
caseoy=1 the only nonvanishing matrix elements @fare  gyantum density matrix is expressed in the adiabatic particle
in uncharged pair states with equal numbers of positive ang,mper basis.
negative charges,=n{"”'=n{"), with /\ the number of Such an approximation is known to be quite accurate for
pairs in the mode, viz. long intervals of time in the back reaction of the current on
2/1pl270) the electric field. produci.ng t.he pairs, .for the simple reason
S v P that the phase information in the pair correlations cancels
o , very efficiently when one considers the sum over all khe
=€k = Usecy (D tanhy (D] 7k (3.1 moées in theycurren(2.12). It is for this reason that for

where the magnitude of the Bogoliubov transformatiqft) practical purposes one can approximate the full Gaussian

is defined by Eq(3.10 and its phase,(t) is specified by density matrix over Iargt_e time intervals'by its dia_gonal ele-
ments only, in this basis. Naturally this truncation of the

a By e~ 2%= —sinhy,coshy,e' *. (3.19  unitary Hamiltonian evolution according to E.23 leads
to a nonunitary irreversible evolution in which tledfective

Hence the off-diagonal matrix element$#/ of p are rap-  yon Neumann entropy of the diagonal density mat@x20)
idly varying on the time scalery, of the quantum mode

functions, while the diagonal matrix elements=/ depend "
only on the adiabatic invariant average particle number via Su(1) = =TT pesdn pes= _2 E 2, 1N pay
kK /=0 Tk K

(2/pl27)|_ = p2s =sechytanttky, (3.22

y
| Bil? ¥ N~ ‘

_ _ can increase with time. In fact, upon substituting E3420),
(BT (LMY

the sums over’, are geometric series which are easily per-
formed, with the result that the von Neumann entropy of this
(3.20  truncated density matrix
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Using the Maxwell equatior- E=j this last relation is pre-

cisely thesameas the mean value of the quantum current in
(3.23 Eqg. (3.26. Hence we may identify the adiabatic particle

numberN,(t) with the (quasjclassical single particle distri-
is precisely equal to the Boltzmann entropy of the singlebution. Other definitions of time varying particle number,

Ser(D)],, = 20 {(1+ M) IN(L+ M) = Mdn A

particle distribution functionV,(t). Hence such as that used in our own earlier w2 do not have this
property or admit this simple quasiclassical interpretation.
ES _2 In 1+ N i/\/ (3.24) This exercise also demonstrates that the two terms in the
dt ~ef < N ) dt K ' mean current3.26 should indeed be interpreted as the con-

duction and polarization terms of the earlier phenomenologi-

increases if the mean particle number increases. This is atal descriptions.
ways the casen averageif one starts with vacuum initial
conditionso, =1, since|ﬁk|2 is necessarily nonnegative and IV. CONSTANT ELECTRIC FIELD
can only increase if it is zero initiallf25]. Locally, or once ] ) .
particles are present in the initial state, there is no reason N order to derive the source term due to particle creation
why particle number or the entrof$.24 must continue to 1N @ slowly varying e_Iectnc field, we first analyze _the time
increase monotonically in time, and indeed small temporar;ﬁt_ruc_ture of the_creatlon process in a constant, uniform elec-
decreases are observed in back reaction simulatjidhs tric field, for which
Hence there is no BoltzmanH theorem for the effective
entropy(3.24 without introducing some explicit time aver-
aging and/or further assumptions into the scheme.

Before closing this section we wish to take note of one

A(t)=—Et. 4.1

It is useful to define the rescaled dimensionless variables

additional especially simple property of the adiabatic particle k+eEt ep(t) K2 + m2
number basis. Inserting the Bogoliubov transformation of the u=e =—— and )\EL—E>O, 4.2
mode functions(3.3) into the expression for the current vleE  J|eE =

2.12 we obtain
(212 where e=e(eE)==*1 is the sign ofeE. Then the mode

. [k—eA(t)] equation(2.9 may be put into the form
'(t):ef [k 2
. +u+N|f=0 4.3
X[1+2|B(1)|*+2 Ry Bf e~ KW (1+2Ny). gt 43

(3.29  whose solutions are parabolic cylind&ebe) functions
[26,27. In fact, the two complex conjugate pairs of solutions

foy (W =1 (W=D _1p1inup[—(1—i)ul,

We note that the vacuum term in this expression

f [dk][k_eA(t)]
wi(t) fOU) = 1% (u)xD_yp i [(1+i)u]

4.4
vanishes by charge conjugation symmetry, when proper “-4

gauge invariant integration boundaries are chosen. Using theach comprise complete sets of basis functions in which to
mean value of particles in the adiabatic number be&isl),  expand the scalar charged field Normalizing these solu-
its time derivative and the equations of moti¢®114), we  tions according to the Wronskian conditi¢?.8) and defin-

can rewrite the currenB.25 as ing the phase
. [k—eA(t)] ZJ' . AN A T
= _— + f— = —— — — - -
j(t) 2ef [dk] oD N (t) = [dk]w(t) N (1) W 1 4In)\+ 4In2 8 (4.5
= cond* I pol- (326 e can write the properly normalized positive frequency

. . : _ mode functions in the form
On the other hand, from a classical point of view if the

particle distributi_on/\/k is coupled to a uniform electric field fo()=|2eE Y ™8 VD _ 1y i \pl—(1—i)ul,
the energy density and its time derivative are given by

E2 fi () =[2eE|"Ye™ ™% D1 i (1+1)u]
€= ?-FZJ [dk]wyNk, (3279 -

which approach the adiabatic functionf(t) in the
(k_eA)N+ i l=o asymptotic limitst— —o and t—o, respectively. Notice
PN B that with u defined including thes function as in Eq(4.2)
(3.28 these limits are equivalent ta— —« and u—o, respec-

.'g=EE+2f [dk](eE
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tively, independently of the sign &E. The complex conju- infinite future even though the electric fieltlis constant and
gates of these solutions are the corresponding negative freever vanishes in these limits. The reason for this is that the
quency mode functions and are denotedfhy), or f(k_), corrections to the lowest-order adiabatic mode functions in-
respectively. The phasg¢ has been defined in such a way volve

that the phase of the exact mode functibpsgrees with the

adiabatic mode function8.1) with phase®, measured from

the symmetric poinu=0, i.e., Swi(t) 1 o 3 o’ (—3u+2))

s—=-1 %= (49
@k(t)zf::odt’wk(t’)zfodu’\/u'zﬂ\

W) 203 4o AUuIN)°

1
= Suu+

N [u+JuP+a which goes to zero a$| 4 for t— *+ .
5 )\+§In —_—.

NN If the state of the system is the vacuumstate then the
mode functionf, to be used in Eq(3.4) is thef ), of Eq.
It may seem surprising at first sight that the exact modd4.6) and the effective source term for the creation of par-
functions approach the adiabatic ones in the infinite past anticles from the vacuum is

J

d g1
_ - 2_ —12,— N4 C
N-0= gp|Bul®=18eEl e m[

d

E*‘iwk) D_1pripupl—(1=1)u]

d 2
atV d ] : (4.9

Wk

We note that for a strictly constant electric field this is an By transforming the Gaussian density matrix correspond-
exactresult for the rate of adiabatic particle number changeng to the evolution of the charged scalar field in a back-
starting from vacuum initial conditions && — . Phase cor- ground electric field one can show that E4.12) is also the
relation information for this particular initial state has not mean number of particles in the final state with respect to the
been discarded, although the pair correlation function doesut vacuum, assuming that the field was prepared inithe
not appear explicitly in Eq4.9), which islocal in time. vacuum. The details of this transformation are given in the
Now since the two pairs of complex functiofig.) and  Appendix. From the resul3.20 with v, replaced byy and
f(*) both satisfy the same second order wave equation themgie discussion of the previous section discarding the rapidly
exist linear relations between them. Indeed it follows fromvarying off-diagonal elements qgf, we may interpret the
the properties of the Weber parabolic cylinder functions thatliagonal elements as the probability of findirigpairs at late
times if none were present initially. Hence the=0 matrix

fop=afl+Bf") (410  element
with [26,27] secRy=(1+e ™)1 (4.13
- N2m 2 ytimlAg—m\l4 is the probability of creating no pairs in the given mode, and
1-ix ' the probability that the vacuum remains the vacuum in the
o future is given by the product over all modes
B=—ie" ™2 (4.11 11 (1+e“)1=ex;{—z In(1+e"™)|. (4.19
k K

