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Two-monopole systems and the formation of non-Abelian clouds
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We study the energy density of two distinct fundamental monopoles i8)Suhd Sii4) theories with an
arbitrary mass ratio. Several special limits of the general result are checked and verified. Based on the analytic
expression of energy density the coefficient of the internal part of the moduli space metric is computed, which
gives it a nice “mechanical” interpretation. We then investigate the interaction energy density for both cases.
By analyzing the contour of the zero interaction energy density we propose a detailed picture of what happens
when one gets close to the massless limit. The study of the interaction energy density also sheds light on the
formation of the non-Abelian cloudS0556-282(98)04822-X]

PACS numbdss): 11.27+d, 11.15--q, 14.80.Hv

I. INTRODUCTION rations and the moduli space metrics, the detailed behavior
of the interaction that accounts for the formation of the non-
Since the pioneering work of 't Hooftl] and Polyakov Abelian cloud is still unclear. Under the massless limit, a
[1] a quarter of a century ago, the study of magnetic monosingle monopole will spread out and eventually disappear.
poles in various Yang-Mills-Higgs theories has become alhis trivial behavior can be significantly changed in the pres-
fruitful direction of research. Investigations of these solitonicence of massive monopoles. In the case where the system
states have uncovered many deep and beautiful structures @&rries Abelian charge, the would-be massless monopole will
gauge theories and greatly improved our understanding dpse its identity as an isolated soliton once its core region
those theories. overlaps with massive monopoles, its size will cease to ex-
Magnetic monopoles arise when the Higgs configuratiorpand, and its internal structure will change in a way that
has a nontrivial topology at spatial infinity. For a theory with reflects the restored non-Abelian symmetry. This picture
the gauge grouf® broken into a residue groug, topologi-  must be distinguished from the case when the system carries
cally nontrivial configurations are possible when the secondion-Abelian chargéin the massless limit Having a proper
homotopy group of the vacuum manifold, namely, detailed description of the two situations will be helpful in
I1,(G/H), is nontrivial. Many works have been performed understanding the formation of the non-Abelian cloud. In
to understand the structure and the metric properties ohis paper we will try to address some of these issues. We
Bogomo|’nyi-Prasad-Sommerfie|c(BPS mon0p0|e solu- Wil compare the behavior of two monopole systems in
tions. It is known that when the unbroken gauge gréljs ~ SU(3) and Sp4) theories since they are the two simplest
Abelian, generalization from the original single @Jmono-  models containing the interesting contents we are going to
pole to multimonopole systems in arbitrary gauge theories istudy.
quite straightforwardat least conceptually{2]. The paper is organized as follows. In Sec. Il, we introduce
When the unbroken gauge symmetry is non-Abe”an,(aS the foundation of our calculatiphahm’s formalism for
however, the situation becomes more complicated. Certaifie monopole energy density. In Secs. Ill and IV, the energy
fundamental monopolegiamely, the monopoles associated densities of two(distincy fundamental monopoles in $8)
with simple roots of the gauge groupecome massless and and Sy4) theories are calculated and verified in several spe-
two cases need to be distinguished: the total magnetic chargéal cases. In Sec. IV we compute the internal part of the
carried by monopole is non-Abeligas the long range mag- moduli space metric from a “mechanical” point of view. In
netic field transforms nontrivially under unbroken symmgtry Sec. V we study the formation of the non-Abelian cloud by
or purely Abelian. In the former case, as was discussed i@nalyzing the behavior of the interaction energy density. In
[3], various topological pathologies appear and prevent uSec. VI we conclude with some remarks.
from defining the non-Abelian charge globally. On the other
hand, when _the total mag_netlc charge is Abel(la_he latter Il. NAHM'S FORMALISM FOR THE ENERGY DENSITY
cas@, there is no topological obstacle, everything behaves
nicely. Therefore the majority of the works on monopolesin As was used in many papers, Nahm's formalism has
the presence of non-Abelian unbroken symmetry focus omproved to be a powerful tool in calculating many aspects of
this case[4—8]. The modern picture of such a case is de-monopoles. This method is an analogue of the Atiyah-
scribed by the so called non-Abelian cloud arising from theDrinfeld-Hitchin-Manin (ADHM) construction used in in-
interaction between massless monopoles and massive momstanton physic$9] and was first proposed by Nahfi0].
poles. Recently Nahm’s formalism has been generalized to deal
In spite of the progress in understanding the field configuwith calorons(periodic instantons[11,12, and we will use
some of the results developed in those works.
Consider the S(N) Yang-Mills-Higgs system. Assuming
*Email address: chlu@cuphy3.phys.columbia.edu the asymptotic Higgs field along a given direction to de
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=diag(uy, . ..,uyn) (With ui<---<uy), then the Nahm
data for the caloron that carries instanton numbeare de-
fined over intervals g1,u2), ..., (Un—1.4n), (N»H1
+ 2/ B) (wherep is the circumference along tt&* direc-
tion in spaceR®x St) with u, and u,+ 27/ 3 identified. In
each interval the Nahm data are tripletskof k Hermitian
matrix functionsT(t) determined by Nahm’s equations and
boundary conditions. In this paper we will only use the case
with k=1 for which Nahm data are triplets of constants rep-
resenting the positions of the corresponding constituent
monopoles. It is known that the action density of instantons FIG. 1. Root diagram of S(3) theory.
(in the usual ADHM methais given by(it differs from[13]

