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Nonequilibrium dynamics of fermions in a spatially homogeneous scalar background field

Jürgen Baacke,* Katrin Heitmann,† and Carsten Pa¨tzold‡

Institut für Physik, Universita¨t Dortmund, D-44221 Dortmund, Germany
~Received 25 June 1998; published 16 November 1998!

We consider the time evolution of systems in which a spatially homogeneous scalar field is coupled to
fermions. The quantum back reaction is taken into account in the one-loop approximation. We set up the basic
equations and their renormalization in a form suitable for numerical computations. The initial singularities
appearing in the renormalized equations are removed by a Bogoliubov transformation. The equations are then
generalized to those in a spatially flat Friedmann-Robertson-Walker universe. We have implemented the
Minkowski space equations numerically and present results for the time evolution with various parameter sets.
We find that fermion fluctuations are not in general as ineffective as previously assumed, but show interesting
features which should be studied further. In an especially interesting example we find that fermionic fluctua-
tions can ‘‘catalyze’’ the evolution of bosonic fluctuations.@S0556-2821~98!04422-1#

PACS number~s!: 11.15.Kc, 11.10.Gh, 11.10.Wx, 11.15.Pg
in
tu
in

n

pe
a
fe
d
e

he
am
n

ar
th

e
ld
ica

n
ld

th

f
n
e

h
olu

led
nd
us

of
a-
s of
on
ns.
at

ties
sly
ov
e
nn-

to
e-
le.
as-

Sec.

-
ca-
n-
the

rgy
we
ni-
at
ec.
lts
nd

d

; it
ing.
e

I. INTRODUCTION

In recent years the study of nonequilibrium dynamics
quantum field theory has received much attention. Quan
fields out of equilibrium can play an essential role, e.g.,
cosmology@1–16#, in the quark-gluon plasma@17–25#, or
during phase transitions in solid state physics@26#.

While the formalism of nonequilibrium dynamics i
quantum field theory was established long ago@27,28#, real
time simulations for realistic systems have been develo
only recently. Numerical simulations of the evolution equ
tions have been studied by various authors. The general
tures are similar: The quantum back reaction cannot be
scribed by Markovian friction terms. The relaxation of th
classical field amplitude either shuts off or is powerlike; t
quantum ensembles generated are characterized by par
ric resonance bands, the full development of the resona
being suppressed by the quantum back reaction. The e
and late-time behavior has been analyzed analytically for
one-loop and large-N approximations@29,30#.

Most of the numerical simulations have been perform
with a scalar classical field coupled to scalar quantum fie
The quantum back reaction of fermion fields on a class
scalar field has received little attention up to now. In@31# it
has been stated, on the basis of some numerical evide
that at least for large field amplitudes Pauli blocking wou
make fermions ineffective for dissipation and damping of
classical field. In another recent publication@32# the leading
orders in perturbation theory have been evaluated, so
without numerical computations. The interaction betwee
classical electric field and fermionic fluctuations has be
considered in@17# ~see also@19#! as a model forqq̄ produc-
tion in the quark-gluon plasma. There the evolution of t
system in quantum field theory was compared to the ev
tion using the Boltzmann-Vlasov equation.
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In this paper we reconsider fermionic fluctuations coup
to a scalar field, with respect to both formal aspects a
numerical simulations. We use a formalism developed by
recently@33,34# to formulate the renormalized equations
motion in a form which is suitable for numerical comput
tion but satisfies at the same time the usual requirement
renormalized quantum field theory. The renormalizati
scheme is covariant and independent of the initial conditio
After renormalization we find the equations to be singular
t50, a phenomenon known as Stueckelberg singulari
@35,36#. As in the scalar case we have studied previou
@37#, these singularities can be removed by a Bogoliub
transformation of the initial fermionic quantum state. W
then generalize the equations to those in a flat Friedma
Robertson–Walker~FRW! universe. We finally formulate
the linearized equations of motion, in order to be able
compare with the full quantum evolution. We have impl
mented numerically the formalism developed in this artic
Numerical results for various parameter sets and various
pects of these results will be presented and discussed in
VIII and in the conclusions.

The plan of this article is as follows. In Sec. II we formu
late the basic relations and the equation of motion for a s
lar field coupled to fermions, in Sec. III we present the e
ergy momentum tensor and discuss the fermion number,
renormalization of the equation of motion and of the ene
momentum tensor is developed in Sec. IV, in Sec. V
derive the Bogoliubov transformation which removes the i
tial singularities, the extension to a conformally fl
Friedmann-Robertson-Walker is derived in Sec. VI, in S
VII we discuss the linearized equations of motion, the resu
of our numerical simulations are discussed in Sec. VIII, a
conclusions are given in Sec. IX.

II. BASIC RELATIONS AND EQUATION OF MOTION

We study a model consisting of a scalar ‘‘inflaton’’ fiel
F coupled to a spin-1/2 fieldc by a Yukawa interaction. We
do not introduce a genuine mass term for the fermion field
acquires a time-dependent mass via the Yukawa coupl
We introduce alF4 self-interaction, but do not consider th
©1998 The American Physical Society13-1
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case of spontaneous symmetry breaking and do not con
the quantum fluctuations of the scalar field itself. This fram
work is sufficiently general for discussing renormalizati
and the typical effects introduced by the back reaction of
fermion fields. It can be easily generalized to include a f
mion mass, bosonic fluctuations, and spontaneous symm
breaking. The Lagrangian density is given by

L5
1

2
]mF]mF2

1

2
M2F22

l

4!
F41c̄~ i ]/2gF!c ,

~2.1!

whereM is the mass of the scalar field, andg is the Yukawa
coupling.

We split the fieldF into its expectation valuef and the
quantum fluctuationsh:

F~x,t !5f~ t !1h~x,t !, ~2.2!

with

f~ t !5^F~x,t !&5
Tr Fr~ t !

Tr r~ t !
. ~2.3!

The scalar fluctuations have already been analyzed
@33,34#. The equations for the system we consider here, w
the back reaction of the fermion field, have been derived
@31# using the Schwinger–Keldysh formalism@27,28# and
the tadpole method@38#. We do not repeat it here. The equ
tion of motion for the classical field is given by

f̈~ t !1M2f~ t !1
l

6
f3~ t !1

l

2
^h2&1g^c̄c&50 .

~2.4!

Here^c̄c& and^h2& are the expectation values of the qua
tum fluctuations of the fermions and the scalar field, resp
tively. They are related to closed-time-path~CTP! Green
functions. They can be expressed by mode functions wh
satisfy the linearized equations of motion in the backgrou
field and initial conditions at some timet0. In the following
we chooset050. The scalar back reaction via^h2& has been
calculated previously by various groups within different a
proximation schemes, among them the large-N, Hartree, or
one-loop approximation. As we have explained above, h
we are merely interested in the fermionic back reaction
do not include the scalar one, except for some of the num
cal examples in Sec. VIII.

The fermion fieldc satisfies the Dirac equation

@ i ] t2H~ t !#c~ t,x!50, ~2.5!

where the HamiltonianH is given by

H~ t !52 i a¹1m~ t !b . ~2.6!

The termm(t)5gf(t) is the time-dependent fermion mas
We expand the fermion field in terms of the spinor solutio
of the Dirac equation
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c~ t,x!5(
s
E d3p

~2p!32E0

@bp,sUp,s~ t !

1d2p,s
† V2p,s~ t !#e1 ip•x, ~2.7!

with the time-independent creation and annhiliation ope
tors whose mass is determined by the initial state. The
ation and annihilation operators satisfy the usual anticomm
tation relations

$bp,s ,bp8,s8
† %52E0~2p!3d3~p2p8!dss8 , ~2.8!

$dp,s ,dp8,s8
† %52E0~2p!3d3~p2p8!dss8 . ~2.9!

For the positive and negative energy solutions we make
ansatz

Up,s~ t !5N0@ i ] t1Hp~ t !# f p~ t !S xs

0 D ~2.10!

and

Vp,s~ t !5N0@ i ] t1H2p~ t !#gp~ t !S 0

xs
D , ~2.11!

with the Fourier-transformed Hamiltonian

Hp~ t !5ap1m~ t !b . ~2.12!

For the two-spinorsxs we use helicity eigenstates, i.e.,

p̂sx656x6 . ~2.13!

The mode functionsf p andgp depend only onp5upu; they
obey the second-order differential equations

F d2

dt2
2 iṁ~ t !1p21m2~ t !G f p~ t !50 , ~2.14!

F d2

dt2
1 iṁ~ t !1p21m2~ t !Ggp~ t !50 . ~2.15!