The fact thatB#0 is the statement that the Bogoliubov
transformation between the two basis pairs is nontrivial an
the adiabatic vacuum state in the infinite past contain
particle-antiparticle pairs with respect to the adiabatic'

vacuum state in the infinite future. The magnitude of this L

#icr):i?(le gggoglllil:g?‘vb;ransformat|on fromh= — to t=+ is = ff [dk]In(1+e™ ™). (4.15

d aking the infinite volume limit this can be expressed as
£EXp(=VTI') where the rate of vacuum decay per unit volume

| B|2=sintty=e"™, (4.12  Since the kinetic momentum of the created charged particles
in the direction of the electric field ik+ eEt, the longitudi-
which is independent ok in the direction of the electric nal integration elementik can be replaced bgET as T
field. —o and the vacuum decay rate becomes
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eE ) N and mean number of produced particles become very small.
I'= 2n)7 J dk, In(1+e"™) It is clear that the source term for the mean rate of particle
production in the Vlasov equation should involve the latter
eE R Z(—)"+L N quantity (4.18 in principle, without the appearance of any
= k —an : . .
(277)3f d LnZ:l e logarithm in the final answer.
(e’ (H)" V. UNIFORM ASYMPTOTIC EXPANSION
— e~ mhm 1h|eg (4 1@
2m)3E 2 : OF THE SOURCE TERM

o ) Equation(4.9) is the source term due to particle creation,
which is Schwinger’s result for scalar QED. ~with a specific choice of initial conditions and phase corre-
One should note that the replacement of the longitudinajations in the initial staténamely, nong Since all quantities
momentum integral ovekin Eq. (4.19 by eETin the large iy Eq. (4.9) are local functions of time, specified in terms of
T limit can be justified only if one understands the timethe mode functiong4.6) there is no need to resort to the

evolution of the pair creation event, for otherwise the exprespgnlocal integral equatior{3.17, and the time evolving
sion(4.19 is formally meaningless. This replacementfafk  phase correlatio, need not be considered explicitly. Be-
by eET and the resulting finite expressi¢h.16), which can  cause of Egs(4.10 and (4.11) the Schwinger pair creation
be obtained by quite different methods imply that only thosegmpiitude is certainly contained in E¢1.9). Since our ob-
kin a linearly growing window in time actually contribute to jective is the derivation of an effective Markovian source
the rate, although the mixing coefficieft over all time is  term for the Boltzmann-Vlasov equation fields which are
independent ok. It is the time-dependent evolution Bf(t) slowly varying in time we now introduce the second impor-
which we can investigate in detail with our definition of the tant ingredient in our approach, i.e., the uniform asymptotic
time-dependent adiabatic humber basis in the next sectioexpansion of Eq(4.9) for weak and slowly varying electric
This definition smoothly interpolates between theandout  fields.

vacuum states specified, respectively, by the two wave func- In order to motivate the introduction of this asymptotic
tions in Eq.(4.6), so thatB,(t) starts at zero as—~—«~ and  expansion observe that for a constant electric field each time
approache% ast— +o. The wave functions depend dn derivative of the mode functioh, brings with it a factor of
andt only through the variable defined in Eq(4.2), and the ~ 1/A. This can be made explicit by introducing a rescaled
potentialu?+ \ is even inu. Hence we should expect eakh Variablev which is independent of the strength of the electric
mode to go through its creation event at a different time field u=vy\ and rewriting the wave equatio.3) in the
according tok+eEt=0, i.e., for the particles to be created form

with kinetic momenta near zero. We shall see that this is

indeed the case and that therefore the randewatiich have 1 d? )
gone through the creation process at tindepends linearly ({2 W’LU +1
ont, which justifies the passage from Eg.15 to (4.16).

Omitting the integration ovek, and the phase space fac- Next, when we allow the electric field to vary in time we can

tpr 1/(2m) n Eq. (4.18, one obtains t.he probab|llty per unit consider the standard adiabatic expansion for the mode func-
time per unit volume to produce pairs with transverse mo-

mentumk, [6,11]. This result has been interpreted as thetIon in the time-varying field2,3]

rate at which pairs are creatft?] and used as a source term

in the Vlasov equation, which involves particle production f= /iexp{ i ftdt’ Q (t’))
[13]. However, a necessary condition for this interpretation K 2Q, ks Ip
to be correct is that the time integration over the rate of

f=0. (5.1

particle production . S\ 2
QO 3/Q
*=o’-55" 20
eEf dtin(1+e ™) 4.17) 2
o 3w 2
identi : ; =@?——+——| +--- (5.2
be identical to the total number of particles produced per unit 20 4\ w :

volume with transverse momentuky , which is given by

integration overk of Eq. (4.1 for which Eq.(3.1) is the lowest order term, corresponding to

no derivatives in Eq(5.2) and orden’ in the constant field
f dk e‘“=eEJ dte ™. (4.19  case. The quasistationary or adiabatic approximation to the
mode equation is obtained by treating the derivative terms as

small compared to the leading order term, i.e.,
Expressiong4.17) and(4.18 arenot equivalent, because the P g
probability rate of particle production differs from the pro- . .
duction rate of the mean value of particles. They become w w

. - o — < — <. .
equal only in the limit of largex when both the probability w® 1 and w? 1 6.3
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In the case of a general electric field this implies that the fielchificant, then that is the signal that we must abandon the
is both slowly varying and weak. For a constant electric fieldBoltzmann-Vlasov description entirely and return to the un-
the adiabatic condition reduces xe>1. derlying field theory without the possibility of making any

lterating the expansion to adiabatic ordgrterms withq simple transport approximation to the self-consistent back
time derivatives of the adiabatic frequeney in the general ~ reaction problem.

time varying field will appear together with terms with The key point is that we require an asymptotic expansion
powers of 1X in the constant field case. Thus there is a0f the mode functions and adiabatic particle number source

precise correspondence between the terms appearing in tHg™ in Eq.(4.9) in powers of 1X that isuniformly valid in
asymptotic expansion ofB,|? and d/dt|B|? to a given time (and longitudinal momenturk), in order that the expo-

power in 1k in a constant electric field background to the nentially small Schwinger amplitudg which is the only
terms appearing in the local adiabatic expansion of the cursécular effect of particle creation which survives tas

rent(3.25 in higher time derivatives of the electric field in a will not be lost in the expansion. This conditionnst satis-
general time varying electric field. The transport approxima-fiéd by the naive asymptotic expansionfaf simple expo-
tion amounts to a truncation of this expansion at the Iowesrﬂe!"t'aI functlons .SUCh as Ep.2. This fa|_Iure of the usual
order required for a consistent back reaction dynamics. Thi diabatic expansion to capture exponentially srtialt secu-

is determined by the order of the back reaction equaion ar) particle creation effects is due to the nonuniformity of
— _E—A which is second order in time. Thus we should the naive asymptotic expansion with respect to the lirhits

. 2 : — oo, This limitation can be removed by an asymptotic
eszand the particle numbgg|* only FO second_ order, i.e., approximation uniformly valid everywhere on the real time
1/\4, in order to match the asymptotic expansion of the CUr.ic in a manner analogous to the uniform asymptotic ap-
rent to the order of the back reaction equation for a Weakprox’imation of the WKB turning point formulag].
slowly varying electric field, self-consistently determined by

; L In the case at hand, the asymptotic expansion of the solu-
solving the Maxwell-Vlasov system. To retain higher orders:tiOns of Eq. (4.3 uniformly valid everywhere on the real

can never be calculated correctly by the constapproxi-
mation of Eq.(4.9). At adiabatic order 2 the only effect of

approximating the source term for a slowly varying electric 2 2s—1
f(+)k(t)ze_m/4 \V o

in the form

field by Eq.(4.9), evaluated in a constant field is the absence T2 Vs

of the E term in the current2.12 generated by the adiabatic s=1 (in)
expansion(5.2). This term is responsible for charge renor- D

malization in mean field theorj2,3]. Hence for comparison x{ ZY4Ai(2) >, 2s

between the mean field evolution and that of the Vlasov- §=0 (in)28

Maxwell system one must specify the scale of the renormal-

ized charge of mean field theory by some other criterion, or C1Jan; Qost1

o eI : o +77 VAN (2) D —— (5.9
it will differ in general from the classical charge appearing in 6 (in)2st 1]

the Vlasov equation by a finite renormalization. This precise
correspondence we fix by a linear response analysis in Sewhere the coefficient®,s and 9, ; are certain functions of
4 v=u/\\ given by
Even if we could calculate higher order tertisy calcu-
lating the source term in some other time varying back- Py(v)=1,
ground, for example to include them would change the or-

der of the Maxwell equatioff = —j by makingj a function Py(v)=— (9v+24%%—145)

of higher derivatives oE. This would introduce unphysical 1152v%+1)3

high frequency runaway solutions, not present in the under-

lying microscopic quantum field theory, in a manner similar B 7v(v?+6) N 455 5
to the higher derivative Lorentz radiation reaction force. 1728 (v2+1)%2  1036&°’ 5.5

Thus the order of the back reaction equation for time-varying
electric fields determines the order of the asymptotic expan- i 2
. . O v(v°+6) 5
sion we should use for the current, in the limit of weak, very 9, (v)=- _4[— -
slowly varying electric fields, which is the only limit in 24 (v2+1)%2 3¢
which such a replacement in the current is justified. The fact ) ]
that the leading order asymptotic expansion of the constarif® complex variableg(v), w, andz are defined by
field adiabatic particle number is already\1/(as we shall 0. ir 1 1 -
see shortly which is the highest order we need to go in the  ¢(3)= K T T ool 1+ o+ o2+ 1)+ —,
expansion, justifies the use of the constant field expression A4 2 2 4
(4.9, evaluated to this asymptotic order, for the local source
term in the Markov limit of the quantum Vlasov equation. If
the higher order terms in the expansion are numerically sig-

