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Nonequilibrium dynamics of fermions in a spatially homogeneous scalar background field
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We consider the time evolution of systems in which a spatially homogeneous scalar field is coupled to
fermions. The quantum back reaction is taken into account in the one-loop approximation. We set up the basic
equations and their renormalization in a form suitable for numerical computations. The initial singularities
appearing in the renormalized equations are removed by a Bogoliubov transformation. The equations are then
generalized to those in a spatially flat Friedmann-Robertson-Walker universe. We have implemented the
Minkowski space equations numerically and present results for the time evolution with various parameter sets.
We find that fermion fluctuations are not in general as ineffective as previously assumed, but show interesting
features which should be studied further. In an especially interesting example we find that fermionic fluctua-
tions can “catalyze” the evolution of bosonic fluctuatiof§0556-282(98)04422-]

PACS numbgs): 11.15.Kc, 11.10.Gh, 11.10.Wx, 11.15.Pg

[. INTRODUCTION In this paper we reconsider fermionic fluctuations coupled

to a scalar field, with respect to both formal aspects and

In recent years the study of nonequilibrium dynamics innumerical simulations. We use a formalism developed by us
quantum field theory has received much attention. Quanturfecently[33,34 to formulate the renormalized equations of
fields out of equilibrium can play an essential role, e.g., inmotion in a form which is suitable for numerical computa-

cosmology[1-16], in the quark-gluon plasmpl7—25, or  tion but satisfies at the same time the usual requirements of

during phase transitions in solid state phygi26]. renormalized quantum field theory. The renormalization
While the formalism of nonequilibrium dynamics in scheme is covariant and independent of the initial conditions.

quantum field theory was established long 488,28, real After renormalization we find the equations to be singular at

time simulations for realistic systems have been develope ;50’3 a Xhepor;:enon Iknown as S:]ueckelb((ajr_gdsmgul_antlias
only recently. Numerical simulations of the evolution equa---=: 8. As in the scalar case we have studied previously

tions have been studied by various authors. The general fe%:—m’ these _S|ngular|t|e§ can be rempved by a Bogoliubov
P . ransformation of the initial fermionic quantum state. We
tures are similar: The quantum back reaction cannot be de;

ibed by Markovian friction t Th laxati f th hen generalize the equations to those in a flat Friedmann-
scribed by Markovian friction terms. 1he relaxation o eRobertson—WaIkel(FR\/\/) universe. We finally formulate
classical field amplitude either shuts off or is powerlike; the

the linearized equations of motion, in order to be able to

guantum ensembles generated are characterized by param&g-mpare with the full quantum evolution. We have imple-

ric resonance bands, the full development of the resonanGgented numerically the formalism developed in this article.
being suppressed by the quantum back reaction. The earlyymerical results for various parameter sets and various as-
and late-time behavior has been analyzed analytically for thgects of these results will be presented and discussed in Sec.
one-loop and largét approximationg29,30. VIIl and in the conclusions.

Most of the numerical simulations have been performed The plan of this article is as follows. In Sec. Il we formu-
with a scalar classical field coupled to scalar quantum fieldgate the basic relations and the equation of motion for a sca-
The quantum back reaction of fermion fields on a classicalar field coupled to fermions, in Sec. lll we present the en-
scalar field has received little attention up to now[34] it ergy momentum tensor and discuss the fermion number, the
has been stated, on the basis of some numerical evidenagnormalization of the equation of motion and of the energy
that at least for large field amplitudes Pauli blocking wouldmomentum tensor is developed in Sec. IV, in Sec. V we
make fermions ineffective for dissipation and damping of thederive the Bogoliubov transformation which removes the ini-
classical field. In another recent publicati82] the leading tial singularities, the extension to a conformally flat
orders in perturbation theory have been evaluated, so féfriedmann-Robertson-Walker is derived in Sec. VI, in Sec.
without numerical computations. The interaction between &/l we discuss the linearized equations of motion, the results
classical electric field and fermionic fluctuations has beerof our numerical simulations are discussed in Sec. VI, and
considered if17] (see alsd19]) as a model fogq produc- ~ conclusions are given in Sec. IX.
tion in the quark-gluon plasma. There the evolution of the
system in quantum field theory was compared to the evolu- Il. BASIC RELATIONS AND EQUATION OF MOTION
tion using the Boltzmann-Vlasov equation. '

We study a model consisting of a scalar “inflaton” field
® coupled to a spin-1/2 fielgh by a Yukawa interaction. We

*Email address: baacke@physik.uni-dortmund.de do not introduce a genuine mass term for the fermion field,; it
"Email address: heitmann@hal1.physik.uni-dortmund.de acquires a time-dependent mass via the Yukawa coupling.
*Email address: paetzold@hall.physik.uni-dortmund.de We introduce a ®* self-interaction, but do not consider the
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case of spontaneous symmetry breaking and do not consider d%p
the quantum fluctuations of the scalar field itself. This frame- P(t,x) =2, f ———-—[bpsUps(D)
work is sufficiently general for discussing renormalization s J (2m)°2E,
and the typical effects introduced by the back reaction of the +dt v (t)]etiP 2.7
fermion fields. It can be easily generalized to include a fer- “psTTRs ' ’
mion mass, bosonic fluctuations, and spontaneous symmetfyith the time-independent creation and annhiliation opera-
breaking. The Lagrangian density is given by tors whose mass is determined by the initial state. The cre-
1 1 N ation and annihilation operators satisfy the usual anticommu-
L= EO’;M(D&M(I)_ Equ)z_ E¢4+E(m/_ gd)y | tation relations
2.3 {bps.by, o} =2Eo(2m)°*(p—p') s, (28
\év:l;a;ﬁrl:g is the mass of the scalar field, agds the Yukawa {dp,s,dg,,s,}= 2E,(27)38%(p—p') be - 2.9
We split the field® into its expectation valug> and the  For the positive and negative energy solutions we make the
guantum fluctuationsy: ansatz
O (x,t)= p(t) + 7(x,1), (2.2 . Xs
Up,s(t) =Ng[idi+ Hp(t) ]f (1) 0 (2.10
with
and
Trdp(t)

¢(t):<¢’(xat)>:m. (2.3

Vp,s(t) =Noli d+H_(t) ]gp(t)

.
: (2.1
Xs

The scalar fluctuations have already been analyzed in
[33,34]. The equations for the system we consider here, witlwith the Fourier-transformed Hamiltonian
the back reaction of the fermion field, have been derived in
[31] using the Schwinger—Keldysh formalisfa7,28 and Hp()=ap+m(t)B . (212
the tadpole methofB8]. We do not repeat it here. The equa-

tion of motion for the classical field is given by For the two-spinory s we use helicity eigenstates, i.e.,

PoX.=*X- . (2.13

. A A —
t)+M2p(t)+ = p3() + = (92 + =0 .
¢ #(v) 6 P 2(?) )T The mode functions, andg, depend only orp=|p|; they

(2.4 obey the second-order differential equations

Here(yy) and(7?) are the expectation values of the quan- dz . _—

tum fluctuations of the fermions and the scalar field, respec- F—|m(t)+ pe+m(t) |f,(1)=0 , (2.14
tively. They are related to closed-time-pat@TP) Green

functions. They can be expressed by mode functions which )

satisfy the linearized equations of motion in the background i)+ p2+m2 _

field and initial conditions at some tintg. In the following dt? IM(t)+p=+m(t)g,(H) =0 . 219

we choose,=0. The scalar back reaction &?) has been

calculated previously by various groups within different ap-The initial state for the fermion field is usually specified as a
proximation schemes, among them the lalyeHartree, or  vacuum or thermal equilibrium state obtained by fixing the
one-loop approximation. As we have explained above, herelassical field¢, and thereby the fermion mass, to some
we are merely interested in the fermionic back reaction andalue ¢, for t<0. The spinor solutions are then identical
do not include the scalar one, except for some of the numeriwith the usual free field solutions of the Dirac equation with

cal examples in Sec. VIIl. constant massang=m(0)=g¢(0). Therefore, the mode
The fermion fieldys satisfies the Dirac equation functions, which would be plane waves fisg 0, satisfy the
initial conditions
[1g—H(t)]¥(t,x)=0, (2.5 ,
fr(0)=1,f,(0)=—iEy, (2.19
where the Hamiltoniari is given by
gp(O)Zl,gp(O)ZiEo . (2.17