The initial state for the fermion field is usually specified as
vacuum or thermal equilibrium state obtained by fixing t
classical fieldf, and thereby the fermion mass, to som
value f0 for t<0. The spinor solutions are then identic
with the usual free field solutions of the Dirac equation w
constant massm05m(0)5gf(0). Therefore, the mode
functions, which would be plane waves fort<0, satisfy the
initial conditions

f p~0!51, ḟ p~0!52 iE0 , ~2.16!

gp~0!51, ġp~0!5 iE0 . ~2.17!

For the spinorsU andV we use the usual free field norma
ization conditions

Ūp,s~0!Up,s~0!52V̄p,s~0!Vp,s~0!52m0 , ~2.18!
3-2
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Up,s
† ~0!Up,s~0!5Vp,s

† ~0!Vp,s~0!52E0 ;
~2.19!

we will also need the orthogonality relation

Up,s
† ~0!V2p,s~0!50 . ~2.20!

E0(p) denotes the mode energy in the initial state:

E0
25p 21m0

2. ~2.21!

For the normalization constant we find

N05@E01m0#21/2 . ~2.22!

For t.0 Eqs.~2.14!, ~2.15!, and~2.16! imply that

f p~ t !5gp* ~ t !. ~2.23!

Since the time evolution of the spinorsUp,s(t) andV2p,s(t)
is induced by the Hermitian operatorHp , their normalization
and orthogonality relations~2.18! and ~2.20! are conserved
This implies a useful relation for the mode functions@31#:

u ḟ p~ t !u22 im~ t !@ f p~ t ! ḟ p* ~ t !2 ḟ p~ t ! f p* ~ t !#

1@p21m2~ t !#u f p~ t !u252E0~E01m0!, ~2.24!

which takes the role of the Wronskian. Using these mo
functions ^c̄c& can be calculated once the initial state
specified.1 If we use the Fock space vacuum defined
bp,su0&50 anddp,su0&50, we get

^c̄c&5(
s
E d3p

~2p!32E0

V̄2p,s~ t !V2p,s~ t !

522E d3p

~2p!32E0
H 2E02

2p2

E01m0
u f pu2J .

~2.25!

If we use a thermal density matrix defined in terms of t
Fock space states, one obtains

^c̄c&522E d3p

~2p!32E0

3tanhS E0

2TD H 2E02
2p2

E01m0
u f pu2J ; ~2.26!

the integration measure in the momentum integrals is m
fied accordingly in the expressions for the energ
momentum tensor.

We will denote^c̄c& as the fluctuation integral

F~ t !5^c̄~ t !c~ t !&. ~2.27!

1We use the Heisenberg picture; i.e., the field operators depen
time via the mode functions.
12501
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The fluctuation integral is divergent and has to be regulari
and renormalized. This will be done in Sec. IV.

III. ENERGY-MOMENTUM TENSOR
AND PARTICLE NUMBER

The energy-momentum tensor of a Dirac field with ma
m5m(t) is given by

Tmn5c̄S 1

2
igm]Jn1mgmnDc. ~3.1!

The expectation value of the energy-momentum tensor ta
with the initial density matrix is spatially homogeneous a
has therefore the formTmn5diag(E,P). In addition to the
contribution of the Dirac field it contains the classical co
tribution of the scalar field. The energy densityE of the
quantum fluctuations is then obtained as

Efl~ t !5^c̄~bHp!c&

5(
s
E d3p

~2p!32E0

V̄2p,s~ t !~bHp!V2p,s~ t !

52E d3p

~2p!32E0

$ i @E02m0!#

3~ f p ḟ p* 2 ḟ pf p* !22E0m~ t !%. ~3.2!

Using the equations of motion it is easy to see that the t
derivative of the total energy density

E5Ecl1Efl5
1

2
ḟ2~ t !1

1

2
M2f2~ t !1

l

4!
f4~ t !1Efl~ t !

~3.3!

vanishes. The fluctuation pressure is given by

Pfl~ t !5
1

3
^c̄gpc&5

1

3(s
E d3p

~2p!32E0

V̄2p,s~ t !gpV2p,s~ t !

5
2

3E d3p

~2p!32E0

$@E02m0#@ i ~ f p ḟ p* 2 ḟ pf p* !

22m~ t !u f pu2#%, ~3.4!

and the total pressure is

P~ t !5ḟ2~ t !2E1Pfl . ~3.5!

Energy density and pressure are quartically divergent; t
renormalization will be discussed in Sec. IV along with t
renormalization of the fluctuation integral.

In contrast to the fluctuation integral and the energ
momentum tensor, the definition of the particle number re
on the creation and annihilation operators. The number
particles with momentump and helicitys is given generally
via

on
3-3
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JÜRGEN BAACKE, KATRIN HEITMANN, AND CARSTEN PÄTZOLD PHYSICAL REVIEW D 58 125013
Np,s~ t !}^bp,s
† ~ t !bp,s~ t !& . ~3.6!

The definition of time-dependent creation and annihilat
operators implies an interpretation.2 If we used the operator
bp,s andbp,s

† , the particle number would remain equal to t
initial one, zero for an initial vacuum state or 1/@exp(E0 /T)
11# for a thermal one. While these operators refer to a
composition of the field with respect to the exact mode fu
tions f p(t), the concept of free particles implies plane-wa
mode functions. If we define these modes to have massm0

andE05Ap21m0
2, i.e., if we use the modes correspondi

to the initial state, we obtain

bp,s
0 ~ t !5E d3xe2 ip•x1 iE0tUp,s

0†c~x,t !

5Cp,s
0 ~ t !bp,s1Dp,s

0 ~ t !d2p,s
† , ~3.7!

with

Up,s
0 5

1

AE01m0

@E01Hp~ t0!#S xs

0 D . ~3.8!

We need only the coefficientDp,s
0 which is given by

Dp,s
0 5

eiE0t

2E0
Up,s

0†V2p,s~ t !, ~3.9!

and the particle number becomes

N p,s
0 ~ t !5uDp,s

0 ~ t !u2 . ~3.10!

In terms of the mode functions we obtain, for the occupat
number for one helicity eigenstate with momentump,

Np
0~ t !5

E02m0

4E0
2 $2E01 i @ ḟ p* ~ t ! f p~ t !2 f p* ~ t ! ḟ p~ t !#

22~m12m0!u f p~ t !u2%. ~3.11!

This definition has been used in@31#. As it should be for
fermions, the occupation number is strictly less or equal to
this is obvious from Eq.~3.9!, sinceDp,s

0 is the scalar produc
of two complex vectors of unit norm. Integrating the occ
pation number over momentum one obtains the total part
number density

N0~ t !5(
s
E d3p

~2p!3
N p,s

0 ~ t ! . ~3.12!

If we imagine the time evolution being stopped at the timet,
it seems more natural to use free quanta of massm15m(t)
and

2For an extensive discussion, in the context of general relativ
see@40#.
12501
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bp,s
1 ~ t !5E d3xe2 ip•x1 iE0tUp,s

1†c~x,t !, ~3.13!

with

Up,s
1 5

1

AE11m1

@E11Hp~ t1!#S xs

0 D . ~3.14!

The coefficientDp,s
1 now reads

Dp,s
1 5

eiE1t

A4E0E1

Up,s
1†V2p,s~ t1!, ~3.15!

and the occupation number for particles with massm1
5m(t) becomes

N p,s
1 ~ t !5

E02m0

4E0E1~E01m0!~E11m1!
$2E0~E01m0!

1 i ~E11m1!@ ḟ p* ~ t ! f p~ t !2 f p* ~ t ! ḟ p~ t !#%.

~3.16!

The total particle numberN1(t) is again obtained by inte
gratingNp,s

1 over momentum and summing over helicitie
The particle number is divergent by power counting; t
analysis of the divergent contributions ofN1(t) shows, how-
ever, that it is finite and does not need counterterms~see also
Sec. IV!. ForN0(t) we find a linearly divergent contribution
that vanishes in dimensional regularization.

As we have mentioned above, the definition of the parti
number relies on an interpretation which seems to be m
straightforward if the particle number is computed for pa
ticles with the ‘‘final’’ massm15m(t). Of course, even if
the classical scalar field relaxes to 0 ast→`, the final state
~taken in the Schro¨dinger picture! never becomes an en
semble of free particles. Such a state would be describe
a density matrix which cannot arise in unitary evolution fro
a pure stateu0&. This is also true for the additional particle
created in the case of a thermal initial state.

Equation~2.24! may be used to recast the expressions
energy density, pressure, and particle number into a dif
ent, sometimes advantageous form.

