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Two-monopole systems and the formation of non-Abelian clouds

Changhai Lu*
Department of Physics, Columbia University, New York, New York 10027

~Received 14 July 1998; published 12 November 1998!

We study the energy density of two distinct fundamental monopoles in SU~3! and Sp~4! theories with an
arbitrary mass ratio. Several special limits of the general result are checked and verified. Based on the analytic
expression of energy density the coefficient of the internal part of the moduli space metric is computed, which
gives it a nice ‘‘mechanical’’ interpretation. We then investigate the interaction energy density for both cases.
By analyzing the contour of the zero interaction energy density we propose a detailed picture of what happens
when one gets close to the massless limit. The study of the interaction energy density also sheds light on the
formation of the non-Abelian cloud.@S0556-2821~98!04822-X#

PACS number~s!: 11.27.1d, 11.15.2q, 14.80.Hv
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I. INTRODUCTION

Since the pioneering work of ’t Hooft@1# and Polyakov
@1# a quarter of a century ago, the study of magnetic mo
poles in various Yang-Mills-Higgs theories has become
fruitful direction of research. Investigations of these soliton
states have uncovered many deep and beautiful structur
gauge theories and greatly improved our understanding
those theories.

Magnetic monopoles arise when the Higgs configurat
has a nontrivial topology at spatial infinity. For a theory wi
the gauge groupG broken into a residue groupH, topologi-
cally nontrivial configurations are possible when the seco
homotopy group of the vacuum manifold, name
P2(G/H), is nontrivial. Many works have been performe
to understand the structure and the metric properties
Bogomol’nyi-Prasad-Sommerfield~BPS! monopole solu-
tions. It is known that when the unbroken gauge groupH is
Abelian, generalization from the original single SU~2! mono-
pole to multimonopole systems in arbitrary gauge theorie
quite straightforward~at least conceptually! @2#.

When the unbroken gauge symmetry is non-Abeli
however, the situation becomes more complicated. Cer
fundamental monopoles~namely, the monopoles associat
with simple roots of the gauge group! become massless an
two cases need to be distinguished: the total magnetic ch
carried by monopole is non-Abelian~as the long range mag
netic field transforms nontrivially under unbroken symmet!
or purely Abelian. In the former case, as was discussed
@3#, various topological pathologies appear and prevent
from defining the non-Abelian charge globally. On the oth
hand, when the total magnetic charge is Abelian~the latter
case!, there is no topological obstacle, everything beha
nicely. Therefore the majority of the works on monopoles
the presence of non-Abelian unbroken symmetry focus
this case@4–8#. The modern picture of such a case is d
scribed by the so called non-Abelian cloud arising from
interaction between massless monopoles and massive m
poles.

In spite of the progress in understanding the field confi
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rations and the moduli space metrics, the detailed beha
of the interaction that accounts for the formation of the no
Abelian cloud is still unclear. Under the massless limit,
single monopole will spread out and eventually disappe
This trivial behavior can be significantly changed in the pr
ence of massive monopoles. In the case where the sys
carries Abelian charge, the would-be massless monopole
lose its identity as an isolated soliton once its core reg
overlaps with massive monopoles, its size will cease to
pand, and its internal structure will change in a way th
reflects the restored non-Abelian symmetry. This pictu
must be distinguished from the case when the system ca
non-Abelian charge~in the massless limit!. Having a proper
detailed description of the two situations will be helpful
understanding the formation of the non-Abelian cloud.
this paper we will try to address some of these issues.
will compare the behavior of two monopole systems
SU~3! and Sp~4! theories since they are the two simple
models containing the interesting contents we are going
study.

The paper is organized as follows. In Sec. II, we introdu
~as the foundation of our calculation! Nahm’s formalism for
the monopole energy density. In Secs. III and IV, the ene
densities of two~distinct! fundamental monopoles in SU~3!
and Sp~4! theories are calculated and verified in several s
cial cases. In Sec. IV we compute the internal part of
moduli space metric from a ‘‘mechanical’’ point of view. I
Sec. V we study the formation of the non-Abelian cloud
analyzing the behavior of the interaction energy density.
Sec. VI we conclude with some remarks.

