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Quantum Vlasov equation and its Markov limit
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The adiabatic particle number in mean field theory obeys a quantum Vlasov equation which is nonlocal in
time. For weak, slowly varying electric fields this particle number can be identified with the single particle
distribution function in phase space, and its time rate of change is the appropriate effective source term for the
Boltzmann-Vlasov equation. By analyzing the evolution of the particle number we exhibit the time structure of
the particle creation process in a constant electric field, and derive the local form of the source term due to pair
creation. In order to capture the secular Schwinger creation rate, the source term requires an asymptotic
expansion which is uniform in time, and whose longitudinal momentum dependence can be approximated by
a delta function only on time scales much longer thanAp'

2 1m2c2/eE. The local Vlasov source term amounts
to a kind of Markov limit of field theory, where information about quantum phase correlations in the created
pairs is ignored and a reversible Hamiltonian evolution is replaced by an irreversible kinetic one. This replace-
ment has a precise counterpart in the density matrix description, where it corresponds to disregarding the
rapidly varying off-diagonal terms in the adiabatic number basis and treating the more slowly varying diagonal
elements as the probabilities of creating pairs in a stochastic process. A numerical comparison between the
quantum and local kinetic approaches to the dynamical back reaction problem shows remarkably good agree-
ment, even in quite strong electric fields,eE.m2c3/\, over a large range of times.@S0556-2821~98!04520-2#

PACS number~s!: 11.15.Kc, 05.20.Dd, 05.30.2d, 12.20.2m
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I. INTRODUCTION

In recent years there has been considerable interest in
tablishing the precise connection between quantum fi
theory and classical kinetic theory. This interest is motiva
by the wide variety of problems in different fields of physi
which require a consistent description of quantum ma
body phenomena far from equilibrium. Examples inclu
chiral symmetry restoration and the quark-gluon plas
phase of QCD, soon to be probed by relativistic heavy-
colliders, baryogenesis at the electroweak phase transi
and the formation and decay of topological defects or B
condensates, whether in the hot, dense early universe,
cryogenic laboratory environment.

At their root all these systems may be treated as fi
theories with well-defined Hamiltonian evolutions and~ex-
cept for the case of explicitCP violation in the electroweak
theory! microscopic time reversal invariance. Yet, a lar
body of experience confirms the macroscopically irrevers
behavior of such systems far from equilibrium, so that
should be possible to approximate the unitary Hamilton
evolution of such systems by an irreversible kinetic desc
tion, under suitable circumstances. In addition to the num
ous potential applications, this raises the fundamental is
of the precise connection between microscopic reversib
and macroscopic irreversibility which lies at the heart
much of nonequilibrium statistical mechanics.

The nature of the relationship between quantum the
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and transport theory has been a subject of discussion s
the very early days of the quantum theory. Several import
developments which laid out clearly the general princip
required to derive transport equations from the Liouvi
equation appeared in the 1950s@1#. However, the first steps
in the practical numerical solution of nonequilibrium pro
lems in the context of quantum field theory have been ta
only relatively recently@2–4#. With these developments an
the increasing variety of applications requiring a proper fi
theoretic treatment, establishing the precise relationship
tween the field theory and kinetic theory approaches to n
equilibrium systems in situations of practical interest h
taken on a new urgency.

As a practical matter the kinetic description is certain
the simpler one to formulate and implement numerically o
computer. However, the Boltzmann-Vlasov equation ess
tially describes classical point particles, and extensions
quantum collective phenomena, time-evolving mean fie
and off-shell virtual processes, which are quite natural
field theory, present considerable difficulties for a purely
netic approach. Also lost in the kinetic description from t
very outset is a detailed understanding of how time reve
ible Hamiltonian evolution comes to be replaced by tim
irreversible dissipative behavior. For these reasons of b
fundamental interest and practical application, our purpos
this paper is to expose the relationship between the two
proaches in a concrete example.

In the interest of being as clear and specific as possible
focus our attention in this paper on charged particle crea
in electric fields, a phenomenon which was discussed ne
seventy years ago by Klein and Sauter, and twenty ye
©1998 The American Physical Society15-1
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later by Schwinger as a prime example of the then ne
developed theory of quantum electrodynamics@5#. The re-
sults of this Schwinger mechanism which are relevant for
present paper are reviewed in Sec. IV. Over the years t
has developed an extensive literature on this topic@6–9#,
which has continued to attract interest up to the present t
@10–18#. Several monographs summarizing this activity ha
also appeared@19#. Given this background it might be sup
posed that no aspect of particle creation in electric fields
been left unresolved. However, this is not quite the c
since attempts to incorporate the real time evolution of p
ticle creation into the transport description by an effect
source term in the Vlasov equation is relatively recent, a
these have met with some problems.

In many treatments of particle creation, analytic contin
ation of the amplitudes to complex time have been e
ployed. Though elegant and useful in other contexts, co
plex continuation methods cannot address directly the
time evolution of the particle creation event and thus c
little light on the source term for a kinetic description.
suggestion of how to incorporate the Schwinger pair crea
mechanism in the context of kinetic theory was first made
1979, based on an intuitively appealing picture of the inst
taneous semiclassical creation event@11#. This mechanism
has been a subject of renewed interest in the context of he
ion collisions and QCD due to the suggestion that the rec
ing ions might produce a strong chromoelectric flux tu
between them which shorts itself out by the creation qua
anti-quark pairs~see, e.g., Ref.@3#, and references therein!.
The ansatz of Ref.@11# has been taken over to the QCD flu
tube model as well. Yet it should be clear from the out
that a delta function source term which requires that
charged particles be created at precisely zero momentum
a definite instant of time can only be an approximation to
rapid but continuous evolution of wave amplitudes in t
underlying quantum theory. Calculations of the back react
of the charged particle pairs on the electric field in QED in
well defined continuous evolution were compared with
ad hockinetic theory, according to the ansatz of Ref.@11#.
Reasonable qualitative agreement between the mean
evolutions in the two approaches was found, although t
certainly differ in quantitative detail, such as in the distrib
tions of created particles@3#. In these numerical investiga
tions the time structure of the individual creation events w
not addressed, leaving open the question of the limit of
lidity of the delta function ansatz for the source term.

The Wigner function formalism has also been propos
@20,21# as a method for deriving relativistic transport equ
tions from the underlying field theory. It has become incre
ingly clear, however, that the covariant Wigner function do
not readily lend itself to practical calculation, because co
riance requires splitting the time variable in the Wign
transformation in parallel to the splitting of the spatial va
able, with the consequence that the problem ceases to be
posed as an evolution from initial data. More recently,
alternative, noncovariant formalism, in which the time va
able is not split has been suggested@14,15#. As has been
emphasized in earlier work the lack of manifest covarianc
not a problem since the initial value description of even
12501
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relativistic field theory in Hamiltonian terms is necessar
noncovariant in form, but the evolution equations are co
pletely equivalent to those derived from a covariant act
principle @4#. In any case, a firm conclusion about the sou
term has not been obtained by these investigations eit
Finally, the general projection formalism of Zwanzig@22#
has been advocated as a route to a transport descriptio
particle creation@16–18#, although the time structure of th
creation process itself has not been investigated in deta
this approach, and the conditions of validity of the de
function approximation for a local source term in the Vlas
equation has remained obscure.

By revisiting the electrodynamic pair creation proble
our purpose in this paper is to elucidate fully the prec
connection between the field theoretic and kinetic treatme
in this particular case. Application and extension of o
methods of incorporating particle creation into a kinetic d
scription for the other situations of interest will then becom
possible. Our first step will be to specify completely the ad
batic particle number basis in which particle creation can
described as a phase interference~or dephasing! phenom-
enon of the quantum theory from the effective Hamiltoni
point of view @4#. Writing the explicit Bogoliubov transfor-
mation to this adiabatic particle basis then identifies a tim
dependent particle number whose total change recapture
Schwinger formula in a constant, uniform electric field, a
whose time derivative yields the appropriate source term
the Boltzmann-Vlasov equation. The adiabatic particle nu
ber obeys a nonlocal quantum Vlasov equation, and in
sense is completely consistent with the general approach
vocated in Refs.@16–18#. The relationship of our method to
that of the projection formalism may be seen most clearly
considering the density matrix in the adiabatic particle nu
ber basis. However, we have no need for the general pro
tion formalism, since the source term for the Vlasov equat
can be written in closed form in terms of the wave functio
of the charged particle modes in the background cons
electric field. In this way we derive for the first time a loc
form for the source term, which explicitly exhibits the rel
tionship to the semiclassical picture of particles sponta
ously appearing out of the vacuum in real time. The elect
magnetic current of the charged particle pairs also ha
simple form in this basis, corresponding to a clear physi
interpretation in terms of a quasiclassical conduction curr
and the quantum polarization current of particle creati
The fact that the current grows linearly in time for a fixe
external electric field and that therefore back reaction m
eventually become important even for arbitrarily small co
pling is also easy to see in the adiabatic particle basis. T
will also serve to clarify the nature of the ‘‘time diver
gences’’ discussed in Ref.@10#.

The essential physical ingredient in passing from
quantum unitary evolution to the irreversible Vlasov descr
tion is the dephasing phenomenon, i.e., the near exact
cellation of the rapidly varying phases of the quantum mo
functions contributing to the mean electric current of t
created pairs. This cancellation depends in turn upon a c
separation of the time scales~1! tqu of the very rapidly os-
cillating modes of the microscopic quantum theory,~2! tcl of
5-2
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QUANTUM VLASOV EQUATION AND ITS MARKOV LIMIT PHYSICAL REVIEW D 58 125015
the more slowly varying mean number of particles in t
adiabatic number basis, and~3! tpl of the collective plasma
oscillations of the electric current and mean electric fi
produced by those particles. In the limittqu!tcl quantum
coherence between the created pairs can be neglecte
cause of efficient dephasing and a~semi!classical local ki-
netic approximation to the underlying quantum theory b
comes possible. In the limittcl!tpl the electric field may be
treated as approximatelyconstantover the interval of par-
ticle creation. Thus when both inequalities apply we can
place the true nonlocal source term which describes par
creation in field theory by one that depends only on the
stantaneous value of the quasistationary electric field, at l
over very long intervals of time.

The essential mathematical ingredient in the exploitat
of this hierarchy of time scales is an asymptotic expansion
the wave functions and particle number for constant elec
fields uniformly valid on the real time axis, so that secu
particle creation effects~which are lost in the usual nonun
form WKB expansion! are retained. It is this precise sense
evaluating the effect of rapid degrees of freedom on s
degrees of freedom by treating the latter as constant in le
ing order of a uniform asymptotic expansion~which recalls
the Born-Oppenheimer approximation in atomic and mole
lar physics! and by so doing, deriving a local effective sour
term for the change of adiabatic particle number, that
refer to as the Markov limit of the quantum Vlasov equatio

The importance of auniformasymptotic expansion of th
wave functions is that secular particle creation effects
retained in an expansion valid everywhere on the real t
axis. The true wave functions exhibit a sharp change in a
plitude, on the time scaletcl , at or near the time of the
semiclassical creation event which is captured very well b
uniform asymptotic expansion in terms of Airy functions. A
we shall see, if one is interested only in the collective p
nomena on time scales oftpl or longer, then the details of th
particle creation process on the time scaletcl are unimpor-
tant and one can replace the momentum distribution of
source term by one localized at zero kinetic momentum
has been the practice in the earlier phenomenological
proaches, provided only that the integrated distribution gi
the correct total creation rate. This will clarify the preci
conditions of validity of such instantaneousAnsätze for the
first time.

Since an asymptotic~not a convergent! expansion is in-
volved, the limit of the ratio of time scalestqu/tcl→0 for
fixed t and the long time limitt→` of the evolution for fixed
ratio tqu/tcl do not commute in general. Hence for any sma
but finite ratiotqu/tcl there can be eventually a very larg
but finite t at which the quantum phases reassemble and
irreversible local kinetic description breaks down. Up to th
very long~typically exponential and possibly infinite! recur-
rence time the system behaves in many practical resp
similar to an irreversible one, in which the quantum pha
coherence between the created pairs appears to have
lost. In this way the apparent incongruity of an effective
irreversible time evolution emerging from a unitary Ham
tonian field theory is removed.

The paper is organized as follows. In the next section
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review ~scalar! QED mean field theory in the leading orde
of the largeN expansion. By exhibiting explicitly the Hamil
tonian structure of these equations we demonstrate that
are completely time reversible. In Sec. III we define the ad
batic particle number basis which is selected by the Ham
tonian evolution and derive the exact nonlocal form of t
quantum Vlasov equation for this quantity. The quantu
density matrix in this basis is also derived. In Sec. IV w
review the Schwinger mechanism and solve for the sou
term of the Vlasov equation in the limit of constant me
electric field, studying the pair creation process for this c
in some detail. It is shown that particle creation in a fix
external field produces an electric current which grows l
early with time, so that any amount of particle creation~no
matter how small! eventually requires a substantial back r
action on the field in any self-consistent treatment. In Sec
the technique of uniform asymptotic expansions for t
mode functions and adiabatic particle number is brough
bear. The source term for particle creation in a constant fi
is calculated to leading order in this asymptotic expansion
terms of Airy functions and yields an effectively Markovia
source term for thelocal Vlasov equation describing pai
creation in weak, slowly varying electric fields. The circum
stances under which further approximation of the Airy fun
tion source term by an instantaneous delta function sou
term becomes permissible is also discussed. In Sec. VI
dynamical back reaction problem for the charged partic
whose current is self-consistently coupled to the mean e
tric field is compared to the two~Airy and delta function!
local approximations for the Vlasov source term in the
netic description, and relatively good agreement is obtain
We close with a summary of our results and some concl
ing remarks on possible generalizations of the analysis
other systems of interest. The derivation of the density m
trix in the adiabatic particle number basis is relegated to
Appendix.

II. SCALAR QED IN THE LARGE N LIMIT

Let us begin by reviewing the equations of motion f
scalar QED in a uniform electric field in the semiclassic
limit in which the matter field is fully quantized and th
electromagnetic field is treated classically. This limit can
obtained in a consistent way by taking the leading order o
largeN expansion~whereN is the number of identical copie
of the charged matter field! @2,3#. We take the electric field
spatially homogeneous, and express the vector potentia
the gauge,

A5A~ t !ẑ, A050, ~2.1!

so that the electric field is

E52Ȧẑ5Eẑ. ~2.2!

The charged scalar field operator is expanded in Fou
modes in Fock space in the usual way,
5-3
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F~x,t !5
1

AV
(

k
eik•xwk~ t !

5
1

AV
(

k
$eik•xf k~ t !ak1e2 ik•xf 2k* ~ t !bk

†%.

~2.3!