by a sign since we choogg,, to be Hermitian rather than Further notice thaf=(ATA)~* [Nahm’s construction op-
anti-Hermitian, erator A" is defined to bég,—i(x—T)- o in each intervd|
S0

— 2 _
ps= 1P, =0 log detf, @ tr(f 1o, ) =tr(ATA 8, F) =t g;( ATAT)—Fa,(ATA)]
wheref is the inverse operatqwhose matrix elements form
Green's functionof ATA (A is the usual ADHM matri, =—E U dt’f(t’,t’)ai|x—Tj|2}. 7
and( is a four-dimensional Laplacian. For SN calorons !
similar results can be established using the Fourier transforé0 finally we have obtained a convenient formula for the
mation of the original ADHM method and one has the fol- Y

lowing formula for the Green’s functiori(t,t’)=(t|f|t") energy density:

[11,12:
alog detf=—, ai|x—Tj|2f dt’f(t’,t’)}, )
d? '
— X TOP+ 2 Ti=Timals(t—w) | f(tt) , _ ,
dt ' where 9;|x—T;|* has been moved out from the integration
— S(t—t") @) since in each interval; does not depend ot (for the k

=1 case only. Equation(8) together with Eqs(2), (3), (4)

in Eg. (4) use three dimensional Laplacidn to replace1]

. : i
er the s ke over e ounday B bt famonr (0 ot he sty centy o e
) ) 9 onopole systems considered in this paper.

monopoles instead of calorons, notice that in the constituent'
monopole picture of calorons an additional type of monopole
has been introduced to neutralize the magnetic charge; so the 1. TWO FUNDAMENTAL MONOPOLES
usual multimonopole Green’s function can be obtained by IN SU(3) THEORY

moving the additional monopole to spatial infinity, which

Th t di f S(B) th is sh in Fig. 1.
leads to the following natural boundary conditions: & root diagram of SUB) theory is shown in Fig

We will consider the system formed by oaeand oneg
N o monopole;h in the graph refers to the Higgs direction along
Flpa ) =F(un t")=0. 3 which B monopole is massless.

On the other hand, for purely magnetic configurations, the

energy density is given bya factor of 1/2 is omitted for A. Energy density

simplicity) We choosed., (along a given directionto be diag-1
—w,2um,1—u) (with —1/3< u<1/3); so the masses of the
p=ps=00 log detf. (4) two fundamental monopoles are
For later convenience, it would be useful to explore Eqg. me=1+3u, mp=1-3pu. ©

(4) a little bit further. Notice that, for an operatér i ) )
Without losing generality, we can place themonopole on

the origin and3 monopole on (0,d) which is equivalent to

: (5) choosing T(t)=(0,0,0) for te(—1—w,2u) and T(t)
=(0,0D) forte(2u,1—u). Applying Egs.(2), (3) to this
case we have

(1-1)"
log detf =trlog f=—tr

©
>
n=1

therefore (=1,2,3),
2

- %+|X—T(t)|2+l)ﬁ(t—2,u) f(t,t")=d(t—t'),
(10

alog detf=tr[ { > (1—f)”}aif} =tr(f19,f). (6)

n=0
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f(—1—p,t")=Ff(1—pu,t')=0. (11) From Eq.(15) one can also derive the regularized determi-
nant of Green’s function to be
It is easy to see from these equations that the Green’s func-
tion has the following form.