II. NAHM’S FORMALISM FOR THE ENERGY DENSITY

As was used in many papers, Nahm’s formalism h
proved to be a powerful tool in calculating many aspects
monopoles. This method is an analogue of the Atiya
Drinfeld-Hitchin-Manin ~ADHM ! construction used in in-
stanton physics@9# and was first proposed by Nahm@10#.
Recently Nahm’s formalism has been generalized to d
with calorons~periodic instantons! @11,12#, and we will use
some of the results developed in those works.

Consider the SU~N! Yang-Mills-Higgs system. Assuming
the asymptotic Higgs field along a given direction to bef`
©1998 The American Physical Society10-1
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CHANGHAI LU PHYSICAL REVIEW D 58 125010
5diag(m1 , . . . ,mN) ~with m1<•••<mN), then the Nahm
data for the caloron that carries instanton numberk are de-
fined over intervals (m1 ,m2), . . . , (mN21 ,mN), (mN ,m1
12p/b) ~whereb is the circumference along theS1 direc-
tion in spaceR33S1) with m1 andm112p/b identified. In
each interval the Nahm data are triplets ofk3k Hermitian
matrix functionsT(t) determined by Nahm’s equations an
boundary conditions. In this paper we will only use the ca
with k51 for which Nahm data are triplets of constants re
resenting the positions of the corresponding constitu
monopoles. It is known that the action density of instanto
~in the usual ADHM method! is given by~it differs from @13#
by a sign since we chooseFmn to be Hermitian rather than
anti-Hermitian!,

rs5tr Fmn
2 5hh log detf , ~1!

wheref is the inverse operator~whose matrix elements form
Green’s function! of n†n (n is the usual ADHM matrix!,
andh is a four-dimensional Laplacian. For SU(N) calorons
similar results can be established using the Fourier trans
mation of the original ADHM method and one has the fo
lowing formula for the Green’s functionf (t,t8)5^tu f ut8&
@11,12#:

F2
d2

dt2
1ux2T~ t !u21(

i
uT i2T i 21ud~ t2m i !G f ~ t,t8!

5d~ t2t8!, ~2!

where the sum is taken over all the boundary points betw
adjacent intervals. In order to get the Green’s function
monopoles instead of calorons, notice that in the constitu
monopole picture of calorons an additional type of monop
has been introduced to neutralize the magnetic charge; s
usual multimonopole Green’s function can be obtained
moving the additional monopole to spatial infinity, whic
leads to the following natural boundary conditions:

f ~m1 ,t8!5 f ~mN ,t8!50. ~3!

On the other hand, for purely magnetic configurations,
energy density is given by~a factor of 1/2 is omitted for
simplicity!

r5rs5hh log detf . ~4!

For later convenience, it would be useful to explore E
~4! a little bit further. Notice that, for an operatorf,

log detf 5tr log f 52trF (
n51

`
~12 f !n

n G ; ~5!

therefore (i 51,2,3),

] i log detf 5trH F (
n50

`

~12 f !nG] i f J 5tr~ f 21] i f !. ~6!
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Further notice thatf 5(n†n)21 @Nahm’s construction op-
eratorn† is defined to bei ] t2 i (x2T)•s in each interval#,
so

tr~ f 21] i f !5tr~n†n] i f !5tr@] i~n†n f !2 f ] i~n†n !#

52(
j

F E dt8 f ~ t8,t8!] i ux2T j u2G . ~7!

So finally we have obtained a convenient formula for t
energy density:

] i log detf 52(
j

F] i ux2T j u2E dt8 f ~ t8,t8!G , ~8!

where] i ux2T j u2 has been moved out from the integratio
since in each intervalT j does not depend ont8 ~for the k
51 case only!. Equation~8! together with Eqs.~2!, ~3!, ~4!
@in Eq. ~4! use three dimensional Laplaciann to replaceh#
forms a framework to compute the energy density of
monopole systems considered in this paper.

III. TWO FUNDAMENTAL MONOPOLES
IN SU„3… THEORY

The root diagram of SU~3! theory is shown in Fig. 1.
We will consider the system formed by onea and oneb

monopole;h in the graph refers to the Higgs direction alon
which b monopole is massless.

A. Energy density

We choosef` ~along a given direction! to be diag(21
2m,2m,12m) ~with 21/3<m<1/3); so the masses of th
two fundamental monopoles are

ma5113m, mb5123m. ~9!