The time-independent creation and destruction opera
obey the commutation relations

@ak ,ak8
†

#5@bk ,bk8
†

#5dk,k8 ~2.4!

in the finite large volumeV, and the Fourier components

wk~ t ![ f k~ t !ak1 f k* ~ t !b2k
† ~2.5!

may be regarded as~complex! generalized coordinates of th
field F for the purposes of the Hamiltonian description. T
momentum canonically conjugate to this coordinate is

pk~ t !5ẇk
†~ t !5 ḟ k* ~ t !ak

†1 ḟ k~ t !b2k , ~2.6!

which obeys the canonical commutation relation

@wk ,pk8#5 i\dk,k8 , ~2.7!

provided that the mode functions satisfy the Wronskian c
dition

f k ḟ k* 2 ḟ k f k* 5 i\, ~2.8!

and Eq.~2.4! is used.
The time dependence in this basis is carried by the c

plex mode functionsf k(t) which satisfy the equations o
motion

S d2

dt2
1vk

2~ t ! D f k~ t !50, ~2.9!

where the time-dependent frequencyvk
2(t) is given by

vk
2~ t !5~k2eA!21m25@k2eA~ t !#21k'

2 1m2.
~2.10!

Herek is the constant canonical momentum in theẑ direction
which should be clearly distinguished from the gaug
invariant but time-dependentkinetic momentum,

p~ t !5k2eA~ t !, ṗ52eȦ5eE, ~2.11!

which reflects the acceleration of the charged particle du
the electric field. In the directions transverse to the elec
field the kinetic and canonical momenta are the same an
not need to be distinguished, i.e., we shall use the nota
p'5k' interchangeably. When expressed as a function
the kinetic momenta we use the notationv(p,p')
5Ap21p'

2 1m2, or simplyv.

The mean value of electromagnetic current in theẑ direc-
tion is
12501
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j ~ t !52eE @dk#@k2eA~ t !#

3u f k~ t !u2@11N1~k!1N2~2k!#, ~2.12!

where

N1~k![^ak
†ak&,

N2~k![^bk
†bk& ~2.13!

are the mean numbers of particles and antiparticles in
time-independent basis and

1

V(
k
→E @dk#[E d3k

~2p!3
~2.14!

in the infinite volume continuum limit. We make use of th
freedom in defining the initial phases of the mode functio
to set the correlation densities^akak&5^bkbk&50, without
any loss of generality.

The mean charge density must vanish,

j 0~ t !5eE @dk#@N1~k!2N2~2k!#50, ~2.15!

by the Gauss law for a spatially homogeneous electric fi
~i.e., ¹•E50). We shall further restrict ourselves to the su
space of states for which

N1~k!5N2~2k![Nk ~2.16!

for simplicity in what follows, although this is a stronge
condition than is required by Eq.~2.15!. Clearly the vacuum
N1(k)5N2(2k)50 ~as well as a thermal mixed state! be-
longs to this class of states.

Self-consistent evolution of the mean electric field r
quires coupling it to the expectation value of the current
the charged field by the only nontrivial Maxwell equatio
remaining in this homogeneous example, namely,

2Ė5Ä5 j 52eE @dk#@k2eA~ t !#u f k~ t !u2~112Nk!.

~2.17!

For the analysis of the source term in a constant electric fi
and its uniform expansion in the next three sections we w
treat the electric field as fixed and nondynamical, return
to Eq. ~2.17! and the dynamical back reaction problem
Sec. VI.

By a slight change of notation it is possible to recast
mean field evolution equations~2.9! and~2.17! together with
the quantum Wronskian condition~2.8! as Hamilton’s equa-
tion for an effective classical Hamiltonian in which\ ap-
pears as a parameter. Defining the real quantities

sk[11N1~k!1N2~2k!5112Nk ,

jk
2~ t ![sku f k~ t !u2, ~2.18!

hk~ t ![j̇k~ t ! ,
5-4
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QUANTUM VLASOV EQUATION AND ITS MARKOV LIMIT PHYSICAL REVIEW D 58 125015
we find that the mode equation~2.9! can be rewritten in the
form

j̈k5ḣk52vk
2jk1

\2sk
2

4jk
3

, ~2.19!

when account is taken of Eq.~2.8!. This last equation to-
gether with the Maxwell equation~2.17! will be recognized
as Hamilton’s equations for the Hamiltonian

Heff~A,pA ;$jk%,$hk%;$sk%!

5
V

2
E21(

k
S hk

21vk
2jk

21
\2sk

2

4jk
2 D , ~2.20!

wherepA[2E is the momentum conjugate toA and hk is
the momentum conjugate tojk .

Moreover, the quantum statistical density matrix of t
charged scalar field corresponding to the mean field ev
tion can be written as a product of Gaussians in Fou
space, viz.

^$wk8%uru$wk%&5)
k

^$wk8%ur~jk ,hk ;sk!u$wk%&[)
k

rk

~2.21!

with

rk5~2pjk
2!21/2expH 2

sk
211

4jk
2 @wk8* wk81wk* wk#

1 i
hk

\jk
@wk8* wk82wk* wk#1

sk
221

4jk
2 @wk8* wk1wk8wk* #J ,

~2.22!

andwk is the complex generalized coordinate of the class
field in Fourier space, defined by Eq.~2.5! ~with ak andb2k
treated asc numbers!. The Liouville equation for the evolu
tion of this density matrix according to the quantum Ham
tonian of a free charged scalar field in a background elec
potential,

ṙ52 i @Hqu,r#, Hqu5
1

2(k
~pkpk

†1vk
2wkwk

†1H.c.!

~2.23!

gives precisely the equations of motion~2.19! for the width
parameters of the time-dependent Gaussian. The effec
classical Hamiltonian~2.20! is nothing else than the expec
tation value of the quantum Hamiltonian of scalar QEDHqu
in the Gaussian density matrixr, i.e., Heff5Tr(rHqu). No-
tice that in this Schro¨dinger representation of the time ev
lution all the equations are local in time, i.e., they involve
single time argument, and there is no need to introd
Wigner functions with two time arguments, although the
correlation functions at unequal times may be calculated
ily enough from knowledge of the density matrix, if desire
In contrast to several earlier approaches to kinetic the
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from field theory principles@20,21#, we shall not require
these unequal time correlators or Wigner functions.

The constant parameterssk5112Nk>1 measure the ex
tent that the quantum state is a mixed state. IfNk50, sk
51 and the state is pure, as is evident from the vanishing
the last term in Eq.~2.22!, so that the density matrix be
comes a simple productuc&^cu. In either the pure or more
general mixed state the density matrix~2.22! possesses a
U~1! symmetry under

wk→wk exp~ i zk!,

wk8→wk8 exp~ i zk! ~2.24!

for eachk. This is a reflection of the fact that the generat
of the local U~1! gauge transformation of electrodynami
for a spatially uniform electric field is the charge dens
~2.15!, and we have restricted ourselves to charge symme
states obeying Eq.~2.16!, so that the density matrix has th
U~1! invariance in each Fourier mode independently.

In this leading order of the largeN expansion the density
matrix of the electric field is also a Gaussian and multipl
the matter field Gaussian above, so that the evolution of
closed system with the back reaction Eq.~2.17! is also
Hamiltonian. Clearly the Hamiltonian evolution equatio
~2.9!, with or without the Maxwell Eq.~2.17!, are completely
time reversible upon reversing the signs of all the momen

Forgetting for the moment the Maxwell equation of ba
reaction on the electric field we see that the mean field e
lution is equivalent to a set of time-dependent harmonic
cillators, with a different time-dependent frequencyvk(t) for
each Fourier modef k . Treating these frequencies as arb
trary, slowly varying functions of time we may write dow
the Hamilton-Jacobi equation corresponding to the effec
classical HamiltonianHeff , namely,

S dWk

djk
D 2

1vk
2jk

21
\2sk

2

4jk
2

5ek , ~2.25!

and find that the Hamilton principal functionWk evaluated
over one full period,

Wk

2p\
5

1

2p\ R djkAek2vk
2jk

22
\2sk

2

4jk
2

5
ek

2\vk
2

sk

2
~2.26!

is an adiabatic invariant of the periodic motion. Sincesk is
strictly a constant for allk, this implies that

ek~ t !

\vk~ t !
[2Nk~ t !11 ~2.27!

is an adiabatic invariant of the motion for slowly varyin
vk(t). It is this adiabatic invariant that defines a tim
dependent particle number basis which becomes the ap
priate one for making contact with the Boltzmann-Vlas
kinetic description of particle creation.
5-5
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III. THE ADIABATIC NUMBER BASIS

From the field theory development of the last section
note thatN1 , N2 , andk, appear quite naturally in either th
time-independent~Heisenberg! or time-dependent~Schrö-
dinger! descriptions as constants of motion under the Ham
tonian evolution. However, kinetic theory is expressed
terms of time-evolving quantitiesN1(t), N2(t), and p(t)
which must be clearly distinguished from the analogo
time-independent quantities above. The difference betw
the canonical and kinetic momentak andp(t) in Eq. ~2.11! is
clear enough on basic kinematic grounds. The specifica
of the time-dependent particle numbersN1(t) andN2(t)
may not be quite as obvious, but as they provide the esse
connection between the field theory and kinetic descripti
we must take special care to be equally clear and exp
about their definition. This requires that we introduce a B
goliubov transformation from the time-independent to
time-dependent~but adiabatic! number basis.

The observation underlying the introduction of this ba
is that the mode equation~2.9! generally possesses time
dependent solutions which have no cleara priori physical
meaning in terms of particles or antiparticles. The famil
notion that positive energy solutions to the wave equat
correspond to particles while negative energy solutions c
respond to antiparticles is quite meaningless in tim
dependent background fields where the energy of individ
particle-antiparticle modes is not conserved, and no s
neat invariant separation into positive and negative ene
solutions of the wave equation is possible. This is jus
reflection of the fact that physical particle number does
correspond to a sharp operator which commutes with
Hamiltonian, i.e., particle-antiparticle pairs are created or
stroyed, and physical particle number is not conserved
time-dependent background fields.

Given this fact, one possible point of view is to forg
completely about particle number in time-dependent ba
grounds and deal only with conserved physical currents s
as j (t) in Eq. ~2.12!. Indeed, in arbitrarily strong and rapidl
time-varying fields this is the only possible point of view
since all notion of even an approximately conserved part
number disappears, and there is no possibility whatsoeve
a classical kinetic description in such extreme situations. O
must rely then exclusively on the field theoretic framewo

When the fields are not quite so strong and/or so rap
varying in time we would expect to be able to define a p
ticle number which varies slowly enough for the comparis
to an effective semiclassical kinetic description to be me
ingful. Clearly this physical slowly varying particle numbe
is not the Nk of the time-independent Heisenberg basis
fined by Eq.~2.13! above, since thisNk is part of the initial
data, a strict constant of the equations of motion, no ma
how strong or rapidly varying the electric field is. The phy
cal particle number at timet must be defined instead wit
respect to a time-dependent basis~the adiabatic number ba
sis! which permits a semiclassical correspondence limit
ordinary positive energy plane wave solutions in the limit
slowly varyingvk(t), and which is related to the Heisenbe
basis by a time-dependent Bogoliubov transformation. Si
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the mode equation~2.9! is the equation of motion of a~com-
plex! harmonic oscillator with time varying frequencyvk(t),
governed by the effective classical HamiltonianHeff of Eq.
~2.20! classical Hamilton-Jacobi theory informs us that the
is an adiabatic invariant proportional to the energy of t
oscillator divided by its frequency, given by Eq.~2.27!. It is
this quantity which defines the adiabatic particle number a
allows us to make the connection with classical kine
theory. Corresponding to this slowly varying action variab
there is a conjugate angle variable which is rapidly varyin
of which classical kinetic theory takes no account.

The adiabatic basis is defined by first constructing
adiabatic mode functions

f̃ k~ t ![A \

2vk~ t !
expS 2 i E t

vk~ t8!dt8 D . ~3.1!

We will make use of the shorthand notation for the phas

Qk~ t ![E t

vk~ t8!dt8, ~3.2!

suppressing the explicit dependence ont ~and occasionally
also the momentum indexk) except when needed for clarit
in most of the following. The lower limit of the integral in
Eq. ~3.2! and therefore also the absolute phase of the m
function f̃ are left arbitrary for the moment, to be fixed in
convenient way in the next section. In the limit of arbitrari
weak electric fieldsvk(t) becomes nearly independent
time and can be removed from the integral in Eq.~3.2!. In
that limit the adiabatic mode function becomes the us
positive energy plane wave solution with respect to wh
the usual definition of particle number is taken. Otherw
the adiabatic mode functions~3.1! will not be exact solutions
of the mode equation~2.9!, but we are still free to specify a
basis with respect to them, provided only thatvk(t) remains
real and positive for allk and t.

The transformation to this basis from the original one
specified by the two linear relations

f k~ t !5ak~ t ! f̃ k~ t !1bk~ t ! f̃ k* ~ t !,

ḟ k~ t !52 ivkak~ t ! f̃ k~ t !1 ivkbk~ t ! f̃ k* ~ t ! ~3.3!

between the exact and adiabatic mode functions. When
phase off̃ is fixed these relations completely fix the compl
coefficientsak(t) and bk(t). It is straightforward to solve
for the Bogoliubov coefficients directly in the form

ak5 i ~ ḟ k2 ivk f k! f̃ k* ,

bk52 i ~ ḟ k1 ivk f k! f̃ k . ~3.4!

An equivalent form of this Bogoliubov transformation in th
Fock space of creation and destruction operators is

ak5ak* ~ t !ãk~ t !2bk* ~ t !b̃2k
† ~ t !,

b2k
† 5ak~ t !b̃2k

† ~ t !2bk~ t !ãk~ t !, ~3.5!
5-6
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so that the field coordinatewk(t) may be expressed equal
well in the time-independent basis by Eq.~2.5! or in the
time-dependent basis by

wk~ t !5 f̃ k~ t !ãk~ t !1 f̃ k* ~ t !b̃2k
† ~ t !, ~3.6!

and likewise the field momentum variable is given either
Eq. ~2.6! or by

pk~ t !52 ivk~ t ! f̃ k* ~ t !ãk
†~ t !1 ivk~ t ! f̃ k~ t !b̃2k~ t !.

~3.7!

In this basis the Hamiltonian of the set of time-depend
oscillators in Eq.~2.23! becomes diagonal,

Hqu5
\

2(k
vk~ ãk

†ãk1ãkãk
†1b̃2kb̃2k

† 1b̃2k
† b̃2k!.

~3.8!

The transformation from the time-independent (ak ,b2k
† ) ba-

sis to the time-dependent adiabatic basis (ãk ,b̃2k
† ) requires

two independent relations~3.3! or ~3.5!, corresponding to a
canonical transformation in a two dimensional~complex!
phase space, for which

uaku22ubku251 ~3.9!

for eachk. It is easily verified that Eq.~3.4! satisfies this
relation when the Wronskian condition~2.8! is used. Be-
cause of Eq.~3.9! the magnitude of the Bogoliubov transfo
mation to the adiabatic number basisgk(t) may be specified
by

uak~ t !u5coshgk~ t !,

ubk~ t !u5sinhgk~ t !. ~3.10!