IV. RENORMALIZATION

In order to develop the framework for renormalizing th
one-loop equations, we write the equation of motion for t
mode functions, Eq.~2.14!, in the form

F d2

dt2
1E0

2G f p~ t !52V~ t ! f p~ t !, ~4.1!

with

V~ t !5m2~ t !2m0
22 iṁ~ t !. ~4.2!

Using the initial conditions~2.16! this equation can be recas
into the form of an integral equation
,

3-4
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f p~ t !5e2 iE0t2
1

E0
E

0

t

dt8 sin@E0~ t2t8!#V~ t8! f p~ t8!.

~4.3!

Using this integral equation, the mode functions may be
panded with respect to the potentialV(t). We split off the
zeroth-order~plane-wave! contribution and an oscillating
phase factor by writing

f p~ t !5e2 iE0t@11hp~ t !#. ~4.4!

The functionshp(t) satisfy differential and integral equation
derived from Eqs.~4.1! and ~4.3!, respectively. These func
tions are discussed in Appendix A. They may be deco
posed as

hp~ t !5 (
n51

`

hp
~n! , ~4.5!

where hp
(n) is of nth order in V(t); we define further the

inclusive sums

hp
~n!̄5 (

m5n

`

hp
~m! . ~4.6!

In terms of these functions and their expansion discusse
Appendix A the integrand of the fluctuation integral can
written as

12S 12
m0

E0
D u f p~ t !u2

5
E0

m0
2S 12

E0

m0
D @2 Rehp~ t !1uhp~ t !u2#

5
m~ t !

E0
2

m̈~ t !

4~E0!3
2

m3~ t !

2~E0!3
1

m~ t !m2~0!

2~E0!3

1
m̈~0!

4~E0!3
cos~2E0t !1KF~p,t !. ~4.7!

The first terms on the right hand side lead to divergent
singular momentum integrals. The functionKF(t) can be
considered being defined by this equation. It behaves
(E0)24 and its momentum integral is finite. WhileKF(t) is
defined here as the difference between the original, num
cally computed integrand and its leading contributions,
alternative expression, avoiding such a subtraction, is gi
in Appendix A. We decompose the fluctuation integral as

F~ t !5Fdiv~ t !1Fsing~ t !1Ffin~ t !, ~4.8!

with

Fdiv5E d3p

~2p!3 H m~ t !

E0
2

m̈~ t !

4~E0!3
2

m3~ t !

2~E0!3
1

m~ t !m2~0!

2~E0!3 J ,

~4.9!
12501
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Fsing5E d3p

~2p!3 H m̈~0!

4~E0!3
cos~2E0t !J , ~4.10!

Ffin5E d3p

~2p!3
KF~p,t !. ~4.11!

The divergent partFdiv is a local polynomial inm(t)
5gf(t). It will be absorbed by appropriate renormalizatio
counterterms. The integral involving cos(2E0t) is logarithmi-
cally singular att50 but finite otherwise. This contribution
is obviously related to the initial conditions and will be di
cussed in Sec. V.

The fluctuation parts of the energy-momentum tensor
be analyzed in a similar way. The integrand of the ene
densityEfl can be expanded as

i

2S 12
m0

E0
D ~ f p ḟ p* 2 ḟ pf p* !2m~ t !

52~E02m0!H 112 Rehp1uhpu2

1
1

E0
Im @ ḣp~11hp* !#J 2m~ t !

52E02
m2~ t !

2E0
1

m0
2

2E0
1

ṁ2~ t !

8~E0!3
1

m4~ t !

8~E0!3

1
m0

4

8~E0!3
2

m2~ t !m0
2

4~E0!3
1KE~p,t !. ~4.12!

Again KE(p,t) is defined by this equation and it behaves
(E0)24 asE0→`. There is no cosine term here and, the
fore, no singular contribution. So

E~ t !5Ediv~ t !1Efin~ t !, ~4.13!

with

Ediv52E d3p

~2p!3 H 2E02
m2~ t !

2E0
1

m0
2

2E0
1

ṁ2~ t !

8~E0!3
1

m4~ t !

8~E0!3

1
m0

4

8~E0!3
2

m2~ t !m0
2

4~E0!3 J , ~4.14!

Efin5E d3p

~2p!3
KE~p,t ! . ~4.15!

If the integrand of the fluctuation pressure is rewritten
terms of the functionshp , it reads

2~E02m0!H S 11
m~ t !

4E0
D ~112 Rehp1uhpu2!

2
1

E0
Im @ ḣp~11hp* !#J 2m~ t !. ~4.16!
3-5
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We expand again inV(t) in order to sort out the leading
contributions. Finally,P(t) can be decomposed as

P~ t !5Pdiv~ t !1Psing~ t !1Pfin~ t !, ~4.17!

with

Pdiv5E d3p

~2p!3 H 2
4

3
E01

2m0
2

3E0
1

m0
4

6~E0!3
1

ṁ2~ t !

6~E0!3

2
m~ t !m̈~ t !

12~E0!3
2

m2~ t !

3E0
2

m2~ t !m0
2

6~E0!3 J , ~4.18!

Psing5E d3p

~2p!3

m~ t !m̈~0!

12~E0!3
cos~2E0t !, ~4.19!

Pfin5E d3p

~2p!3
KP~p,t !. ~4.20!

The integral overKP, which is defined by this decompos
tion, is finite. The divergent termsFdiv , Ediv , andPdiv are
proportional to local terms inf(t) and its derivatives. Thes
can be absorbed in the usual way by introducing the ap
priate counterterms into the Lagrangian and into the ene
momentum tensor.

The counterterms in the Lagrangian are introduced as

Lc.t5
1

2
dZḟ22

1

2
dM2f22

dl

24
f4. ~4.21!

The divergent parts of the fluctuation integral can be eva
ated, e.g., using dimensional regularization. One finds

Fdiv5
m̈~ t !

8p2
L01

m3~ t !

4p2
L01

m~ t !m0
2

4p2
, ~4.22!

with the abbreviation

L05
2

e
1 ln

4pm2

m0
2

2g. ~4.23!

As already found for the scalar fluctuations@33#, the depen-
dence on the initial massm0 can be absorbed into finit
terms, DZ, DM2, and Dl. Applying a modified minimal
subtraction scheme~MS! prescription, the infinite renormal
izations become

dZ52
g2

8p2
L, ~4.24!

dl526
g4

4p2
L, ~4.25!

with
12501
o-
y-

-

L5
2

e
1 ln

4pm2

M2
2g. ~4.26!

There is no infinite mass renormalization counterterm. Int
ducing the renormalization counterterms into the equation
motion, we obtain

~11DZ!f̈1~M21DM2!f1
l1Dl

6
f3

1g~Ffin1Fsing!50. ~4.27!

The coefficients of the finite terms left over after adding t
renormalization counterterms toFdiv are given by

DZ5
g2

8p2
ln

M2

m0
2

, ~4.28!

DlM56
g2

4p2
ln

M2

m0
2

, ~4.29!

DM25
g2m0

2

4p2
. ~4.30!

Since the bare fermion mass vanishes, we have introdu
the scalar massM as scale parameter. Obviously, the equ
tion of motion is not yet acceptable in its present form, d
to the singular term.

The divergent parts of the energy give, after dimensio
regularization,

Ediv5
ṁ2~ t !

16p2
L01

m4~ t !

16p2
L02

m4~0!

32p2
1

m2~ t !m0
2

8p2
.

~4.31!

The counterterms correspond to those in the Lagrangian,

Ec.t5
1

2
dZḟ21

1

2
dM2f21

dl

24
f4, ~4.32!

with the same coefficients as above. We need no infin
counterterm for the zero-point energy or cosmological c
stant. Adding the divergent part and the counterterms we
left with finite contributions

Ediv1Ec.t.5
1

2
DZḟ21

1

2
DM2f21

Dl

24
f41DL,

~4.33!

with

DL52
m0

4

32p2
. ~4.34!

The divergent part of the pressure is given by
3-6
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Pdiv5
ṁ2~ t !

12p2
L02

m~ t !m̈~ t !

24p2
L02

m0
4

24p2
1

m0
2m2~ t !

12p2
.

~4.35!

In addition to the counterterms already introduced we h
to add to the energy-momentum tensor the ‘‘improveme
counterterm@39#

dA~gmn]a]a2]m]n!f2~x!; ~4.36!

sincef depends only ont, this term contributes only to the
pressure, and we have

Pc.t51dZḟ21dA
d2

dt2
f2 . ~4.37!