Without losing generality, we can place thea monopole on
the origin andb monopole on (0,0,D) which is equivalent to
choosing T(t)5(0,0,0) for tP(212m,2m) and T(t)
5(0,0,D) for tP(2m,12m). Applying Eqs.~2!, ~3! to this
case we have

F2
d2

dt2
1ux2T~ t !u21Dd~ t22m!G f ~ t,t8!5d~ t2t8!,

~10!

FIG. 1. Root diagram of SU~3! theory.
0-2
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TWO-MONOPOLE SYSTEMS AND THE FORMATION OF . . . PHYSICAL REVIEW D 58 125010
f ~212m,t8!5 f ~12m,t8!50. ~11!

It is easy to see from these equations that the Green’s f
tion has the following form.

Case A:212m,t8,2m:

f ~ t,t8!5H A sinh@r ~ t111m!# ~212m,t,t8!,

B sinh~rt !1C cosh~rt ! ~ t8,t,2m!,

D sinh@r 8~12m2t !# ~2m,t,12m!.
~12!

Case B: 2m,t8,12m:

f ~ t,t8!5H A8sinh@r ~ t111m!# ~212m,t,2m!,

B8sinh~r 8t !1C8cosh~r 8t ! ~2m,t,t8!,

D8sinh@r 8~12m2t !# ~ t8,t,12m!,
~13!

where r 5Ax1
21x2

21x3
2, r 85Ax1

21x2
21(x32D)2 are dis-

tances from two monopoles and the coefficie
A,B,C,A8,B8,C8 are all functions oft8.

In each case Eq.~10! also implies the usual boundar
conditions~which we will not bother writing down! concern-
ing the continuity of f (t,t8) and the jumps of] t f (t,t8) at
each point where the argument of thed functions becomes
zero. All the coefficients can be computed from those bou
ary conditions. It is helpful to notice that Eq.~8! makes use
of f (t,t8) only in the form of*dt8 f (t8,t8) which is equal to

E dt8 f ~ t8,t8!5E
212m

2m

dt8A~ t8!sinh@r ~ t8111m!#

1E
2m

12m

dt8D8~ t8!sinh@r 8~12m2t8!#,

~14!

and so we only needA and D8. Computing them using
boundary conditions and putting into Eqs.~14! and ~8! one
obtains the following result:

] i~ log det f !52 r̂ i

rp sinhp sinhq1A1~p coshp2sinhp!

rM

2 r̂ i8
r 8q sinhq sinhp1A2~q coshq2sinhq!

r 8M
,

~15!

wherep,q,A1 ,A2 ,M are defined as

p5mar , q5mbr 8, ~16!

A15D sinhq1r 8 coshq, A25D sinhp1r coshp,
~17!

M5D sinhp sinhq1r coshp sinhq1r 8 sinhp coshq.
~18!
12501
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From Eq.~15! one can also derive the regularized determ
nant of Green’s function to be

~det f !reg5
rr 8

M
, ~19!

which is defined in the sense that it is finite and gives
same] i(log det f ) and energy densityr through

] i~ log det f !5] i@ log~det f !reg#, ~20!

r5nn log~det f !reg. ~21!

Three typical configurations are shown in Fig. 2~we plot it
on thex-z plane since the configurations are axially symm
ric!.

B. Various limits of the energy density

In this subsection let us check certain limits of the gene
form of the energy density; this serves as a partial verifi
tion of the result obtained in last subsection.

~1! D50 case~two monopoles are on top of each othe!:
In this case we expect~and will see! that the resulting energy
density is the same as that of an SU~2!-embedded monopole
with massm5ma1mb52. Since two monopoles are ove
lapped,r 5r 8 and one has:

M5r sinh~2r !. ~22!

So @using Eqs.~19!,~20!#

] i~ log det f !52 r̂ iH~2r !, ~23!

where H(2r ) is them52 ~m is the mass parameter! case of
the single-monopole function defined as

H~mr!5mFcoth~mr!2
1

mrG . ~24!

From Eq.~23!, one can further get

n~ log det f !5] i] i~ log det f !5H2~2r !24, ~25!

and therefore

r5nn~ log det f !5n@H2~2r !#, ~26!

which is fully compatible~in the suitable convention of nor
malization! with another well-known formula@14#

r5n~ tr f2!, ~27!

sincef}H(2r ) for single SU~2!-embedded monopole with
massm52.