, etc.,

w=—\é=—2%2 (5.6)
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1 2%
32 7S(i>\)s}

f(+)k(t)z| e_w)\/4\/2’7ka

P.
i)Y =

X
$=0 (l )\)25-%—1
Qs
+2z Y4pi'(z : 5.9
) ( )520 (in)2s 9
g ﬁ
u where the coefficient functions are
QO(U) = 1!
_ (1*+32m%-143
Q)= 157,75 1)
o 5v(v2—6) 385 (5.10
Re(z — , .
1728 (v2+1)%2 1036&°
FIG. 1. The contour in the complex plane along which the
argument of the Airy functions in Eq€5.4), (5.9, (5.11, and i v(v2—6) 7
(5.12 are evaluated. The cut of tHeroot appearing in Eq(5.7) is Pi(v)=—| ———-+ |, etc.
taken along the positive imaginazyaxis from 0 toic. Following 24 (p2+1)%2 3¢

Eq. (5.6) the corresponding contour in the complexplane is a

straight horizontal line displaced from the reabxis into the lower  From these expressions the uniform asymptotic expansion

half w plane bym\/4, with Rew decreasing asincreases. for the time dependent Bogoliubov coefficighi(t) is easily
computed from its definition in Eq3.4), namely,

wherez is defined in the plane cut along the positive imagi-

nary axis by 23

: 1
- — TN AL =0y -
By=+\me e 1+ 2521 'ys(i)\)s

13 ERNNES

Z:e7|ﬂ- = ®k+_ (57)
2 4 P o)
X3 ZHi(2) Y, ——+z YA (2) Y, ——}.
and thevy, are the numerical constants s=0 (iN)S s=0 (iN)S
1 1 t 59 (5.1)
Yi=— =, Y=, etc. .

o240 721152 Since we have shown by E(B.12 that the particle num-

ber|B,|? is an adiabatic invariant to leading order in the time
derivatives of the background, the lowest ordérterm in
the asymptotic expansion must be absent from the particular

With the definition of the phase afaccording to Eq(5.7)
the complex argument of the Airy functions in E(b.4)
varies along the contour depicted in Fig. 1, as the real time linear combination in Eq(5.11. Indeed withs=0, P
or u ranges from—o to + . e 0

. - . = Qy=1 and the symmetric linear combination of Airy func-
.Ihe terms wte t_have written hgfre epr|C|ttIy d((ejterrr;)lkr;e theions ZY4Ai(z) + 27 Y4Ai’ (2) is of order\ 1, as is verified
uniform asymptotic expansion i, up to order A= - oy hicitly in relations(5.20 and (5.21) below, by using Eg.

dSmc.e \;\;]e are mterested onlylg thte .Ioweft ?hon\l/anlsrlmg d°r§5.6) and the further asymptotic expansion of these functions
€r in the expansion we could retain only the Jowest orde,, |z|~\?*—. Any other linear combination of the same

term in Eq.(5.4), SUbSt'tUte. it into Eq(4.9) to obtaln .the functions, and in particular the antisymmetric combination,
lowest order sourcedterrr;1 in the \élasov equztlon d'reCtIy'zl"‘Ai(z)—z‘l"‘Ai’(z) is of order\?. Anticipating this re-
Some care is required in this procedure since the argument - i
the Airy functions depends oR through Eq.(5.7) and the %Elt;?r:"ii%ﬁ;tltu“ng Eq$5.5) and(5.10 into Bq.(5.19, we
equations of motior{3.13 will not be satisfied unless both
sides of the equation are expanded consistently to the same
order in 1A. For this reason it is useful to retain one higher B= \/;e—mme—i@k
order in the asymptotic expansion than would seem neces-
sary at first sight, in order to have a nontrivial check on the
algebra via the equations of motion.

The corresponding asymptotic expansion for the time de-
rivative of the mode functions uniformly valid on the real
axis is +O(N"?), (5.12

[ZYAi(z) + 27 Y*Ai (2)]

1

[
L UAN (5 _ 5= LApi s S —
+7[27AI(2) -2 A (2)] (u2+)\)3/2+3w
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correct to the leading nonvanishing oraer!. Squaring Eq. p, through Eq.(4.2), the effective source teriior vacuum
(5.12 and taking its time derivative gives the asymptotic initial conditions att=—<) may be written in the form
approximation to the effective source term defined in Eq. 9

(4.9). Sincew andz are functions ofi and\ (equivalently v Siad PP ;E)ZEE%W(QPMZ, (5.13
and\) which depend only on thkinetic momentap(t) and  where

2

|B(p.p,)|?=me” ™2 [zl’4Ai(z)+z1’4Ai’(z)]+;—f[zl’4Ai(z)—z1""Ai’(z)]{ (5.1

—J’__
(U2+\)32 3w

is that function ofp and p, determined by the substitutior{d.2) together with the definition$5.6) and (5.7). Using the
relations

eEi[zl"‘Ai(z)tz’l"‘Ai "(2)]= xiw[ZY*Ai(z) £z Y4AI (2) ]+ I—w[zl"‘Ai(z)Iz’l"‘Ai "(2)] (5.15
ap 47372

which follow from the definition(5.7) and Ai'(z) = zAi( z), the differentiation in Eq(5.13 can be carried out explicitly with
the result

Swad P.P S E) = wleEle””Z—{ |2Ai(2)]*~ |27 A (2)]2+ %Im[(z”“Ai(z))*z*l"‘Ai "(2)]

TEESY
0, us 1 N 6(2u2—\) ule,
+ — —|Z¥Ai(2) -z Y*Ai (2)|?] —% + +
<3|w|2 MU+ )32 a8z (@ (@ Wl® (U N)° T 3n|w|2(u+A)32
+—35 —772)\2 AR 5.1
gw® 16 Ok T Tgwe| [ (5.1

where we have neglected all terms of order® and higher  particle number\V; has been studied by various authors and
within the curly brackets. bounds obtained in the general c486]. However, for this
The expressiong5.13), (5.14), and (5.16 are the main particular case of constant electric field and mode equation
results of this paper. In order to understand the physics of4.3) leading to Weber parabolic cylinder functions, it has
particle creation that is captured in these expressions wapparently not been noticed that the asymptotic expansion of
compare the lowest order asymptotic expression for the adidhe solutions of this equation, uniformly valid on the real
batic particle numbe5.14) with the analogous exact expres- time axis, allows one to calculate the exponentially small
sion in terms of parabolic cylinder functions for constantSecular change in the adiabatic invariaftanalytically. The
external electric field. The results are plotted in Figs. 2—4 fosame observation could clearly be generalized to other dif-
A=1,2, and 10, respectively. We see that the asymptoti(fjerential equations for which uniform asymptotic expansions
expansion in terms of Airy functions reproduces the behaviof"® known. , .
of the adiabatic particle number quite accurately, even for 1he sharpness of the creation eventuatO |51/(2:Iearly
moderately smalk of order 1. The other important feature to determined by the wave equatioh.3) to be Au~A"=or
notice about these figures is the relatively sharp increase in

particle number right around=p=0. The transients after At fo+m202=

this particle creation event then settle down to the value t eE =T (5.17

| B]2=exp(—m\) which is independent of the initial longitu-

dinal momentum. which is the time scale for the growth of a sizable fraction of

Thus, the exponentially small Schwinger particle creationthe final antiparticle amplitude in the quantum wave func-
effect is captured very well by theadingorder term in the tion. This time scalgwhich is also the time scale for the
uniform asymptotic expansion ¢f|2. Notice that the uni- classical acceleration by the electric field to bring a charged
form asymptotic expansion for the source term works venyparticle to relativistic velocitigsmust be long compared to
well even at the expected limit of its validity at=1. As a  the quantum phase coherence timg, in order for the cre-
mathematical aside we remark that the exponentially smaktion process to be described by a local approximation to the
contribution to an adiabatic invariant quantity such as thenonlocal Vlasov equatiof3.17), i.e.,
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FIG. 3. Same as Fig. 2 but for=2. The particle numbers
approach the same valge 2"=0.00187 ag—o, although each
cNk experiences a sharp rise at a different time, viz., near zero ki-
netic momentump=k+eEt=0.

FIG. 2. The exac{solid curve, uniform (dashed curve and
adiabatic step functiofdotted curve asymptotic expansions of the
adiabatic particle number and its time derivative for a constant ele
tric field with A\=1 andk=0. The particle numbers approach the

same value™ "= 0.0432 ag—, although eachlV, experiences a . L .
sharp rise at a different time, viz. near zero kinetic momentpm, INto the initial conditions of the vacuum &t —« once and

—k+eEt=0. The delta function at=0 in the dotted curve of the Tor all. However, in analyzing the particle creation process in

second figure obtained from differentiatig.27) is not shown. a constant field and deriving E¢5.16 we have also as-
sumed that the electric field does not vary over the typical

time of the variation of\V.. Thus in order to use Eq5.16
in situations involving a time evolving electric field we also
require that its time scale of variatiay be much larger than
Hence the Markov limit of the Vlasov equation requiresthe time scale of the creation event, i.e.,
weak electric fields.>1 which is what we have assumed in
the uniform adiabatic expansion of the source term. Con- Toi> Tgl - (5.19
versely, if we consider the opposite limit where the electric
field is strong, so many particles are created so rapidly idf this second inequality holds then it should be possible to
time that the individual particle creation events cannot becoarsen our time resolution still further by not attempting to
distinguished one from another during the quantum coherresolve the time scalg,. On these still longer time scales it
ence timery,. It is clear that in this case significant wave becomes reasonable to approximate the sharp growth of the
amplitude coherence during the creation process can be eantiparticle amplitude near=p,=0 as a step function, pro-
pected and we cannot hope to approximate the effects ofided only that we account for the integrated value of the
such copious and coherent particle creation by a Boltzmanrstep from—o to + . This is what we wish to explain next.
Vlasov source term local in time, which takes no account of Let us first reiterate that the uniform asymptotic expan-
the prior time history. Indeed in this strong field limit these sion in terms of Airy functions is indeed essential to captur-
“particles” are not particles at all in the usual sense but areng the step explicitly in Figs. 2—4 and that the Schwinger
more accurately to be thought of as coherent wave amplieffect is lost completely if a naive WKB expansion in pow-
tudes which lie outside of any classical or semiclassical kiers of 1A is used instead. This may be seen explicitly by
netic particle description. taking the largen asymptotics of the Airy functions in Eq.
Restricting ourselves then to weak fields these coherend®.12). To this end we note the Airy functions may be rep-
effects do not need to be considered explicitly and are builtesented in terms of Hankel functions of the first kind,

T~ NTq> Tqu- (5.18
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—a<argw<mr, (5.21

0.0001

for large |w| to find
0.00008

eiw
Bk~W_)O as t——oo, (5.22

0.00006

16

0.00004 Sincew= —\¢ is linear in\ this shows that the linear com-

bination of Airy or Hankel functions i3 is of orderx —!
and contains na° term, as stated above.