!

rr
Case Ai—1—u<t’'<2u: (detf)reg=v, (19
AsinHr(t+1+u)] (—1—pu<t<t’), which is defined in the sense that it is finite and gives the
f(t.t')=1 Bsinhrt)+Ccoshrt) (t'<t<2u), samed;(log detf) and energy density through
DsinHr'(1—u—t)] u<t<il—pu). di(log detf)=g;[log(detf) 4], (20
12
p=AA log(detf)gg. (21
Case B: u<t'<1—pu:
Three typical configurations are shown in Fig(ve plot it
A'sinfr(t+1+u)] (—1—pu<t<2u), on thex-z plane since the configurations are axially symmet-
f(t,t’")=1{ B'sinh(r't)+C'coshr’t) (2u<t<t’), ric).
D'sinfr'(1-u—t)] (t’<t<1—,u),(13) B. Various limits of the energy density

In this subsection let us check certain limits of the general

where r = w/x21+x22+x32, r'= \/xi+x§+(x3—D)2 are dis- fprm of the energy dgnsity_; this serves as a partial verifica-

tances from two monopoles and the coefficientstion of the result obtained in last subsection.

A,B,C,A’,B’,C’ are all functions ot’. (1) D=0 case(two monopoles are on top of each other
In each case Eq(10) also implies the usual boundary In this case we expecand will se¢ that the resulting energy

conditions(which we will not bother writing downconcern-  density is the same as that of an @Jembedded monopole

ing the continuity off(t,t’) and the jumps off(t,t’) at  With massm=m,+mg=2. Since two monopoles are over-

each point where the argument of tefunctions becomes lapped,r=r’ and one has:

zero. All the coefficients can be computed from those bound- M=r sinh(2r) 22)

ary conditions. It is helpful to notice that E(B) makes use '

of f(t,t") only in the form offdt'f(t’,t") which is equalto g [using Eqs{(19),(20)]

2 A~
f dt’f(t',t')zf © o dvA)sin T (t + 1+ )] di(log detf)=—riH(2r), (23
_1_
: where H(Z) is them=2 (mis the mass paramejerase of
1-u . ~ . .
+j dt'D’ (t)sinHr’ (1— u—t")], the single-monopole function defined as
2u
1
(14 H(mr)=m| coth(mr) — =l (24

and so we only need\ and D’. Computing them using
boundary conditions and putting into Eq44) and (8) one

obtains the following result: A(log detf)=g,0,(log detf)=H?(2r)—4, (25

From Eq.(23), one can further get

~ rp sinhp sinhg+ A;(p coshp—sinhp) and therefore
di(log detf)=—r; Y

p=AA(log detf)=A[H?(2r)], (26)
_-,r'gsinhg sinhp+A,(g coshg —sinhq) which is fully compatible(in the suitable convention of nor-
i r'M ' malization with another well-known formulé14]
(15 p=A(tr ¢), (27)
wherep,q,A;,A,,M are defined as since ¢« H(2r) for single SU2)-embedded monopole with
massm=2.
p=myr, qgq=mpgr’, (16) (2) Massless limit: This is the case when one of the mono-
poles becomes massledSse will investigate this limit in
A;=Dsinhg+r’ coshq, A,=Dsinhp+r coshp, more detail in Sec. IY. In our convention this happens when

(17 w==1/3. Without losing generality, we chooge=1/3 (so
the 8 monopole is masslesshen,p=2r, q=0, and
M =D sinhp sinhq+r coshp sinhg+r’ sinhp coshg.
(18 M =r'sinh(2r), (28
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FIG. 3. Root diagram of Sg) theory.8*, 5* are co-roots.
and therefore
d(log detf)=—r;H(2r), (29)

which (as theD=0 casg again leads to the energy density of
a single SW2) monopole with mass=2. Noticem,=2 in
this case; so such a result means thatghmonopole does
not affect the energy density in the massless l{mwhich, as
we will see, is very different from the $4) casdq.