~2! Massless limit: This is the case when one of the mo
poles becomes massless~we will investigate this limit in
more detail in Sec. IV!. In our convention this happens whe
m561/3. Without losing generality, we choosem51/3 ~so
the b monopole is massless!; then,p52r , q50, and

M5r 8sinh~2r !, ~28!
0-3
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CHANGHAI LU PHYSICAL REVIEW D 58 125010
FIG. 2. Energy density of two fundamental monopoles on
x-z plane in SU~3! theory.a andb monopoles are located at~0, 0!
and~0, 5!. The mass ratioma /mb ~from top to bottom! is chosen to
be 1, 1.35, and 3.
12501
and therefore

] i~ log det f !52 r̂ iH~2r !, ~29!

which ~as theD50 case! again leads to the energy density
a single SU~2! monopole with massm52. Noticema52 in
this case; so such a result means that theb monopole does
not affect the energy density in the massless limit@which, as
we will see, is very different from the Sp~4! case#.

~3! Removing one monopole: Again, without losing ge
erality, let us move theb monopole away, so thatr 8→`; the
dominant term inM is

M;r 8exp~mbr 8!sinh~mar !, ~30!

which leads to

] i~ log detf !52 r̂ iH~mar !2mb r̂ i8 . ~31!

Sincer̂ i8 represents a constant vector at this limit, Eq.~31! is
exactly what one expects for a single monopole with m
ma .

IV. TWO FUNDAMENTAL MONOPOLES
IN Sp„4… THEORY

Sp~4! @or equivalently SO~5!# theory is the simplest
theory to study the non-Abelian cloud. The root diagram
shown in Fig. 3.

Two cases containing massless monopoles have b
studied before. When the asymptotic Higgs field is along
h direction, the Abelian configuration is made of two ma
sive b monopoles and one masslessa monopole@6#; when
the asymptotic Higgs field is along theh8 direction, the Abe-
lian configuration is made of one massivea monopole and
one masslessb monopole@5#. In this section we will con-
sider the general energy density for a one-a –one-b mono-
pole system~with arbitrary mass ratio! which will help us to
see how the massless limit would be eventually achieved

A. Energy density

We choosef` ~along a given direction! to be diag(21,
2m,m,1) ~with 0<m<1); so the masses of the fundamen
monopoles are

ma5222m, mb52m. ~32!

e

FIG. 3. Root diagram of Sp~4! theory.b* , d* are co-roots.
0-4
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TWO-MONOPOLE SYSTEMS AND THE FORMATION OF . . . PHYSICAL REVIEW D 58 125010
The monopole locations are chosen to be the same as in
SU~3! case. As we know, in Nahm’s method Sp~4! theory is
embedded into SU~4! theory whose Nahm data satisfy sym
metric constraints@6#; in our convention the SU~4! Nahm
data are given byT(t)5(0,0,0) for tP(21,2m)ø(m,1)
andT(t)5(0,0,D) for tP(2m,m). Applying Eqs.~2!,~3! to
this case we have

F2
d2

dt2
1ux2T~ t !u21Dd~ t1m!1Dd~ t2m!G f ~ t,t8!

5d~ t2t8!, ~33!

f ~21,t8!5 f ~1,t8!50. ~34!

The Green’s function satisfying these equations has the
lowing form.

Case A:21,t8,2m:

f ~ t,t8!55
A sinh@r ~ t11!# ~21,t,t8!,

B sinh~rt !1C cosh~rt ! ~ t8,t,2m!,

D sinh~r 8t !1E cosh~r 8t ! ~2m,t,m!,

F sinh@r ~12t !# ~m,t,1!.
~35!

Case B:2m,t8,m:

f ~ t,t8!55
A8sinh@r ~ t11!# ~21,t,2m!,

B8sinh~r 8t !1C8cosh~r 8t ! ~2m,t,t8!,

D8sinh~r 8t !1E8cosh~r 8t ! ~ t8,t,m!,

F8sinh@r ~12t !# ~m,t,1!.
~36!