We choose

dA5
g2

48p2
L ; ~4.38!

there is a finite remainder

Pdiv1Pc.t.51DZḟ21DA
d2

dt2
f22

m0
4

24p2
1

m0
2m2~ t !

12p2
,

~4.39!

with

DA5
g2

48p2
ln

M2

m0
2

. ~4.40!

V. REMOVING THE INITIAL SINGULARITY

We are now ready to discuss the terms proportiona
cos(E0t) which turn out to be singular ast→0:

Fsing~ t !5E d3p

~2p!3

m̈~0!

4~E0!3
cos~2E0t !

.2
m̈~0!

16p2
ln~2m0t ! as t→0. ~5.1!
12501
e
’’

o

For the case of scalar fields in Minkowski space the fluct
tion integral has only a logarithmic cusp}t ln t at t50, as
observed by Ringwald@1#; the energy is finite, and the pres
sure behaves as lnt. In FRW cosmology the energy of scala
fluctuations is logarithmically singular whereas the press
behaves as 1/t. So the Friedmann equations become singu
Problems with the initial conditions in FRW cosmology ha
also been noted in@4,10# when using comoving time and th
associated vacuum state; the problems disappear if con
mal time is used. The two vacuum states are related b
Bogoliubov transformation.

For fermionic fluctuations we find that already the flu
tuation integral is divergent, so that the numerical code c
not be started even in Minkowski space. We have sho
recently, for the case of scalar fields, that such ‘‘Stueck
berg singularities’’@35# can be removed by a Bogoliubo
transformation of the initial state, which was constructed
plicitly.

Within the Fock space based on the ‘‘initial vacuum
stateu0& which is annihilated by the operatorsbp,s anddp,s
we define a more general initial state by requiring that

@bp,s2rp,sd2p,s
† #u0̄&50. ~5.2!

The Bogoliubov transformation fromu0& to this state is given
in Appendix B. If the fluctuation integral, the energy, and t
pressure are computed by taking the trace with respect to
state, we just have to replace in the defining equations~2.25!,
~3.2!, and~3.4! the functionsUp,s(t) by

V2p,s~ t !⇒cos~bp,s!V2p,s~ t !1sin~bp,s!Up,s~ t ! .
~5.3!

For the particle number, the substitution is done in the B
goliubov coefficients, Eqs.~3.9! and~3.15!. The anglebp,s is
related torp,s via

rp,s5tan~bp,s! . ~5.4!

If the expectation value ofc̄c is taken in the Bogoliubov-
rotated initial state, the fluctuation integral becomes
F̃~ t !5(
s
E d3p

~2p!32E0

$V̄2p,s~ t !V2p,s~ t !cos2 bp,s1Ūp,s~ t !U2p,s~ t !sin2 bp,s

1@Ūp,s~ t !V2p,s~ t !1V̄p,s~ t !U2p,s~ t !#sinbp,s cosbp,s%. ~5.5!

Rewriting this expression in terms of the mode functions we find

F̃~ t !52(
s
E d3p

~2p!32E0
H cos 2bp,sF2E02

2p2

E01m0
u f pu2G1sin 2bp,s

sp

E01m0
@ Im ] t f p

222m~ t !Ref p
2#J . ~5.6!

Using the perturbative expansion of the mode functions given in Appendix A this integral takes the form
3-7
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F̃~ t !52(
s
E d3p

~2p!3H cos 2bp,sFm~ t !

E0
2

m̈~ t !

4~E0!3
2

m3~ t !

2~E0!3
1

m~ t !m2~0!

2~E0!3
1

m̈~0!

4~E0!3
cos~2E0t !1KF~p,t !G

1sin 2bp,s

sp

2E0~E01m0!
@22E0 cos 2E0t1LF~p,t !#J . ~5.7!

The functionKF(p,t) has been defined above;LF(p,t) is defined by

LF~p,t !52 Im$e22iE0t@~11hp!ḣp2 iE0~2hp1hp
2!#%22m~ t !Ref p

2. ~5.8!

Obviously, one gets rid of the term proportional to cos(2E0t) by requiring

tan 2bp,s5
m̈~0!~E01m0!

8sp~E0!3
. ~5.9!

Thereby, the Bogoliubov transformation is explicitly specified. We notice that the helicity dependence of the Bogo
transformation cancels in Eq.~5.7!. Using the asymptotic behavior

bp,s .
p→` m̈~0!

8sp~E0!2
, ~5.10!

and therefore

cos~2bp,s!2152 sin2~bp,s! .
p→` m̈2~0!

64p2~E0!4
, ~5.11!

sin~2bp,s! .
p→` m̈~0!

4sp~E0!2
, ~5.12!

it is easy to convince oneself that this Bogoliubov transformation does not interfere with the analysis of the diverge
and, therefore, with the renormalization discussed in the previous section. SoF̃ is rendered finite by adding the counterterm
defined in the previous section. In the renormalized equation of motion~4.27! we just have to replaceFsing(t)1Ffin(t) with
F̃fin(t) which is given explicitly by

F̃fin~ t !522E d3p

~2p!3H 22 sin2 bp,sFm~ t !

E0
2

m̈~ t !

4~E0!3
2

m3~ t !

2~E0!3
1

m~ t !m2~0!

2~E0!3 G1cos 2bp,sKF~p,t !

1sin 2bp,s

sp

2E0~E01m0!
LF~p,t !J . ~5.13!

The renormalization of the energy density proceeds in an analogous way. The fluctuation energy in the Bogoliubo
formed state is

Ẽfl5(
s
E d3p

~2p!32E0

$cos2 bp.s V̄2p,s~ t !~bHp!V2p,s~ t !1sin2bp,s Ūp,s~ t !~bHp!U2p,s~ t !

1sinbp,scosbp,s@Ūp,s~ t !~bHp!V2p,s~ t !1V̄p,s~ t !~bHp!U2p,s~ t !#% . ~5.14!

We again insert the expansion of the mode functions to obtain

Ẽfl5(
s
E d3p

~2p!32E0
S cos 2bp,s$ i @E02m~0!#~ f p ḟ p* 2 ḟ pf p* !22E0m~ t !%1sin 2bp,s

sp

E01m0
Re@ ḟ p

21E2f p
2# D . ~5.15!

After adding the counterterms defined in the previous section the finite part of the fluctuaion energy becomes
125013-8
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Ẽfin52E d3p

~2p!3H 22 sin2 bp,sF2E02
m2~ t !

2E0
1

m0
2

2E0
1

ṁ2~ t !

8~E0!3
1

m4~ t !

8~E0!3
1

m0
4

8~E0!3
2

m2~ t !m0
2

4~E0!3 G
1cos 2bp,sKE~p,t !1sin2bp,s

sp

2E0~E01m0!
LE~p,t !J , ~5.16!

with

LE~p,t !5Re $e22iE0t@hṗ
222iE0hṗ~11hp!1~m2~ t !2m0

2!~11hp!2#%. ~5.17!

Finally, we consider the fluctuation pressure, taken in the new vacuum state. It reads

P̃fl52 Ẽfl1(
s
E d3p

~2p!3H cos 2bp,sF4

3
i ~ f p ḟ p* 2 ḟ pf p* !~E02m0!2

2

3
m~ t !~E02m0!u f pu222m~ t !E0G

1sin 2bp,s

sp

E01m0
ReF4

3
ḟ p

22
1

3
im~ t !] t f p

21S 4

3
p21

2

3
m2~ t ! D f p

2G J . ~5.18!

The finite part becomes, after adding the counterterms,

P̃fin52E d3p

~2p!3H 22 sin2 bp,sF2
4

3
E01

2m0
2

3E0
1

m0
4

6~E0!3
1

ṁ2~ t !

6~E0!3
2

m~ t !m̈~ t !

12~E0!3
2

m2~ t !

3E0
2

m2~ t !m0
2

6~E0!3 G
1cos 2bp,sKP~p,t !1sin2bp,s

sp

2E0~E01m0!
LP~p,t !J , ~5.19!

with

LP~p,t !5
1

3
Re$4 ḟ p

222ime22iE0t@ ḣp~11hp!2 iE0~2hp1hp
2!#1@4p212m2~ t !# f p

2%. ~5.20!

The Bogoliubov transformation has removed the singular term in the pressure as well.
e
h

tr

o
p

m

If
VI. EXTENSION TO FRW SPACETIME

Now that we have set all basic equations and perform
renormalization the extension to FRW spacetime is straig
forward.

We consider the Friedmann–Robertson–Walker me
with curvature parameterk50, i.e., a spatially isotropic and
flat spacetime. We will treat the quantum fields and the c
mological background self-consistently. That is, the scale
rameter a(t) is obtained dynamically from the quantu
fields.