(3) Removing one monopole: Again, without losing gen-
erality, let us move th@ monopole away, so that —«; the
dominant term inM is

M~r"exp(mgr’)sinh(m,r), (30

which leads to

di(log detf) = —r;H(m,r)—mpgr/ . (31)

Sincefi’ represents a constant vector at this limit, BBf) is
exactly what one expects for a single monopole with mass
m

a-

6 IV. TWO FUNDAMENTAL MONOPOLES
IN Sp(4) THEORY

Sp(4) [or equivalently S@)] theory is the simplest
theory to study the non-Abelian cloud. The root diagram is
shown in Fig. 3.

Two cases containing massless monopoles have been
studied before. When the asymptotic Higgs field is along the
h direction, the Abelian configuration is made of two mas-
sive 8 monopoles and one masslagsnonopole[6]; when
the asymptotic Higgs field is along timé direction, the Abe-
lian configuration is made of one massigemonopole and
one masslesg monopole[5]. In this section we will con-
sider the general energy density for a apeene8 mono-
pole systemwith arbitrary mass ratjowhich will help us to
see how the massless limit would be eventually achieved.

A. Energy density

We chooseg,, (along a given directionto be diagf 1,
FIG. 2. Energy density of two fundamental monopoles on the— x,u,1) (with 0<u<1); so the masses of the fundamental
x-z plane in SU3) theory.« and 8 monopoles are located &3, 0 monopoles are
and(0, 5). The mass ration, /m; (from top to bottom is chosen to
be 1, 1.35, and 3. m,=2—2u, mg=2u. (32

125010-4
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The monopole locations are chosen to be the same as in the
SU(3) case. As we know, in Nahm’s method (8ptheory is
embedded into S4) theory whose Nahm data satisfy sym-
metric constraint§6]; in our convention the S(4) Nahm

data are given by (t)=(0,0,0) forte(—1,—u)U(u,1)
andT(t)=(0,0D) for te (—u,u). Applying Egs.(2),(3) to

this case we have

d2
- E+|x—T(t)|2+1)5(t+ﬂ)+2>5(t—;L) f(t,t")

=5(t—t"), (33

f(—1t)=f(1t")=0. (34)

The Green'’s function satisfying these equations has the fol-
lowing form.
Case A:— 1<t/ <—u:

AsinHr(t+1)] (—1<t<t’),
B sinh(rt)+ C coshrt) t'<t<—pu),

ftth)= Dsinh(r't)+E coshr’t) (—u<t<u),
Fsinbr(1—t)] (u<t<1l).
(39
Case B:— u<t'<u:
A’sinfr(t+1)] (—1<t<—p),
B’sinh(r't)+C’coshr’t) (—u<t<t’),
)= D’sinh(r’'t)+E'coshr’t) (t'<t<w),
F'sinHr(1-1)] (u<t<1l).
(36)
Case Cu<t'<1:
A”sinf{r(t+1)] (—1<t<—p),
B”sinh(r't)+C"coshlr’t) (—u<t<u),
ftt)= D"sinh(rt)+E"coshrt)  (u<t<t'),
F’sinfr(1-1)] (t'<t<1),
(37)

wherer and r’ have the same meaning as before, and
A, ... F"” are all functions ot’.

Similarly as in the S(B) case, we only need some of the
coefficients A,B’,C’,D") which (as well as all other coef-
ficienty can be determined by boundary conditions coming
from the § functions in Eq.(33). Computing them and put-

PHYSICAL REVIEW D 58 125010

ting them into Eq(8) one obtains 9
&
- PA;+QA, ~ (MB; LB, 85
’ =—r. _ —r! + —=
di(log detf) fi coshrP +sinhrQ L M /)’
(38) .
. . . _ FIG. 4. Energy density of two fundamental monopoles on the
where the following functions are introduced: x-z plane in Sp4) theory.a and 8 monopoles are located @, 0)
and(0, 5. Mass ratiom, /mg (from top to botton is chosen to be
u=(1—-w)r, v=ur, w=pur', (39 1, 2, and 4.