We now define the adiabatic particle number to be

Nk~ t ![^ãk
†~ t !ãk~ t !&5^b̃2k

† ~ t !b̃2k~ t !&

5uaku2^ak
†ak&1ubku2^b2kb2k

† &

5~11ubku2!N1~k!1ubku2@11N2~2k!#

5Nk1~112Nk! ubk~ t !u2

5Nk1~112Nk! sinh2gk~ t !. ~3.11!

The second of the relations~3.3! is essential to define th
adiabatic basis in which particle number is given by the ra
of energy to frequency. In fact,

ek~ t !

\vk~ t !
5~112Nk!

~ u ḟ ku21vk
2u f ku2!

\vk

5~112Nk!~112ubku2!

5112Nk~ t !. ~3.12!

Hence the particle numberNk(t), though time dependen
is an adiabatic invariant of the motion. Consequently, it
the natural candidate for a particle density in phase space
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a kinetic description, becoming the ordinary asymptotic co
stant particle number in the limit of slowly varyingvk(t).
This adiabatic definition of particle number which diagon
izes the time-dependent Hamiltonian has been considered
fore, most recently in the context of particle creation
curved space backgrounds@23,24#. Although this choice of
basis is not unique, since we could have chosen a diffe
condition on ḟ k in Eq. ~3.3!, it is the only basis where the
ratio «k /vk is simply related to particle number~without the
appearance ofv̇k or higher derivative terms, for example!
which is the standard adiabatic invariant of the harmo
oscillator with time-dependent frequency as in Eq.~2.27!. In
different contexts~such as particle creation in external grav
tational fields where even the Hamiltonian is not unique
defined! it may be appropriate to consider a somewhat d
ferent definition of the adiabatic number basis, depending
the application.

Now that we have completely specified the tim
dependent particle number basis it is straightforward to
rive the equation of motion which it obeys. We note th
from the explicit representation~3.4! by differentiation and
use of the mode equation~2.9! we have

ȧk5
v̇k

2vk
bkexp~2iQk!,

ḃk5
v̇k

2vk
akexp~22iQk!. ~3.13!

These two first order differential equations are entire
equivalent to the second order mode equation in Hamilton
form. We now obtain by differentiating Eq.~3.11!

d

dt
Nk52~112Nk!Re~bk* ḃk!

5
v̇k

vk
~112Nk!Re$akbk* exp~22iQk!%

5
v̇k

vk
Re$Ckexp~22iQk!%, ~3.14!

where we have defined the time-dependent pair correla
function

Ck~ t ![^ãk~ t !b̃2k~ t !&5~112Nk!akbk* . ~3.15!

Thus the time derivative of the adiabatically slowly varyin
particle number involves the pair correlation functionCk(t)
which is itself very rapidly varying, since the time-depende
phases on the right side of Eq.~3.15! add rather than cancel
although the phases do nearly cancel in the final combina
of Eq. ~3.14!. The time derivative of the pair correlatio
function
5-7
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d

dt
Ck5

v̇k

2vk
~112Nk!exp~2iQk! ~112ubku2!

5
v̇k

2vk
~112Nk!exp~2iQk!, ~3.16!

brings us back again toNk . This last equation may be solve
formally for Ck and substituted into Eq.~3.14! to obtain

d

dt
Nk5

v̇k

2vk
E

t0

t

dt8 H v̇k

vk
~ t8!@112Nk~ t8!#

3cos@2Qk~ t !22Qk~ t8!#J , ~3.17!

where we have assumed thatCk vanishes at somet5t0
~which could be taken to2`).

Equation~3.17! may be called a ‘‘quantum Vlasov equa
tion,’’ in the sense that it gives the quantum creation rate
particle number in an arbitrary time varying mean field. L
us remark that the Bose enhancement factor (112Nk) ap-
pears in Eq.~3.17!, so that both spontaneous and induc
particle creation are included automatically in the quant
treatment. The most important feature of Eq.~3.17! for our
present purpose is that it is nonlocal in time, the parti
creation rate depending on the entire previous history of
system. In that sense the particle creation process is cert
non-Markovian in general@16,18#. Equation~3.17! becomes
exact in the limit in which the electric field can be treat
classically, i.e., the largeN limit in which real and virtual
photon emission is neglected, and there is no scattering
clusion of scattering processes lead to collision terms on
right side of Eq.~3.17! which are also nonlocal in genera
This nonlocality is essential to the quantum description
which phase information is retained for all times. The pha
oscillations in the cosine term are a result of the quant
coherence between the created pairs, which must be pre
in principle in any unitary evolution. However, precisely b
cause these phase oscillations are so rapid it is clear tha
integral in Eq.~3.17! receives most of its contribution from
t8 close tot, which suggests that some local approximati
to the integral should be possible, provided that we are
interested in resolving the short time structure or measu
the phase coherence effects. The time scale for these q
tum phase coherence effects to wash out is the time sca
several oscillations of the phase factorQk(t)2Qk(t8),
which is of ordertqu52p/vk52p\/ek , where ek is the
single particle energy.

The steps we have just performed to arrive at Eq.~3.17!
are a special case of the general projection formalism
Zwanzig@22#, where some subset of fast dynamical variab
deemed ‘‘irrelevant’’~in this caseCk) are eliminated in favor
of slow variables deemed ‘‘relevant’’~in this caseNk). Be-
cause the two variables are coupled by the underlying Ha
tonian equations of motion the result of solving for som
variables in terms of others is generally nonlocal in time. T
nonlocal form ~3.17! is still completely equivalent to the
mode equation~2.9! and absolutely nothing has been lost~or
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gained! by this rewriting. In other words, the projectio
method is essentially free of any physical content, until a
unless one makes further approximations that replace
nonlocal relations satisfied by the relevant observables
local ones. It is at this point that great care must be ex
cised, since the precise form of the local approximat
made will determine the usefulness and range of validity
the resulting truncation.

A natural suggestion might be to replace the Bose
hancement factor 112Nk(t8) by 112Nk(t) and remove it
from the integral, on the basis that it is slowly varying fun
tion for realt8, and attempt to perform the remaining integr
over the rapidly varying phase by the method of station

phase. However, the phase becomes stationary atQ̇k5vk
50 which is precisely where the integrand has a pole in
complex t8 plane. At such a turning point the adiabat
~WKB! approximation certainly breaks down. Hence the s
tionary phase method is somewhat less straightforward
this case, and a naive application of the method results in
correct exponential factor but theincorrect prefactor @7#.
More seriously, the stationary phase method is of no gen
utility unless one already possesses detailed knowledg
the analytic structure of the integrand in Eq.~3.17! in the
complext8 plane, and in particular, the location of the tur
ing points wherevk vanishes.

The importance of the complex turning point~s! for deter-
mining the asymptotic mixing between particle and antip
ticle modes ast→6` has been emphasized by Marinov a
Popov in Ref.@8#. In their method the analytic continuatio
of the solutions of the mode equation around the Stokes l
emanating from the turning point in the complex time pla
determines the subdominant component of the wave func
with the opposite sign of the frequency on the real axis. T
amplitude of this exponentially subdominant component
antiparticle waves in the wave function is the Schwinger p
ticle creation effect. However, the method outlined by the
authors does not seem to be applicable to the integral in
~3.17! directly, since it is designed for calculating the partic
creation asymptotically over infinite time, not for determi
ing the evolution of the particle creation process in finite r
time t, which is what we require for the transport descriptio

If one takes no account of the stationary phase point in
complext8 plane but attempts to approximate the integral
Eq. ~3.17! entirely in real time, for example by integratin
the rapidly varying cosine function by parts any number
times, it is easy to see that an asymptotic series is gener
in which the exponentially small subdominant solution c
never appear after any finite number of such steps. A
asymptotic expansion of the wave function on the real a
which discards the exponentially small antiparticle comp
nent will miss the Schwinger creation effect at late times

From this discussion we see that the essential difficu
with Eq. ~3.17! is that the point~s! in the complext8 plane
where the phaseQk is stationary must play the critical role i
determining the particle creation for asymptotically la
times, but we cannot evaluate the contribution to the integ
of these stationary phase points wherevk vanishes without
in effect knowing the fullNk , vk , andQk as analytic func-
5-8
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QUANTUM VLASOV EQUATION AND ITS MARKOV LIMIT PHYSICAL REVIEW D 58 125015
tions in the entire complext plane before we even begin.
we were in possession of these analytic functions we wo
already have the full solution to our dynamical proble
without any need to make any approximations to the integ
This is clearly impossible except for a small number of s
cial cases where the complete analytic structure is knowa
priori . Thus the nonlocal form of the quantum Vlasov equ
tion ~3.17! makes it difficult to extract any useful informa
tion about a source term for a kinetic description in gene

Consideration of this difficulty immediately suggests
different approach. Instead of trying to work with the nonl
cal equation~3.17!, in the next section we evaluate the spo
taneous pair creation rate (d/dt)Nk(t) for a constantelectric
field analytically and directly in real time, thereby assuri
agreement with the Schwinger result in both its exponen
and nonexponential factors. This is one of special ca
whereNk and its time derivative can be evaluated analy
cally in local form, directly from the definition~3.11! with-
out any need for the nonlocal integral representation~3.17!.
Then by making use of an asymptotic expansion of the ex
analytic result for constant fields, uniformly valid ever
where on the real time axis, we obtain a usefullocal approxi-
mation to the spontaneous pair creation rate for the slo
varying electric fields, without any need for analytic contin
ation or stationary phase methods in complex time. By s
an approach we shall bypass completely the difficulties
dealing with the nonlocal integral equation~3.17! resulting
from the projection method.

The transformation to the adiabatic number basis
elimination of the rapid variablesCk in favor of the slow
variablesNk by Eqs.~3.15!–~3.17! has its counterpart in the
density matrix description as well. It is shown in the Appe
dix that the density matrix~2.22! may be transformed to th
adiabatic number basis, with the general form of the non
nishing matrix elements given by Eq.~A27!. In the pure state
casesk51 the only nonvanishing matrix elements ofr are
in uncharged pair states with equal numbers of positive
negative charges,l k5nk

(1)5nk
(2) , with l k the number of

pairs in the modek, viz.

^2l k8uru2l k&us51

5ei ~ l k82l k!qk~ t !sech2gk~ t !@ tanhgk~ t !# l k81l k, ~3.18!

where the magnitude of the Bogoliubov transformationgk(t)
is defined by Eq.~3.10! and its phaseqk(t) is specified by

akbk* e22iQk52sinhgkcoshgke
iqk. ~3.19!

Hence the off-diagonal matrix elementsl 8Þl of r are rap-
idly varying on the time scaletqu of the quantum mode
functions, while the diagonal matrix elementsl 85l depend
only on the adiabatic invariant average particle number v

^2l kuru2l k&us51
[r2l k

5sech2gktanh2l kgk

5
ubku2l k

~11ubku2! l k11
5

N k
l k

~11Nk! l k11U
s51

,

~3.20!
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and are therefore much more slowly varying functions
time. The average number of positively charged particles~or
negatively charged antiparticles! in this basis is given of
course by

(
l k50

`

l kr2l k
5Nk . ~3.21!

Thus the diagonal and off-diagonal elements of the den
matrix in the adiabatic particle number basis stand in p
cisely the same relationship to each other and contain
same information as the particle numberNk and pair corre-
lation Ck , respectively.

Using the representation~3.18! or ~3.20! we can under-
stand how entropy can increase and the evolution bec
time irreversible if we replace the exact nonlocal quant
Vlasov equation~3.17! by a local expression in which th
rapid phase variablesCk , qk , or the off-diagonal matrix el-
ements ofr no longer appear. Time reversal in the fie
theory requires that both the slow and fast variables be t
reversed, which involves the full density matrixr. If we
restrict attention to only the diagonal matrix elements ofr in
the adiabatic particle number basis without any accoun
the phase information present in the rapidly varying o
diagonal elements, then time reversal no longer holds. In
effective density matrix~3.20! the diagonal elementsr2l k

may be interpreted~for sk51) as the independent probabil
ties of creatingl k pairs of charged particles with canonic
momentumk from the vacuum. This corresponds to disr
garding the intricate quantum phase correlations between
created pairs in the unitary Hamiltonian evolution, and tre
ing the creation events as essentially independent in a
chastic Markovian processes. Thus the Markov approxim
tion to the field theory arises quite naturally when t
quantum density matrix is expressed in the adiabatic part
number basis.

Such an approximation is known to be quite accurate
long intervals of time in the back reaction of the current
the electric field producing the pairs, for the simple reas
that the phase information in the pair correlations canc
very efficiently when one considers the sum over all thek
modes in the current~2.12!. It is for this reason that for
practical purposes one can approximate the full Gaus
density matrix over large time intervals by its diagonal e
ments only, in this basis. Naturally this truncation of t
unitary Hamiltonian evolution according to Eq.~2.23! leads
to a nonunitary irreversible evolution in which theeffective
von Neumann entropy of the diagonal density matrix~3.20!

Seff~ t !52Tr reffln reff52(
k

(
l k50

`

r2l k
ln r2l k

~3.22!

can increase with time. In fact, upon substituting Eq.~3.20!,
the sums overl k are geometric series which are easily pe
formed, with the result that the von Neumann entropy of t
truncated density matrix
5-9
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Seff~ t !u
s51

5(
k

$~11Nk!ln~11Nk!2NklnNk%

~3.23!

is precisely equal to the Boltzmann entropy of the sin
particle distribution functionNk(t). Hence

d

dt
Seff5(

k
lnS 11Nk

Nk
D d

dt
Nk ~3.24!

increases if the mean particle number increases. This is
ways the caseon averageif one starts with vacuum initia
conditionssk51, sinceubku2 is necessarily nonnegative an
can only increase if it is zero initially@25#. Locally, or once
particles are present in the initial state, there is no rea
why particle number or the entropy~3.24! must continue to
increase monotonically in time, and indeed small tempor
decreases are observed in back reaction simulations@4#.
Hence there is no BoltzmannH theorem for the effective
entropy~3.24! without introducing some explicit time aver
aging and/or further assumptions into the scheme.

Before closing this section we wish to take note of o
additional especially simple property of the adiabatic parti
number basis. Inserting the Bogoliubov transformation of
mode functions~3.3! into the expression for the curren
~2.12! we obtain

j ~ t !5eE @dk#
@k2eA~ t !#

vk~ t !

3@112ubk~ t !u212 Re$akbk* e22iQk~ t !%#~112Nk!.

~3.25!

We note that the vacuum term in this expression

E @dk#
@k2eA~ t !#

vk~ t !

vanishes by charge conjugation symmetry, when pro
gauge invariant integration boundaries are chosen. Using
mean value of particles in the adiabatic number basis~3.11!,
its time derivative and the equations of motion~3.14!, we
can rewrite the current~3.25! as

j ~ t !52eE @dk#
@k2eA~ t !#

vk~ t !
Nk~ t !1

2

EE @dk#vk~ t !Ṅk~ t !