The line element of a flat FRW universe is given by

ds25dt22a2~ t !dxW2. ~6.1!

The time evolution of thea(t) is governed by Einstein’s field
equation

Gmn1aHmn
~1!1bHmn

~2!1Lgmn52k^Tmn&, ~6.2!

with k58pG. The Einstein curvature tensorGmn is given
by
12501
d
t-

ic

s-
a-

Gmn5Rmn2
1

2
gmnR . ~6.3!

The Ricci tensor and the Ricci scalar are defined as

Rmn5Rmnl
l , ~6.4!

R5gmnRmn , ~6.5!

where

Rabg
l 5]gGab

l 2]aGgb
l 1Ggs

l Gab
s 2Gas

l Ggb
s . ~6.6!

The termsHmn
(1) andHmn

(2) arise if terms proportional toR2 and
RmnRmn are included into the Hilbert-Einstein action.
space-time is conformally flat, these terms are related by

Hmn
~2!5

1

3
Hmn

~1! , ~6.7!

so that we can setb50 in Eq. ~6.2! without loss of gener-
ality @40#. We also replaceHmn

(1) by Hmn in the following.
3-9
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These terms are usually not considered in standard
mology. They are included here, as well as the cosmolog
constant term, only for the purpose of renormalization; th
will absorb divergences of the energy-momentum tensor
in principle they should appear on the right hand side
counterterms; they are related to the coefficients of th
counterterms byL5kdL anda5kda.

As usual we can reduce the Einstein field equations to
equation for the time-time component and one for the tr
of Gmn , the Friedmann equations

Gtt1aHtt1L52kTtt , ~6.8!

Gm
m1aHm

m14L52kTm
m . ~6.9!

For the line element~6.1! the various terms take the form
@40#

Gtt~ t !523H2~ t !,

Gm
m~ t !52R~ t !,

Htt~ t !526S H~ t !Ṙ~ t !1H2~ t !R~ t !2
1

12
R2~ t ! D ,

Hm
m~ t !526@R̈~ t !13H~ t !Ṙ~ t !#, ~6.10!

with the curvature scalar

R~ t !56@Ḣ~ t !12H2~ t !# ~6.11!

and the Hubble expansion rate

H~ t !5
ȧ~ t !

a~ t !
. ~6.12!

The Dirac equation in FRW spacetime~see, e.g.,@40,41#! is
given by

H i ] t1 i
3

2

ȧ~ t !

a~ t !
1

i

a~ t !
a¹2gf~ t !g0J c~ t,x!50 .

~6.13!

It proves convenient to introduce conformal time and sca
The conformal factors for the scalar field and the ferm
field are

c~ t,x!5a23/2~ t !c̃~t,x̃!, ~6.14!

f~ t,x!5a~ t !21f̃~t,x̃!, ~6.15!

with x5a(t) x̃ anddt5a(t)dt. In conformal time, and using
these redefinitions of the fields, the Dirac equation simplifi
to

$ i ]t1 i a¹̃2gf̃~t!b%c̃~t,x̃!50. ~6.16!

If we introduce, as in Sec. II, the Dirac Hamiltonian

H̃~t!52 i a¹̃1gw̃~t!b, ~6.17!
12501
s-
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s

this equation takes the standard form

@ i ]t2H̃~t!#c̃~t,x̃!50 . ~6.18!

So the formalism of quantization can be taken over from S
II, if the other functions and operators are understood
being rescaled quantities as well. The rescalings for the o
quantities of interest are, omitting arguments, superscr
and subscripts:

x5ax̃, p5a21p̃,

b5ab̃, d5ad̃,

E05a21Ẽ0 , m5a21m̃5gf̃,

U5a21/222U, V5a21/2Ṽ,

H5a21H̃, N05a1/2Ñ0 . ~6.19!

The potentialV(t) , Eq. ~4.2!, becomes the analogous e
pressionṼ(t) with m(t) replaced bym̃(t). This means that
the entire perturbative expansion and the analysis of div
gences proceed in perfect analogy to the Minkowski sp
analysis. The metric does not appear in this formalism,
therefore there are no divergences related to the metric
the Dirac field does not contribute to the wave functi
renormalization of the gravitational fielddZg ~or, equiva-
lently, the renormalization of Newton’s constant! and to the
termsHmn

( i ) .
In the equation of motion the fluctuation integral scales

a23 and so do the kinetic andlf3 terms. Therefore, the
divergent parts of the fluctuation integral are absorbed

exactly the same countertermsdZf̈ and dlf3/6 as in
Minkowski space. The same holds true for the finite rema
ders proportional toDZ and DL. However, the finite mass
renormalizationDM2f is now replaced bya23DM2f̃ while
the genuine mass term scales asa21M2f̃.

The renormalized equation of motion for the scalar fie
f̃ takes therefore the form

~11DZ!
d2

dt2
f̃1a2FM21S j2

1

6DRG f̃1DM2f̃

1
l1Dl

6
f̃31gF̃fin50 . ~6.20!

The energy-momentum tensor generated by the fermio
fluctuations scales exactly asa24.

VII. LINEARIZED EQUATIONS OF MOTION

A simple intuitive approach to the interplay between t
classical Higgs field oscillating with a frequency of the ord
of the Higgs massM and the fermionic fluctuations is to trea
the system as a Higgs field decaying at rest into fermio
For large amplitudes of the Higgs field this picture is ce
tainly inadequate. For small amplitudes, e.g., at the end
3-10
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inflation, the linearization of the equations of motion lea
indeed to an approximation which supports the simple de
picture. We will compare the exact equations and the low
approximation in our numerical examples. Here we anal
the behavior of the system analytically along the lines
@31#.

If we retain only theO(g2) part of the fluctuation inte-
gral, we find a divergent part which is cancelled by the wa
function renormalization counterterm, a finite part rema
and the linearized equation of motion of the classical fi
takes the form

~11DZ!f̈~ t !1M2f~ t !1E
0

t

dt8S r~ t2t8!f
...

~ t8!

1S r~ t !f̈~0!50. ~7.1!

The self-energy insertion is subtracted and is given explic
by

S r~ t,t8!522g2E d3p

~2p!3

1

4E0
3
cos@2E0~ t2t8!#. ~7.2!

We define the Laplace transform of the condensatef(t) via

c~s!5E
0

`

dte2stf~ t ! , ~7.3!

the inverse transformation being given by

f~ t !5
1

2p i E2 i`1c

i`1c

estc~s!. ~7.4!

The ‘‘Bromwich’’ contour of the latter integral runs paralle
to the imaginary axis. The constantc has to be chosen in
such a way thatc(s) is analytic for Res.c. In our applica-
tion c(s) will have cuts along the imaginary axis and pol
in the half-plane Res,0.

For the Laplace transformc(s) the equation of motion
reads

~11DZ!@s2c~s!2sf~0!2ḟ~0!#1M2c~s!

1S̃ r~s!@2f̈~0!2sḟ~0!2s2f~0!1s3c~s!#

1S̃ r~s!f̈~0!50, ~7.5!

whereS̃(s) is the Laplace transform of the self-energy ke
nel. The equation can be solved readily with the result

c~s!5
@ḟ~0!1sf~0!#@11DZ1sS̃ r~s!#

~11DZ!s21M21s3S̃ r~s!
. ~7.6!

The singularities of the right hand side in the complexs
plane are given, on the one hand, by the singularities
S r(s) and by possible zeros of the denominator, whose
cations have to be determined. Sincef(t) cannot contain
contributions that increase exponentially, these poles
12501
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have to lie on the left part of the complex plane. The dom
nant behavior at larget will be governed, therefore, by th

singularities ofS̃ r(s) on the imaginary axis.
The self-energy kernel has been defined in Eq.~7.2!. Its

Laplace transform is given by

S r~s!522g2E d3p

~2p!3

1

E0
3

s

s214E0
2

. ~7.7!

It has cuts along the imaginarys axis running from s
54im0 to s5 i` and froms524im0 to s52 i`. We in-
troduce the frequencyv52 is. Expressed in the variablev
the cuts run from 4m0 to ` and from2` to 24m0. The
discontinuity across the cut along the positive imaginary a
is defined as

r~s!5discS̃ r~s!5S̃ r~ iv1e!2S̃ r~ iv2e!. ~7.8!

One finds

r~s!522g2E d3p

~2p!3

1

4E0
3

2pv

v12E0
d~v22E0!

52
g2

4p

Av224m0
2

v2
. ~7.9!