125010-5
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—coshr +cosiu—v)
1=
r

+2(1—w)sinhr, (40

—sinhr —sinh(u—v)
2= r

+2(1—pu)coshr, (41

sinh(2ur’)
Bi=ut+—"-—"—, By=wu

sinh(2ur’)
2r! !

)

L =D sinhu coshw+ r coshu coshw+ r’sinhu sinhw,

PHYSICAL REVIEW D 58 125010

cause herex and 8 monopoles have different energy distri-
butions. As we know, the mass of &)-embeddedy
monopoles in arbitrary gauge theory is giventbyy* while
the scale of such monopoles is determined by 14() [y is
the root to which the S(2)-embedded monopoles are asso-
ciated; h is the asymptotic Higgs directidnAs a conse-
guence, in S@h) theory whena and 8 monopoles have the
same mass, the scale of tBemonopole is only half of the
scale of thew monopole. Therefore the maximal energy den-
sity is eight times that of the monopole; this is why in the
plotting withm, :mz;=1 one can hardly see themonopole.

B. Various limits of the energy density

The expression of the energy density of the two funda-
mental monopoles in $f) theory is much more complicated
than in the SB) case; to see its correctness, let us check
several special cases.

(1) D=0 case(two monopoles are on top of each other
In this case we again expect an @Jembedded monopole
with massm=m,+mg=2. Sincer=r’, one gets

L=rcoshr, M=r sinhr, (50
which generates the familiar result
d,(log detf)=—r;H(2r), (51)

which is the same as E@23); so in this limit the result is

(2) Massless limit: We are interested in the limit when the
total magnetic charge is Abelian which is realized by

(43)
M = D sinhu sinhw+r coshu sinhw+r’sinhu coshw,
(44)
N1 =D sinhv sinhw—r coshv sinhw+r’sinhv coshw,
(45)
N, =D coshv sinhw—r sinhv sinhw+r’coshv coshw,
(46)
N;=D sinhu sinh(2w) +r coshu sinh(2w)
+r’ sinhu cosh2w), (47)
P:rlsinhUM_Nle, Q:_r,COShUM"_NzN3
(48)
The regularized determinant of the Green’s function fromexactly what we expected.
Eq. (38) is
ror’
(det f)reg=177 (49

Three typical configurations are shown in Fig. 4.

—0 (when theB monopole becomes massleds this limit
one has

L=Dsinhr+r coshr, M=r'sinhr, (52

One can see that the energy density of the two fundamen-
tal monopoles in S@) theory is not symmetric; this is be- which leads to

d;(log detf)=—r;

. 2r2cosk2r)+2Dr sinh(2r) —r sinh(2r) — 2D cosh2r) + 2D

(53

r2sinh(2r)+ Dr cosk2r)—Dr

On the other hand, the Higgs configuration in this limit is giver[#8]; in that work, the Higgs configuration dfi —1
fundamental monopoles is calculated in the symmetry-breaking patterf)SYIJ(1)X SU(N—2)XU(1). The relevant
Sp(4) Higgs configuration can be obtained by taking e 4 case and putting two massive monopoles on top of each other.

In a proper normalization the result pf] (after simplification can be written aséwherea,:cr-F)

H(2r)o,

2D tankfr

\/ 2D tankr
sinh(2r)(r+Dtanhr)

2Dr —Dsinh(2r) ’ ®4

b= —
EN )
sinh(2r)(r+Dtanhr) 2r cosir(r +Dtanhr)

125010-6
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which leads to

4Dtankfr

trep?=H>3(2r)+ sinh(2r)(r + Dtanhr)

2Dr —Dsinh(2r)
2r costtr(r + Dtanhr)