H(t)=—iaV+m(t)8 . (2.6
For the spinordJ andV we use the usual free field normal-
The termm(t) =g¢(t) is the time-dependent fermion mass. ization conditions
We expand the fermion field in terms of the spinor solutions . .
of the Dirac equation Ups(0)Up o(0)=—=V, (0)V,(0)=2my, (2.18
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U;,S(O)Upys(O) = V;,S(O)Vp,S(O) =2E, ;

(2.19
we will also need the orthogonality relation
Ul (0)V_;(0)=0 . (2.20
Eo(p) denotes the mode energy in the initial state:
=p2+mj. (2.21)
For the normalization constant we find
No=[Eq+my] Y2 . (2.22
Fort>0 Egs.(2.14), (2.19, and(2.16 imply that
fo() =05 (D). (2.23

Since the time evolution of the spinolk, ((t) andV_, ((t)
is induced by the Hermitian operat#f, , their normalization
and orthogonality relation§.18 and (2.20 are conserved.
This implies a useful relation for the mode functididd]:

[T P=imO[F(O 5 ()=o) 5 (D)]

+[p?+m*()]|f5(1)[*=2Eo(Eg+mo), (2.24

which takes the role of the Wronskian. Using these mode

functions () can be calculated once the initial state is

specified If we use the Fock space vacuum defined by

bp./0)=0 andd, ;|0)=0, we get

_ d°p —
= ———V_ (V-
() =2 f EETARLEASE
d3p I 2p2
=-2 Eo— f |2
f(zw)SZEOL 0 Eo+mo| o

(2.29

If we use a thermal density matrix defined in terms of the Py(t)= =

Fock space states, one obtains

<_ >__Zf d3—p
o= (2m)32E,
F(E) 20° ol
Xtan 5T 2Eqy— m“d ; (2.26

the integration measure in the momentum integrals is modi-
the energy-

fied accordingly
momentum tensor.

We will denote(y+) as the fluctuation integral

in the expressions for

F(O) = (O (1)) (2.27)
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The fluctuation integral is divergent and has to be regularized
and renormalized. This will be done in Sec. IV.

lll. ENERGY-MOMENTUM TENSOR
AND PARTICLE NUMBER

The energy-momentum tensor of a Dirac field with mass
m=m(t) is given by
s

-

The expectation value of the energy-momentum tensor taken
with the initial density matrix is spatially homogeneous and
has therefore the forn,,=diag(£,P). In addition to the
contribution of the Dirac field it contains the classical con-
tribution of the scalar field. The energy densifyof the
quantum fluctuations is then obtained as

1

Ei Yudyt My, (3.9

En(t)=(P(BH,) ¥)

d’p —

-3 j e rs OBV 5V
3

:2] m{ [Eo—mo)]

X (fpfh—Tpfh)—2Eom(t)}. 3.2

Using the equations of motion it is easy to see that the time
derivative of the total energy density

A 4
YTR4 () +&(t)
(3.3

E=Eq+ & =3<'/)2(t)+ 1M2¢2(t)+
cl fl 2 2

vanishes. The fluctuation pressure is given by

<¢yp¢>— 2 f = )32E V_ps(D) ¥V _p (1)
2 dp et e
=§f Gy (o= molliChgf5 o)
—2m(t)[f,|*]}, 3.4
and the total pressure is
P(t)=p(t)—E+Py. (3.5

Energy density and pressure are quartically divergent; their
renormalization will be discussed in Sec. IV along with the
renormalization of the fluctuation integral.

In contrast to the fluctuation integral and the energy-
momentum tensor, the definition of the particle number relies
on the creation and annihilation operators. The number of

lwe use the Heisenberg picture; i.e., the field operators depend gparticles with momenturp and helicitys is given generally

time via the mode functions.

via
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+
Np,s(t)oc<bp,s(t)bp,s(t)> . (36) bé,s(t):J d3xe—ip~x+iE0tué:|'S¢(X,t), (313
The definition of time-dependent creation and annihilation

operators implies an interpretatiérf we used the operators With

bp.s andbgjs, the particle number would remain equal to the

initial one, zero for an initial vacuum state of &xpE,/T) Ul = 1 [E,+H(t )](Xs) (3.14
+1] for a thermal one. While these operators refer to a de- p.s m 1R g ) '
composition of the field with respect to the exact mode func-

tions f,(t), the concept of free particles implies plane-waveThe coefficienthlS now reads

mode functions. If we define these modes to have magss

and Eolz.\_/p2+ moz, ie., if we use the modes corresponding o1 = elEat UMVt (.15
to the initial state, we obtain p,s \/roEl p.sY —psil),

bg s(t):J dsxe—ip~x+iEo‘Uglw(X-t) and the occupation number for particles with masg

’ ’ =m(t) becomes
=CJ(hbps+Dp(d” ¢, (3.7 ) Ey—mo
with Noal!) = 2B (Bt mo) (Ey+ my) 1250 Fo T M0)
1 e +HiI(Eg+my)[ T (D) (t) =5 () F (D]}
Ug,s:m[Eo“‘Hp(toﬂ( 0 ) (3.9 (3.1

The total particle numbe;(t) is again obtained by inte-
grating Né,s over momentum and summing over helicities.
iEqt The particle number is divergent by power counting; the
Uty (1) (3.9 analysis of the divergent contributions &f (t) shows, how-
PSP ever, that it is finite and does not need countertefses also
Sec. V). For Ny(t) we find a linearly divergent contribution
and the particle number becomes that vanishes in dimensional regularization.
0 0 5 As we have mentioned above, the definition of the particle
Np,s(t):|Dp,s(t)| : (3.10 number relies on an interpretation which seems to be more
) ) _ straightforward if the particle number is computed for par-
In terms of the mod.e.func'tlons we optam, for the occupationjcles with the “final” massm, =m(t). Of course, even if
number for one helicity eigenstate with momentpm the classical scalar field relaxes to Otas, the final state
(taken in the Schidinger picturg¢ never becomes an en-
semble of free particles. Such a state would be described by
a density matrix which cannot arise in unitary evolution from
a pure staté0). This is also true for the additional particles
—2(my—mg)|f ()|} (3.1  created in the case of a thermal initial state.
Equation(2.24 may be used to recast the expressions for
This definition has been used |B81]. As it should be for energy density, pressure, and particle number into a differ-
fermions, the occupation number is strictly less or equal to 1ent, sometimes advantageous form.
this is obvious from Eq(3.9), sinceDgyS is the scalar product

We need only the coefficier[itgyS which is given by

0 _
Dp,S_ 2E0

Eo— . .
A= %{ZEﬁi[f;a)fp(t)—f;(t)fp(t)]

of two complex vectors of unit norm. Integrating the occu- IV. RENORMALIZATION
pation number over momentum one obtains the total particle .
number density In order to develop the framework for renormalizing the

one-loop equations, we write the equation of motion for the
mode functions, Eq(2.14), in the form

d3p
No(t>=§ f > )3N8,s<t> : (3.12 ,
a
E+Eg fo(t)=—V(Df (1), 4.1
If we imagine the time evolution being stopped at the time
it seems more natural to use free quanta of rmags m(t) with
and
V(t)=m?(t)—m3—im(t). (4.2