5 j cond1 j pol . ~3.26!

On the other hand, from a classical point of view if th
particle distributionNk is coupled to a uniform electric field
the energy density and its time derivative are given by

«5
E2

2
12E @dk#vkNk , ~3.27!

«̇5ĖE12E @dk#S eE
~k2eA!

vk
Nk1vkṄkD50.

~3.28!
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Using the Maxwell equation2Ė5 j this last relation is pre-
cisely thesameas the mean value of the quantum current
Eq. ~3.26!. Hence we may identify the adiabatic partic
numberNk(t) with the ~quasi!classical single particle distri
bution. Other definitions of time varying particle numbe
such as that used in our own earlier work@2# do not have this
property or admit this simple quasiclassical interpretati
This exercise also demonstrates that the two terms in
mean current~3.26! should indeed be interpreted as the co
duction and polarization terms of the earlier phenomenolo
cal descriptions.

IV. CONSTANT ELECTRIC FIELD

In order to derive the source term due to particle creat
in a slowly varying electric field, we first analyze the tim
structure of the creation process in a constant, uniform e
tric field, for which

A~ t !52Et. ~4.1!

It is useful to define the rescaled dimensionless variable

u[e
k1eEt

AueEu
5

ep~ t !

AueEu
and l[

k'
2 1m2

ueEu
.0, ~4.2!

where e5e(eE)561 is the sign ofeE. Then the mode
equation~2.9! may be put into the form

S d2

du2 1u21l D f 50 ~4.3!

whose solutions are parabolic cylinder~Weber! functions
@26,27#. In fact, the two complex conjugate pairs of solutio

f ~1 !~u!5 f ~2 !
* ~u!}D21/21 i ~l/2!@2~12 i !u#,

f ~1 !~u!5 f ~2 !* ~u!}D21/22 i ~l/2!@~11 i !u#
~4.4!

each comprise complete sets of basis functions in which
expand the scalar charged fieldF. Normalizing these solu-
tions according to the Wronskian condition~2.8! and defin-
ing the phase

c[
l

4
2

l

4
ln l1

l

4
ln 22

p

8
~4.5!

we can write the properly normalized positive frequen
mode functions in the form

f ~1 !k~ t !5u2eEu21/4e2pl/8eic D21/21 i ~l/2!@2~12 i !u#,

f k
~1 !~ t !5u2eEu21/4e2pl/8e2 ic D21/22 i ~l/2!@~11 i !u#

~4.6!

which approach the adiabatic functionsf̃ k(t) in the
asymptotic limits t→2` and t→`, respectively. Notice
that with u defined including thee function as in Eq.~4.2!
these limits are equivalent tou→2` and u→`, respec-
5-10



f

y

d
a

the
in-

ar-

QUANTUM VLASOV EQUATION AND ITS MARKOV LIMIT PHYSICAL REVIEW D 58 125015
tively, independently of the sign ofeE. The complex conju-
gates of these solutions are the corresponding negative
quency mode functions and are denoted byf (2)k or f k

(2) ,
respectively. The phasec has been defined in such a wa
that the phase of the exact mode functionsf k agrees with the
adiabatic mode functions~3.1! with phaseQk measured from
the symmetric pointu50, i.e.,

Qk~ t !5E
u50

t

dt8vk~ t8!5E
0

u

du8Au821l

5
1

2
uAu21l1

l

2
lnS u1Au21l

Al
D . ~4.7!

It may seem surprising at first sight that the exact mo
functions approach the adiabatic ones in the infinite past
an
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oe
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12501
re-

e
nd

infinite future even though the electric fieldE is constant and
never vanishes in these limits. The reason for this is that
corrections to the lowest-order adiabatic mode functions
volve

dvk
2~ t !

vk
2~ t !

5
1

2

v̈k

vk
3

2
3

4

v̇k
2

vk
4

5
~23u212l!

4~u21l!3 ~4.8!

which goes to zero asutu24 for t→6`.
If the state of the system is the vacuumin state then the

mode functionf k to be used in Eq.~3.4! is the f (1)k of Eq.
~4.6! and the effective source term for the creation of p
ticles from the vacuum is
d

dt
NkuNk505

d

dt
ubku25u8eEu21/2e2pl/4

]

]tH 1

vk
US ]

]t
1 ivkDD21/21 i ~l/2!@2~12 i !u#U2J . ~4.9!
nd-
k-

the

the

idly

nd
the

as
e

cles
We note that for a strictly constant electric field this is
exactresult for the rate of adiabatic particle number chan
starting from vacuum initial conditions att52`. Phase cor-
relation information for this particular initial state has n
been discarded, although the pair correlation function d
not appear explicitly in Eq.~4.9!, which is local in time.

Now since the two pairs of complex functionsf (6)k and
f k

(6) both satisfy the same second order wave equation t
exist linear relations between them. Indeed it follows fro
the properties of the Weber parabolic cylinder functions t

f ~1 !k5ā f k
~1 !1b̄ f k

~2 ! ~4.10!

with @26,27#

ā5
A2p

GS 12 il

2 D e2ic1 ip/4e2pl/4,

b̄52 ie2pl/2. ~4.11!

The fact thatb̄Þ0 is the statement that the Bogoliubo
transformation between the two basis pairs is nontrivial a
the adiabatic vacuum state in the infinite past conta
particle-antiparticle pairs with respect to the adiaba
vacuum state in the infinite future. The magnitude of t
total Bogoliubov transformation fromt52` to t51` is
finite and given by

ub̄u2[sinh2ḡ5e2pl, ~4.12!

which is independent ofk in the direction of the electric
field.
e

s

re

t

d
s
c
s

By transforming the Gaussian density matrix correspo
ing to the evolution of the charged scalar field in a bac
ground electric field one can show that Eq.~4.12! is also the
mean number of particles in the final state with respect to
out vacuum, assuming that the field was prepared in thein
vacuum. The details of this transformation are given in
Appendix. From the result~3.20! with gk replaced byḡ and
the discussion of the previous section discarding the rap
varying off-diagonal elements ofr, we may interpret the
diagonal elements as the probability of findingl pairs at late
times if none were present initially. Hence thel 50 matrix
element

sech2ḡ5~11e2pl!21 ~4.13!

is the probability of creating no pairs in the given mode, a
the probability that the vacuum remains the vacuum in
future is given by the product over all modes

)
k

~11e2pl!215expS 2(
k

ln~11e2pl! D . ~4.14!

Taking the infinite volume limit this can be expressed
exp(2VTG) where the rate of vacuum decay per unit volum
is

G5
1

TE @dk# ln~11e2pl!. ~4.15!

Since the kinetic momentum of the created charged parti
in the direction of the electric field isk1eEt, the longitudi-
nal integration elementdk can be replaced byeET as T
→` and the vacuum decay rate becomes
5-11
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G5
eE

~2p!3E d2k'ln~11e2pl!

5
eE

~2p!3E d2k' (
n51

`
~2 !n11

n
e2pnl

5
~eE!2

~2p!3(
n51

`
~2 !n11

n2
e2pnm2/\ueEu ~4.16!

which is Schwinger’s result for scalar QED.
One should note that the replacement of the longitud

momentum integral overk in Eq. ~4.15! by eET in the large
T limit can be justified only if one understands the tim
evolution of the pair creation event, for otherwise the expr
sion~4.15! is formally meaningless. This replacement of*dk
by eET and the resulting finite expression~4.16!, which can
be obtained by quite different methods imply that only tho
k in a linearly growing window in time actually contribute t
the rate, although the mixing coefficientb̄ over all time is
independent ofk. It is the time-dependent evolution ofbk(t)
which we can investigate in detail with our definition of th
time-dependent adiabatic number basis in the next sec
This definition smoothly interpolates between thein andout
vacuum states specified, respectively, by the two wave fu
tions in Eq.~4.6!, so thatbk(t) starts at zero ast→2` and
approachesb̄ as t→1`. The wave functions depend onk
andt only through the variableu defined in Eq.~4.2!, and the
potentialu21l is even inu. Hence we should expect eachk
mode to go through its creation event at a different timt
according tok1eEt'0, i.e., for the particles to be create
with kinetic momenta near zero. We shall see that this
indeed the case and that therefore the range ofk which have
gone through the creation process at timet depends linearly
on t, which justifies the passage from Eq.~4.15! to ~4.16!.

Omitting the integration overk' and the phase space fa
tor 1/(2p)3 in Eq. ~4.16!, one obtains the probability per un
time per unit volume to produce pairs with transverse m
mentumk' @6,11#. This result has been interpreted as t
rate at which pairs are created@12# and used as a source ter
in the Vlasov equation, which involves particle producti
@13#. However, a necessary condition for this interpretat
to be correct is that the time integration over the rate
particle production

eEE dt ln~11e2pl! ~4.17!

be identical to the total number of particles produced per u
volume with transverse momentumk' , which is given by
integration overk of Eq. ~4.11!

E dk e2pl5eEE dt e2pl. ~4.18!

Expressions~4.17! and~4.18! arenot equivalent, because th
probability rate of particle production differs from the pr
duction rate of the mean value of particles. They beco
equal only in the limit of largel when both the probability
12501
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and mean number of produced particles become very sm
It is clear that the source term for the mean rate of part
production in the Vlasov equation should involve the lat
quantity ~4.18! in principle, without the appearance of an
logarithm in the final answer.

V. UNIFORM ASYMPTOTIC EXPANSION
OF THE SOURCE TERM

Equation~4.9! is the source term due to particle creatio
with a specific choice of initial conditions and phase cor
lations in the initial state~namely, none!. Since all quantities
in Eq. ~4.9! are local functions of time, specified in terms
the mode functions~4.6! there is no need to resort to th
nonlocal integral equation~3.17!, and the time evolving
phase correlationCk need not be considered explicitly. Be
cause of Eqs.~4.10! and ~4.11! the Schwinger pair creation
amplitude is certainly contained in Eq.~4.9!. Since our ob-
jective is the derivation of an effective Markovian sour
term for the Boltzmann-Vlasov equation fields which a
slowly varying in time we now introduce the second impo
tant ingredient in our approach, i.e., the uniform asympto
expansion of Eq.~4.9! for weak and slowly varying electric
fields.

In order to motivate the introduction of this asymptot
expansion observe that for a constant electric field each t
derivative of the mode functionf k brings with it a factor of
1/l. This can be made explicit by introducing a rescal
variablev which is independent of the strength of the elect
field u[vAl and rewriting the wave equation~4.3! in the
form

S 1

l2

d2

dv2 1v211D f 50. ~5.1!

Next, when we allow the electric field to vary in time we ca
consider the standard adiabatic expansion for the mode f
tion in the time-varying field@2,3#

f k[A \

2Vk
expS 2 i E t

dt8 Vk~ t8! D ,

V25v22
V̈

2V
1

3

4
S V̇

V
D 2

5v22
v̈

2v
1

3

4
S v̇

v
D 2

1••• ~5.2!

for which Eq.~3.1! is the lowest order term, corresponding
no derivatives in Eq.~5.2! and orderl0 in the constant field
case. The quasistationary or adiabatic approximation to
mode equation is obtained by treating the derivative term
small compared to the leading order term, i.e.,

v̈

v3 !1 and
v̇

v2 !1. ~5.3!
5-12
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In the case of a general electric field this implies that the fi
is both slowly varying and weak. For a constant electric fi
the adiabatic condition reduces tol@1.

Iterating the expansion to adiabatic orderq, terms withq
time derivatives of the adiabatic frequencyvk in the general
time varying field will appear together with terms withq
powers of 1/l in the constant field case. Thus there is
precise correspondence between the terms appearing i
asymptotic expansion ofubku2 and d/dtubku2 to a given
power in 1/l in a constant electric field background to th
terms appearing in the local adiabatic expansion of the
rent ~3.25! in higher time derivatives of the electric field in
general time varying electric field. The transport approxim
tion amounts to a truncation of this expansion at the low
order required for a consistent back reaction dynamics. T
is determined by the order of the back reaction equatioj

52Ė5Ä, which is second order in time. Thus we shou
expand the particle numberubu2 only to second order, i.e.
1/l2, in order to match the asymptotic expansion of the c
rent to the order of the back reaction equation for a we
slowly varying electric field, self-consistently determined
solving the Maxwell-Vlasov system. To retain higher orde
than this in the current would also involve higher derivativ
of E in the general time varying electric field, and such ter
can never be calculated correctly by the constantE approxi-
mation of Eq.~4.9!. At adiabatic order 2 the only effect o
approximating the source term for a slowly varying elect
field by Eq.~4.9!, evaluated in a constant field is the absen
of the Ė term in the current~2.12! generated by the adiabat
expansion~5.2!. This term is responsible for charge reno
malization in mean field theory@2,3#. Hence for comparison
between the mean field evolution and that of the Vlas
Maxwell system one must specify the scale of the renorm
ized charge of mean field theory by some other criterion
it will differ in general from the classical charge appearing
the Vlasov equation by a finite renormalization. This prec
correspondence we fix by a linear response analysis in
VI.

Even if we could calculate higher order terms~by calcu-
lating the source term in some other time varying ba
ground, for example!, to include them would change the o
der of the Maxwell equationĖ52 j by makingj a function
of higher derivatives ofE. This would introduce unphysica
high frequency runaway solutions, not present in the und
lying microscopic quantum field theory, in a manner simi
to the higher derivative Lorentz radiation reaction forc
Thus the order of the back reaction equation for time-vary
electric fields determines the order of the asymptotic exp
sion we should use for the current, in the limit of weak, ve
slowly varying electric fields, which is the only limit in
which such a replacement in the current is justified. The f
that the leading order asymptotic expansion of the cons
field adiabatic particle number is already 1/l2 ~as we shall
see shortly! which is the highest order we need to go in t
expansion, justifies the use of the constant field expres
~4.9!, evaluated to this asymptotic order, for the local sou
term in the Markov limit of the quantum Vlasov equation.
the higher order terms in the expansion are numerically
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nificant, then that is the signal that we must abandon
Boltzmann-Vlasov description entirely and return to the u
derlying field theory without the possibility of making an
simple transport approximation to the self-consistent b
reaction problem.

The key point is that we require an asymptotic expans
of the mode functions and adiabatic particle number sou
term in Eq.~4.9! in powers of 1/l that isuniformly valid in
time ~and longitudinal momentumk!, in order that the expo-
nentially small Schwinger amplitudeb̄ which is the only
secular effect of particle creation which survives ast→`
will not be lost in the expansion. This condition isnot satis-
fied by the naive asymptotic expansion off in simple expo-
nential functions such as Eq.~5.2!. This failure of the usual
adiabatic expansion to capture exponentially small~but secu-
lar! particle creation effects is due to the nonuniformity
the naive asymptotic expansion with respect to the limitt
→6`. This limitation can be removed by an asympto
approximation uniformly valid everywhere on the real tim
axis, in a manner analogous to the uniform asymptotic
proximation of the WKB turning point formulas@28#.