. (55

As we did before, in order to show that Eq4),(53) and

PHYSICAL REVIEW D 58 125010

C. From the moment of inertia to the moduli space metric

Since we have the analytic form of energy density, we are
now able to compute the internal part of the moduli space
metric using a nice “mechanical” interpretation. The idea of
using a mechanical interpretation can be traced to Manton’s
original work [15] (where the concept of the moduli space
metric itself was introduced by comparing the action of the
monopole system and mechanical systemd was used in
certain arguments in recent worls,16]. In this subsection

(27),(55) give the same result it is sufficient to show that thewe will consider the massless limit of our @p system. The

difference betwees,d;(log detf) and trp? is constant. This
is messy, but one can verify that
d;0;(log detf)=tr¢?— 4. (56)
So the massless limit works out correctly. Unlike the($U
case, the massless limit of @p theory is rather nontrivial
(the non-Abelian cloud coming into playing
One can easily show that when themonopole becomes

metric in this case is known to bié] (changed into our
convention

2

1
ds’=madx?>+ om

41
p dyx?+ 3dD2+ AnD(02+ o5+ o),

(61)

wherem is the total masswhich is just the mass of the
monopole in this cageof the system;oy,0,, and o3 are

massless(in that case the total magnetic charge is non-gne-forms defined as

Abelian), the situation is similar to the SB) case; namely,

the energy density is equal to the energy density of a single

B monopole.
(3) Removing thea monopole: Now let us check what

happens when one monopole is removed. Since the two

monopoles are not symmetric in the (8pcase, we check
them separately. Whefv— o but keepingr’ finite (there-
fore r—x), the « monopole is removed. The leading con-
tributions ofL,M are

L~r exd (1—w)r]cosiur’),

M~r exd (1—w)r]sinh(ur’). (57)
Putting these into Eq$49) and(20) one obtains
d,(log detf)=—r/H(2ur')—m,r;. (58)

This (notice thatr; is a constant vector at this limitepre-
sents an S(2)-embedded monopole with masa=mj
which is what we are expecting.

(4) Removing the8 monopole: WherD—o, r’ — o, the
B monopole is removed. The leading contributionsLoM
are

L~M~r"exp(ur’)sinq (1—pu)r], (59

which lead to(again, the second term is a constant vector al

this limit)

di(log detf)=—2rH[(1—pu)r]—mpgr, . (60)

The energy density coming from this expression is the same

as two directly superposed $2) monopoles with masm
=1—pu=m,/2. This is consistent with the 4) picture in-

troduced in the discussion of the massless limit; namely, th

a monopole can be considered as two overlapped45U

o= —sinydf+cossinddg, (62
o,=cosydl+siny sindd ¢, (63
o3=di+coshd, (64)

with the Euler anglesd, ¢, and ¢ having periodicities

, 2, and 4, respectively. It is interesting to notice that
the last term in Eq(61) has a “mechanical interpretation”

as the rotational energy associated with the massless cloud
with the coefficient 4D playing the role of the moment of
inertia of the cloud. To see this let us calculate the moment
of inertia of the non-Abelian cloud. As we know, for a
spherically symmetric system the moment of inertia tensor
has the forml;;=14;; with

2 2
|=§f dvr p- (65)

Since the rotation of the cloud is actually the gauge rotation
in internal space, we should remove the gauge-invariant part
p(D=0) [this is an SW2)-embeddedy monopole which is
gauge invariart so the effective energy density relevant to
the internal rotation isp(D)—p(0). Using the result ob-
{ained in the last subsection one can verify that

2 8
|= §f dVri[p(D)—p(0)]= %f drr'[p(D)—p(0)]
— 167D, (66)

which leads to a term 1D(dw?+dw3+dw3) in the

goduli space metric. Here one-fornaig; ,dw,, and dws

are defined in the group space of @U(namely, S%). To

monopoles whose energy densities are simply added sin@@Mmpare with the last term of E61) one notices that

they are noninteracting. This also gives a direct demonstra-

tion of our discussion at the end of Sec. IV A.

o3+ o3+ 05=d0?+dp?+dy?+ 2 coshdgpdy.  (67)

125010-7
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Therefore the volume of§, ¢,¢) space i/ g=det(g;;) is 20
the determinant of metric matrix coming from E&§.7)]