Thus if t— —o with eE fixed or if \—o with k+eEt
<0 fixed, the adiabatic particle number vanishes. On the
t other hand ifu— +% we cannot use E(q5.21) directly be-
cause argv— —1r in this limit, and the condition on the
210 phase is not satisfied. Instead we must first use the connec-
A tion formula

0.00002

0.00002

sin 27y : ) )
H(Vl)(W) — —H(Vl)(e”TW)"F eflﬂ'vH(VZ)(eITrW)

sinwv
(5.23

to bring the phase of’ = €' "w into the proper range in order
to apply Eq.(5.21). Then we find that the" terms from
H again vanish ag"|w|~* for large |w|, but that now
there remains in addition the opposite frequercy” term
which gives

0.00001

2
1Bk
©

d
dt

—-0.00001

-0.00002

Bk(t)_) _ ie—ﬂ')\/4e—iwe—i®k: _ ie—w)\/ZZIB (524)
FIG. 4. Same as Figs. 2 and 3 but for= 10. In this case the

magnitude of the step at late times,%"=2.27x10 **is much  which is finite ast— +o with eE fixed. As A —o with k

smaller than the transient effects visible in the plot, and all three+ e Et>0 fixed this term is exponentially small compared to

curves are very nearlgantisymmetric around=0, showing thata the ordinaryx ~* contribution.

nearly equal number of particles is created and destroyed. As in the | this way the uniform asymptotic expansion in terms of

previous figures the delta functiontat 0 in the dotted curve of the Airy or Hankel functions which contains the exponentially

second figure is not shown. small Schwinger particle creation becomes nonuniform in
1 time, depending on the sign df+eEt, if the further
7M1 (2) = —=e5m12y 12 (1}3)(W)1 asymptotic ex_pan.sion of these functior_13 in terms qf expo-
22 nentials exptiw) is taken. Only the uniform expansion in

Egs. (5.4 and (5.9 can capture the particle creation event,
Ay B2, 12y (1) and Figs. 2—4 show that it does quite accurately even at the
z A (2)= ﬁe W HzW) . (520 jowest nonvanishing order of the expansion. This exercise in
asymptotic expansions as well as the explicit behavior in
with the branch cut oiv'? along the negativev axis, andw  time of the adiabatic particle number in Figs. 2—4 does show
ranging from+o —iaw\/4 to —o—i\/4 along the horizon- that we might try the simple adiabatic expansion@f ac-
tal contour displaced by-im7A/4 from the real axis, as  cording to Eq(5.2), but that we must then add babl¢ hand
ranges from- to +c, according to Eq(5.6). Taking the  the exponentially small stef in the vicinity of the creation
largeX limit is equivalent to taking the largev| limit of the event atk+eEt=0, i.e.,
Hankel functions, which depends critically on the phase of

w. This phase depends in turn on the siguéfom Eq.(5.6). — adb =
When u<0, then|argw|<# and we can use the standard Be=PBi +6(u)B, (5.29
asymptotic expansion of the Hankel functions where
2 T T . ;
WY2H (D (w) ~ ——ex iw—i—v—i—) ie 2%y 1
v 27 4 b — 4+ 0| 5 5.2
\/; Bk 4(U2+)\)3/2 )\2 ( @
3
v+ 2 is the result obtained by substituting the lowest order of the
1 2 ; . o .
- +... 7, standard adiabatic approximation for the mode functions
2iw rl - } (5.2, rather than Olver’s uniform expansion in terms of Airy
2 functions. The Heaviside step function could be replaced by
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any smooth function with the correct limits &t . The  which describes quantum particle creation in slowly varying
point is that if the second inequalit{6.19 holds, then in electric fields, starting from vacuum initial conditions tat
multiparticle collective quantities such as the mean currentz — o,
integrations over large ranges of kinetic momenta are in- One point that still requires some discussion is the effect
volved, and it makes little difference whether the continuousof changing the initial conditions from vacuumtat — o to
rise in each individual mode’s particle number on the mo-those at some finite timg,. Indeed, the comparison of the
mentum scaler,/eE is taken into account, provided only effective source term in the Vlasov description with the
that the integral over all momenta accurately describes whicimean field evolution in the next section requires that the
modes have gone through the creation process. It is only thisitial conditions be specified at a finite initial tintg, not at
fact and the second inequality involving the collective time—o. This means that the effective source term which is
scale of the plasma that can justify replacing the continuougiven by Eqs.(5.16 will differ from the actual source term
rise of N by a step function. in its dependence on the initial data and the correlations

In this admittedly rather crude approximation the functionlack of then) in the initial state. To the extent that a Mar-
B(p,p.) of Eqg. (5.19 in terms of Airy or Hankel functions kovian approximation to the source term is justified and
is replaced by dephasing is efficient we expect that the memory effects of

the initial conditions will be washed out on the time scale of

) (eE)?p? eEp A significant particle creation, and therefore that the initial con-
|BP.PLI~ 5~ ﬁex;{ - 7) 6(u)cog20) ditions will affect only the transient behavior of the evolution
for times close td,. This can be checked in more detail.
+exp(—a\)6(u) (5.27 To examine the transient effects of the initial conditions

let us consider arbitrary initial data on the mode functions

in terms of elementary functic_ms. This appro_ximation t.o E_q.fk(to) and fk(to), subject only to the Wronskian condition
(5.14) is compared to the uniform asymptotic expansion in(2 ) and finite initial energy density. The general solution of

the dotted curves of Figs. 2—4, where it is observed that if, (t) in a constant electric field is a linear combination of
works better than might have been expected, except for the(

region near the creation evemt=0 where it is clearly inac-

curate. The delta funct_lon obtained _by differentiating the last fe(t) = A (to) f 4 k() + Bk(to)ffl)k(t)- (5.28
two terms of Eq(5.27) is not shown in the second halves of

Figs. 2—4. Notice that the oscillations in these figures arey using the Wronskian condition on the mode functions we
well represented by the co&§? term in Eq.(5.27), which  can solve for the coefficientsy,(to) andBy(t) in terms of
may be interpreted as the interference between the usugde initial conditions on the mode functions in the form
adiabatic phase oscillations and the relatively sudden particle

creation event. Thus we see that for numerical purposes it is A(to) =i Fi(to) fEy (to) = Filt) FF, (o)1,
probably sufficient to use the approximate form of

|B(p.p,)|? in Eq. (5.27 for all p, except those in a band of . - .

size several units of/p? +m? centered at the origin where Bilto) =i Ti(to) T (to) = i(to) o (o) ] (5.29
the sharp(but continuous rise of particle number takes '

place. When one is integrating over a regiompadr t thatis A specific example of initial data with finite energy density

large compared to the time scaig over which the rise in s provided by the adiabatic vacuum initial conditionstat
particle number takes place, the crude approximation of this-t je

rise by a step function and its derivative by a delta function
may be sufficient, provided only that their coefficient is fixed 5 4
by the Schwinger formula, as in E¢5.27. On the other fr(tg) =T (tg) = \/2—,
hand, in the region op=0 the true behavior is certainly not wy(to)
discontinuous on the scale, and the more accurate form :
(5.14 in terms of Airy or Hankel functions should be used Fo(to)=u(t) = | — i on(to)+ wi(to) F(to)
for moderately strong electric fields. (to)=Tilto lwy(to 2w (to) (o).