Case C:m,t8,1:

f ~ t,t8!55
A9sinh@r ~ t11!# ~21,t,2m!,

B9sinh~r 8t !1C9cosh~r 8t ! ~2m,t,m!,

D9sinh~rt !1E9cosh~rt ! ~m,t,t8!,

F9sinh@r ~12t !# ~ t8,t,1!,
~37!

where r and r 8 have the same meaning as before, a
A, . . . ,F9 are all functions oft8.

Similarly as in the SU~3! case, we only need some of th
coefficients (A,B8,C8,D9) which ~as well as all other coef
ficients! can be determined by boundary conditions com
from thed functions in Eq.~33!. Computing them and put
ting them into Eq.~8! one obtains

] i~ log det f !52 r̂ i

PA11QA2

coshrP1sinhrQ
2 r̂ i8S MB1

L
1

LB2

M D ,

~38!

where the following functions are introduced:

u5~12m!r , v5mr , w5mr 8, ~39!
12501
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FIG. 4. Energy density of two fundamental monopoles on
x-z plane in Sp~4! theory.a andb monopoles are located at~0, 0!
and~0, 5!. Mass ratioma /mb ~from top to bottom! is chosen to be
1, 2, and 4.
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CHANGHAI LU PHYSICAL REVIEW D 58 125010
A15
2coshr 1cosh~u2v !

r
12~12m!sinhr , ~40!

A25
2sinhr 2sinh~u2v !

r
12~12m!coshr , ~41!

B15m1
sinh~2mr 8!

2r 8
, B25m2

sinh~2mr 8!

2r 8
, ~42!

L5D sinhu coshw1r coshu coshw1r 8sinhu sinhw,
~43!

M5D sinhu sinhw1r coshu sinhw1r 8sinhu coshw,
~44!

N15D sinhv sinhw2r coshv sinhw1r 8sinhv coshw,
~45!

N25D coshv sinhw2r sinhv sinhw1r 8coshv coshw,
~46!

N35D sinhu sinh~2w!1r coshu sinh~2w!

1r 8 sinhu cosh~2w!, ~47!

P5r 8 sinhvM2N1N3 , Q52r 8coshvM1N2N3 .
~48!

The regularized determinant of the Green’s function fro
Eq. ~38! is

~det f !reg5
r 2r 8

LM
. ~49!

Three typical configurations are shown in Fig. 4.
One can see that the energy density of the two fundam

tal monopoles in Sp~4! theory is not symmetric; this is be

n-

cause herea andb monopoles have different energy distr
butions. As we know, the mass of SU~2!-embeddedg
monopoles in arbitrary gauge theory is given byh•g* while
the scale of such monopoles is determined by 1/(h•g) @g is
the root to which the SU~2!-embedded monopoles are ass
ciated; h is the asymptotic Higgs direction#. As a conse-
quence, in Sp~4! theory whena andb monopoles have the
same mass, the scale of theb monopole is only half of the
scale of thea monopole. Therefore the maximal energy de
sity is eight times that of thea monopole; this is why in the
plotting with ma :mb51 one can hardly see thea monopole.

B. Various limits of the energy density

The expression of the energy density of the two fund
mental monopoles in Sp~4! theory is much more complicate
than in the SU~3! case; to see its correctness, let us che
several special cases.

~1! D50 case~two monopoles are on top of each othe!:
In this case we again expect an SU~2!-embedded monopole
with massm5ma1mb52. Sincer 5r 8, one gets

L5r coshr , M5r sinhr , ~50!

which generates the familiar result

] i~ log det f !52 r̂ iH~2r !, ~51!

which is the same as Eq.~23!; so in this limit the result is
exactly what we expected.

~2! Massless limit: We are interested in the limit when t
total magnetic charge is Abelian which is realized bym
→0 ~when theb monopole becomes massless!. In this limit
one has

L5D sinhr 1r coshr , M5r 8sinhr , ~52!

which leads to
ther.
] i~ log det f !52 r̂ i

2r 2cosh~2r !12Dr sinh~2r !2r sinh~2r !22D cosh~2r !12D
r 2sinh~2r !1Dr cosh~2r !2Dr

. ~53!