10.0 -

V= f VIgldodpdy= 167>, (68)
Since the volume of group spa& is 272, the two sets of 0y @

one-forms are related by,=2dw; (i=1,2,3). Taking this

into account we see that #@®(dw?+ dw3+ dw3) computed 100 |
from the moment of inertia is in accordance with the last
term in Eq.(61) obtained using other methods. 200 . . . .
-15.0 5.0 5.0 15.0 250 35.0

V. INTERACTION ENERGY DENSITY
AND THE FORMATION

OF THE NON-ABELIAN CLOUD 20

In previous sections we have calculated the energy den-
sity of two monopole systems in $8) and Sy4) theory. We

have already known that when one approaches the massless
limit, the situations are very different depending on the total x 00}
magnetic charge. If the total magnetic charge is non-Abelian,

the resulting energy density is simply the same as the energy

density of the massive monopole. When the total magnetic

charge is purely Abelian, however, the energy density distri-

bution is deeply affected by the existence of massless mono- 200 L - : : : .
. . -15.0 5.0 5.0 15.0 250 350

poles. In the latter case, there is a non-Abelian cloud sur- 2

rounding the massive monopole, neutralizing the non-

Abelian components of the magnetic charge. In this section

we want to have a close look at the evolution of the energy 200 : . .

density when one approaches the massless limit.

There is no unique choice of quantity to describe the for-
mation of the non-Abelian cloud; nor is there any unambigu- 00
ous definition of the non-Abelian cloud itself. But physically
there is no doubt that it is the interaction between massive < 00}
and massless monopoles that determines the behavior of the
system, including the formation of the cloud. Our strategy is

100 |

-10.0 |

to study the interaction energy density defined as 00y

Pint= Ptotal™— Pa™ PB > (69

150 5.0 5.0 15.0 250 35.0
z

wherep, andpg are the energy density of isolatedand g
monopoles p;,; describes the change of energy distribution
caused by the interaction between two monopoles. In par- 80.0 : .

ticular we will look at the contour of the zero interaction
energy density which gives information on where interaction
gathers energy and from where it extracts energy.

We have use®APLE to generate numerical data and plot-
ted several typical contoushown in Figs. 5, Bfor SU(3) x ool 5
and Sp4) theories(the region enclosed by the contour has a
positive interaction energy densjty

400

From the contour diagrams one can see the major differ- 400
ence between the two theories when approaching the mass-
less limit. In both cases we start with a simply connected 800 . .
contour for the small mass ratiahen the distance between R 2 B0 %0 10

two monopoles is large, the starting contour could be differ-

eny. The contour deforms and grows when the mass ratio

increases; in both cases it breaks into two disjoint pieces

when the mass ratio is sufficiently large. The reason it breaks FIG. 5. Contour diagrams of the zero interaction energy density
can be understood by directly analyzing the massless limit ofn thex-z plane for SW3) theory.« and 8 monopoles are located
pint [IN the SU3) casep;, itself vanishes but one can use at(0, 0) and(0, 10; mass ratiosn, :m, are chosen to bérom top
pint/Mg Which remains finit¢ Figures 7, 8 show those lim- to bottom) 4, 7, 19, 199.
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its. In both cases the limiting interaction energy density be-
comes negative outside the core of themonopole; this
means that the contour cannot keep growing and remains
simply connected all the way as one increases the mass ratio.
After the breaking point, the part of the contour that sur-
rounds thea monopole is stabilized, but the other part un-
dergoes a very different evolution in the two cases: In the
SU(3) case that part of the contour keeps growing, but gradu-
ally moves away from the monopole(because of the scale
of the graphs, it might not be able to see that easily, but the
shortest distance between the two parts of the contour is
increasing. In the Sp@4) case, however, the situation is the
opposite; the other part of the contour eventually shrinks and
finally disappearsthis happens before going to the lipnitt
should be mentioned that in 8p case if the8 monopole is
inside the core of the monopole, the contour could shrink
and be stabilized without breaking into two pieces at first.
The difference in the contour diagram of the two cases
explains their different massless limits and accounts for the
formation of the non-Abelian cloud. Although in both cases
the interaction alters the energy distribution by accumulating
energy in certain regions, in the case of(S)Xhat region is
ever expanding and the effect of the interactitherefore the
massless monopole itseis smeared out over the infinitely
large area; so the final energy density is completely domi-
nated by the remaining massive monopole. On the other
hand, in the S@) case, the interaction extracts energy and
deposits it into a small regiofin some sense one can say
that the interaction is more “localized” in this cgseas a
result it affects the energy density distribution significantly,
and because of the interaction, the massless monopole does
not grow into infinite size as it would if isolated. The non-
Abelian cloud is just the effect of such an interaction.