2For an extensive discussion, in the context of general relativity Using the initial conditiong2.16) this equation can be recast
see[40]. into the form of an integral equation
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A 1 (t ( )
f t=e"E0‘——f dt’ siEq(t—t")V(t")f(t"). . :f
p(t) Eslo M Eo(t—t")V(t")f(t") Feing 2m? | 2B cog2Eqt);,  (4.10
4.3
3
Using this integral equation, the mode functions may be ex- F :J d°p Ke(p,t). 4.19)
panded with respect to the potenth(t). We split off the ) emeF

zeroth-order (plane-wave contribution and an oscillating

phase factor by writing The divergent partFy, is a local polynomial inm(t)
_ =g¢(t). It will be absorbed by appropriate renormalization
fp(t)=e"E0t[1+ hy(D)]. 4.9 counterterms. The integral involving co&) is logarithmi-

. . . . . _ cally singular att=0 but finite otherwise. This contribution
The functionsh(t) satisfy differential and integral equations is obviously related to the initial conditions and will be dis-
derived from Egs(4.1) and(4.3), respectively. These func- cussed in Sec. V.

tions are discussed in Appendix A. They may be decom- The fluctuation parts of the energy-momentum tensor can

posed as be analyzed in a similar way. The integrand of the energy
. density&; can be expanded as
hp(t) = 21 hiv, (4.5 i me\ ...
n= 21 g (fpfs —fpofp)—m(t)
where h{" is of nth order inV(t); we define further the
inclusive sums =—(Eg— mo){ 1+2 Reh,+|h,|?
() (m) 1
hy' —mE:n hy™. (4.6) + E—O|m[hp(1+ h;)]] —m(t)
In terms of these functions and their expansion discussed in m?(t) mﬁ rhz(t) m*(t)
Appendix A the integrand of the fluctuation integral can be =—Eo— 2E, + 2E, 8(E)3 + 8(E,)3
written as 0 0
m m (O Ke(p,t) (4.12
0 + - E p, . .
1—(1— E—O)pr(t)l2 8(Eg)®  4(E)3
Eo Again Kg(p,t) is defined by this equation and it behaves as
= e (1— —)[2 Reh,(t)+[hp(t)]?] (Eg) "4 asEy—c. There is no cosine term here and, there-

fore, no singular contribution. So

_MO_ MmO __ m | mimio) E(0) = Eq( )+ D), (4.13

Eo  4(Ep)® 2(Ep)?  2(Ep)°

m(0)
+
4(Ey)®

The first terms on the right hand side lead to divergent or

with

COY2Eqt) + Ke(p,t). 4.7

fd%[ mi(t) m2 mA(t)  mt)
div= —Eo—

+—+ +
(2m)® 2Bo  2BEo 8(Ep)® 8(Ep)®

singular momentum integrals. The functidfi(t) can be mé mz(t)mS

considered being defined by this equation. It behaves as + 3 3 (4.14
(Eo) % and its momentum integral is finite. While(t) is 8(Eo) 4(Eo)

defined here as the difference between the original, numeri- 3

cally computed integrand and its leading contributions, an . :f d p (it . 4.15
alternative expression, avoiding such a subtraction, is given ™ (27 Ke(p, '

in Appendix A. We decompose the fluctuation integral as

If the integrand of the fluctuation pressure is rewritten in
F(t) = Fais(t) + Find 1) + Fiin(1), (4.8 terms of the function#,, it reads

()

—(Eg—mg) (1+2 Reh,+[hp|%)

- _f d®p m(t) m(t) B m3(t) +m(t)m2(0)
Yl 2m?| B0 4B 2(E)®  2(Ep)®

1.
@9 —E—Olm[hp(1+h;)]J—m(t). (4.16
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We expand again ifV(t) in order to sort out the leading 2 b
contributions. FinallyP(t) can be decomposed as L= ;+In 2 - y. (4.26
P(t) =Paiv(t) + Peind 1) + Piin(t) (4.17

There is no infinite mass renormalization counterterm. Intro-
with ducing the renormalization counterterms into the equation of
motion, we obtain

dBp | 4 2m3 mg  mAY)
Pdiv:f—3 _§ ot 3E + 3+ 3 " 2 2 A+ AN 3
(27) 0o 6(Eg)® 6(Ep) (1+AZ)p+(M+AM?) p+ ¢
- 2 2 2
_m®m®) mw  mAHm | .18 + 9(Fint Fang) =0. (4.27
:I-Z(Eo)3 3Eo G(Eo)3 - - .
The coefficients of the finite terms left over after adding the
, f &p m(t)in(0) . w1 renormalization counterterms 18y, are given by
ing— co , .
M) (2m)® 12E)° ° g* M?
AZ= —2In—2, (4.2&
87 mg
P | P o (4.20
fin (2m)° PP, ). : R
ANM=6—In—, (429
The integral ovelKp, which is defined by this decomposi- 4" mp
tion, is finite. The divergent term&y;,, &4y, and Py, are
proportional to local terms ip(t) and its derivatives. These gzmé

2_
can be absorbed in the usual way by introducing the appro- AM*= : (4.30
priate counterterms into the Lagrangian and into the energy-
momentum tensor.

. . . Since the bare fermion mass vanishes, we have introduced
The counterterms in the Lagrangian are introduced as

the scalar masM as scale parameter. Obviously, the equa-
1 1 S\ tion of motion is not yet acceptable in its present form, due
Lo== 6Z¢%— = SM2p2— — ™. (4.21)  tothe singular term. . _ _

2 2 24 The divergent parts of the energy give, after dimensional

. o regularization,
The divergent parts of the fluctuation integral can be evalu-

ated, e.g., using dimensional regularization. One finds m2(t) mA(t) m?(0) m2(t)m§
~ m(t) m3(t) ] m(t)m(z) (4 22 167 167 327 8 (4 3])
Vogm2 0 4n? % 4g? . .
The counterterms correspond to those in the Lagrangian, i.e.,
with the abbreviation
1 -, 1 ., ON ,
2 Amu? 561:552(;5 +55M ¢ +§¢> , (4.32
Lo=—+In——7. (4.23

€ m
0 with the same coefficients as above. We need no infinite

As already found for the scalar fluctuatiof&s], the depen- counterterm for the zero-point energy or cosmological con-
dence on the initial mase, can be absorbed into finite stant. Adding the divergent part and the counterterms we are

terms,AZ, AM2, and A\. Applying a modified minimal left with finite contributions
subtraction schem@MS) prescription, the infinite renormal-

N 1 - 1 AN
izations become 5div+5c_t_:§AZ¢2+ EAM2¢2+ ﬂ¢4+AA’
92 (4.33
0Z=—-—L, (4.29
8w with
1) 6 g* L (4.25 AA mg‘ (4.39
AN=—-6—L, . =— . .
4772 32’772
with The divergent part of the pressure is given by
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Z(t) m(t)m(t) . mg

~ Jrm(z)mz(t)
1272 0T " pam? 2472 '

1272
(4.35

div— 0

In addition to the counterterms already introduced we hav%
to add to the energy-momentum tensor the “improvement”

countertern{39]

OA(9,,,0%0,—3,3,) $*(X); (4.36

since ¢ depends only om, this term contributes only to the

pressure, and we have

2

. d
Po=+ 62>+ (SAE P? . (4.37
We choose
gZ
OA= L ; 4.3
4872 (439

there is a finite remainder
4 2.2
m mgm-=(t)
o, MemAb

2472 1272

Pyt Por= +Az¢2+ AA ¢2

(4.39
with
2 M 2

AA= g In—.
4872 'm3

(4.40

V. REMOVING THE INITIAL SINGULARITY

PHYSICAL REVIEW D 58 125013

For the case of scalar fields in Minkowski space the fluctua-
tion integral has only a logarithmic cusptInt att=0, as
observed by Ringwalfll]; the energy is finite, and the pres-
sure behaves as inin FRW cosmology the energy of scalar
uctuations is logarithmically singular whereas the pressure
ehaves as 1./So the Friedmann equations become singular.
Problems with the initial conditions in FRW cosmology have
also been noted if¥,10] when using comoving time and the
associated vacuum state; the problems disappear if confor-
mal time is used. The two vacuum states are related by a
Bogoliubov transformation.