On the other hand, the Higgs configuration in this limit is given in@7,8#; in that work, the Higgs configuration ofN21
fundamental monopoles is calculated in the symmetry-breaking pattern SU(N)→U(1)3SU(N22)3U(1). The relevant
Sp~4! Higgs configuration can be obtained by taking theN54 case and putting two massive monopoles on top of each o
In a proper normalization the result of@7# ~after simplification! can be written as~wheres r5s• r̂ )

f5
1

A2S H~2r !s r A 2D tanh2r

sinh~2r !~r 1D tanh r !

A 2D tanh2r

sinh~2r !~r 1D tanhr !

2Dr 2D sinh~2r !

2r cosh2r ~r 1D tanhr !
s r
D , ~54!

125010-6
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TWO-MONOPOLE SYSTEMS AND THE FORMATION OF . . . PHYSICAL REVIEW D 58 125010
which leads to

trf25H2~2r !1
4D tanh2r

sinh~2r !~r 1D tanhr !

1F 2Dr 2D sinh~2r !

2r cosh2r ~r 1D tanhr !
G 2

. ~55!

As we did before, in order to show that Eqs.~4!,~53! and
~27!,~55! give the same result it is sufficient to show that t
difference between] i] i(log det f ) and trf2 is constant. This
is messy, but one can verify that

] i] i~ log det f !5trf224. ~56!

So the massless limit works out correctly. Unlike the SU~3!
case, the massless limit of Sp~4! theory is rather nontrivial
~the non-Abelian cloud coming into playing!.

One can easily show that when thea monopole becomes
massless~in that case the total magnetic charge is no
Abelian!, the situation is similar to the SU~3! case; namely,
the energy density is equal to the energy density of a sin
b monopole.

~3! Removing thea monopole: Now let us check wha
happens when one monopole is removed. Since the
monopoles are not symmetric in the Sp~4! case, we check
them separately. WhenD→` but keepingr 8 finite ~there-
fore r→`), the a monopole is removed. The leading co
tributions ofL,M are

L;r exp@~12m!r #cosh~mr 8!,

M;r exp@~12m!r #sinh~mr 8!. ~57!

Putting these into Eqs.~49! and ~20! one obtains

] i~ log det f !52 r̂ i8H~2mr 8!2ma r̂ i . ~58!

This ~notice thatr̂ i is a constant vector at this limit! repre-
sents an SU~2!-embedded monopole with massm5mb
which is what we are expecting.

~4! Removing theb monopole: WhenD→`, r 8→`, the
b monopole is removed. The leading contributions ofL,M
are

L;M;r 8exp~mr 8!sinh@~12m!r #, ~59!

which lead to~again, the second term is a constant vecto
this limit!

] i~ log det f !522r̂H@~12m!r #2mb r̂ i8 . ~60!

The energy density coming from this expression is the sa
as two directly superposed SU~2! monopoles with massm
512m5ma/2. This is consistent with the SU~4! picture in-
troduced in the discussion of the massless limit; namely,
a monopole can be considered as two overlapped SU~4!
monopoles whose energy densities are simply added s
they are noninteracting. This also gives a direct demons
tion of our discussion at the end of Sec. IV A.
12501
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C. From the moment of inertia to the moduli space metric

Since we have the analytic form of energy density, we
now able to compute the internal part of the moduli spa
metric using a nice ‘‘mechanical’’ interpretation. The idea
using a mechanical interpretation can be traced to Manto
original work @15# ~where the concept of the moduli spac
metric itself was introduced by comparing the action of t
monopole system and mechanical system! and was used in
certain arguments in recent works@6,16#. In this subsection
we will consider the massless limit of our Sp~4! system. The
metric in this case is known to be@5# ~changed into our
convention!

ds25mdx21
16p2

m
dx21

4p

D dD 214pD~s1
21s2

21s3
2!,

~61!

wherem is the total mass~which is just the mass of thea
monopole in this case! of the system;s1 ,s2 , and s3 are
one-forms defined as

s152sincdu1cosc sinudf, ~62!

s25coscdu1sinc sinudf, ~63!

s35dc1cosudf, ~64!

with the Euler anglesu, f, and c having periodicities
p, 2p, and 4p, respectively. It is interesting to notice tha
the last term in Eq.~61! has a ‘‘mechanical interpretation’
as the rotational energy associated with the massless c
with the coefficient 4pD playing the role of the moment o
inertia of the cloud. To see this let us calculate the mom
of inertia of the non-Abelian cloud. As we know, for
spherically symmetric system the moment of inertia ten
has the formI i j 5Id i j with

I 5
2

3E dVr2r. ~65!