In the case at hand, the asymptotic expansion of the s
tions of Eq. ~4.3! uniformly valid everywhere on the rea
time axis have been given by Olver@29#. Converting to the
notations of the present paper, Olver’s result may be writ
in the form

f ~1 !k~ t !.e2pl/4A2p

vk
F11(

s51
gs

2s21

~ il!sG
3H z1/4Ai ~z!(

s50

P2s

~ il!2s

1z21/4Ai 8~z!(
s50

Q2s11

~ il!2s11J , ~5.4!

where the coefficientsP2s andQ2s11 are certain functions of
v5u/Al given by

P0~v !51,

P2~v !52
~9v41249v22145!

1152~v211!3

2
7v~v216!

1728j~v211!3/2
1

455

10368j2 , ~5.5!

Q1~v !52
i

24F v~v216!

~v211!3/2
2

5

3jG , etc.,

the complex variablesj(v), w, andz are defined by

j~v ![
Qk

l
1

ip

4
5

1

2
vAv2111

1

2
ln~v1Av211!1

ip

4
,

w[2lj[
2i

3
z3/2, ~5.6!
5-13
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wherez is defined in the plane cut along the positive ima
nary axis by

z5e2 ipF3

2S Qk1
ipl

4 D G2/3

~5.7!

and thegs are the numerical constants

g152
1

24
, g25

1

1152
, etc. ~5.8!

With the definition of the phase ofz according to Eq.~5.7!
the complex argument of the Airy functions in Eq.~5.4!
varies along the contour depicted in Fig. 1, as the real timt
or u ranges from2` to 1`.

The terms we have written here explicitly determine t
uniform asymptotic expansion off (1)k up to order 1/l2.
Since we are interested only in the lowest nonvanishing
der in the expansion we could retain only the lowest or
term in Eq. ~5.4!, substitute it into Eq.~4.9! to obtain the
lowest order source term in the Vlasov equation direc
Some care is required in this procedure since the argume
the Airy functions depends onl through Eq.~5.7! and the
equations of motion~3.13! will not be satisfied unless bot
sides of the equation are expanded consistently to the s
order in 1/l. For this reason it is useful to retain one high
order in the asymptotic expansion than would seem ne
sary at first sight, in order to have a nontrivial check on
algebra via the equations of motion.

The corresponding asymptotic expansion for the time
rivative of the mode functions uniformly valid on the re
axis is

FIG. 1. The contour in the complexz plane along which the
argument of the Airy functions in Eqs.~5.4!, ~5.9!, ~5.11!, and
~5.12! are evaluated. The cut of the23 root appearing in Eq.~5.7! is
taken along the positive imaginaryz axis from 0 toi`. Following
Eq. ~5.6! the corresponding contour in the complexw plane is a
straight horizontal line displaced from the realw axis into the lower
half w plane bypl/4, with Rew decreasing ast increases.
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ḟ ~1 !k~ t !. i e2pl/4A2pvkF11
1

2 (
s51

gs

2s

~ il!sG
3H z1/4Ai ~z!(

s50

P2s11

~ il!2s11

1z21/4Ai 8~z!(
s50

Q2s

~ il!2sJ , ~5.9!

where the coefficient functions are

Q0~v !51,

Q2~v !5
~15v41327v22143!

1152~v211!3

1
5v~v226!

1728j~v211!3/2
2

385

10368j2 , ~5.10!

P1~v !52
i

24F v~v226!

~v211!3/2
1

7

3jG , etc.

From these expressions the uniform asymptotic expan
for the time dependent Bogoliubov coefficientbk(t) is easily
computed from its definition in Eq.~3.4!, namely,

bk.Ape2pl/4e2 iQkF11
1

2 (
s51

gs

2s

~ il!sG
3H z1/4Ai ~z!(

s50

Ps

~ il!s
1z21/4Ai 8~z!(

s50

Qs

~ il!sJ .

~5.11!

Since we have shown by Eq.~3.12! that the particle num-
ber ubku2 is an adiabatic invariant to leading order in the tim
derivatives of the background, the lowest orderl0 term in
the asymptotic expansion must be absent from the partic
linear combination in Eq.~5.11!. Indeed with s50, P0
5Q051 and the symmetric linear combination of Airy func
tions z1/4Ai( z)1z21/4Ai 8(z) is of orderl21, as is verified
explicitly in relations~5.20! and ~5.21! below, by using Eq.
~5.6! and the further asymptotic expansion of these functio
for uzu;l2/3→`. Any other linear combination of the sam
functions, and in particular the antisymmetric combinatio
z1/4Ai( z)2z21/4Ai 8(z) is of orderl0. Anticipating this re-
sult and substituting Eqs.~5.5! and~5.10! into Eq.~5.11!, we
obtain simply

bk.Ape2pl/4e2 iQkH @z1/4Ai ~z!1z21/4Ai 8~z!#

1
i

4
@z1/4Ai ~z!2z21/4Ai 8~z!#F u

~u21l!3/2
1

1

3wG J
1O~l22!, ~5.12!
5-14
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correct to the leading nonvanishing orderl21. Squaring Eq.
~5.12! and taking its time derivative gives the asympto
approximation to the effective source term defined in E
~4.9!. Sincew andz are functions ofu andl ~equivalently,v
andl) which depend only on thekinetic momentap(t) and
w
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.

p' through Eq.~4.2!, the effective source term~for vacuum
initial conditions att52`) may be written in the form

Svac~p,p' ;E!5eE
]

]p
ub~p,p'!u2, ~5.13!

where
ub~p,p'!u25pe2pl/2U@z1/4Ai ~z!1z21/4Ai 8~z!#1
i

4
@z1/4Ai ~z!2z21/4Ai 8~z!#F u

~u21l!3/2
1

1

3wGU2

~5.14!

is that function ofp and p' determined by the substitutions~4.2! together with the definitions~5.6! and ~5.7!. Using the
relations

eE
]

]p
@z1/4Ai ~z!6z21/4Ai 8~z!#56 iv@z1/4Ai ~z!6z21/4Ai 8~z!#1

iv

4z3/2
@z1/4Ai ~z!7z21/4Ai 8~z!# ~5.15!

which follow from the definition~5.7! and Ai9(z)5zAi( z), the differentiation in Eq.~5.13! can be carried out explicitly with
the result

Svac~p,p' ;E!5pueEue2pl/2
u

u21lH uz1/4Ai ~z!u22uz21/4Ai 8~z!u21
1

6
Im@„z1/4Ai ~z!…* z21/4Ai 8~z!#

3S Qk

3uwu2
1

u3

l~u21l!3/2D 2
1

48
uz1/4Ai ~z!2z21/4Ai 8~z!u2F pl

uwu2
1

6~2u22l!

~u21l!3 1
u3Qk

3luwu2~u21l!3/2

1
35

18uwu4S p2l2

16
2Qk

2D1
1

18uwu2G J , ~5.16!
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where we have neglected all terms of orderl23 and higher
within the curly brackets.

The expressions~5.13!, ~5.14!, and ~5.16! are the main
results of this paper. In order to understand the physics
particle creation that is captured in these expressions
compare the lowest order asymptotic expression for the a
batic particle number~5.14! with the analogous exact expre
sion in terms of parabolic cylinder functions for consta
external electric field. The results are plotted in Figs. 2–4
l51, 2, and 10, respectively. We see that the asympt
expansion in terms of Airy functions reproduces the behav
of the adiabatic particle number quite accurately, even
moderately smalll of order 1. The other important feature
notice about these figures is the relatively sharp increas
particle number right aroundu5p50. The transients afte
this particle creation event then settle down to the va

ub̄u25exp(2pl) which is independent of the initial longitu
dinal momentum.

Thus, the exponentially small Schwinger particle creat
effect is captured very well by theleadingorder term in the
uniform asymptotic expansion ofubu2. Notice that the uni-
form asymptotic expansion for the source term works v
well even at the expected limit of its validity atl51. As a
mathematical aside we remark that the exponentially sm
contribution to an adiabatic invariant quantity such as
of
e
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particle numberNk has been studied by various authors a
bounds obtained in the general case@30#. However, for this
particular case of constant electric field and mode equa
~4.3! leading to Weber parabolic cylinder functions, it h
apparently not been noticed that the asymptotic expansio
the solutions of this equation, uniformly valid on the re
time axis, allows one to calculate the exponentially sm
secular change in the adiabatic invariantNk analytically. The
same observation could clearly be generalized to other
ferential equations for which uniform asymptotic expansio
are known.

The sharpness of the creation event atu50 is clearly
determined by the wave equation~4.3! to beDu;l1/2 or

Dt;
Ap'

2 1m2c2

eE
[tcl ~5.17!

which is the time scale for the growth of a sizable fraction
the final antiparticle amplitude in the quantum wave fun
tion. This time scale~which is also the time scale for th
classical acceleration by the electric field to bring a charg
particle to relativistic velocities! must be long compared to
the quantum phase coherence timetqu, in order for the cre-
ation process to be described by a local approximation to
nonlocal Vlasov equation~3.17!, i.e.,
5-15
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tcl;ltqu@tqu. ~5.18!

Hence the Markov limit of the Vlasov equation requir
weak electric fieldsl@1 which is what we have assumed
the uniform adiabatic expansion of the source term. C
versely, if we consider the opposite limit where the elect
field is strong, so many particles are created so rapidly
time that the individual particle creation events cannot
distinguished one from another during the quantum coh
ence timetqu. It is clear that in this case significant wav
amplitude coherence during the creation process can be
pected and we cannot hope to approximate the effect
such copious and coherent particle creation by a Boltzma
Vlasov source term local in time, which takes no accoun
the prior time history. Indeed in this strong field limit the
‘‘particles’’ are not particles at all in the usual sense but
more accurately to be thought of as coherent wave am
tudes which lie outside of any classical or semiclassical
netic particle description.

Restricting ourselves then to weak fields these cohere
effects do not need to be considered explicitly and are b

FIG. 2. The exact~solid curve!, uniform ~dashed curve!, and
adiabatic step function~dotted curve! asymptotic expansions of th
adiabatic particle number and its time derivative for a constant e
tric field with l51 andk50. The particle numbers approach th
same valuee2p50.0432 ast→`, although eachNk experiences a
sharp rise at a different time, viz. near zero kinetic momentump
5k1eEt.0. The delta function att50 in the dotted curve of the
second figure obtained from differentiating~5.27! is not shown.
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into the initial conditions of the vacuum att52` once and
for all. However, in analyzing the particle creation process
a constant field and deriving Eq.~5.16! we have also as-
sumed that the electric field does not vary over the typi
time of the variation ofNk . Thus in order to use Eq.~5.16!
in situations involving a time evolving electric field we als
require that its time scale of variationtpl be much larger than
the time scale of the creation event, i.e.,

tpl@tcl . ~5.19!

If this second inequality holds then it should be possible
coarsen our time resolution still further by not attempting
resolve the time scaletcl . On these still longer time scales
becomes reasonable to approximate the sharp growth o
antiparticle amplitude nearu5pz50 as a step function, pro
vided only that we account for the integrated value of t
step from2` to 1`. This is what we wish to explain next

Let us first reiterate that the uniform asymptotic expa
sion in terms of Airy functions is indeed essential to capt
ing the step explicitly in Figs. 2–4 and that the Schwing
effect is lost completely if a naive WKB expansion in pow
ers of 1/l is used instead. This may be seen explicitly
taking the largel asymptotics of the Airy functions in Eq
~5.12!. To this end we note the Airy functions may be re
resented in terms of Hankel functions of the first kind,

c-

FIG. 3. Same as Fig. 2 but forl52. The particle numbers
approach the same valuee22p50.00187 ast→`, although each
Nk experiences a sharp rise at a different time, viz., near zero
netic momentum,p5k1eEt.0.
5-16
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z1/4Ai ~z!5
1

2A2
e5p i /12w1/2H1/3

~1!~w!,

z21/4Ai 8~z!5
1

2A2
e25p i /12w1/2H2/3

~1!~w! , ~5.20!

with the branch cut ofw1/2 along the negativew axis, andw
ranging from1`2 ipl/4 to 2`2 ipl/4 along the horizon-
tal contour displaced by2 ipl/4 from the real axis, asu
ranges from2` to 1`, according to Eq.~5.6!. Taking the
largel limit is equivalent to taking the largeuwu limit of the
Hankel functions, which depends critically on the phase
w. This phase depends in turn on the sign ofu from Eq.~5.6!.
When u,0, then uargwu,p and we can use the standa
asymptotic expansion of the Hankel functions

w1/2Hn
~1!~w!.

2

Ap
expS iw2 i

p

2
n2 i

p

4 D

3H 12
1

2iw

GS n1
3

2D
GS n2

1

2D 1 . . .J ,

FIG. 4. Same as Figs. 2 and 3 but forl510. In this case the
magnitude of the step at late times,e210p52.27310214 is much
smaller than the transient effects visible in the plot, and all th
curves are very nearly~anti!symmetric aroundt50, showing that a
nearly equal number of particles is created and destroyed. As in
previous figures the delta function att50 in the dotted curve of the
second figure is not shown.
12501
f

2p,argw,p, ~5.21!

for large uwu to find

bk;
eiw

w
→0 as t→2`. ~5.22!

Sincew52lj is linear inl this shows that the linear com
bination of Airy or Hankel functions inbk is of orderl21

and contains nol0 term, as stated above.
Thus if t→2` with eE fixed or if l→` with k1eEt

,0 fixed, the adiabatic particle number vanishes. On
other hand ifu→1` we cannot use Eq.~5.21! directly be-
cause argw→2p in this limit, and the condition on the
phase is not satisfied. Instead we must first use the con
tion formula

Hn
~1!~w!5

sin 2pn

sinpn
Hn

~1!~eipw!1e2 ipnHn
~2!~eipw!

~5.23!

to bring the phase ofw85eipw into the proper range in orde
to apply Eq.~5.21!. Then we find that theeiw terms from
Hn

(1) again vanish aseiwuwu21 for large uwu, but that now
there remains in addition the opposite frequencye2 iw term
which gives

bk~ t !→2 ie2pl/4e2 iwe2 iQk52 ie2pl/25b̄ ~5.24!

which is finite ast→1` with eE fixed. As l→` with k
1eEt.0 fixed this term is exponentially small compared
the ordinaryl21 contribution.