For fermionic fluctuations we find that already the fluc-
tuation integral is divergent, so that the numerical code can-
not be started even in Minkowski space. We have shown
recently, for the case of scalar fields, that such “Stueckel-
berg singularities”[35] can be removed by a Bogoliubov
transformation of the initial state, which was constructed ex-
plicitly.

Within the Fock space based on the “initial vacuum”
state|0) which is annihilated by the operatobg s andd, ¢
we define a more general initial state by requiring that

[bp.s—ppsd p.s][0)=0. (5.2

The Bogoliubov transformation frof@®) to this state is given

in Appendix B. If the fluctuation integral, the energy, and the
pressure are computed by taking the trace with respect to this
state, we just have to replace in the defining equatiars),

(3.2), and(3.4) the functionsU, «(t) by

V_ps(1)=€09 By s)V_p o(1) +SIN(Bp o) Up o(1) .
(5.3

We are now ready to discuss the terms proportional td-©r the particle number, the substitution is done in the Bo-

cosEgt) which turn out to be singular &s-0:

[ @ m(0)
}‘Smg(t)—f (2m)° 4(E, )3cos(2Eot)

m(0)

(5.9

- dp
FH= zs: f (2m)32E,

+[Ups(DV_p (D) +V, (DU, (1) ]SiN B, s COSB o} -

goliubov coefficients, Eq¢3.9) and(3.15. The angles,, s is
related top, ¢ via

Pp,s:tar(,Bp,s) . (5.4

If the expectation value OEzA is taken in the Bogoliubov-
rotated initial state, the fluctuation integral becomes

(V_ps(DV_(1)c02 By s+ Up (DU, ((D)Sir By s

(5.9

Rewriting this expression in terms of the mode functions we find

~ d?
j:(t):_ES J(—p

cos 2E—
277)32EJ 23"'5{ °

2p sp
2
|fp| +S|n2,8pSE o

[Im af2—2m(t)Ref3] ;. (5.6

Using the perturbative expansion of the mode functions given in Appendix A this integral takes the form
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m(t) m(t)  mit) m(t)m2(0)+ m(0)

A== Eo  4(E)° 2(E0®  2(Eg®  4(Eo?

COY2Eqt) +Ke(p,t)

d3p
E COS 2By s

. sp
+sin Z’BP'S—ZEO(EOJr mo)

[—2Epcos Egt+Lg(p,t)];. (5.7
The functionKg(p,t) has been defined aboviey(p,t) is defined by
Le(p,t)=2 Im{e” 2B (1+hy)h, —iEq(2hy+h3) T} — 2m(t)Ref?. (5.9

Obviously, one gets rid of the term proportional to c&£2 by requiring

m(0)(Eg+m)

an 2B, s= W- (5.9

Thereby, the Bogoliubov transformation is explicitly specified. We notice that the helicity dependence of the Bogoliubov
transformation cancels in E¢.7). Using the asymptotic behavior

P;“ m(0) (5.10
PS 8sp(Eg)?’ '
and therefore
B - p—o mZ(O)
co2Bps) —1=2SiF(Bys) = W’ (5.1
0
sin(28 )p;mM (5.12
M5 4sp(Eg)?’ ‘

it is easy to convince oneself that this Bogoliubov transformation does not interfere with the analysis of the divergent parts

and, therefore, with the renormalization discussed in the previous sectighisSendered finite by adding the counterterms
defined in the previous section. In the renormalized equation of mo#i@7) we just have to replacy,(t) + Fin(t) with

Fin(t) which is given explicitly by
mt) M) m  momi0)
CAE)® 2(E)° 2(Ep)?

+ 08 28, Ke(P.1)

~ d?
ﬂn<t>=—2f(2;;{ 25it? By

. Sp
+sin Zﬂp’sml_p(p,t)} . (513)

The renormalization of the energy density proceeds in an analogous way. The fluctuation energy in the Bogoliubov trans-
formed state is

~ d3p — _ _
gfI: Zs f M{COS’Z IBp.sV—p,s(t)(ﬁHp)V—p,s(t) + szﬂp,s Up,s(t)(BHp) u —p,s(t)

+5iNB, 0B L Up o D) BH)V_p (1) +Vp (D(BH)IU (D]} (5.14

We again insert the expansion of the mode functions to obtain

Sp

3
'éﬂ=§s‘, fd—p(coszep,s{i[EO—m(O)](fp' —fof%)— 2Egm(t)}+5in 28 s - Re[f2+E2fp] (5.19

(27)32E,
After adding the counterterms defined in the previous section the finite part of the fluctuaion energy becomes
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~ d®p . mA 1) mg  mAt)  mit)  omg mA(tmg
in=2| ——={ —2sit B, ~Ey— ==+ =—— -
f J (277)3{ ST Pe BT 2B, T 26, T BBy 8(E)° B(E,®  4(Eo)
_ sp
+cosZBp,SKE(p,tHsm2ﬂp,smLE(p,t) , (5.1
with
Le(p.t)=Re {20l h,2— 2iE hy(1+hy) + (mM2(t) —md)(1+h,) 2]} (5.17)

Finally, we consider the fluctuation pressure, taken in the new vacuum state. It reads

B -F S d3p 4 s 2 2
Pr=—Ft 2 | 5| 205 Boef 31(Fol ~ Tof})(Eo=mo) = 3m(t)(Eq—m)| 5[~ 2m(1 Eg
: sp 4'2 1 2 4 2 2 2 2
+sin Z’BP'SEoerORe 3fp 3|m(t)&tfp+ 3P + 3Mm M5l (5.18
The finite part becomes, after adding the counterterms,
- d? 4 2m2 md m2(t)  m(t)mt) mit) m3(t)m3
Pﬁn=2j p 2P By — SEgt o, Mo () mm(t) m(t) m(t)mg
(2m)° 13 SEo  6(Eq)® 6(Eg)® 12Eq)® 3B 6(Ep)°
K in2 °P L 5.1
+cos 28, sKp(p,t) +sin Bp,sm p(pt) [, (5.19
with
1 £2 H —2iEotry H 2 2 2 2
Lp(p,t)=§Re{4fp—2|me OThp(1+hy) —iEe(2h,+hp) 1+ [4p“+2m=(t)]f ). (5.20

The Bogoliubov transformation has removed the singular term in the pressure as well.

VI. EXTENSION TO FRW SPACETIME

1
Now that we have set all basic equations and performed Cur=Ruv= 38R - ©3
renormalization the extension to FRW spacetime is straight-
forward. The Ricci tensor and the Ricci scalar are defined as
We consider the Friedmann—Robertson—Walker metric
with curvature paramet&=0, i.e., a spatially isotropic and R, =R\, (6.4
flat spacetime. We will treat the quantum fields and the cos-
mological background self-consistently. That is, the scale pa- R=0“"R,,, (6.9
rameter a(t) is obtained dynamically from the quantum
fields. where
The line element of a flat FRW universe is given by \ \ \ N -
Ragy=9 L ap= 3l St 15l 0= To,l55 - (6.6
ds?=dt?—a?(t)dx>. (6.1 i @) i _ 5
The termsH ; andH ;7 arise if terms proportional tR“ and

R¥'R,, are included into the Hilbert-Einstein action. If

The time evolution of tha(t) is governed by Einstein’s field space-time is conformally flat, these terms are related by

equation

1
(2) =~ (1)
G +aHM+BHE +Ag,,=—«(T,), (62 Ho=3H0 (6.7)

with k=87G. The Einstein curvature tens@,, is given  so that we can sg8=0 in Eq. (6.2 without loss of gener-
by ality [40]. We also replacéi(}) by H,,,, in the following.
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These terms are usually not considered in standard coshis equation takes the standard form
mology. They are included here, as well as the cosmological
constant term, only for the purpose of renormalization; they

(6.18
will absorb divergences of the energy-momentum tensor. So ] o
in principle they should appear on the right hand side a0 the formalism of quantization can be taken over from Sec.