We have now succeeded in our main purpose, hamely, to (5.30
analyze the time structure of the quantum particle creation
process in the adiabatic number basis, and to capture thahe second term in the time derivative of the mode function
particle creation event by means of a uniform asymptotids essential to insure finite initial energy density and is non-
expansion of the exact wave functions of the constant eleczero for finite electric field at initial timeéy. It means that a
tric field background, without any need to analytically con-definite nonzero value of the pair correlatidq is being
tinue or approximate the nonlocal integral in Eg§.17). Be-  assumed in the initial adiabatic vacuum state.
cause of the reasoning earlier in this section we can proceed Our previous choice of vacuum initial conditions is recov-
to identify the time rate of change of the adiabatic particleered if we letto— —o so thatAy—1, By—0, and f(t)
number in the lowest order of this uniform asymptotic ex-— f;)«(t). Retainingt, finite means that the general expres-
pansion given by Eq(5.16 or the time derivative of Eq. sion for B, (t) in Eg. (3.4 with the mode functions given by
(5.27) as the effective source term in the Vlasov equationEq. (5.28 should be used so that

)k
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meanold —— ] ation event ap(t)=0 sincep(t)=k+eEtis a monotoni-
old source -+ cally increasing function of for constant positivéE. It is in

fact present in thé\, and B, of Eq. (5.29 through f,(ty)

and f,(t,) which involve the same parabolic cylinder mode
functions and the similar behavior nelat-eEt,=0 as ob-
served in Figs. 2—4. It is this dependence on the initial data
which provides just the momentum window in E¢.32
which we need to justify the replacement of the longitudinal
momentum integratiok by the total elapsed timeET in

Eqg. (4.195, and which led to Schwinger's result for the decay
rate. Such an understanding of the linear time divergence is
possible only with a detailed description of the time structure
002 : : s s of the particle creation process as given here.

° mt The fact that the current in a constant electric field grows
linearly with time is important for another reason. For it
shows that back reaction must eventually be taken into ac-
count, and that simple perturbation theory must break down
hft late enough times for any nonzeed, no matter how
small. These back reaction effects can be taken into account
only by a systematic resummation of perturbation theory,
such as the largdl expansion advocated in Ref2-4], or
~ . - by the solution of the Vlasov-Maxwell system of equations,
Bi(t,to) = —iA(to) Fi (O (f s Fiowf 1)) =By (to) fi(t) valid when the inequalities of time scaleg,< 7,< 7, hold.

- N When the electric fields are very weak fieldeH
Xk o) (5.3D <m?c3/%), particle creation is negligible, the linear slope in
) ) . Fig. 5 is very small and even in back reaction the electric
Since A, and By are also given in terms of ) by EQS.  fie|q will hardly change at all with time. In this case essen-
(5.29 one can develop the uniform asymptotic expansion fOkially all the effects on moderate time scales will be transient
this Bk(t,to) using Eqs.(5.4) and(5.9), repeating the steps ottacts and one should retain the initial condition information
leading to Eq.(5.14) keeplngtg finite. _ in A, and B,. In moderately strong electric fieldeE

The resulting rather complicated expression for the source. m?c3/#) where particle creation is significant Fig. 5 shows
term will depend on the electric field value at the initial time ot the transient effects of the initial data become unimpor-
to. This expression would incorporate the initial data of theignt pefore long and one might just as well use the simpler
actual mean field evolution problem startingtgtmore ac- expression for the source term with=1 andB,=0, de-
curately than the simple choice of initial conditio®s,=1 i eq previously. This is equivalent to replacing the electric
andBy=0 which we have used in the source tefS1l6. A fie|d value the particles feel at the actual time of creation by
good probe of the effect of these transient terms is the eleGne assumed to have been constant for times long before the

tric current which is plotted in Fig. 5 fok=1. The early  creation takes place. In that case the source term does not
oscillations observed in the exact current are the effect of thﬁepend on the value of the electric field at the initial tige

initial conditions(5.30. However, the linear growth withat  \ypich again is reasonable provideg/> 7. It is the quasi-

late times can be understood from the simple approximatiogyationary, Markov approximation for the source term in Eq.
to the particle creatio5.27) by a step function. (5.16 or (5.27 A,=1 andB,=0 that we compare to the

_For if we start att=t, (rather than at=—c) with N0 actya) back reaction evolution of mean field theory in the
initial particles present, then the actual current integrateqhext section.

over all longitudinal momenta at timeis dominated by the
conduction currenj.onqin Eg. (3.26) and becomes

0.16 -

FIG. 5. The linear growth of the electric current with time in the
case of fixed constant background electric field 1 ande=1. The
three curves shown are the current of the exact mode functions, t
uniform Airy approximation to them with initial conditions &g
=0 according to Egs(5.28—(5.30, and the simple step function
ansatz of Eq(5.27).

We conclude this section by remarking on the relationship
between the local source ter{#.9) or its asymptotic expan-
sion (5.16) and the general nonlocal for(3.17) derived in

dk k+eEt Sec. II. F tant electric field starting f
26 extl — 7\ | — 0(k+eED 6 —k—eE Sec. Il. For a constant electric field starting from vacuum
A= m\) 27T wy ( ) O o) initial conditions(4.9) and(3.17) must be identical of course.
2E If, following Rau [16] one neglects the Bose enhancement
—>e7eX[(—77)\)(t—to) (5.32 factor 1+2MN, and changes variables frortY to Ax

=20,(t")—20,(t) then the integral in Eq(3.17) may be
rewritten in the form
in one spatial dimension at late times, which grows linearly

with the elapsed tim& =t—t, since the initial vacuum state ;

L { S d eEp (o sinhe(x)
was prepared. This is precisely the slope which is observed —Ny=—% dx————cog\X), (5.33
in all three curves in Fig. 5 at late times. The second step dt 40 )= coste(x)

function involvingtg is necessary because only modes with
initially negative kinetic momentum can go through a cre-where
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k+eEt Ny by N (t) at thelocal time of interest. The replacement of
u'= eﬁ: Y\ sinhe(x) (5.34  E by E(t) is justified if the electric field is slowly varying

(the quasistationary approximatjorwhile the replacement

of Ny by N, (t) is justified if the electric field is weak\
>1), since from Eq(6.1) the difference between the two is
sinhg(x)coshe(X) + ¢(X) proport_ional to|_ﬂk|2 whic_h is of order\ ~2 and gives rise to
corrections which are higher order than the terms we have

is given implicitly as a function ok by the relation

- p retained in the asymptotic expansion of the source term. In
:X+pf+m2 +sinh —\/W (5.39  this way the statistical factor £2\; has effectively been

removed from the nonlocal integral kern€.17) and we
for constant electric field. have obtained the final form of the source term for use in

C o back reaction.
This is similar in form to Egs(25) and(26) of Ref.[16], ; . . .
the additional sinhy in the numerator of Eq(5.33 being Converting the independent variables of the number dis-

due to the fact that we have treated charged scalars rathgtLbUt'on function from canqn!gal momenkaandt to kinetic
than fermions in this paper. Thus the form of the source ternf’Mentap andt by the definition

plotted in the second halves of Figs. 2—4 is qualitatively
similar to those presented in R¢lL6] by numerical evalua-
tion of an integral similar to Eq5.33. However, the neglect ) i
of the quantum statistical enhanceméot Pauli blocking e obtain the local Viasov equation

factor 1+ 2\, in the integrand of Eq(3.17) is valid only in P 5

the weak field limitA>1. Since that has already been as- 7 . 7 .

sumed in writing Eq(5.33 one should then properly evalu- ﬂtN’(p’pL ,t)+eE(t)apN(p,pl )

ate the integral in the same limit. As already remarked in ] ) )

Sec. |l there is no straightforward method of performing an =S(p.p.;E)=[1+2N(p.p. 1D]Swad P.P1 iE),
asymptotic expansion of this integral in real time without (6.4
losing the exponentially small Schwinger effect: integrating

the coskx) term successively by parts will generate thefor spatially homogeneous fields. Spatial dependence in the
simple adiabatic expansion which contains no expf)  distribution function could be included on the left side of Eq.
term or step function. In the case of weak fields=\ (6.4) in the standard manner, provided it is also slowly vary-
> 1 this effect is exponentially small in any case, so if oneing in space compared 7. Together with the Maxwell
simply evaluates Eq(5.33 or its equivalent for fermions equation

numerically as in Fig. 1 of Ref.16] or Fig. 4 of this work,

N(H)=Mp=k—eA;t), (6.3

most of the numerical contribution to what is plotted is con- . p 2

tained in thefirst (pure B2%°) term of Eq.(5.27, which A(t)=2eJ [dp]_M(p.p, nHEJ (dp]

scales as 3£, andnot the last term which gives rise to the

exponentially small delta function source of Rigfl]. Hence Xo[1+2Mp,p, ;t)]SiadP,p sE), (6.9

multiplication by the factor expf\/2) in Egs.(24) and(25) o _
of Ref.[16] for weak fields is nugatory, while for strong Ed. (5.16), and the defining relationgt.2), (5.6), and(5.7)
fieldsa 1=\<1, the neglect of the factor2\, in Eq. this constitutes the local kinetic approximation to the mean

(5.33 or Eq.(25) of Ref.[16] is not justified. field equations.
In order to understand the time scale associated with the
VI. BACK REACTION variation of the electric field and therefore the validity of the

guasistationary approximation to the source term by that for

The source term we have derived in E(.16 for  a constant electric field consider first the Vlasov-Maxwell
vacuum initial conditions at,=—o must be modified to system ignoring particle creation. With the source term set to
include induced creation when there are particles present iero, Eq.(6.4) can be solved in closed form, viz.
the initial state. Since
Mp,p, ;t)=N[p+eAt),p, ;0]. 6.6
1+2N=(1+2N)(1+2| B3 (6.1 (P.p. i =Np+eAl).p. 0] (©0
Substituting this solution into Eq6.5 and linearizing in

for Ny particles in the initial state, the correct modified ;
A(t) gives

source term in constant electric field is

Ni= (142N Syad p.p, SE). (6.2 5A(t)—2e25A(t)f [dp] %%Mp,pL :0)=0. (6.7)

In the back reaction problem the electric field will vary with

time. Now the local Markov approximation to the nonlocal Integrating the latter expression by parts demonstrates that
Vlasov equation(3.17) consists of using the source term the potentialand therefore also the electric fighdill oscil-

(6.2 with the constant replaced byE(t) and the constant late with a frequency
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L
o(p,p,)

d
w§|=262J [dp]f\/(p,pl;O)% ) (6.9
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k —
B(t)=2e [ [dk]=(1+2N,)Re(Be ?'“c') (6.15
Wk

which is the relativistic plasma frequency. In the nonrelativ-is given by the initial perturbation away from the vacuum

istic limit w(p,p,) can be replaced byn and the integral,
2 [dp] Mp,p, ;0)=n simply gives the total number den-
sity of particles present in the initial statetat0. Then we

solution.
The most direct method of solving a linear integral equa-
tion such as Eq(6.14) is to make use of the Laplace trans-

recover the familiar expressianﬁ,—>e2n/ m for the classical form

plasma oscillation frequency.