In this way the uniform asymptotic expansion in terms
Airy or Hankel functions which contains the exponentia
small Schwinger particle creation becomes nonuniform
time, depending on the sign ofk1eEt, if the further
asymptotic expansion of these functions in terms of ex
nentials exp(6iw) is taken. Only the uniform expansion i
Eqs. ~5.4! and ~5.9! can capture the particle creation even
and Figs. 2–4 show that it does quite accurately even at
lowest nonvanishing order of the expansion. This exercis
asymptotic expansions as well as the explicit behavior
time of the adiabatic particle number in Figs. 2–4 does sh
that we might try the simple adiabatic expansion ofbk ac-
cording to Eq.~5.2!, but that we must then add backby hand

the exponentially small stepb̄ in the vicinity of the creation
event atk1eEt.0, i.e.,

bk'bk
adb1u~u!b̄, ~5.25!

where

bk
adb.

ie22iQku

4~u21l!3/2
1OS 1

l2D ~5.26!

is the result obtained by substituting the lowest order of
standard adiabatic approximation for the mode functio
~5.2!, rather than Olver’s uniform expansion in terms of Ai
functions. The Heaviside step function could be replaced

e

he
5-17



n
in
u
o

y
ic
th
e

ou

on

q
in
t
t

as
of
ar

su
tic
it
of
f
e
s

th
io
ed

t

d

,
tio
th
ti
le
n

e
cle
x

io

ng

ect

e
he
the

is

r-
nd

of
of
n-
n

ns
ns
n
of
of

we

ty
t

ion
n-

v-

s-

YUVAL KLUGER, EMIL MOTTOLA, AND JUDAH M. EISENBERG PHYSICAL REVIEW D 58 125015
any smooth function with the correct limits att→6`. The
point is that if the second inequality~5.19! holds, then in
multiparticle collective quantities such as the mean curre
integrations over large ranges of kinetic momenta are
volved, and it makes little difference whether the continuo
rise in each individual mode’s particle number on the m
mentum scaletcl /eE is taken into account, provided onl
that the integral over all momenta accurately describes wh
modes have gone through the creation process. It is only
fact and the second inequality involving the collective tim
scale of the plasma that can justify replacing the continu
rise ofNk by a step function.

In this admittedly rather crude approximation the functi
b(p,p') of Eq. ~5.14! in terms of Airy or Hankel functions
is replaced by

ub~p,p'!u2'
~eE!2p2

16v6 2
eEp

2v3 expS 2
pl

2 D u~u!cos~2Q!

1exp~2pl!u~u! ~5.27!

in terms of elementary functions. This approximation to E
~5.14! is compared to the uniform asymptotic expansion
the dotted curves of Figs. 2–4, where it is observed tha
works better than might have been expected, except for
region near the creation eventu'0 where it is clearly inac-
curate. The delta function obtained by differentiating the l
two terms of Eq.~5.27! is not shown in the second halves
Figs. 2–4. Notice that the oscillations in these figures
well represented by the cos(2Q) term in Eq. ~5.27!, which
may be interpreted as the interference between the u
adiabatic phase oscillations and the relatively sudden par
creation event. Thus we see that for numerical purposes
probably sufficient to use the approximate form
ub(p,p')u2 in Eq. ~5.27! for all p, except those in a band o
size several units ofAp'

2 1m2 centered at the origin wher
the sharp~but continuous! rise of particle number take
place. When one is integrating over a region ofp or t that is
large compared to the time scaletcl over which the rise in
particle number takes place, the crude approximation of
rise by a step function and its derivative by a delta funct
may be sufficient, provided only that their coefficient is fix
by the Schwinger formula, as in Eq.~5.27!. On the other
hand, in the region ofp.0 the true behavior is certainly no
discontinuous on the scaletcl and the more accurate form
~5.14! in terms of Airy or Hankel functions should be use
for moderately strong electric fields.

We have now succeeded in our main purpose, namely
analyze the time structure of the quantum particle crea
process in the adiabatic number basis, and to capture
particle creation event by means of a uniform asympto
expansion of the exact wave functions of the constant e
tric field background, without any need to analytically co
tinue or approximate the nonlocal integral in Eq.~3.17!. Be-
cause of the reasoning earlier in this section we can proc
to identify the time rate of change of the adiabatic parti
number in the lowest order of this uniform asymptotic e
pansion given by Eq.~5.16! or the time derivative of Eq.
~5.27! as the effective source term in the Vlasov equat
12501
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which describes quantum particle creation in slowly varyi
electric fields, starting from vacuum initial conditions att
52`.

One point that still requires some discussion is the eff
of changing the initial conditions from vacuum att52` to
those at some finite timet0 . Indeed, the comparison of th
effective source term in the Vlasov description with t
mean field evolution in the next section requires that
initial conditions be specified at a finite initial timet0, not at
2`. This means that the effective source term which
given by Eqs.~5.16! will differ from the actual source term
in its dependence on the initial data and the correlations~or
lack of them! in the initial state. To the extent that a Ma
kovian approximation to the source term is justified a
dephasing is efficient we expect that the memory effects
the initial conditions will be washed out on the time scale
significant particle creation, and therefore that the initial co
ditions will affect only the transient behavior of the evolutio
for times close tot0. This can be checked in more detail.

To examine the transient effects of the initial conditio
let us consider arbitrary initial data on the mode functio
f k(t0) and ḟ k(t0), subject only to the Wronskian conditio
~2.8! and finite initial energy density. The general solution
f k(t) in a constant electric field is a linear combination
f (6)k ,

f k~ t !5Ak~ t0! f ~1 !k~ t !1Bk~ t0! f ~1 !k* ~ t !. ~5.28!

By using the Wronskian condition on the mode functions
can solve for the coefficients,Ak(t0) andBk(t0) in terms of
the initial conditions on the mode functions in the form

Ak~ t0!5 i @ ḟ k~ t0! f ~1 !k* ~ t0!2 f k~ t0! ḟ ~1 !k* ~ t0!#,

Bk~ t0!5 i @ f k~ t0! ḟ ~1 !k~ t0!2 ḟ k~ t0! f ~1 !k~ t0!#.
~5.29!

A specific example of initial data with finite energy densi
is provided by the adiabatic vacuum initial conditions at
5t0 , i.e.,

f k~ t0!5 f̃ k~ t0!5A \

2vk~ t0!
,

ḟ k~ t0!5 f8 k~ t0!5F2 ivk~ t0!1
v̇k~ t0!

2vk~ t0!
G f k~ t0!.

~5.30!

The second term in the time derivative of the mode funct
is essential to insure finite initial energy density and is no
zero for finite electric field at initial timet0 . It means that a
definite nonzero value of the pair correlationCk is being
assumed in the initial adiabatic vacuum state.

Our previous choice of vacuum initial conditions is reco
ered if we let t0→2` so that Ak→1, Bk→0, and f k(t)
→ f (1)k(t). Retainingt0 finite means that the general expre
sion forbk(t) in Eq. ~3.4! with the mode functions given by
Eq. ~5.28! should be used so that
5-18



fo
s

rc
e

he

le

th

tio

te

rl
e
ve
te
ith
re

e

ata

al

ay
e is
re

ws
it
ac-
wn

ount
ry,

s,

in
tric
n-

ent
on

s
or-
ler

ric
by
the
not

q.

he

hip

m
.
nt

e

, t

QUANTUM VLASOV EQUATION AND ITS MARKOV LIMIT PHYSICAL REVIEW D 58 125015
bk~ t,t0!52 iAk~ t0! f̃ k~ t !~ ḟ ~1 !k1 ivk f ~1 !k!2 iBk~ t0! f̃ k~ t !

3~ ḟ ~1 !k* 1 ivk f ~1 !k* !. ~5.31!

Since Ak and Bk are also given in terms off (1)k by Eqs.
~5.29! one can develop the uniform asymptotic expansion
this bk(t,t0) using Eqs.~5.4! and ~5.9!, repeating the step
leading to Eq.~5.14! keepingt0 finite.

The resulting rather complicated expression for the sou
term will depend on the electric field value at the initial tim
t0 . This expression would incorporate the initial data of t
actual mean field evolution problem starting att0 more ac-
curately than the simple choice of initial conditions,Ak51
andBk50 which we have used in the source term~5.16!. A
good probe of the effect of these transient terms is the e
tric current which is plotted in Fig. 5 forl51. The early
oscillations observed in the exact current are the effect of
initial conditions~5.30!. However, the linear growth witht at
late times can be understood from the simple approxima
to the particle creation~5.27! by a step function.

For if we start att5t0 ~rather than att52`) with no
initial particles present, then the actual current integra
over all longitudinal momenta at timet is dominated by the
conduction currentj cond in Eq. ~3.26! and becomes

2e exp~2pl!E dk

2p

k1eEt

vk
u~k1eEt!u~2k2eEt0!

→
e2E

p
exp~2pl! ~ t2t0! ~5.32!

in one spatial dimension at late times, which grows linea
with the elapsed timeT5t2t0 since the initial vacuum stat
was prepared. This is precisely the slope which is obser
in all three curves in Fig. 5 at late times. The second s
function involving t0 is necessary because only modes w
initially negative kinetic momentum can go through a c

FIG. 5. The linear growth of the electric current with time in th
case of fixed constant background electric fieldE51 ande51. The
three curves shown are the current of the exact mode functions
uniform Airy approximation to them with initial conditions att0

50 according to Eqs.~5.28!–~5.30!, and the simple step function
ansatz of Eq.~5.27!.
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ation event atp(t).0 sincep(t)5k1eEt is a monotoni-
cally increasing function oft for constant positiveE. It is in
fact present in theAk and Bk of Eq. ~5.29! through f k(t0)
and ḟ k(t0) which involve the same parabolic cylinder mod
functions and the similar behavior neark1eEt0.0 as ob-
served in Figs. 2–4. It is this dependence on the initial d
which provides just the momentum window in Eq.~5.32!
which we need to justify the replacement of the longitudin
momentum integrationdk by the total elapsed timeeET in
Eq. ~4.15!, and which led to Schwinger’s result for the dec
rate. Such an understanding of the linear time divergenc
possible only with a detailed description of the time structu
of the particle creation process as given here.

The fact that the current in a constant electric field gro
linearly with time is important for another reason. For
shows that back reaction must eventually be taken into
count, and that simple perturbation theory must break do
at late enough times for any nonzeroeE, no matter how
small. These back reaction effects can be taken into acc
only by a systematic resummation of perturbation theo
such as the largeN expansion advocated in Refs.@2–4#, or
by the solution of the Vlasov-Maxwell system of equation
valid when the inequalities of time scalestqu!tcl!tpl hold.

When the electric fields are very weak fields (eE
!m2c3/\), particle creation is negligible, the linear slope
Fig. 5 is very small and even in back reaction the elec
field will hardly change at all with time. In this case esse
tially all the effects on moderate time scales will be transi
effects and one should retain the initial condition informati
in Ak and Bk . In moderately strong electric fields (eE
.m2c3/\) where particle creation is significant Fig. 5 show
that the transient effects of the initial data become unimp
tant before long and one might just as well use the simp
expression for the source term withAk51 andBk50, de-
rived previously. This is equivalent to replacing the elect
field value the particles feel at the actual time of creation
one assumed to have been constant for times long before
creation takes place. In that case the source term does
depend on the value of the electric field at the initial timet0 ,
which again is reasonable providedtpl@tcl . It is the quasi-
stationary, Markov approximation for the source term in E
~5.16! or ~5.27! Ak51 and Bk50 that we compare to the
actual back reaction evolution of mean field theory in t
next section.

We conclude this section by remarking on the relations
between the local source term~4.9! or its asymptotic expan-
sion ~5.16! and the general nonlocal form~3.17! derived in
Sec. II. For a constant electric field starting from vacuu
initial conditions~4.9! and~3.17! must be identical of course
If, following Rau @16# one neglects the Bose enhanceme
factor 112Nk and changes variables fromt8 to lx
[2Qk(t8)22Qk(t) then the integral in Eq.~3.17! may be
rewritten in the form

d

dt
Nk5

eEp

4v2E
2`

0

dx
sinhw~x!

cosh3w~x!
cos~lx!, ~5.33!

where

he
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u85e
k1eEt8

AueEu
5Al sinhw~x! ~5.34!

is given implicitly as a function ofx by the relation

sinhw~x!coshw~x!1w~x!

5x1
pv

p'
2 1m2

1sinh21S p

Ap'
2 1m2D ~5.35!

for constant electric field.
This is similar in form to Eqs.~25! and~26! of Ref. @16#,

the additional sinhw in the numerator of Eq.~5.33! being
due to the fact that we have treated charged scalars ra
than fermions in this paper. Thus the form of the source te
plotted in the second halves of Figs. 2–4 is qualitativ
similar to those presented in Ref.@16# by numerical evalua-
tion of an integral similar to Eq.~5.33!. However, the neglec
of the quantum statistical enhancement~or Pauli blocking!
factor 162Nk in the integrand of Eq.~3.17! is valid only in
the weak field limitl@1. Since that has already been a
sumed in writing Eq.~5.33! one should then properly evalu
ate the integral in the same limit. As already remarked
Sec. II there is no straightforward method of performing
asymptotic expansion of this integral in real time witho
losing the exponentially small Schwinger effect: integrati
the cos(lx) term successively by parts will generate t
simple adiabatic expansion which contains no exp(2pl)
term or step function. In the case of weak fieldsa215l
@1 this effect is exponentially small in any case, so if o
simply evaluates Eq.~5.33! or its equivalent for fermions
numerically as in Fig. 1 of Ref.@16# or Fig. 4 of this work,
most of the numerical contribution to what is plotted is co
tained in thefirst ~pure bk

adb) term of Eq. ~5.27!, which
scales as 1/l3, andnot the last term which gives rise to th
exponentially small delta function source of Ref.@11#. Hence
multiplication by the factor exp(pl/2) in Eqs.~24! and ~25!
of Ref. @16# for weak fields is nugatory, while for stron
fields a215l,1, the neglect of the factor 162Nk in Eq.
~5.33! or Eq. ~25! of Ref. @16# is not justified.

VI. BACK REACTION

The source term we have derived in Eq.~5.16! for
vacuum initial conditions att052` must be modified to
include induced creation when there are particles presen
the initial state. Since

112Nk5~112Nk!~112ubku2! ~6.1!

for Nk particles in the initial state, the correct modifie
source term in constant electric field is

Ṅk5~112Nk!Svac~p,p' ;E!. ~6.2!

In the back reaction problem the electric field will vary wi
time. Now the local Markov approximation to the nonloc
Vlasov equation~3.17! consists of using the source ter
~6.2! with the constantE replaced byE(t) and the constan
12501
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Nk byNk(t) at thelocal time of interest. The replacement o
E by E(t) is justified if the electric field is slowly varying
~the quasistationary approximation!, while the replacemen
of Nk by Nk(t) is justified if the electric field is weak (l
@1), since from Eq.~6.1! the difference between the two i
proportional toubku2 which is of orderl22 and gives rise to
corrections which are higher order than the terms we h
retained in the asymptotic expansion of the source term
this way the statistical factor 162Nk has effectively been
removed from the nonlocal integral kernel~3.17! and we
have obtained the final form of the source term for use
back reaction.