counterterms; they are related to the coefficients of thest: If the other functions and operators are understood as

[i9,—F(7)]g(7,X)=0 .

counterterms byA = kA anda= kda.

being rescaled quantities as well. The rescalings for the other

As usual we can reduce the Einstein field equations to afuantities (_)f interest are, omitting arguments, superscripts
equation for the time-time component and one for the trac&nd subscripts:

of G,,, the Friedmann equations
Gtt+ (l’Htt-FA:—KTtt, (68)
GZ+aHZ+4A=—KTZ. (6.9

For the line element6.1) the various terms take the form

[40]
Gu(t)=—3H(1),

GL(t=—R(),

Hy(t)=—6 H(t)'R<t>+H2<t)R<t>—%Rzm :

H#(t)=—6[R(t) +3H(DR(1)], (6.10
with the curvature scalar
R(t)=6[H(t)+2H2(1)] (6.11)
and the Hubble expansion rate
H(t)=% : (6.12

The Dirac equation in FRW spacetinieee, e.g.[40,41)) is
given by

x=ax, p=a 'p,

b=ab, d=ad,
Eo=a 'Ey, m=a ‘m=g¢,
U=a-Y22U, v=a"Y4,

H=a 'H, No=a"N,. (6.19

The potentialV(t) , Eq. (4.2), becomes the analogous ex-

pressionV(7) with m(t) replaced bym(7). This means that
the entire perturbative expansion and the analysis of diver-
gences proceed in perfect analogy to the Minkowski space
analysis. The metric does not appear in this formalism, and
therefore there are no divergences related to the metric. So
the Dirac field does not contribute to the wave function
renormalization of the gravitational fieldZ, (or, equiva-
lently, the renormalization of Newton’s constaand to the
termsHﬂ)V.

In the equation of motion the fluctuation integral scales as
a2 and so do the kinetic andl ¢ terms. Therefore, the
divergent parts of the fluctuation integral are absorbed by

exactly the same counterterr’rﬁzzﬁ and 6\ ¢%/6 as in
Minkowski space. The same holds true for the finite remain-
ders proportional taAZ and AA. However, the finite mass

renormalizatiom M2¢ is now replaced by 2AM?¢ while

. 3a(t) i the genuine mass term scalesaéslefﬁ.
1ot §m+ ma’V—gd)(t)?’o #(t,x)=0 . The renormalized equation of motion for the scalar field
(6.13 ¢ takes therefore the form
It proves convenient to introduce conformal time and scales. d?2 _ s 1\ 1. o~
The conformal factors for the scalar field and the fermion (1+AZ) F¢+a M +(§— 5/Rjo+AM%S
field are T
i~ NAN, -
P(t,x)=a" >(t) (%), (6.14 + 6 ¢°+9Fin=0 . (6.20
Bt x)=a(t) r(1,x), (6.19  The energy-momentum tensor generated by the fermionic

with x=a(t)x anddt=a(t)d. In conformal time, and using
these redefinitions of the fields, the Dirac equation simplifies

to

{ig,+iaV —go(r)BYe(7,X)=0. (6.16

If we introduce, as in Sec. Il, the Dirac Hamiltonian

F(r)=—iaV+ge(np, (6.17)

fluctuations scales exactly as 4.

VII. LINEARIZED EQUATIONS OF MOTION

A simple intuitive approach to the interplay between the
classical Higgs field oscillating with a frequency of the order
of the Higgs mas# and the fermionic fluctuations is to treat
the system as a Higgs field decaying at rest into fermions.
For large amplitudes of the Higgs field this picture is cer-
tainly inadequate. For small amplitudes, e.g., at the end of
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inflation, the linearization of the equations of motion leadshave to lie on the left part of the complex plane. The domi-

indeed to an approximation which supports the simple decapant behavior at largée will be governed, therefore, by the

picture. We will compare the exact equations and the |0W€3§ingularities ofi (s) on the imaginary axis.

approximation in our numerical examples. Here we analyze 1,4 self-enerrgy kernel has been defined in &). Its

'Ehe] behavior of the system analytically along the lines inLapIace transform is given by

31].

If we retain only theO(g?) part of the fluctuation inte-

gral, we find a divergent part which is cancelled by the wave S.(s)= _Zng

function renormalization counterterm, a finite part remains

and the linearized equation of motion of the classical field

takes the form It has cuts along the imaginarg axis running froms
=4img to s=i% and froms=—4img to s= —i~. We in-

d®p 1 s
(2m)° B3 S+4E5

(7.7

. 5 to L troduce the frequency= —is. Expressed in the variable
(1+AZ)p(H)+M ¢(t)+fodt i (t=t)e(t) the cuts run from #y to » and from —o to —4m,. The
discontinuity across the cut along the positive imaginary axis
+3,(1)$(0)=0. (7.1) is defined as
The self-energy insertion is subtracted and is given explicitly p(s)=discir(s) =§r(i w+ e)—ir(i w—e). (7.8
by
One finds
r 2 d3p 1 ’
2.(tt)=—2g J(ZTr)3 4—53)005{2Eo(t—t )] (7.2 (s)=—292J d%p 1 27w Slo—2EJ)
| | g (2m)% 4E3 0+ 2 °
We define the Laplace transform of the condenggie via
. g2 \/w2—4m3 g
w(8)=f0 dte S'g(t) (7.3 T dn 2 (7.9
the inverse transformation being given by A more relevant quantity fog(s) is the discontinuity of the
denominator of Eq(7.6):
1 jot+c st
d(t)=5— e>Y(s). (7.9 2
2ml ) —iwtc i y(s)=[discs®2(8)]|szip=1 f—ww\/wz—4m§.
The “Bromwich” contour of the latter integral runs parallel (7.10

to the imaginary axis. The constaothas to be chosen in . o ) ) ) )
such a way that(s) is analytic for Res>c. In our applica- The discontinuity o_f the denominator is purely imaginary, as
tion y(s) will have cuts along the imaginary axis and poles© be expected. [E is small, we can expand the denominator

in the half-plane Res<O0. around its zero ag=iM. The contribution of this pole is
For the Laplace transforng(s) the equation of motion related to the decay of the condensate particles of rivass
reads into fermions of massn,. We neglect the real part &f as it
just shifts the value of M. Indeed it should be zerosat
1+ AZ)[s2 _ 0)— ) 0)1+ M2 = _ﬂ:iM if the condensate field is renormalized on shell. We
( )[s7%(5) =5¢(0) — ¢(0) ]+ M7y(s) write
S — (0 —sh(0) — g2 3
+2r(s)[ ¢(O) S¢(O) S ¢(O)+S lp(s)] SZ"‘(M_iF/Z)Z:_(wZ_M2+iMF)
+2,(8)¢(0)=0, (7.5 ~s2+M2—iy(M)/2 .  (7.1D)

wherei(s) is the Laplace transform of the self-energy ker- It follows that
nel. The equation can be solved readily with the result )
g

_[HO)rssONLFAZE (] Fam M gg
(14+AZ)S+ M2+ (s)

M2—4mg . (7.12

%(s)

This is almost, but not quite, what one would expect for

The singularities of the right hand side in the compkex fermions. Evaluating the width ab— ff in the standard way
plane are given, on the one hand, by the singularities ofne finds

>..(s) and by possible zeros of the denominator, whose lo-

cations have to be determined. Sing¢t) cannot contain r. — 9
contributions that increase exponentially, these poles will = 8aM