This classical plasma frequency may be obtained as well
from a linear response analysis of the quantum mean field

Z(s)zf: dt e S'A(t). (6.16)

equations as follows. We perturb the vacuum solution for the

mode functions
_ h — _
fk(t)z ZTG_Iwkt, W= \/k2+ mz, (69)
(&

with zero electric field by writing

fi ()= fi (D) + 8F (1) (6.10

and expand the equations of motion to first ordepfR, A,
andA. The linearized mode equation

5 =2keAf; (6.11)

2
—
[W'ka

can be solved by making use of the free retarded Green’ﬁm_}Shold a?—

function

sif o (t—t")]

wi

Gr(t—t";k)= o(t—t’), (6.12

in the form

After some regrouping of terms the Laplace transform of Eq.
(6.14 may be put into the form

e? k2
1+Zf [dk];—E(1+2Nk)

A(s){ s

J
+2e2f [dk] N

Wy

_ﬁ dk Ew = 0 +A 0 +§

(6.17

where the right-hand side depends only upon the initial data.
We notice in Eq.(6.17) the presence of the two-particle

—45ﬁ for the creation of a pair of charged
particles which would give rise to an imaginary part and
damping in the linear Maxwell equation. Since the particles
are massive this imaginary part is zero if we find an oscilla-
tory solution of the equation witB=*iwy and wy<2m.
Such a solution is easily found by setting the expression in
curly brackets in Eq(6.17) to zero and neglecting ths’
term:

t _ _
5fk(t):2ekf dt'Gr(t—t";K)A( ) f(t") + A f(b) ) ) 9l k
0 a)p|=29R’Nf [dk] Nkﬁ g—k ) (618)
+BifE (1), 6.13
where
whereA, and B, are constants of integration and Rg=0
in order to preserve the Wronskian conditi¢h8) under the _ 1 1 k2
perturbation. The corresponding linearized Maxwell equa- ez__ngZ [dk]w:5(1+2Nk)' (6.19
tion is RN k
, In 3+1 dimensions the combination in E@.19 is indepen-
. = Ny k dent of the ultraviolet cutoff and the renormalized value of
— * _ —_— —_—
A—eJ' [dk][4k(1+2Nk)Rdfk o) ZEAZI( eA;3 the charge depends in general on the distributign The
k only requirement on the distribution is that, in Eq. (6.18
t k2 _ must be much smaller tham® in which limit there is no
=2€2f dt’A(t’)f [dk] = (1+2Ny)siM2w,(t—t")] particle creation at all and the time independbiptin Eq.
0 @k (6.18 may be identified with the particle density in phase
K 2N spaceN(p).
—e2A(t)J [dk] _ 4ok +B(t), (6.14 Thus the linear response analysis of the quantum mean
;‘;’ wy field theory gives exactly the same result for the plasma fre-

where

quency, provided that the classical chaeggppearing in Eq.
(6.8) is identified with the renormalized charge of the quan-
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tum theory according to Ed6.19. This provides a consis- ' ' ' ' mednfield ——
tency check with the classical Vlasov transport description o ! old source ------ ]
the plasma, valid in the adiabatic or infrared limit of slowly
varying mean fields, and identifies the proper correspon
dence limit of the classical coupling with that in the under- ~ °* A
lying quantum description. i ; !

It is wy that sets the time scale of the variation of they Pl
electric field in the back reaction problem, i.ez, °or | !
=2m/wp . Hence the local quasistationary approximation to i ,’
the source term in Ed6.4) requires that the three time scales s \\ j
obey -l '

0T Wy T <1. (6.20

L 1
0 50 100 150 200 250 300

If one starts the evolution with zero initial particles then the mt
distribution function ' changes from its classical value . o :

. . . ] FIG. 6. The evolution of the electric field in one space dimen-
Nlp+eA(t),p, ;0] due to the particle creation effect em sion, according to the exact mean field E(s17), the new source

bodied in the source term. Since the second inequality re-

. I a1 d th ¢ . tiall term (6.2) derived in this paper, and the old source term used pre-
quwes.rd Tqu an € source G_:rm IS exponentially viously (6.21), but with no logarithm, for initial electric fiel&E
small in\, the number of created particles and therefore —e?=m?=1, and no particles present in the initial state. The new

the plasma oscillation frequency will also be exponentiallysoyrce term tracks the mean field evolution more accurately than

small in . Hence the time for enough particles to be pro-the delta function source term, which gives a too small plasma
duced to significantly influence the electric field will be ex- oscillation frequency at late times.

ponentially long and the second inequality in E§.20 will

also be satisfied automatically. Thus our local, qua5|stat|onc-)f phase eventually, but at a much slower rate, or in other

o n[words: it more accurately estimates the plasma frequency of
he collective motion. We deliberately chose moderately
of the source term by E(5.27) to be not far from correct, large values of the coupling=1 and the initial electric field

Indeed in previous work we have_shown that solving 4E—1 in order to amplify the small discrepancy between the
Viasov system with a phenomenological source term of th?nean field evolution and that of the new source term. For

form evolutions ate=0.1 such as in earlier woil8], the discrep-
[1+2M(p,p, ;t)]|eElIn(1+e™)8(p), (6.2))  ancy is negligible on the scale of the plot.

In Fig. 7 we display the electric curreri8.26 for the
reproduces results qualitatively similar to the mean fieldthree evolutions. The new feature observed here are the rapid
theory calculation of charged matter field coupled to a clasoscillations of the quantum mean field evolution on the time
sical electric field[3]. In the present work we have shown scale 7o, and their complete absence from the evolutions
that no logarithm should be present in the source term, i.ewith the two local Vlasov source terms which follow the
In(1+e~™) in Eq. (6.21) should be replaced by simply value of the current averaged over this rapid time scale. This
e~ ™, and that in fact, the particle creation event is continu-is in accord with our previous discussion of the neglect of
ous and can only be crudely approximated as a sharp step
function in Eq.(5.27) with some loss of information about 03 . . . , —
the true time structure of the event, as demonstrated in Figs | new source - |
2—-4. However, if the second inequality in .20 is valid
then the evolution of the mean electric field on the time scale
of w‘;l should be affected but little by the further approxi- 0151
mation of the source term by a delta function. o1l ! il

In order to test the validity of this approximation we _ [~
present numerical results for the Maxwell-Vlasov system of i
equations(6.4) and (6.5 with both the new source term l. , i
(5.16 and the old delta function source teriout with no 0.0 - | i ; i
logarithm), and compare the results to the exact solution of o1} i A
the mean field evolution of the mode functiof@s9) coupled K
to the Maxwell equatiori2.17) for scalar QED. The electric

field evolution is plotted in Fig. 6 for the three cases. We % 50 100 150 20 250 200
observe that the corrected delta function source term gives "
qualitatively correct results, but the new source téf®) FIG. 7. The evolution of the current in one space dimension, for

does a better overall job of tracking the mean field evolutionthe same initial conditions as Fig. 6. Both the source terms for the
particularly at late times, where the old source term begins t&lasov equation neglect the oscillations of the current on the time
drift out of phase. The new source tef2) also drifts out  scalery~1.
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=100 sions where the simulations were performed the charge
04 ' ' renormalization is finite and in the vacuum is given by

= m* + ! (6.22
eZR,N:O eT 12’77 ’

so that the finite renormalization effects fe=m=1 are of
order 1/12r=0.026 or a few percent in the range of the
simulations shown in the figures. In the extreme weak cou-
pling limit m2/e§>1 where the Vlasov approximation be-
comes more and more accurate, this finite renormalization
effect is completely negligible.