A more relevant quantity forc(s) is the discontinuity of the
denominator of Eq.~7.6!:

ig~s!5@discs3S~s!#us5 iv5 i
g2

4p
vAv224m0

2.

~7.10!

The discontinuity of the denominator is purely imaginary,
to be expected. IfS is small, we can expand the denominat
around its zero ats. iM . The contribution of this pole is
related to the decay of the condensate particles of masM
into fermions of massm0. We neglect the real part ofS as it
just shifts the value of M. Indeed it should be zero ats
56 iM if the condensate field is renormalized on shell. W
write

s21~M 2iG/2!2.2~v22M21 iM G!

.s21M22 ig~M !/2 . ~7.11!

It follows that

G5
1

2M
g~M !5

g2

8p
AM224m0

2 . ~7.12!

This is almost, but not quite, what one would expect
fermions. Evaluating the width off→ f f̄ in the standard way
one finds

Gf→ f f̄5
g2

8pM
~M224m0

2!3/2 . ~7.13!
3-11



JÜRGEN BAACKE, KATRIN HEITMANN, AND CARSTEN PÄTZOLD PHYSICAL REVIEW D 58 125013
FIG. 1. f(t) for M51, g52,

l51, andf(0)50.6, ḟ(0)50.
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A factor p is typical for an s wave; the factorp3 in the
correct decay formula arises from the Dirac traces. While
first glance the difference is surprising, one may recogn
that the factor, by which the two expressions differ, is giv
by 124m0

2/M2. The fermion mass is, however, of orderg2,
so that the difference is higher order and our approxima
to the full one-loop result is just lowest order ing2 only.

The late-time behavior off(t) is determined by the stron
gest singularities of its Laplace transform. These are, on
one hand, the poles ats56 iM 2G/2 and, on the other hand
the branch cuts on the imaginary axis. The contribution
the poles, which are actually in the second Riemann sh
has been analyzed carefully in@31#. If the poles have residue
R, they contribute

f~ t !.
1

2p i
2p iR~eiM 2G/2t1e2 iM 2G/2t!

5Re2Gt/22cos~Mt !. ~7.14!

Approximately, R.f(0)/2. While this contribution de-
creases exponentially, the singularities on the imaginary
yield a power behavior

f~ t !5Rt2a cos~Vt1w! , ~7.15!

where the powerlike decrease ast2a is related to the order o
the branch point211a. Since the branch point is of th
square root type, we havea53/2. Our treatment differs
slightly, in terms of orderg2, from that of @31#, wherea
55/2.

In our numerical computation we just find the exponen
damping ~7.14! with a value ofG which agrees with the
theoretical expectation~7.12!. The power behavior~7.15! is
apparently suppressed due to a small coefficient.
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VIII. SOME NUMERICAL RESULTS

We have implemented numerically the formalism dev
oped in the previous sections. We will discuss in this sect
some results of our numerical simulations. We will pay sp
cial attention to the phenomenon of Pauli blocking invok
in @31#. We have already seen that the occupation num
cannot exceed unity on account of the unitary evolution
the mode functionsUp,s(t),Vp,s(t). So an unlimited para-
metric resonance cannot develop.A priori this should not
limit the production of particles as the available phase sp
is large. However, by a phenomenon similar to parame
resonance, the production of particles turns out to be conc
trated within a very small band and it is only in this resona
region where Pauli blocking can be effective. One sho
keep in mind, however, that even for the bosonic case p
ticle production shuts off in the one-loop approximation@29#.

We expect Pauli blocking to be especially effective if t
initial amplitude of the inflaton field is large. A typical cas
is displayed in Figs. 1–5. It corresponds to the parame
M51,l51,g52, andf(0)50.6. Hereḟ(0) is taken to be
zero in all examples. We show the behavior of the inflat
amplitude in Fig. 1, the conserved total energy and its c
sical and fluctuation parts in Fig. 2, and the pressure in F
3. The time dependence of the particle number is displa
in Fig. 4, using both definitions:N0(t), referring to quanta of
massm0 andN1(t) referring to quanta of massm(t). The
latter one is seen to behave more smoothly. The momen
spectrum of the occupation numberN p,s

1 (t) varies strongly
with time. We display therefore, in Fig. 5, the envelope o
tained by selecting the maximal occcupation number reac
at fixed momentum, as a function ofE0. The structure of this
envelope shows resonance like enhancements at thres
E051.2 and atE051.9. The maximal occupation number
reached only at these two values. On the one hand, the
no Pauli blocking in the sense that all levels would be ma
mally occupied; on the other hand, the unitary evolution do
3-12
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FIG. 2. Classical energy
~dashed line!, fluctuation energy
~dotted line!, and total energy
~solid line! for the same param-
eters as in Fig. 1.
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not allow for a parametric resonance with high occupat
numbers. Clearly, for this parameter set the classical fiel
not able to efficiently transfer energy into the fermion flu
tuations and its amplitude stays essentially constant. Th
results are similar to those obtained in@31#.

The situation is simple in the case of very small exci
tions and moderate couplings. In this case the scalar field
decay into fermion-antifermion pairs. An exponential d
crease is found for the exact quantum evolution and for
linearized equations of motion. This is displayed in Fig
6–10. Figure 6 shows the exact evolution off(t) for the
parameter setM51, g52, l51, andf(0)50.01. The am-
plitude is seen to decrease exponentially, the decay rate
ing given approximately byG.g2/8p. In the same figure we
also plot the solution of the linearized equation of motion
which G is exactly equal tog2/8p. The energy is transferre
12501
n
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-
an
-
e
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r

completely to the quantum fluctuations. The pressure, plo
in Fig. 7, becomes asymptotically equal to one-third of t
total energy densityE57.531025. The quantum ensembl
created is ultrarelativistic, as to be expected for mass
quanta. The momentum distribution of the occupation nu
ber is shown in Fig. 8; it is characterized again by a reson
celike band. The total particle number is plotted in Fig. 9

So far the results correspond to the expectations. The s
ation is, however, not as transparent. For intermediate in
amplitudesf(0) the relaxation can shut off even for ca
2m(0),M where the scalar field can decay. An example
given in Fig. 10, with the parametersM51, g51, l50, and
f(0)50.1. The full evolution stagnates; the linearized equ
tions of motion show the expected exponential decrease
the other hand, even for large initial amplitudes the trans
of energy can be as efficient as for scalar fields. An exam
FIG. 3. Total pressure for the
same parameters as in Fig. 1.
3-13
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FIG. 4. Total particle number
N1(t) ~solid line! andN0(t) ~dot-
ted line! for the same parameter
as in Fig. 1.
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is displayed in Figs. 11–13. The amplitudef(t), plotted in
Fig. 11, decreases by roughly a factor of 3. The energy tra
fer is evident from Fig. 12. The spectrum of the occupat
number, presented in Fig. 13, shows that the resonance-
band is occupied more strongly than in the first examp
which had a smaller initial amplitude, and otherwise t
same parameters. Obviously, the concept of Pauli blockin
too simple to describe the situation in an adequate way
one aims at a better understanding of the quantum evolu
analytical methods should be developed. The simplest
proach could be an analysis of the differential equation of
mode functions for a given oscillating classical field, ana
gous to the analysis of the Mathieu or Lame´ equations. In
order to illustrate the behavior for a given oscillating field w
have solved numerically Eq.~2.14! with m(t)5m0cost for
various values ofm0 and momentump. We plot in Fig. 14
the envelope of the occupation numberNenv, i.e., the maxi-
mal occupation reached at fixedp, as a function ofE0(p).

FIG. 5. Maximal occupation numberNrmenv as a function ofE0

for the same parameters as in Fig. 1.
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The structure resembles the envelopes plotted in Figs. 5
8.

Finally, we shall present an example where we inclu
quantum fluctuations of both the fermion field and the sca
field itself. In Fig. 15 we display the behavior of the amp
tude for this combined system; the parameters areM51, g
52, l54, and f(0)51. The field is seen to relax effi
ciently. On the contrary, if the scalar fluctuations are n
included, the relaxation induced by the fermionic fluctu
tions is small, as seen in Fig. 16. Figure 17 shows the re
ation for the case that only the scalar fluctuations are
cluded; it is seen to start later and to be less efficient than
the combined system. The growth of the fermionic a
bosonic energy density is plotted in Fig. 18. The fermion
energy density is smaller but rises earlier. Its asympto
value is only by roughly 20% higher than in the purely fe
mionic evolution. The fermion fluctuations seemingly a

FIG. 6. Exact quantum evolution~dashed line! and linearized
evolution ~solid line! of f(t) for M51, g52, l51, and f(0)

50.01, ḟ(0)50.
3-14
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here as a kind of catalyzator, supporting the developmen
the bosonic quantum fluctuations.