Converting the independent variables of the number d
tribution function from canonical momentak andt to kinetic
momentap and t by the definition

Nk~ t ![N~p5k2eA;t !, ~6.3!

we obtain the local Vlasov equation

]

]t
N~p,p' ;t !1eE~ t !

]

]p
N~p,p' ;t !

5S~p,p' ;E!5@112N~p,p' ;t !#Svac~p,p' ;E!,

~6.4!

for spatially homogeneous fields. Spatial dependence in
distribution function could be included on the left side of E
~6.4! in the standard manner, provided it is also slowly va
ing in space compared toctcl . Together with the Maxwell
equation

Ä~ t !52eE @dp#
p

v
N~p,p' ;t !1

2

EE @dp#

3v@112N~p,p' ;t !#Svac~p,p' ;E!, ~6.5!

Eq. ~5.16!, and the defining relations~4.2!, ~5.6!, and ~5.7!
this constitutes the local kinetic approximation to the me
field equations.

In order to understand the time scale associated with
variation of the electric field and therefore the validity of th
quasistationary approximation to the source term by that
a constant electric field consider first the Vlasov-Maxw
system ignoring particle creation. With the source term se
zero, Eq.~6.4! can be solved in closed form, viz.

N~p,p' ;t !5N @p1eA~ t !,p' ;0#. ~6.6!

Substituting this solution into Eq.~6.5! and linearizing in
A(t) gives

dÄ~ t !22e2dA~ t !E @dp#
p

v

]

]p
N~p,p' ;0!50. ~6.7!

Integrating the latter expression by parts demonstrates
the potential~and therefore also the electric field! will oscil-
late with a frequency
5-20
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vpl
2 52e2E @dp# N~p,p' ;0!

]

]pS p

v~p,p'! D , ~6.8!

which is the relativistic plasma frequency. In the nonrelat
istic limit v(p,p') can be replaced bym and the integral,
2* @dp# N(p,p' ;0)5n simply gives the total number den
sity of particles present in the initial state att50. Then we
recover the familiar expressionvpl

2→e2n/m for the classical
plasma oscillation frequency.

This classical plasma frequency may be obtained as
from a linear response analysis of the quantum mean fi
equations as follows. We perturb the vacuum solution for
mode functions

f̄ k~ t !5A \

2v̄k

e2 i v̄kt, v̄k5Ak21m2, ~6.9!

with zero electric field by writing

f k~ t !5 f̄ k~ t !1d f k~ t ! ~6.10!

and expand the equations of motion to first order ind f k , A,
and Ȧ. The linearized mode equation

F d2

dt2
1v̄k

2Gd f k52keA f̄k ~6.11!

can be solved by making use of the free retarded Gre
function

GR~ t2t8;k!5
sin@v̄k~ t2t8!#

v̄k

u~ t2t8!, ~6.12!

in the form

d f k~ t !52ekE
0

t

dt8GR~ t2t8;k!A~ t8! f̄ k~ t8!1Ak f̄ k~ t !

1Bk f̄ k* ~ t !, ~6.13!

whereAk andBk are constants of integration and ReAk50
in order to preserve the Wronskian condition~2.8! under the
perturbation. The corresponding linearized Maxwell eq
tion is

Ä5eE @dk#H 4k~112Nk!Re~ f̄ k* d f k!22eA
Nk

v̄k

2eA
k2

v̄k
3 J

52e2E
0

t

dt8A~ t8!E @dk#
k2

v̄k
2 ~112Nk!sin@2v̄k~ t2t8!#

2e2A~ t !E @dk#S k2

v̄k
3

1
2Nk

v̄k
D 1B~ t !, ~6.14!

where
12501
-
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e
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-

B~ t ![2eE @dk#
k

v̄k

~112Nk!Re~Bke
22i v̄kt! ~6.15!

is given by the initial perturbation away from the vacuu
solution.

The most direct method of solving a linear integral equ
tion such as Eq.~6.14! is to make use of the Laplace tran
form

Ã~s![E
0

`

dt e2stA~ t !. ~6.16!

After some regrouping of terms the Laplace transform of E
~6.14! may be put into the form

Ã~s!H s2F11
e2

4 E @dk#
k2

v̄k
5 ~112Nk!G

12e2E @dk# Nk

]

]kS k

v̄k
D

2
e2s4

4 E @dk#
k2

v̄k
5

~112Nk!

~s214v̄k
2!
J 5sA~0!1Ȧ~0!1B̃~s!,

~6.17!

where the right-hand side depends only upon the initial d
We notice in Eq.~6.17! the presence of the two-particl
threshold ats2524v̄k

2 for the creation of a pair of charge
particles which would give rise to an imaginary part a
damping in the linear Maxwell equation. Since the partic
are massive this imaginary part is zero if we find an osci
tory solution of the equation withs56 ivpl and vpl!2m.
Such a solution is easily found by setting the expression
curly brackets in Eq.~6.17! to zero and neglecting thes4

term:

vpl
2 52eR,N

2 E @dk# Nk

]

]kS k

v̄k
D , ~6.18!

where

1

eR,N
2

5
1

e2 1
1

4E @dk#
k2

v̄k
5 ~112Nk!. ~6.19!

In 311 dimensions the combination in Eq.~6.19! is indepen-
dent of the ultraviolet cutoff and the renormalized value
the charge depends in general on the distributionNk . The
only requirement on the distribution is thatvpl in Eq. ~6.18!
must be much smaller than 2m, in which limit there is no
particle creation at all and the time independentNk in Eq.
~6.18! may be identified with the particle density in pha
spaceN(p).

Thus the linear response analysis of the quantum m
field theory gives exactly the same result for the plasma
quency, provided that the classical chargee appearing in Eq.
~6.8! is identified with the renormalized charge of the qua
5-21
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tum theory according to Eq.~6.19!. This provides a consis
tency check with the classical Vlasov transport description
the plasma, valid in the adiabatic or infrared limit of slow
varying mean fields, and identifies the proper corresp
dence limit of the classical coupling with that in the unde
lying quantum description.

It is vpl that sets the time scale of the variation of t
electric field in the back reaction problem, i.e.,tpl
.2p/vpl . Hence the local quasistationary approximation
the source term in Eq.~6.4! requires that the three time scal
obey

vpltqu!vpltcl!1. ~6.20!

If one starts the evolution with zero initial particles then t
distribution functionN changes from its classical valu
N @p1eA(t),p' ;0# due to the particle creation effect em
bodied in the source term. Since the second inequality
quires tcl /tqu;l@1 and the source term is exponentia
small in l, the number of created particlesn, and therefore
the plasma oscillation frequency will also be exponentia
small in l. Hence the time for enough particles to be pr
duced to significantly influence the electric field will be e
ponentially long and the second inequality in Eq.~6.20! will
also be satisfied automatically. Thus our local, quasistat
ary approximation scheme for the source term is valida pos-
teriori, and we would expect even the cruder approximat
of the source term by Eq.~5.27! to be not far from correct.

Indeed in previous work we have shown that solving
Vlasov system with a phenomenological source term of
form

@112N~p,p' ;t !#ueEu ln~11e2pl!d~p!, ~6.21!

reproduces results qualitatively similar to the mean fi
theory calculation of charged matter field coupled to a cl
sical electric field@3#. In the present work we have show
that no logarithm should be present in the source term,
ln(11e2pl) in Eq. ~6.21! should be replaced by simpl
e2pl, and that in fact, the particle creation event is contin
ous and can only be crudely approximated as a sharp
function in Eq.~5.27! with some loss of information abou
the true time structure of the event, as demonstrated in F
2–4. However, if the second inequality in Eq.~6.20! is valid
then the evolution of the mean electric field on the time sc
of vpl

21 should be affected but little by the further approx
mation of the source term by a delta function.

In order to test the validity of this approximation w
present numerical results for the Maxwell-Vlasov system
equations~6.4! and ~6.5! with both the new source term
~5.16! and the old delta function source term~but with no
logarithm!, and compare the results to the exact solution
the mean field evolution of the mode functions~2.9! coupled
to the Maxwell equation~2.17! for scalar QED. The electric
field evolution is plotted in Fig. 6 for the three cases. W
observe that the corrected delta function source term g
qualitatively correct results, but the new source term~6.2!
does a better overall job of tracking the mean field evoluti
particularly at late times, where the old source term begin
drift out of phase. The new source term~6.2! also drifts out
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of phase eventually, but at a much slower rate, or in ot
words it more accurately estimates the plasma frequenc
the collective motion. We deliberately chose moderat
large values of the couplinge51 and the initial electric field
E51 in order to amplify the small discrepancy between t
mean field evolution and that of the new source term. F
evolutions ate50.1 such as in earlier work@3#, the discrep-
ancy is negligible on the scale of the plot.

In Fig. 7 we display the electric current~3.26! for the
three evolutions. The new feature observed here are the r
oscillations of the quantum mean field evolution on the tim
scale tqu and their complete absence from the evolutio
with the two local Vlasov source terms which follow th
value of the current averaged over this rapid time scale. T
is in accord with our previous discussion of the neglect

FIG. 6. The evolution of the electric field in one space dime
sion, according to the exact mean field Eqs.~2.17!, the new source
term ~6.2! derived in this paper, and the old source term used p
viously ~6.21!, but with no logarithm, for initial electric fieldeE
5e25m251, and no particles present in the initial state. The n
source term tracks the mean field evolution more accurately t
the delta function source term, which gives a too small plas
oscillation frequency at late times.

FIG. 7. The evolution of the current in one space dimension,
the same initial conditions as Fig. 6. Both the source terms for
Vlasov equation neglect the oscillations of the current on the t
scaletqu;1.
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such quantum coherence effects in any local transport
scription. The particle distribution functionN is plotted as a
function of k for the mean field and Vlasov evolutions at
particular value oft in Fig. 8. We observe the same quantu
coherence effects in the mean field evolution here in
rapid oscillations ofN in momentum space on a scaleDk
;1/ctqu as one observes as a function of time. Again th
oscillations in the particle distribution are absent in the V
sov evolutions. We note also the slightly negative value
the distribution function in the case of the new Airy sour
term. This is a transient effect due to our settingAk(t0) and
Bk(t0) to 1 and 0, respectively. With the more accura
source term computed from Eq.~5.31! which takes accoun
of the initial conditions this artificial negative region is muc
smaller. It also grows less and less pronounced as t
progresses, and may be eliminated entirely by binning
distribution in momentum bins. Some small discrepancy
this kind is to be expected in any truncation of the unita
field theory evolution by a local Vlasov source term, unle
that source term is always and everywhere positive, co
sponding to a strictly monotonic increase of total parti
number and entropy, according to Eq.~3.24!. It may be re-
garded as a rough estimate of the systematic error induce
the Markov approximation in the source term~6.2!.

In these numerical evolutions the renormalized charge
the mean field theory was chosen to beeR51 in order to
compare to the Vlasov evolution with unit classical char
e51, according to Eqs.~6.18! and ~6.19!. In 111 dimen-

FIG. 8. The particle distributionN as a function of canonica
momentumk at a fixed timet5100 for the mean field evolution
~jagged curve! and the new source term~smooth curve! derived in
this paper, for the same initial conditions as Figs. 6 and 7. T
Vlasov equation with the new source term is approximately
smooth average of the actual mean field evolution on spatial sc
of orderctqu;1. The slight dip into negative values of the smoo
curve becomes less and less prominent at later times.
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sions where the simulations were performed the cha
renormalization is finite and in the vacuum is given by

m2

eR,N50
2

5
m2

e2 1
1

12p
~6.22!

so that the finite renormalization effects fore5m51 are of
order 1/12p.0.026 or a few percent in the range of th
simulations shown in the figures. In the extreme weak c
pling limit m2/eR

2@1 where the Vlasov approximation be
comes more and more accurate, this finite renormaliza
effect is completely negligible.

VII. SUMMARY AND OUTLOOK

Based on the Hamiltonian description of mean fie
theory and the existence of an adiabatic invariant of t
evolution, we identified the~lowest order! adiabatic particle
number as the most suitable analogue for the single par
distribution function of semiclassical transport theory. A
though not unique, this definition of particle number involv
the fewest number of derivatives~namely, zero! of the fre-
quencyvk , and hence its time rate of change is most app
priate for identification as the source term for the Boltzman
Vlasov equation, which is first order in time derivative
Confirming this identification, the electric current in this b
sis has an intuitively appealing and simple quasiclass
form ~3.26!. SinceNk is already adiabatic order two with thi
definition of particle number, including higher order adi
batic corrections inNk would be inconsistent with the use o
the source term in back reaction as well, since Maxwe
equations are second order in time.

Analyzing the time dependence of the mean particle nu
ber in a constant electric field we derived the rate of p
creation of charged scalar particles, and clarified the ti
scales involved in the particle production phenomenon.
though formally equivalent to the quantum Vlasov equat
~3.17! and consistent with the general projection method
Zwanzig applied to the density matrix in the adiabatic nu
ber basis, our approach bypasses the mathematical diffi
ties inherent in the nonlocal integral representation, and d
not require explicit use of the projection formalism. Unlik
any direct formal manipulation of the nonlocal form~3.17!
or simple WKB expansions, we used a uniform asympto
expansion for the local source term, which retains
Schwinger creation effect at thelowestorder of the expan-
sion. This local source term is not obtained by putting to z
the phase correlations in the pair creation process, but ra
by the assumption that the actual correlations in a time va
ing field can be replaced by those present in a constant
at t52`. This can only be approximately valid when th
electric field is very slowly varying in time, so that any a
tual phase correlations in the initial state are no longer
portant.

Given the hierarchy of time scales~6.20! we showed that
a simple modification of the usual expansion in terms
exponential functions is nearly adequate for most analysi
the collective plasma effects in scalar QED. The asympto
expansion in terms of the elementary exponential functi

e
a
les
5-23



at
a
on
r
on

i
m
tic
th

d

he

m

ra

ex
hr
le
x
y
d
ti
-
-
-
r

ho
las
rt
el
gy

a
ll
n
th

is-
ow

d

e
.
d

fie
de
th

he
rk

tial
lter
ni-
-
ein-
ics

bib,

en-
he
en-

ber
ript

is

ely
scil-

es
or

lize

-

r

nal

c-
no-

the

YUVAL KLUGER, EMIL MOTTOLA, AND JUDAH M. EISENBERG PHYSICAL REVIEW D 58 125015
modified by the step function, which leads to the ans
~5.27!, demonstrates in a simple way the origin of the line
growth in time in the current which makes back reacti
essential at late times, forany nonzero coupling no matte
how weak. It also shows why taking the pair producti
source term to be proportional tod(p) was a reasonably
good proposal after all, although the use of the logarithm
the source term of@12,13# and subsequent references see
to have been due to a confusion between the rate of par
creation and the vacuum persistence probability. Using
ansatz in conjunction with Eq.~6.1! explains the origin of the
Bose enhancement source term, which was incorporate
the phenomenological source term~6.21! for physical rea-
sons. The source term obtained in explicit form from t
mode functions in constant electric field~6.2! is in better
agreement with the mean field evolution than the pheno
enological source term~6.21!, even for quite large electric
fields, although the difference between the two is not d
matic.