N(k)

VIl. SUMMARY AND OUTLOOK

Based on the Hamiltonian description of mean field
theory and the existence of an adiabatic invariant of this
evolution, we identified thé¢lowest ordey adiabatic particle
number as the most suitable analogue for the single particle
-0.1 . ' distribution function of semiclassical transport theory. Al-

-10.0 -50 00 though not unique, this definition of particle number involves
the fewest number of derivativdaamely, zerp of the fre-

FIG. 8. The particle distributiooh” as a function of canonical quencyw,, and hence its time rate of change is most appro-
momentumk at a fixed timet=100 for the mean field evolution priate for identification as the source term for the Boltzmann-
(jagged curvgand the new source tertsmooth curvgderived in - Vlasov equation, which is first order in time derivatives.
this paper, for the same initial conditions as Figs. 6 and 7. TheConfirming this identification, the electric current in this ba-
Vlasov equation with the new source term is approximately asis has an intuitively appealing and simple quasiclassical
smooth average of the.actuall mean fieldlevolution on spatial scalggrm (3.26). SinceM, is already adiabatic order two with this
of ordercrg,~1. The slight dip into negative values of the smooth gefinjtion of particle number, including higher order adia-
curve becomes less and less prominent at later times. batic corrections inV, would be inconsistent with the use of

the source term in back reaction as well, since Maxwell’'s
such quantum coherence effects in any local transport deequations are second order in time.
scription. The particle distribution functioR’is plotted as a Analyzing the time dependence of the mean particle num-
function of k for the mean field and Vlasov evolutions at a ber in a constant electric field we derived the rate of pair
particular value ot in Fig. 8. We observe the same quantumcreation of charged scalar particles, and clarified the time
coherence effects in the mean field evolution here in thecales involved in the particle production phenomenon. Al-
rapid oscillations of\/ in momentum space on a scalk  though formally equivalent to the quantum Vlasov equation
~1/c7y, as one observes as a function of time. Again thesé3.17) and consistent with the general projection method of
oscillations in the particle distribution are absent in the Vla-Zwanzig applied to the density matrix in the adiabatic num-
sov evolutions. We note also the slightly negative value otber basis, our approach bypasses the mathematical difficul-
the distribution function in the case of the new Airy sourceties inherent in the nonlocal integral representation, and does
term. This is a transient effect due to our setttdty) and  not require explicit use of the projection formalism. Unlike
By (tp) to 1 and O, respectively. With the more accurateany direct formal manipulation of the nonlocal for(8.17)
source term computed from E¢5.31) which takes account or simple WKB expansions, we used a uniform asymptotic
of the initial conditions this artificial negative region is much expansion for the local source term, which retains the
smaller. It also grows less and less pronounced as tim8chwinger creation effect at tHewestorder of the expan-
progresses, and may be eliminated entirely by binning theion. This local source term is not obtained by putting to zero
distribution in momentum bins. Some small discrepancy othe phase correlations in the pair creation process, but rather
this kind is to be expected in any truncation of the unitaryby the assumption that the actual correlations in a time vary-
field theory evolution by a local Vlasov source term, unlessing field can be replaced by those present in a constant field
that source term is always and everywhere positive, correat t=—o. This can only be approximately valid when the
sponding to a strictly monotonic increase of total particleelectric field is very slowly varying in time, so that any ac-
number and entropy, according to E§.24). It may be re- tual phase correlations in the initial state are no longer im-
garded as a rough estimate of the systematic error induced Iportant.
the Markov approximation in the source tef2). Given the hierarchy of time scal€6.20 we showed that

In these numerical evolutions the renormalized charge o& simple modification of the usual expansion in terms of
the mean field theory was chosen to &4g=1 in order to  exponential functions is nearly adequate for most analysis of
compare to the Vlasov evolution with unit classical chargethe collective plasma effects in scalar QED. The asymptotic
e=1, according to Eqs(6.18 and (6.19. In 1+1 dimen- expansion in terms of the elementary exponential functions

125015-23



YUVAL KLUGER, EMIL MOTTOLA, AND JUDAH M. EISENBERG PHYSICAL REVIEW D 58 125015

modified by the step function, which leads to the ansatavas initiated, and the U.S. Department of Energy for partial
(5.27), demonstrates in a simple way the origin of the linearsupport. J.M.E. also wished to thank Professor Walter
growth in time in the current which makes back reactionGreiner and the Institute for Theoretical Physics at the Uni-
essential at late times, fany nonzero coupling no matter versity of Frankfurt for their kind hospitality, and to ac-

how weak. It also shows why taking the pair productionknowledge support from the Deutsche Forschungsgemein-
source term to be proportional t&(p) was a reasonably schaft and the Ne'eman Chair in Theoretical Nuclear Physics
good proposal after all, although the use of the logarithm ingt Te| Aviv University. Y. K. and E. M. gratefully acknowl-

the source term of12,13 and subsequent references seems,qge several enlightening discussions with Salman Habib,
to have been due to a confusion between the rate of particlgjey kovner. and Carl M. Bender.

creation and the vacuum persistence probability. Using this '
ansatz in conjunction with E¢6.1) explains the origin of the
Bose enhancement source term, which was incorporated in
the phenomenological source teli®.21) for physical rea-
sons. The source term obtained in explicit form from the | this appendix we derive the form of the Gaussian den-
mode functions in constant electric fiel@.2) is in better g matrix (2.22 in the adiabatic number basis. Since in the
agr?emenlt with the mean field evc;lutlon_ th?n the ?henoméase of a spatially homogeneous mean electric field the den-
ﬁgﬁjgg;ﬁ?hoslj);rzcﬁetegiﬁfe.rze]% ’Cgvggmcgeﬂut';i ta\l/:/%eise re]g,:”gra_sity matrix is a product of Gaussians for each wave number
matic'. k, we consider a single wave number and drop the subscript

The methods employed in this paper can be readily exl-( in the derivation in order to simplify the notation of this

tended to other situations of interest, such as fermions, chr&PPeNndix. g .
moelectric fields in QCD, or the creation of massive particles . FOr €ach wave number we have positively and negatively
by strong gravitational fields in an early universe contextcharged modes obeying the time-dependent harmonic oscil-
The limit in which such processes can be described by #Ator equation2.9). Because of this and using E¢8.6) and
semiclassical source term in a transport approach should §8.7) the adiabatic particle basis is that which diagonalizes
clear from the present work: one requires a clean Separatidﬁe Hamiltonian of the two-dimensional harmonic oscillator
of the three time scales,, associated with the rapid quan- 1

tu!"n phase. oscillationss assogated ywth one partlple cre- o= = (T + 020t o+ H.c)= 2(5T§+5§T+BTB+BB*)
ation amplitudes, andy, associated with the collective mo- 2 2

tion of the mean fiel@s). Conversely, it should also be clear (A1)

that when such a clean separation does not exist the methods

of this paper cannot be applied, and very likely, no semiclas!” the complex representation. The states which diagonalize

sical transport approach is appropriate or possible. Unfortuthis Hamiltonian are labeled by two quantum numbers
nately, this includes the cases of most interest in QCD, rela@"dn- with energyw(n, +n_+1). Expressed in polar co-
tivistic heavy-ion physics, and early universe cosmology °rdinates
where light or strictly massless degrees of freedom play an
important role. Ifm=0 then the low momentum modes will

never behave as classical particles admitting a Boltzmann-

Vlasov description. Even pions are light enough to cause the
hierarchy of time or momentum scales in £6.20 to break we can label the states by the radial quantum number
down in heavy-ion collisions. Indeed in the formation of dis-=n_,+n_ and the angular quantum number=n,—n_
oriented chiral condensates the infrared instability of the loncorresponding to the eigenmodes of the two-dimensional
momentum modes and growth of a large condensate field biyarmonic oscillator
coherence effecténot incoherent particle emissipris pre- )
cisely the point. In cases such as these where Bose conden- S to o 1L, fl
sation plays a central role, the frequencigsbecome small orar or 2292 2@ (roinm
or even imaginary, the turning poist of the adiabatic par-

ticle number approach or reach the real time axig, be-

comes large, and no simple quasiclassical particle interpret% real polar coordinates. As is well known these wave func-

tion within the Boltzmann framework is possible. . : : :
. : tions are given in terms of the associated Laguerre polyno-
Complementary coherent classical field methods can be de- 9 9 poly

. o
veloped in this regime, matched to a transport description o'fﬂIals L(x) in the form

the hard modes on a case by case basis, but only the full field w12

theoretic approach of mean field theory and its higher order (rglnm)= (—) eim"e*wTZ’Z( Jor)™
1/N corrections is powerful enough to encompass all the m

various cases of interest in a comprehensive fashion.

APPENDIX: DENSITY MATRIX IN THE ADIABATIC
PARTICLE BASIS

—i( +i )=irei9 (A2)
(P_\/E L1 (%) _\/E

=w(n+1)(r6nm) (A3)

[(n—m)/2]!

12
m} L (= my @r 2. (A
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B ("é‘r)(n+m)/2('5’r)(n—m)/2 ’ _
|nm>_{[(n+m)/2]![(n—m)/2]!}1’2|0> (A% (1 0lHosdox)

- 7 1 w22
2rarrar 2r2 992 Zwr

1a¢91¢921)

with m taking on the values-n+2k, k=0,1, ... n, so that X(r9|SX>=w<Sai+1 (ré|sy) (A11)
S

n+m is an even integer.
In order to transform the density matrix from the coordi- obevina the initial condition
nate basis to the adiabatic number basis it is easiest first 2°¢Y'"9

define the coherent states w12 )
o (ro|s=0)= (—) e (w/2r (A12)
|s x)=expia’se ' ¥—ib'sdX)|0) &
© n e imx which follows from the Schidinger equation(A3) and the
= 2 ! Inm), definition of the coherent stat€46).
n=0 m=—n {[(n+m)/2]![(n—m)/2]!}}/2 The utility of the coherent state basis is apparent from the

(A6) simple exponential form of EqSA9) or (A10), since the
transformation of the density matrix from the original coor-
dinate basis

where the prime on the sum overdenotes thain is incre-
mented by even integers. Upon substituting the explicit wave

(0?+1) . .