IX. CONCLUSION

We have developed the quantum field theory of the o
of-equilibrium evolution of fermionic quantum fluctuation
driven by a scalar field. The quantum back reaction has b
taken into account in the one-loop approximation. We ha
formulated the renormalization of the equations of mot
and of the energy-momentum tensor in a covariant form
independent of the initial conditions. A restriction of suitab
initial conditions for the fermionic quantum system, as
quired by the removal of initial singularities, has been o
tained by selecting a Fock space built on a Bogoliub
transformed vacuum state. Furthermore, we have formul
the renormalized equations for the case of a spatially
FRW metric.

We have numerically implemented the evolution equ
tions and we have presented some examples for the evolu

FIG. 7. Total pressure for the exact evolution for the same
rameters as in Fig. 6.

FIG. 8. Maximal occupation numberNenv as a function ofE0

for the same parameters as in Fig. 6.
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of the quantum system. If the initial amplitude of the sca
field is very small, the system evolves as predicted for
linearized equations of motion, formulated in Sec. VII. It c
be described as a decay of the scalar field into fermi
antifermion pairs. If the initial amplitude is larger, the ev
lution depends on the way in which a kind of resonance b
at low momenta is situated kinematically and how it is fille
In some cases the fermions are indeed ineffective in damp
the oscillation of the classical field; in others the relaxati
develops as in the bosonic case and a considerable part o
energy is transferred to the quantum fluctuations. Analyti
studies should help to clarify the features observed for lar
amplitude oscillations. An example where bosonic as wel
fermionic fluctuations are included shows an interesting
terplay where the fermions catalyze the development
bosonic fluctuations.

We think that these results show that nonequilibrium s
tems with fermionic fluctuations show more interesting fe
tures and may play a more interesting role in cosmology t
previously assumed.

- FIG. 9. Total particle numberN1(t) for the same case as in Fig
6.

FIG. 10. Exact quantum evolution~dashed line! and linearized
evolution ~solid line! of f(t) for M51, g51, l50, and f(0)

50.1, ḟ(0)50.
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FIG. 11. f(t) for M51, g

52, l51, and f(0)52, ḟ(0)
50.
n

tra
APPENDIX A: PERTURBATIVE EXPANSION
OF THE MODE FUNCTIONS

We have introduced in Secs. II and III the mode functio
f p(t) and hp(t) which are related via Eq.~4.4!. In this ap-
pendix we will analyze the perturbation expansion and ul
violet behavior of the functionshp(t). These mode functions
satisfy the differential equation

ḧp22iE0ḣp52V~ t !@11hp#, ~A1!

with the initial conditionshp(0)5ḣp(0)50. We expandhp
with respect to orders inV(t) by writing
12501
s

-

hp5hp
~1!1hp

~2!1hp
~3!1•••, ~A2!

wherehp
(n)(t) is of nth order inV(t). Herehp

(n)̄ denotes the
sum over all orders beginning with thenth one,

hp
~n!̄5(

l 5n

`

hp
~n! , ~A3!

so that

hp[hp
~1!̄5hp

~1!1hp
~2!̄ . ~A4!
FIG. 12. Classical energy
~dashed line!, fluctuation energy
~dotted line!, and total energy
~solid line! for the same param-
eters as in Fig. 11.
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The integral equation for the functionhp can be derived in a
straightforward way from the differential equation satisfi
by the functionsf p ; it reads

hp5
i

2E0
E

0

t

dt8~e2iE0~ t2t8!21!V~ t8!@11hp~ t8!#.

~A5!

Using this integral equation we can obtain the functio
hp

(n)(t) by iteration@33#. hp
(1) is given by

hp
~1!5

i

2E0
E

0

t

dt8~e2iE0~ t2t8!21!V~ t8!. ~A6!

Using integrations by parts this function can be analyz
with respect to orders inE0 via

FIG. 13. Maximal occupation numberNenv as a function ofE0

for the same parameters as in Fig. 11.
12501
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hp
~1!5

2 i

2E0
E

0

t

dt8V~ t8!1 (
l 50

n21 S 2 i

2E0
D l 12

3@V~ l !~ t !2e2iE0tV~ l !~0!#1~hp
~1!! n̄ , ~A7!

with

~hp
~1!! n̄52S 2 i

2E0
D n11E

0

t

dt8e2iE0~ t2t8!V~n!~ t8! , ~A8!

HereV( l )(t) denotes thel th derivative ofV(t); the subscript
n̄ indicates that the expression in parentheses has bee
duced to negative powers ofE0 equal or higher thann. For
energy density and pressure we need the expansion ofḣp

(1)

3(t) as well. From Eq.~A8! and the relation

FIG. 14. Maximal occupation numberNenv for m(t)5m0 cost
with m050.1 ~dashed line!, m050.5 ~solid line!, andm051 ~dotted
line!, as a function ofE0.
FIG. 15. f(t) including back
reaction of both fermionic and
scalar fluctuations forM51, g

52, l54, and f(0)51, ḟ(0)
50.
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FIG. 16. f(t) in the absence
of scalar fluctuations for the sam
parameters as in Fig. 15.
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ḣp
~1!52iE0hp

~1!2E
0
dt8V~ t8!, ~A9!

we find

ḣp
~1!5(

l 50

n S 2 i

2E0
D l 11

@V~ l !~ t !2e2iE0tV~ l !~0!#

2S 2 i

2E0
D n11E

0

t

dt8e2iE0~ t2t8!V~n11!~ t8! .

~A10!

Similar expressions hold for the higherhp
(n) and ḣp

(n) .
In the numerical implementation the functions (hp

(1)) n̄ can
be obtained as the Fourier transform of thenth derivative of
V(t). Its computation needs just one update per time s
Alternatively one may construct differential equations sa
fied by these functions,3 e.g.,

~ ḧp
~1!! 2̄22iE0~ ḣp

~1!! 2̄5
i

2E0
V̇. ~A11!

In order to isolate the divergent terms in the fluctuati
integrals of the equation of motion and of the energ
momentum tensor we need an expansion of the mode f
tion up to orderO@(E0)23# and O@(E0)24#, respectively.
For this reason we will give relevant expansions of thehp in
the following.

The expansion ofhp
(1) up to O@(E0)23# gives

3This had also been suggested by Boyanovsky@43#.
12501
p.
-
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c-

hp
~1!52

i

2E0
E

0

t

dt8 V~ t8!2
V~ t !

4~E0!2
1

iV̇~ t !

8~E0!3

2
iV̇~0!

8~E0!3
e2iE0t2

i

8~E0!3E0

t

dt8 e2iE0~ t2t8!V̈~ t !.

~A12!

For hp
(2) we obtain

hp
~2!52

1

8~E0!2F E0

t

dt8 V~ t8!G2

1
i

8~E0!3E0

t

dt8 V2~ t8!

1
i

8~E0!3
V~ t !E

0

t

dt8 V~ t8!1~hp
~2!! 4̄ , ~A13!

where (hp
(2)) 4̄ includes all terms ofhp

(2) that have at least fou
negative powers ofE0. It satisfies the differential equation

~ ḧp
~2!! 4̄22iE0~ ḣp

~2!! 4̄52V~ t !~hp
~1!! 3̄2

5i

8~E0!3
V̇~ t !V~ t !

2
i

8~E0!3
V̈~ t !E

0

t

dt8 V~ t8! .

~A14!

Finally, via integration by parts,hp
(3) takes the form
3-18
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FIG. 17. f(t) in the absence
of fermion fluctuations, for the
same parameters as in Fig. 15.
eat-
hp
~3!5

i

48~E0!3F E0

t

dt8 V~ t8!G3

1~hp
~3!! 4̄ , ~A15!

where the last term satifies the differential equation

~ ḧp
~3!! 4̄22iE0~ ḣp

~3!! 4̄52V~ t !~hp
~2!! 3̄2

iV̇~ t !

16~E0!3E0

t

dt8 V~ t8!

2
iV2~ t !

8~E0!3E0

t

dt8 V~ t8!. ~A16!
12501
For the integrands of the fluctuation integral we need rep
edly the two expressions

I1~p,t !52Re hp
~1!̄1uhp

~1!̄u2 ~A17!

and

I2~p,t !52Im ḣp
~1!̄12Im hp

~1!̄* ḣp
~1!̄ . ~A18!

Using the expansion up toO@(E0)23# we obtain
FIG. 18. Fluctuation energies
of fermions for evolution without
scalar fluctuations~solid line! and
fluctuation energies of fermions
~dashed line! and bosons~dotted
line! for combined evolution.
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I1~p,t !5
1

E0
E

0

t

dt8 Im V~ t8!2
ReV~ t !