2

(M2—4m3)3? (7.13
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S FIG. 1. ¢(t) for M=1, g=2,
-0.1 A=1, and¢$(0)=0.6, $(0)=0.
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A factor p is typical for ans wave; the factorp® in the VIIl. SOME NUMERICAL RESULTS
correct decay formula arises from the Dirac traces. While at We h impl ted ically the f lism devel-
first glance the difference is surprising, one may recognize € have impiemented numerically the formaiism deve
that the factor, by which the two expressions differ, is givenOped in the previous secthns. We W|Il_d|scuss n f[h|s section
by 1—4m§/M2. The fermion mass is, however, of ordg#, some resqlts of our numerical S|mulat|ons_. We vy|ll pay spe-
so that the difference is higher order and our approximatiorf'@ attention to the phenomenon of Pauli blocking invoked
to the full one-loop result is just lowest order g only. in [31]. We have already seen that the occupation number
The late-time behavior ab(t) is determined by the stron- cannot exceed gmty on account of the umta.ry.evolutlon of
gest singularities of its Laplace transform. These are, on thi€ mode functiond), (1), V,, 5(t). So an unlimited para-
one hand, the poles at +iM —T'/2 and, on the other hand, Metric resonance cannot develo.priori this should not
the branch cuts on the imaginary axis. The contribution ofimit the production of particles as the available phase space
the poles, which are actually in the second Riemann sheel large. However, by a phenomenon similar to parametric
has been analyzed carefully[i81]. If the poles have residue resonance, the production of particles turns out to be concen-
R, they contribute trated within a very small band and it is only in this resonant
region where Pauli blocking can be effective. One should
keep in mind, however, that even for the bosonic case par-
B(t)= L.ZWiR(e‘M*”Z‘Jre*iM ) ticle production shuts off in the one-loop approximatj@f].
2i We expect Pauli blocking to be especially effective if the
initial amplitude of the inflaton field is large. A typical case
is displayed in Figs. 1-5. It corresponds to the parameters
M=1A=1g=2, and$(0)=0.6. Here(0) is taken to be
Approximately, R=¢(0)/2. While this contribution de- zero in all examples. We show the behavior of the inflaton
creases exponentially, the singularities on the imaginary axiamplitude in Fig. 1, the conserved total energy and its clas-
yield a power behavior sical and fluctuation parts in Fig. 2, and the pressure in Fig.
3. The time dependence of the particle number is displayed
in Fig. 4, using both definitions¥y(t), referring to quanta of
massm, and \;(t) referring to quanta of mas®(t). The
latter one is seen to behave more smoothly. The momentum
where the powerlike decreaseta¥' is related to the order of spectrum of the occupation numbﬁ/f;s(t) varies strongly
the branch point—1+ «. Since the branch point is of the with time. We display therefore, in Fig. 5, the envelope ob-
square root type, we have=23/2. Our treatment differs tained by selecting the maximal occcupation number reached
slightly, in terms of ordery?, from that of[31], wherea  at fixed momentum, as a function Bf. The structure of this
=5/2. envelope shows resonance like enhancements at threshold
In our numerical computation we just find the exponentialEy=1.2 and aEy=1.9. The maximal occupation humber is
damping (7.14) with a value ofI" which agrees with the reached only at these two values. On the one hand, there is
theoretical expectatiofi7.12. The power behavio(7.15 is  no Pauli blocking in the sense that all levels would be maxi-
apparently suppressed due to a small coefficient. mally occupied; on the other hand, the unitary evolution does

=Re "22cogMt). (7.14

d(H)=Rt *codQt+¢) , (7.19
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1

not allow for a parametric resonance with high occupationcompletely to the quantum fluctuations. The pressure, plotted
numbers. Clearly, for this parameter set the classical field i Fig. 7, becomes asymptotically equal to one-third of the
not able to efficiently transfer energy into the fermion fluc-total energy densitg=7.5x10"°. The quantum ensemble
tuations and its amplitude stays essentially constant. Theseated is ultrarelativistic, as to be expected for massless
results are similar to those obtained[BiL]. quanta. The momentum distribution of the occupation num-
The situation is simple in the case of very small excita-ber is shown in Fig. 8; it is characterized again by a resonan-
tions and moderate couplings. In this case the scalar field cazelike band. The total particle number is plotted in Fig. 9.
decay into fermion-antifermion pairs. An exponential de- So far the results correspond to the expectations. The situ-
crease is found for the exact quantum evolution and for thation is, however, not as transparent. For intermediate initial
linearized equations of motion. This is displayed in Figs.amplitudes¢(0) the relaxation can shut off even for case
6-10. Figure 6 shows the exact evolution ¢ft) for the  2m(0)<M where the scalar field can decay. An example is
parameter seM =1, g=2, A=1, and¢(0)=0.01. The am- given in Fig. 10, with the parametedé=1,g=1,A=0, and
plitude is seen to decrease exponentially, the decay rate be{0)=0.1. The full evolution stagnates; the linearized equa-
ing given approximately by =g%/8=. In the same figure we tions of motion show the expected exponential decrease. On
also plot the solution of the linearized equation of motion forthe other hand, even for large initial amplitudes the transfer
which T is exactly equal t@?/8s. The energy is transferred of energy can be as efficient as for scalar fields. An example

T T T

0.2

0.1

P()

0.0 1 same parameters as in Fig. 1.

} FIG. 3. Total pressure for the

N I

0 50 100 150 200 250
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FIG. 4. Total particle number
Ni(t) (solid line) and Ny(t) (dot-
ted line for the same parameters
as in Fig. 1.
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is displayed in Figs. 11-13. The amplitugdt), plotted in  The structure resembles the envelopes plotted in Figs. 5 and
Fig. 11, decreases by roughly a factor of 3. The energy trans3.

fer is evident from Fig. 12. The spectrum of the occupation Finally, we shall present an example where we include
number, presented in Fig. 13, shows that the resonance-tyggiantum fluctuations of both the fermion field and the scalar
band is occupied more strongly than in the first examplefield itself. In Fig. 15 we display the behavior of the ampli-
which had a smaller initial amplitude, and otherwise thetude for this combined system; the parametershrel, g
same parameters. Obviously, the concept of Pauli blocking iss2, A\=4, and ¢(0)=1. The field is seen to relax effi-
too simple to describe the situation in an adequate way. I€iently. On the contrary, if the scalar fluctuations are not
one aims at a better understanding of the quantum evolutiorncluded, the relaxation induced by the fermionic fluctua-
analytical methods should be developed. The simplest apions is small, as seen in Fig. 16. Figure 17 shows the relax-
proach could be an analysis of the differential equation of thetion for the case that only the scalar fluctuations are in-
mode functions for a given oscillating classical field, analo-cluded; it is seen to start later and to be less efficient than for
gous to the analysis of the Mathieu or Larequations. In the combined system. The growth of the fermionic and
order to illustrate the behavior for a given oscillating field we bosonic energy density is plotted in Fig. 18. The fermionic
have solved numerically Eq2.14 with m(t)=mgcog for  energy density is smaller but rises earlier. Its asymptotic
various values ofny and momentunp. We plot in Fig. 14  value is only by roughly 20% higher than in the purely fer-
the envelope of the occupation numb€y,,, i.e., the maxi- mionic evolution. The fermion fluctuations seemingly act

mal occupation reached at fixgrd as a function ofEy(p).
0.010

0.005 [

0.000 N AAA SR

)

N, (P:t)

—0.005

-0.010
0.0

L . . L
20.0 40.0 60.0 80.0 100.0
t

26 28 3.0

FIG. 6. Exact quantum evolutiofdashed ling and linearized

FIG. 5. Maximal occupation nUmbe¥; ,en, as a function off, ~ €volution (solid ling) of ¢(t) for M=1, g=2, A=1, and $(0)
for the same parameters as in Fig. 1. =0.01, ¢(0)=0.
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FIG. 7. Total pressure for the exact evolution for the same pa- FIG. 9. Total particle numbek/(t) for the same case as in Fig.
rameters as in Fig. 6. 6.