I 1
functions (A4) we find the wave function of these coherent (r'|p|ry=s—=exp — > (r'2+r?)
. 2wé 8¢
states can be expressed in the form
i . . (d?—1).
112 ©° N +—(r'2—r3)+ r'.r A13
<r0|SX>:(2 eiwrZ/ZE 2 ’ zg( ) 4§2 ( )
v n=0 m=-—n
. to the coherent state basis becomes a straightforward exer-
% SNeim(6-x) (Vor) cise in the integration of a product of Gaussians, viz.
[(n+m)/2]!
gl o\ 271 27 7300t o1 g Tla
L ar?) wn (Elel= | @ @I (ol (719)
The sums in this expression may be performed in closed 20é? A s A 52, Co -
: i _ = exp e ''s?+—¢e'¥s'2+ —s. 5’

form by first switching the orders of tha and m=—n B B B B '

+ 2k sums, and making use of the summation forrj2al (A14)
> z“L,j_”,fz"(x)zzkz 'L N(x)=ZX(1+2)ke % where the real coefficien®, B, C, and are given by
n=k n=0

(A8) o2
— 24 2624

The remaining sum ovek from 0 to infinity is then a pure Acost=—w "+ &+ 7,

exponential and easily performed with the result
Asind=—2wné&?,
) 1/2 ®
ré|sy)=|—| exp —=r?+2irsywcogx—6)+s?}, o?+1 a?
(rflsx) (W) pf 5 Jo cog x—6) B gt | >w§2+n2§2+1’
(A9) (A15)
or in two-component vector notation
C=(c?—1)wé.

> > w 1z w . > > >
(r |S>:(;) exp[—Er 2+2|\/Zr-s+52]. (A10)  with this result in hand all that remains to be done is to
expand the coherent state density matAd4) in powers of
This U(1) invariant exponential form may be verified also ass ands’ to identify the matrix elements gf in the adiabatic
the solution of the differential equation particle number basis via

* ) S’”’s“eim()"”‘)
(s'x |p|SX>_n/§:o )y ([(n" +m)/2] [ (0 —m)/2]1[(n+ m)/2]1 [ (n—m)/2]1 112

(n"m|p|n m). (A16)
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The fact that the coherent state density matrix is a function ofunction in the denominator of EqA17) we observe that
only x'—x and hence onlyn’=m matrix elements ofp p+m must be nonnegative, which implies’(+m)/2=0
appear in the sum is a result of theg1l invariance of the and ('+m)/2=0. Hencem=—-n and m=-n' as well,
density matrix. We also note that in the pure state case, and we can write
=1, C=0, and the last dot product cross term in E414)
vanishes, and with it all dependence ph— y. In that case A ioza A sz, Co oo

) . ) exp e ''s°+ —e'’s'*+ =s-5s
only m=0 and evem andn’ appear in the expansion, and B B B
hence the only nonvanishing matrix elements of the density - M
matrix are betwe_en_ uncharged states with=n_. Con- _ 2 E i —m2gim(x—x')g/ N7 g
versely, ife>1 this is no longer the case apdhas nonva-

n,n’=0 M=-M
nishing matrix elements also with charged particle states

[

with m#0. 5 im(—)P (—iC/2B)m*2p
We first expand the exponential of the dot product: Xp:O pIT(p+m+1) T[(n—m)/2—p+1]
C. . * C ) , (n+n’)2—m-2p
ex;{gss’): 2 ime(—igss’>e'm(X X X (A'B) , (A19)
m=-= I'[(n"—m)/2—p+1]
_ E imeimo(u)oz (-)° where M =min(n,n’). We also note thatn(=m)/2 and @’
m=—o p=o p!I'(p+m+1) +m)/2 are necessarily integers in this expression.
m+2p Because of thd" functions in the denominator the final
w| —i —ss’) (Al7)  Sum overp in Eq. (A19) terminates ap=min(n,n’). How-
2B ever, it is convenient to retain the formal infinite rangepof

o . ) ) and make use of the relation for thefunction
Multiplying this by the expansion of the exponentialss3f

. | 1 r( )Sin(ﬂ'z) (A20)
A 1 A . =1(z
M -ive2| — M oa-ilog2l I'i1-2z T
ex;{Be s) zol“(l-i-l) B)e 2 (A18)
for z=p—(n—m)/2,p—(n’'—m)/2, —(n—m)/2, and
and likewise fors’? yields a fourfold sum over, I', m, and  —(n’—m)/2, temporarily continuing f—m)/2 and f’
p. Collecting the powers o ands’ by defining new sum- —m)/2 to noninteger values to avoid the appearance of di-

mation variablemn=2l+m+2p andn'=2l"+m+2p we  vergences in the intermediate steps. In this way the sum over
observe that+p=(n—m)/2=0 andl’'+p=(n"—m)/2=0 p is recognized as the expansion for the hypergeometric
so thatm=n andm=n’. Also from the presence of thé  function ,F,;=F

[

im(—)P (—iC/2B)M*+2P (A/B)~M-2p
p=o p!I'(p+m+1) I'[(n—m)/2=p+1] I'[(n'—m)/2—p+1]

(C)m+2p I'[p—(n—m)/2]T[p—(n'—m)/2]T'(m+1) 1
2A|  T[—(n—m)2IT[—(n"=m)/2]p!T (p+m+1) m![(n—m)/2]![(n' —m)/2]!

1 m—n m-n’ c?
- (A21)

ZA) m![(n—m)/Z]![(n'—m)/z]!F 5T Mt lis

and we secure

S S

o mEM mI[(n—m)/2]1[(n —m)/2]! | B

ror 2('052
(s"x'lplsx)=—5

Srn’sneim(x’fx) /A (n+n’")/2 c\m
T

w @i (' =m2p (A22)

m-n m-n’ 1_C2
2 Tz M)

The finite sum represented by the hypergeometric function with integral indices may be expressed in terms of Jacobi polyno-
mials P{*#) if desired, through the relatiof27]
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!

1+z
1-z

m—n m—n

P[(n’—n)/z,m]
2 ' 2

(n—m)/2

m+1;z]. (A23)

_ [(n+m)/2]! / z )(n—m)/z
~mi[(n—m)/2]t\ 1~z

Comparing Eq(A22) to the general forntA16) we may identify the matrix elements of the density matrix in the adiabatic
particle basis to be

B

20 A\ (MFNOR1C\me MM (e m)/2]1[(n' +m)/2]H]M2_(m—n m—n’ c?
(n'm[p|nm)= ;

B 2A) T ml |[(n—my2]'[(n' —m)i2]! 7 Tz Mtligaz)
(A24)

This is the desired result. It may be expressed in terms of the magnitude and phase of the Bogoliubov transformation from the
Heisenberg basis to the time dependent adiabatic particle basis introduced in the text. In fact, making use of the definitions
(2.18, (3.3, and(3.19 we have

2wé&?= g(cosh 2y—sinh 2y cosd),

2¢m=—o sinh 2ysind, (A25)

and from Eq.(A15) we obtain
A= wé&?o sinh 2y,

o—1\2
T) }, (A26)

B=2w¢&?| o cosity+

so that finally,

(osinhycoshy) ™ n)2=m  [g2—q\m 1 [[(n+m)/2]1[(n"+m)/2]t ]V
(n’m|p|nm>= . i9(n"—n)/2___| .
(o cosy+[(a—1)/2]2 #0241\ 4o m![[(n—m)/2]![(n" —m)/2]!
o L P Gt A27
2 2 M a%sint2y) (27
|
Sincep is symmetric under charge conjugation we have In the pure state case=1, F=1, and the only nonvan-
ishing matrix elements ofpp have m=0 and n=2/,n’
(n',—m|p|n,—m)=(n"m|p|nm), (A28)  =2/" both even. The general res@t27) simplifies consid-

erably in this case to
which implies that the mean chargg&,m(n’m|p|nm)=0.
The fact thajp has nonvanishing matrix elements with states(2/'m=0|p|2/ m=0)| _ =secRy(tanhy)" """ =),
of nonzeromimplies that the fluctuations of the charge about 7 (A29)
its mean value is nonzero in the general case #fl. Oth-
erwise the most important feature of the general re@\2%)  which yields the resul(3.20 quoted in the text. We should
for the density matrix in the adiabatic particle basis for thenote that this expression differs from that used in previous
purposes of the discussion in the text is that all the off diagwork [4], since in the present derivation the distinguishabil-
onal matrix elements fan#n’ are rapidly varying functions ity of the positive and negative charged particles was taken
of time because of the appearance of the phas8ince all  into account, leading to a two-dimensional harmonic oscilla-
the phase correlation information of the functiGnof Eq.  tor problem with a W1) invariance, while the expression Eq.
(3.19 resides in these off diagonal elements, while the aver{15) of the second of Refl4] or Eq. (5.24 and the entire
age adiabatic particle numbgf is sensitive only to the di- Appendix of the third of Refl4] was based on a single scalar
agonal matrix elements gf, the Markov limit of quantum particle species. This is appropriate for the real uncharged
Vlasov equation corresponds to replacement of the densit$p* theory considered in the last of Re#], whereas Eq.
matrix by only its diagonal matrix elements in this basis. (A29) is the correct expression for the charged particle case.
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