2~E0!2
1

1

2~E0!2F E0

t

dt8 Im V~ t8!G2

2
Im V̇~ t !

4~E0!3
1

Im V̇~0!

4~E0!3
cos~2E0t !

1
ReV̇~0!

4~E0!3
sin~2E0t !2

1

4~E0!3E0

t

dt8 Im V2~ t8!1
1

6~E0!3F E0

t

dt8 Im V~ t8!G3

2
1

2~E0!3
Re V~ t !E

0

t

dt8 Im V~ t8!12Re~hp
~1!̄ ! 4̄1~ uhp

~1!̄u2! 4̄ , ~A19!

where we have introduced the terms ofO@(E0)24# as

2Re ~hp
~1!̄ ! 4̄52Re ~hp

~1!1hp
~2!1hp

~3!! 4̄12Re hp
~4!̄ ~A20!

and

~ uhp
~1!̄u2! 4̄5~ uhp

~1!u2! 4̄12Re ~hp
~1!hp

~2!* ! 4̄1uhp
~2!̄u212Re ~hp

~1!hp
~3!̄* !. ~A21!

Inserting the real and imaginary parts of the potentialV(t) we finally have the result

I1~p,t !52
1

E0
@m~ t !2m~0!#2

1

~E0!2
@m~ t !m~0!2m2~0!#1

1

~E0!3F1

2
m3~ t !1m3~0!2

3

2
m~ t !m2~0!

2
1

4
m̈~0!cos~2E0t !1

1

2
ṁ~0!m0sin~2E0t !G12Re ~hp

~1!̄ ! 4̄1~ uhp
~1!̄u2! 4̄ , ~A22!

I2~p,t !52
ReV~ t !

E0
2

Im V̇~ t !

2~E0!2
1

Im V̇~0!

~2E0!2
cos~2E0t !1

Re V̇~ t !

2~E0!2
sin~2E0t !1

Re V̈~ t !

4~E0!3
2

Re V̈~0!

4~E0!3
cos~2E0t !

1
Im V̈~0!

4~E0!3
sin~2E0t !1

1

~E0!2
Re V~ t !E

0

t

dt8 Im V~ t8!1
3@Re V~ t !#2

4~E0!3
2

@ Im V~ t !#2

4~E0!3
2

Im V̇~ t !

2~E0!3 E0

t

dt8 Im V~ t8!

2
Re V~ t !

2~E0!3 F E
0

t

dt8 Im V~ t8!G2

1
Re V̇~0!

2~E0!3
cos~2E0t !E

0

t

dt8 Re V~ t8!2
Im V̇~0!

2~E0!3
sin~2E0t !E

0

t

dt8 Re V~ t8!

12Im ~ ḣp
~1!̄ ! 4̄12Im ~hp*

~1!̄ḣp
~1!̄ ! 4̄ . ~A23!

For completeness we also give the expansion up toO@(E0)24#:

I1~p,t !5
1

E0
E

0

t

dt8 Im V~ t8!2
Re V~ t !

2~E0!2
1

1

2~E0!2F E0

t

dt8 Im V~ t8!G2

2
Im V̇~ t !

4~E0!3
1

Im V̇~0!

4~E0!3
cos~2E0t !

1
Re V̇~0!

4~E0!3
sin~2E0t !2

1

4~E0!3E0

t

dt8 Im V2~ t8!1
1

6~E0!3F E0

t

dt8 Im V~ t8!G3

2
1

2~E0!3
Re V~ t !E

0

t

dt8 Im V~ t8!

1
3@Re V~ t !#2

8~E0!4
2

@ Im V~ t !#2

4~E0!4
2

Im V̇~ t8!

4~E0!4 E
0

t

dt8 Im V~ t8!2
1

4~E0!4E0

t

dt8 Im V~ t8!E
0

t

dt8 Im V2~ t8!

2
1

4~E0!4
Re V~ t !F E

0

t

dt8 Im V~ t8!G2

1
1

24~E0!4F E0

t

dt8 Im V~ t8!G4

1
Re V̇~0!

4~E0!4
cos~2E0t !E

0

t

dt8 Re V~ t8!

1
Re V̈~ t !

8~E0!4
2

1

4~E0!4
Im V̇~0!sin~2E0t !E

0

t

dt Re V~ t8!2
Re V̈~0!

8~E0!4
cos~2E0t !1

Im V̈~0!

8~E0!4
sin~2E0t !

12Re ~hp
~1!̄ ! 5̄1~ uhp

~1!̄u2! 5̄ , ~A24!
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where

2Re ~hp
~1!̄ ! 5̄52Re ~hp

~1!1hp
~2!1hp

~3!1hp
~4!! 5̄12Re hp

~5!̄ . ~A25!

In terms of the notation introduced above the alternative representation for the functionsKF ,KE, andKP become now

KF~p,t !52@I1~p,t !# 4̄1
m0

E0
@I1~p,t !# 3̄ , ~A26!

KE~p,t !52E0@I1~p,t !# 5̄1@I2~p,t !# 4̄1m0@I1~p,t !# 4̄2
m0

E0
@I2~p,t !# 3̄ , ~A27!

KP~p,t !52
4

3
E0@I1~p,t !# 5̄1S 4

3
m02

1

3
m~ t ! D @I1~p,t !# 4̄1

m~ t !m0

3E0
@I1~p,t !# 3̄1

4

3
@I2~p,t !# 4̄2

4m0

3E0
@I2~p,t !# 3̄ .

~A28!
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Unlike the case of scalar fluctuations@33#, the evaluation of
these expressions has required extensive algebra, and th
merical implementation requires further efforts. This refle
the fact, that fermion loops are divergent up graphs with f
external lines. The definition ofKF ,KE, and KP given in
Sec. IV is much easier to handle; it involves, however, p
tentially dangerous differences between expressions w
are computed numerically and leading perturbative ter
We found in our numerical computations that the sim
subtraction was tolerable; this is due, here, to the fact
most integrals are dominated by the low momentum reg
The analysis presented in this appendix was necessary in
case, however, in order to find the divergent contribution

APPENDIX B: BOGOLIUBOV TRANSFORMATION

Here we recall the basic formulas for the Bogoliub
transformation of spin-1/2 fields~see e.g.,@42#!. A general
canonical transformation compatible with the anticommu
tion relations is given, up to a further trivial phase transf
mation, by

bp,s5cos~bp,s!b̃p,s1sin~bp,s!e
idp,sd̃2p,s

† ~B1!

d2p,s
† 52sin~bp,s!e

2 idp,sb̃p,s1cos~bp,s!d̃2p,s
† .

~B2!

The state annihilated by the new operatorsb̃p,s and d̃p,s is
given in discrete notation by

u0̃&5)
p,s

H cos~bp,s!

1
1

2E0~p!V
sin~bp,s!e

2 idp,sd2p,s
† bp,s

† J u0&. ~B3!

For the expectation values of the various bilinear product
interest here one finds, in continuum notation,
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^0̃ubp,s
† bp8,s8u0̃&5~2p!32E0dss8d

3~p2p8!sin2bp,s ,
~B4!

^0̃ud2p,sd2p8,s8
† u0̃&5~2p!32E0dss8d

3~p2p8!cos2bp,s ,
~B5!

^0̃ud2p,sbp8,s8u0̃&5~2p!32E0dss8d
3~p2p8!

3eidp,scosbp,ssinbp,s , ~B6!

^0̃ubp,s
† d2p8,s8

† u0̃&5~2p!32E0dss8d
3~p2p8!

3e2 idp,scosbp,ssinbp,s , ~B7!

so that the fluctuation integral becomes

F̃~ t !5(
s
E d3p

~2p!32E0

$Ūp,sUp,s sin2 bp,s

1V̄2p,sVp,s cos2 bp,s

1V̄2p,sUp,se
idp,s cosbp,s sinbp,s

1Ūp,sV2p,se
2 idp,s cosbp,s sinbp,s%. ~B8!

This corresponds to replacing

V2p,s~ t !⇒cos~bp,s!V2p,s~ t !1eidp,s sin~bp,s!Up,s~ t !
~B9!

in the original expression~2.25!. With the same substitution
one obtains the expectation values for the energy and p
sure. For the particle number the substitution is made in
Bogoliubov coefficients, Eqs.~3.9! and~3.15!. As in the case
of scalar fluctuations@37#, we do not need the phasedp,s as
long as we restrict the initial condition for the classical fie

to ḟ(0)50.
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