here as a kind of catalyzator, supporting the development ¥ the quantum system. If the initial amplitude of the scalar

the bosonic quantum fluctuations. field is very small, the system evolves as predicted for the
linearized equations of motion, formulated in Sec. VII. It can
IX. CONCLUSION be described as a decay of the scalar field into fermion-

antifermion pairs. If the initial amplitude is larger, the evo-

We have developed the quantum field theory of the outiution depends on the way in which a kind of resonance band
of-equilibrium evolution of fermionic quantum fluctuations at low momenta is situated kinematically and how it is filled.
driven by a scalar field. The quantum back reaction has beelm some cases the fermions are indeed ineffective in damping
taken into account in the one-loop approximation. We havehe oscillation of the classical field; in others the relaxation
formulated the renormalization of the equations of motiondevelops as in the bosonic case and a considerable part of the
and of the energy-momentum tensor in a covariant form anénergy is transferred to the quantum fluctuations. Analytical
independent of the initial conditions. A restriction of suitable studies should help to clarify the features observed for large-
initial conditions for the fermionic quantum system, as re-amplitude oscillations. An example where bosonic as well as
quired by the removal of initial singularities, has been ob-fermionic fluctuations are included shows an interesting in-
tained by selecting a Fock space built on a Bogoliubovterplay where the fermions catalyze the development of
transformed vacuum state. Furthermore, we have formulatelosonic fluctuations.
the renormalized equations for the case of a spatially flat We think that these results show that nonequilibrium sys-
FRW metric. tems with fermionic fluctuations show more interesting fea-

We have numerically implemented the evolution equa-tures and may play a more interesting role in cosmology than
tions and we have presented some examples for the evolutigareviously assumed.

0.10
i a 1+ . B
0.4 T T " [[I— h .
008 A R O T T T T R
W [ T S S T T T T R A | S L N
i S T T T S I O B S T T L O L
0.06 L R S R R R O R LA I
I‘ Iy )l “ [} [N N T Iy ! ‘| 1' ‘y I
S T R R R T O R R R R B
L R B T R B B
0.04 o e
03 | R N A A R R R A R A
"|:“1vw“\l‘lw",|\:"|,‘|
0.02 R A VA A
L YA A
= R A
- S5 o000 | ATRTRVAVRVAVAY
= h | VA WV
so2r 002 | TRVRTRI BRI
: ) .
z u*\,“.;l‘i‘u:;'\‘\".lvl,‘:.‘;:":‘.‘
-0.04 A
K ) T T I S S S L R O S I A S A
F N S O R T A I S B I L L R
L T R R I R S L A B VR B R ," )1
—0.06 | L T T
01 L - A O T
A T I ] T L T A
-0.08 ’ FE A B T o
~0.10 : L L L L L
0 20 40 60 80 100 120
0.0 . . . A
0.0 0.2 0.4 0.6 0.8

E

0

FIG. 10. Exact quantum evolutiof@ashed lingand linearized
FIG. 8. Maximal occupation numbeXy,, as a function off,  evolution (solid line) of ¢(t) for M=1, g=1, A=0, and ¢(0)
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APPENDIX A: PERTURBATIVE EXPANSION h=h®1h@ L p® ... (A2)
OF THE MODE FUNCTIONS PR R

We have introduced in Secs. Il and Ill the mode functlonswhereh(n)(t) is of nth order inV/(t). Hereh(”) denotes the

fo(t) andhy(t) which are related via Eq4.4). In this ap-  sum over all orders beginning with timh one,
pendix we will analyze the perturbation expansion and ultra-

violet behavior of the functionk,(t). These mode functions
satisfy the differential equation w

hiV=> h{", (A3)

h,—2iEoh,=—V(D)[1+h,], (A1) so that

with the initial conditionsh,(0)= hp(0)=0. We expanch,, — —
with respect to orders iW(t) by writing hp=h{"=h"+h(? . (A4)

0.6 + B

FIG. 12. Classical energy
(dashed ling fluctuation energy
(dotted ling, and total energy
(solid line) for the same param-
eters as in Fig. 11.

E(t)

g 'r‘ !
02 i l“mwv

..@rﬁfzx'aw,mwwmw%

oA

0.0 1 1 1 1 1 L 1
0 100 200 300 400 500 600 700 800

t
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0
FIG. 13. Maximal occupation numbev,,, as a function ofg, FIG. 14. Maximal occupation numbe¥,,, for m(t) = mg cost
for the same parameters as in Fig. 11. with my=0.1 (dashed ling my=0.5(solid line), andmy=1 (dotted

line), as a function of,.

The integral equation for the functidn, can be derived in a
straightforward way from the differential equation satisfied

: . " —j t i 1+2
by the functionsf,; it reads h§ =2—Eofodt V(') 2 (2E0>
i x[VO(t)—e?BotvD(0)]+(hV)y, (A7
h,= fdt (2Bt — 1)V (t)[1+hy(t)]. [V @I+hpDn. (A7)
P 2E, p
(A5) with
Using this integral equation we can obtain the functions (1) —i |\ 1 a2iEq(t—t )\ s(n) (1
h{"(t) by iteration[33]. h{" is given by (hp )n=-— 2E, fodt e?Fo=vIN(t") , (A8)

h(l)_ j dt’ (e2Eot—t) _ 1)v(t'). (A6) HereV{(t) denotes théth derivative ofv(t); the subscript
n indicates that the expression in parentheses has been re-
duced to negative powers &, equal or higher tham. For
Using integrations by parts this function can be analyzedenergy density and pressure we need the expansidh@lbf
with respect to orders i, via X (t) as well. From Eq(A8) and the relation

1.0 T

0.8 4
0.6 [ 4
0.4 .
0.2 .

FIG. 15. ¢(t) including back
0.0 N\WU[ reaction of both fermionic and
Wi scalar fluctuations foM=1, g

0.2 . =2, \=4, and ¢(0)=1, ¢(0)
=0.

()

0.4 .

0.6 -

0.8 4

1.0

0 100 200 300 400
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10 T T T
0.8 H J
0.6 H ‘ H
0.4 H
0.2 H
g 0.0 FIG. 16. ¢(t) in the absence
of scalar fluctuations for the same
0.2 parameters as in Fig. 15.
0.4
0.6
0.8 3
10 1 1 1
0 100 200 300 400
t
. t . .
hg):zithg”—f dtv(t), (A9) h(l)z—l—ftdt’ vit)— —0_ VI
0 P 2EoJo 4(Eg)? 8(Ep)®
we find 'V(O)S e2Eot _ : Sf dt’ e2iEo(t-t’ W(t).
8(Eop) 8(Eop)
n i\ 1+1
. —i ) (A12)
h;)l)ZIZEO (Z_EO) [V(I)(t)_e2lE0tv(|)(O)]
_is\n+1 .
— (f) ftdtreZiEO(t—t’)V(n+1)(tr) . For h(p2) we obtain
0

(A10)

t 2 i t
hi?'=— ! 2“ dt V(t')| +— J dt’ V¥(t')
Similar expressions hold for the highkf” andh(" . 8(Ep)“l /o 8(Eo)”/0
In the numerical implementation the functlorhé,]())n can
be obtained as the Fourier transform of tite derivative of 2
V(t). Its computation needs just one update per time step. 8(E 0)3V(t)f dt’ v(t’ )+(h( e (A13)
Alternatively one may construct differential equations satis-
fied by these functiondg.g.,

where (1(”))7 includes all terms oh{?) that have at least four

(h<1>)2 2iE (h<1))2_ V (A11) negative powers oE,. It satisfies the differential equation

In order to isolate the divergent terms in the fluctuation 5
integrals of the equation of motion and of the energy- ,i(2)\_ 5 C(2N— (Dy—_ y
mor%entum tensor 3ve need an expansion of the mode fgl%c- (hp)a=21Bo(hy")a= = V(0 (hy g 0)3V(t)V(t)
tion up to orderO[(E,) 3] and O[(Ey) ~*], respectively.
For this reason we will give relevant expansions of tthen
the following.

The expansion oh{" up to O[ (Eq) %] gives

8(E0)3V(t)f dt’ v(t') .