The methods employed in this paper can be readily
tended to other situations of interest, such as fermions, c
moelectric fields in QCD, or the creation of massive partic
by strong gravitational fields in an early universe conte
The limit in which such processes can be described b
semiclassical source term in a transport approach shoul
clear from the present work: one requires a clean separa
of the three time scalestqu associated with the rapid quan
tum phase oscillations,tcl associated with one particle cre
ation amplitudes, andtpl associated with the collective mo
tion of the mean field~s!. Conversely, it should also be clea
that when such a clean separation does not exist the met
of this paper cannot be applied, and very likely, no semic
sical transport approach is appropriate or possible. Unfo
nately, this includes the cases of most interest in QCD, r
tivistic heavy-ion physics, and early universe cosmolo
where light or strictly massless degrees of freedom play
important role. Ifm50 then the low momentum modes wi
never behave as classical particles admitting a Boltzma
Vlasov description. Even pions are light enough to cause
hierarchy of time or momentum scales in Eq.~6.20! to break
down in heavy-ion collisions. Indeed in the formation of d
oriented chiral condensates the infrared instability of the l
momentum modes and growth of a large condensate field
coherence effects~not incoherent particle emission! is pre-
cisely the point. In cases such as these where Bose con
sation plays a central role, the frequenciesvk become small
or even imaginary, the turning point~s! of the adiabatic par-
ticle number approach or reach the real time axis,tqu be-
comes large, and no simple quasiclassical particle interpr
tion within the Boltzmann framework is possible
Complementary coherent classical field methods can be
veloped in this regime, matched to a transport description
the hard modes on a case by case basis, but only the full
theoretic approach of mean field theory and its higher or
1/N corrections is powerful enough to encompass all
various cases of interest in a comprehensive fashion.
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APPENDIX: DENSITY MATRIX IN THE ADIABATIC
PARTICLE BASIS

In this appendix we derive the form of the Gaussian d
sity matrix ~2.22! in the adiabatic number basis. Since in t
case of a spatially homogeneous mean electric field the d
sity matrix is a product of Gaussians for each wave num
k, we consider a single wave number and drop the subsc
k in the derivation in order to simplify the notation of th
appendix.

For each wave number we have positively and negativ
charged modes obeying the time-dependent harmonic o
lator equation~2.9!. Because of this and using Eqs.~3.6! and
~3.7! the adiabatic particle basis is that which diagonaliz
the Hamiltonian of the two-dimensional harmonic oscillat

Hosc5
1

2
~p†p1v2w†w1H.c.!5

v

2
~ ã†ã1ãã†1b̃†b̃1b̃b̃†!

~A1!

in the complex representation. The states which diagona
this Hamiltonian are labeled by two quantum numbersn1

andn2 with energyv(n11n211). Expressed in polar co
ordinates

w5
1

A2
~w11 iw2![

1

A2
reiu ~A2!

we can label the states by the radial quantum numben
5n11n2 and the angular quantum numberm5n12n2

corresponding to the eigenmodes of the two-dimensio
harmonic oscillator

S 2
1

2r

]

]r
r

]

]r
2

1

2r 2

]2

]u2 1
1

2
v2r 2D ^ruunm&

5v~n11!^ruunm& ~A3!

in real polar coordinates. As is well known these wave fun
tions are given in terms of the associated Laguerre poly
mials Ln

a(x) in the form

^ruunm&5S v

p D 1/2

eimue2vr 2/2~Avr !m

3F @~n2m!/2#!

@~n1m!/2#! G
1/2

L ~n2m!/2
m ~vr 2!. ~A4!

The normalized eigenstates themselves may be written in
form
5-24
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unm&5
~ ã†!~n1m!/2~ b̃†!~n2m!/2

$@~n1m!/2#! @~n2m!/2#! %1/2
u0& ~A5!

with m taking on the values2n12k, k50,1, . . . ,n, so that
n6m is an even integer.

In order to transform the density matrix from the coord
nate basis to the adiabatic number basis it is easiest fir
define the coherent states

us x&[exp~ i ã†se2 ix2 i b̃†seix!u0&

5 (
n50

`

(
m52n

n

8
sne2 imx

$@~n1m!/2#! @~n2m!/2#! %1/2
unm&,

~A6!

where the prime on the sum overm denotes thatm is incre-
mented by even integers. Upon substituting the explicit w
functions~A4! we find the wave function of these cohere
states can be expressed in the form

^ruusx&5S v

p D 1/2

e2vr 2/2(
n50

`

(
m52n

n

8

3sneim~u2x!
~Avr !m

@~n1m!/2#!

3L ~n2m!/2
m ~vr 2!. ~A7!

The sums in this expression may be performed in clo
form by first switching the orders of then and m52n
12k sums, and making use of the summation formula@26#

(
n5k

`

znLn2k
2n12k~x!5zk(

n50

`

znLn
k2n~x!5zk~11z!ke2xz.

~A8!

The remaining sum overk from 0 to infinity is then a pure
exponential and easily performed with the result

^ruusx&5S v

p D 1/2

expH 2
v

2
r 212irsAv cos~x2u!1s2J ,

~A9!

or in two-component vector notation

^rW usW &5S v

p D 1/2

expH 2
v

2
rW 212iAv rW•sW1sW 2J . ~A10!

This U~1! invariant exponential form may be verified also
the solution of the differential equation
12501
to

e

d

^ruuHoscusx&5S 2
1

2r

]

]r
r

]

]r
2

1

2r 2

]2

]u2 1
1

2
v2r 2D

3^ruusx&5vS s
]

]s
11D ^ruusx& ~A11!

obeying the initial condition

^ruus50&5S v

p D 1/2

e2~v/2!r 2
~A12!

which follows from the Schro¨dinger equation~A3! and the
definition of the coherent states~A6!.

The utility of the coherent state basis is apparent from
simple exponential form of Eqs.~A9! or ~A10!, since the
transformation of the density matrix from the original coo
dinate basis

^rW8ururW &5
1

2pj2 expH 2
~s211!

8j2 ~rW821rW2!

1
ih

2j
~rW822rW2!1

~s221!

4j2 rW8•rWJ ~A13!

to the coherent state basis becomes a straightforward e
cise in the integration of a product of Gaussians, viz.

^sW8urusW &5E d2rW8E d2rW ^sW8urW8& ^rW8ururW & ^rW usW &

5
2vj2

B
expH A

B
e2 iqsW21

A

B
eiqsW821

C

B
sW•sW8J ,

~A14!

where the real coefficientsA, B, C, andq are given by

A cosq52v2j41h2j21
s2

4
,

A sinq522vhj2,

B5v2j41
~s211!

2
vj21h2j21

s2

4
,

~A15!

C5~s221!vj2.

With this result in hand all that remains to be done is
expand the coherent state density matrix~A14! in powers of
s ands8 to identify the matrix elements ofr in the adiabatic
particle number basis via
^s8x8urusx&5 (
n8,n50

`

(
m

8
s8n8sneim~x82x!

$@~n81m!/2#! @~n82m!/2#! @~n1m!/2#! @~n2m!/2#! %1/2
^n8murun m&. ~A16!
5-25



o

,

d
si

te

l

di-
ver
tric

YUVAL KLUGER, EMIL MOTTOLA, AND JUDAH M. EISENBERG PHYSICAL REVIEW D 58 125015
The fact that the coherent state density matrix is a function
only x82x and hence onlym85m matrix elements ofr
appear in the sum is a result of the U~1! invariance of the
density matrix. We also note that in the pure state cases
51, C50, and the last dot product cross term in Eq.~A14!
vanishes, and with it all dependence onx82x. In that case
only m50 and evenn andn8 appear in the expansion, an
hence the only nonvanishing matrix elements of the den
matrix are between uncharged states withn15n2 . Con-
versely, ifs.1 this is no longer the case andr has nonva-
nishing matrix elements also with charged particle sta
with mÞ0.

We first expand the exponential of the dot product:

expS C

B
sW•sW8D5 (

m52`

`

i mJmS 2 i
C

B
ss8Deim~x82x!

5 (
m52`

`

i meim~x82x! (
p50

`
~2 !p

p!G~p1m11!

3S 2 i
C

2B
ss8D m12p

. ~A17!

Multiplying this by the expansion of the exponentials ofs2,

expS A

B
e2 iqs2D5(

l 50

`
1

G~ l 11!S A

BD l

e2 i l qs2l , ~A18!

and likewise fors82 yields a fourfold sum overl , l 8, m, and
p. Collecting the powers ofs and s8 by defining new sum-
mation variablesn[2l 1m12p and n8[2l 81m12p we
observe thatl 1p5(n2m)/2>0 andl 81p5(n82m)/2>0
so thatm<n and m<n8. Also from the presence of theG
12501
f

ty

s

function in the denominator of Eq.~A17! we observe that
p1m must be nonnegative, which implies (n81m)/2>0
and (n81m)/2>0. Hencem>2n and m>2n8 as well,
and we can write

expH A

B
e2 iqsW 21

A

B
eiqsW821

C

B
sW•sW8J

5 (
n,n850

`

(
m52M

M

8 eiq~n82n!/2eim~x2x8!s8n8sn

3 (
p50

`
i m~2 !p

p!G~p1m11!

~2 iC/2B!m12p

G@~n2m!/22p11#

3
~A/B!~n1n8!/22m22p

G@~n82m!/22p11#
, ~A19!

whereM5min(n,n8). We also note that (n6m)/2 and (n8
6m)/2 are necessarily integers in this expression.

Because of theG functions in the denominator the fina
sum overp in Eq. ~A19! terminates atp5min(n,n8). How-
ever, it is convenient to retain the formal infinite range ofp
and make use of the relation for theG function

1

G~12z!
5G~z!

sin~pz!

p
~A20!

for z5p2(n2m)/2, p2(n82m)/2, 2(n2m)/2, and
2(n82m)/2, temporarily continuing (n2m)/2 and (n8
2m)/2 to noninteger values to avoid the appearance of
vergences in the intermediate steps. In this way the sum o
p is recognized as the expansion for the hypergeome
function 2F1[F
i polyno-
(
p50

`
i m~2 !p

p!G~p1m11!

~2 iC/2B!m12p

G@~n2m!/22p11#

~A/B!2m22p

G@~n82m!/22p11#

5 (
p50

` S C

2AD m12p G@p2~n2m!/2#G@p2~n82m!/2#G~m11!

G@2~n2m!/2#G@2~n82m!/2#p!G~p1m11!

1

m! @~n2m!/2#! @~n82m!/2#!

5S C

2AD m 1

m! @~n2m!/2#! @~n82m!/2#!
FS m2n

2
,
m2n8

2
;m11;

C2

4A2D ~A21!

and we secure

^s8x8urusx&5
2vj2

B (
n8,n50

`

(
m52M

M

8
s8n8sneim~x82x!

m! @~n2m!/2#! @~n82m!/2#!
S A

BD ~n1n8!/2S C

2AD m

3eiq~n82n!/2FS m2n

2
,
m2n8

2
;m11;

C2

4A2D . ~A22!

The finite sum represented by the hypergeometric function with integral indices may be expressed in terms of Jacob
mials Pn

(a,b) if desired, through the relation@27#
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P~n2m!/2
[ ~n82n!/2,m] S 11z

12zD5
@~n1m!/2#!

m! @~n2m!/2#! S z

12zD ~n2m!/2

FS m2n

2
,
m2n8

2
;m11;zD . ~A23!

Comparing Eq.~A22! to the general form~A16! we may identify the matrix elements of the density matrix in the adiab
particle basis to be

^n8murunm&5
2vj2

B S A

BD ~n1n8!/2S C

2AD meiq~n82n!/2

m! F @~n1m!/2#! @~n81m!/2#!

@~n2m!/2#! @~n82m!/2#! G
1/2

FS m2n

2
,
m2n8

2
;m11;

C2

4A2D .

~A24!

This is the desired result. It may be expressed in terms of the magnitude and phase of the Bogoliubov transformation
Heisenberg basis to the time dependent adiabatic particle basis introduced in the text. In fact, making use of the d
~2.18!, ~3.3!, and~3.19! we have

2vj25s~cosh 2g2sinh 2g cosq!,

2jh52s sinh 2g sinq, ~A25!

and from Eq.~A15! we obtain

A5vj2s sinh 2g,

B52vj2Fs cosh2g1S s21

2 D 2G , ~A26!

so that finally,

^n8murunm&5
~s sinhg coshg!~n1n8!22m

$s cosh2g1@~s21!/2#2%~n1n8!/211S s221

4s D m

eiq~n82n!/2
1

m! F @~n1m!/2#! @~n81m!/2#!

@~n2m!/2#! @~n82m!/2#! G
1/2

3FS m2n

2
,
m2n8

2
;m11;

~s221!

4s2sinh22g D . ~A27!
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Sincer is symmetric under charge conjugation we have

^n8,2murun,2m&5^n8murunm&, ~A28!

which implies that the mean charge(mm^n8murunm&50.
The fact thatr has nonvanishing matrix elements with sta
of nonzerom implies that the fluctuations of the charge abo
its mean value is nonzero in the general case ofsÞ1. Oth-
erwise the most important feature of the general result~A27!
for the density matrix in the adiabatic particle basis for t
purposes of the discussion in the text is that all the off di
onal matrix elements fornÞn8 are rapidly varying functions
of time because of the appearance of the phaseq. Since all
the phase correlation information of the functionC of Eq.
~3.15! resides in these off diagonal elements, while the av
age adiabatic particle numberN is sensitive only to the di-
agonal matrix elements ofr, the Markov limit of quantum
Vlasov equation corresponds to replacement of the den
matrix by only its diagonal matrix elements in this basis.
12501
s
t

-

r-

ity

In the pure state cases51, F51, and the only nonvan-
ishing matrix elements ofr have m50 and n52l ,n8
52l 8 both even. The general result~A27! simplifies consid-
erably in this case to

^2l 8m50uru2l m50&u
s51

5sech2g~ tanhg! l 1l 8eiq~ l 82l !,
~A29!

which yields the result~3.20! quoted in the text. We should
note that this expression differs from that used in previo
work @4#, since in the present derivation the distinguishab
ity of the positive and negative charged particles was ta
into account, leading to a two-dimensional harmonic osci
tor problem with a U~1! invariance, while the expression Eq
~15! of the second of Ref.@4# or Eq. ~5.24! and the entire
Appendix of the third of Ref.@4# was based on a single scal
particle species. This is appropriate for the real unchar
F4 theory considered in the last of Ref.@4#, whereas Eq.
~A29! is the correct expression for the charged particle ca
5-27
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Zh. Éksp. Teor. Fiz.65, 2141 ~1973! @Sov. Phys. JETP38,
1069~1974!#; Fortschr. Phys.25, 373~1977!; V. S. Popov, Zh.
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