VI. CONCLUSIONS

So far we have analyzed the energy density of two mono-
pole systems in S(3) and Sp4) theories and obtained some
idea on how the massless cloud forms. Based on these results
one can make some qualitative conjectures on what might
happen in general cases where the interaction energy can be
defined as

Pint= Ptotal™ Pmassive  Pmassless (70

The basic property of;,; we learned from the previous ob-
servation is that when the total magnetic charge is purely
Abelian, the interaction is more “localized” in contrast to
the opposite case. Such an interaction extracts energy from
distant regions, accumulates it in the vicinity of massive
monopoles, and gradually builds up the structure of the non-
Abelian cloud. This is fairly similar to the $f) case.

When the total magnetic charge is non-Abelian, however,
qualitatively different situations could arise in general. To
see this, let us look at the case with the symmetry-breaking
SUN)—U(1)XSUN—-2)xXU(1) (N>4). Let

FIG. 6. Contour diagrams of the zero interaction energy densityPattern ‘
on thex-z plane for Sp4) theory.a and 8 monopoles are located at @1, - - - »an—1 denote simple roots. When the system con-
(0, 0 and(0, 10; mass ratiosn,, :m, are chosen to bérom top to tains massivea;, ay-1 and would-be massless; (i
bottom) 4, 19, 66, 99. =2, ... N-3) monopolegnotice that thexy_, monopole
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FIG. 8. pint in Sp(4) theory at the massless limit f@= 10 (this

FIG. 7. pint/mg in SU(3) theory at the massless linihis curve curve has a weak dependence®@n

is independent oD).

is absent, and so the total magnetic charge of the system @®ntains a non-Abelian cloud with many independent size
non-Abelian, only massive monopoles survive at the mass{arameters. Removing ong@ monopole will not make all
less limit. This can be seen by noticing that the system undehese parameters infinity and therefore will not destroy the
consideration is equivalent to the system studied[8h  Whole cloud. Another way to understand this is to notice that
(which contains thery_, monopole as well, and so the total When the extrax monopole is removed, we are left with a
magnetic charge is Abeliarwith the ay_, monopole re- System made oR—1 «— g pairs(it can be called an Abe-
moved. From 8] we know that the only cloud parameter of lian subsystem which certainly contains the non-Abelian
the system is given by cloud. Since removing the monopole will not create cloud,
the cloud must exist in the original system. This argument
can be generalized.
D= IZZ | =% 4] (72) These examples reveal the complexity of the general
cases. It seems that at the massless limit a system with a

So removing any massless monopole is equivalent to rem0\;1on-AbeIiar_1 total magnetic charge can still contain mqssless
ing the whole cloudsince it makes the cloud size infinity Monopolegin the form of a non-Abelian cloydn a “maxi-
Therefore only massive monopoles survive. This situation ign@l Abelian subsystem.” We think further considerations on
similar to the SU3) case we have studied. But there are otheSUch situations will be interesting. _

systems which do not show such a direct analogue. As an Note addedWhile writing this paper, we noticed the ap-
example we can go back to our @ptheory and consider a Pearance of17] from which the energy density of $8) and
system withN massivea monopoles andN—1 would-be ~ SP(4) monopoles can also be obtained.

massles®3 monopolegso the total magnetic charge is non-
Abelian). At massless limit, the massless monopoles in this
system will form a non-Abelian cloud rather than disappear-
ing. This is because such a system can be obtained by re- The author wishes to thank Kimyeong Lee for useful dis-
moving one B monopole from a system containirg (N cussions. This work is supported in part by the U.S. Depart-
>1) a—p pairs. At the massless limit the latter system ment of Energy.

N—-1
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