(A14)
3This had also been suggested by BoyanoVed]. Finally, via integration by parts$h$®) takes the form
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FIG. 17. ¢(t) in the absence
\ of fermion fluctuations, for the
0.2 | ‘ \ 1 same parameters as in Fig. 15.
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hi¥ = {f dt’ V(t") +(h Nz, (A15)  For the integrands of the fluctuation integral we need repeat-
48(Eg)® edly the two expressions
o . . . _ (D D)2
where the last term satifies the differential equation Zi(p,t)=2Re hy”+[hy”| (A17)
and
(h")a—2iBo(h”)a=— V(D ()5~ ¢ f dt’ V(t') _ _
P 18(Ey)° Ty(p,y=2Im hD+2Im h{P*hD . (A1)
iV2(t) [t
- J dt’ V(t'). (A16)
8(Eg)°/0 Using the expansion up ©[(E,) 3] we obtain

0.4 r b
i ::I'I |\|\ w 1"”‘“"!\ i IM‘,‘ . . . - ‘h )
03 L 1’ N N H Vv ‘ v w' U
il FIG. 18. Fluctuation energies
= of fermions for evolution without
Lué scalar fluctuationssolid line) and
02 1) T fluctuation energies of fermions

(dashed ling and bosongdotted
line) for combined evolution.

0.1

0 100 200 300 400
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COg 2E,t)

, . .
Rev() 1 [Jtdt’ - V(t,)} _ImVt) | Im V(0)

1 [t
Il(p,t):E—Ofodt ImvV(t')— 2(Ey)? ME®  4(Ey)®

Re\'/(O)Sin(2E t)— b jtdt’ Im VA(t')+ ! Utdt’ Im V(t’)}3
(Eo)® > 4Ep)3o 6(Eg)? Jo
t
- , , (1)y— (1)|2y—
2(E0)3Re V(t)fodt ImV(t')+2Re(h;”)z+ (|hy”|*)7, A9

where we have introduced the terms@ff(E,) ] as
2Re (h(V)z=2Re (h{"+h@+h(®)z+ 2Re h(® (A20)
and
(InSP12)2=(1h{V[2)z+ 2Re (h{Vh(P* )7+ {22+ 2Re (h(Ph(P*). (A21)

Inserting the real and imaginary parts of the poter¥iéd) we finally have the result

1 3
5 Em3(t)+ m3(0) — Em(t)m2(0)

[M(t)m(0)—m

1 1
TP == g (MO =m(O))=
0

L. L - Dt (|pD[2)~
—Zm(O)Cos(ZEOt)+ Em(O)mosm(ZEot) +2Re (hy )3+ (|hy”|)7, (A22)
Lion—— YO _ ImV(t) s |m\'/(0)ho L V(t)s_ 2E s R Vi ReV(O) 0
AP TR T T B2 (2B T G RN e T aEy NPT
Im V(0) 1 Lo . 3[ReV(D)]? [Im V(HT* Im V(t) [t ,
+4(?0)35m(2E0t)+ @Re V(t)JOdt Im V(t )+ 4(E0)3 - 4(E0)3 - 2(E0)3 Jodt Im V(t )
Re V(t 2 V(0) V(0)
d 2 d —~ 2 d
2(E0)3“ t" Im V(t") RE cog Eot)f t' Re V(t') 2(Eo)? sm( Eot) f t" Re V(1)
+2Im (h(pl))z+2lm (hs Phi)g. (A23)

For completeness we also give the expansion up[ttE,) ~]:

) . )
Re V(t) J' dt Im (e’ )} Im V(ts) N Im V(O3)
2(Eo)? 2(Eo) 4(Eo) 4(Eo)

1 [t
Zi(p,t)= E—Ofodt’ Im V(t')— cog 2Et)

ReV(O) Sin(2E,t)—
4(Eo)® o agy)

2 2 \ ’
N 3[Re V(1)] B [Im V()] B Im V(t") tdt’ im V()
8(Ep)* 4(Ep)* 4(Ep)* Jo 4(Eop)

ftdt’l V2(t")+ ! ftdt'l V(t' 3— ! RVtJtdt’I V(t’
3, m()6(EO)3[0 m()} O)3e()0 m V(t")

t t
4J dt’ Im V(t')f dt’ Im V2(t")
0 0

e V(0) o ,
i cos(ZEOt)Jodt Re V(t')

t
Re V(t)[ Jodt’ Im V(t')

2 1 t 4
+ 24(E0)4[ jodt Im V(t)

1
4(Eo)*
Re V(1)
_l’_ —
8(Ep)*  4(Ep)*

0

. _ t Re V(0) Im V(0) .
Im V(O)S|n(2Eot)detRe V(t")— 8(E.)" COg 2E,t) + £ Sin(2E,t)
0 0

+2Re (h{V)5+(Ih(V]?)s, (A24)
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where
2Re(h ")s=2Re (hy”+hZ+h>+hiP)g +2Reh<5> (A25)

In terms of the notation introduced above the alternative representation for the furi€tigds, andK, become now

Ke(p.t) = —[Z2(p.t) Ja+ E—z[fl(p,t)]a (A26)

m
Ke(p, )= —Eo[ Z1(p,1) s+ [ Zo(p,t) JaF+ Mo[ Zy (P, 1) J4— E—S[Iz(p,t)]& (A27)

()

am
°[Il<pt>]3+ 3 2P 0T 5 [TV -
(A28)

4 1
Kp(p,t)=— §Eo[Il(p,t)]§+ Mo— gm(t)> [Z1(p,t) 2+

Unlike the case of scalar fluctuatiof33], the evaluation of
these expressions has required extensive algebra, and the nu-
merical implementation requires further efforts. This reflects
the fact, that fermion loops are divergent up graphs with four _
external lines. The definition oKg,Kg, and Kp given in <0|d,p,S Lo S,|0> (2m)32E( 85 83(p—p')COS By s
Sec. IV is much easier to handle; it involves, however, po- (B5)
tentially dangerous differences between expressions which
are computed numerically and leading perturbative terms. = . 3 ,

We found in our numerical computations that the simple (0]d-p by [0} = (2m)°2E 0855 8*(P—P')

subtraction was tolerable; this is due, here, to the fact that x gl 5p,sco$pygsinﬂp’s, (B6)
most integrals are dominated by the low momentum region.

The analysis presented in this appendix was necessary in any ~ N 3 ,

case, however, in order to find the divergent contributions.  (O/bpsd_:, s’|0>:(277) 2E¢s5 6°(p—p')

X e %scog8, SiNBy s (B7)

<0|b p’ s’|0> (277)32E0535’68(p p )S|n2,8p51
(B4)

APPENDIX B: BOGOLIUBOV TRANSFORMATION

Here we recall the basic formulas for the Bogoliuboy S that the fluctuation integral becomes

transformation of spin-1/2 fieldésee e.g.[42]). A general

canonical transformation compatible with the anticommuta- B d’p .
tion relations is given, up to a further trivial phase transfor- }—(t)_g f (zw)son{Up,SU plss'nz Bp.s
mation, by

+V_ eV sCOZ By s

by,s=CoH By )by s +sin( By s)e%esd’ (B1) . _
ps +V_p U, €' %scosB, s SiNBy
d' 5= —sin(Bys)e” by +cog By o)d" 5. ©2 +U,V_p€ 1%scosBysSinBys.  (B8)

_ _ This corresponds to replacing
The state annihilated by the new operatbps; andd, s is

given in discrete notation by V_p,s(t)=>COS(,8p,s)V-p,s(t)+ei ‘sp,ssin(ﬁpys)upys(t)
(B9)
|0>:1,;[S cod Bp,s) in the original expressiof2.25. With the same substitution

one obtains the expectation values for the energy and pres-
1 . st ot sure. For the particle number the substitution is made in the
+ ms'r‘(ﬂp,s)e psdlp, by si10). (B3) Bogoliubov coefficients, Eq$3.9) and(3.15. As in the case
of scalar fluctuation$37], we do not need the phag ¢ as
For the expectation values of the various bilinear products ofong as we restrict the initial condition for the classical field
interest here one finds, in continuum notation, to ¢(0)=0.
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