Since the rotation of the cloud is actually the gauge rotat
in internal space, we should remove the gauge-invariant
r(D50) @this is an SU~2!-embeddedg monopole which is
gauge invariant#; so the effective energy density relevant
the internal rotation isr(D)2r(0). Using the result ob-
tained in the last subsection one can verify that

I 5
2

3E dVr2@r~D!2r~0!#5
8p

3 E drr 4@r~D!2r~0!#

516pD, ~66!

which leads to a term 16pD(dv1
21dv2

21dv3
2) in the

moduli space metric. Here one-formsdv1 ,dv2 , and dv3
are defined in the group space of SU~2! ~namely,S3). To
compare with the last term of Eq.~61! one notices that

s1
21s2

21s3
25du21df21dc212 cosudfdc. ~67!
0-7
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Therefore the volume of (u,f,c) space is@g5det(gi j ) is
the determinant of metric matrix coming from Eq.~67!#

V5E Augududfdc516p2. ~68!

Since the volume of group spaceS3 is 2p2, the two sets of
one-forms are related bys i52dv i ( i 51,2,3). Taking this
into account we see that 16pD(dv1

21dv2
21dv3

2) computed
from the moment of inertia is in accordance with the la
term in Eq.~61! obtained using other methods.

V. INTERACTION ENERGY DENSITY
AND THE FORMATION

OF THE NON-ABELIAN CLOUD

In previous sections we have calculated the energy d
sity of two monopole systems in SU~3! and Sp~4! theory. We
have already known that when one approaches the mas
limit, the situations are very different depending on the to
magnetic charge. If the total magnetic charge is non-Abel
the resulting energy density is simply the same as the en
density of the massive monopole. When the total magn
charge is purely Abelian, however, the energy density dis
bution is deeply affected by the existence of massless mo
poles. In the latter case, there is a non-Abelian cloud s
rounding the massive monopole, neutralizing the n
Abelian components of the magnetic charge. In this sec
we want to have a close look at the evolution of the ene
density when one approaches the massless limit.

There is no unique choice of quantity to describe the f
mation of the non-Abelian cloud; nor is there any unambig
ous definition of the non-Abelian cloud itself. But physical
there is no doubt that it is the interaction between mass
and massless monopoles that determines the behavior o
system, including the formation of the cloud. Our strategy
to study the interaction energy density defined as

r int5r total2ra2rb , ~69!

wherera andrb are the energy density of isolateda andb
monopoles.r int describes the change of energy distributi
caused by the interaction between two monopoles. In p
ticular we will look at the contour of the zero interactio
energy density which gives information on where interact
gathers energy and from where it extracts energy.

We have usedMAPLE to generate numerical data and plo
ted several typical contours~shown in Figs. 5, 6! for SU~3!
and Sp~4! theories~the region enclosed by the contour has
positive interaction energy density!.

From the contour diagrams one can see the major dif
ence between the two theories when approaching the m
less limit. In both cases we start with a simply connec
contour for the small mass ratio~when the distance betwee
two monopoles is large, the starting contour could be diff
ent!. The contour deforms and grows when the mass r
increases; in both cases it breaks into two disjoint pie
when the mass ratio is sufficiently large. The reason it bre
can be understood by directly analyzing the massless lim
r int @in the SU~3! caser int itself vanishes but one can us
r int /mb which remains finite#. Figures 7, 8 show those lim
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FIG. 5. Contour diagrams of the zero interaction energy den
on thex-z plane for SU~3! theory.a andb monopoles are located
at ~0, 0! and~0, 10!; mass ratiosma :mb are chosen to be~from top
to bottom! 4, 7, 19, 199.
0-8



e-

ains
atio.
r-

n-
the
du-
e
the
r is
e

and

k
t.
es
the
es
ing

y
mi-
her
nd
y

ly,
does
-

no-
e
sults
ight
n be

-
ely
o
rom
ve
on-

er,
o
ing

n-
si
t

TWO-MONOPOLE SYSTEMS AND THE FORMATION OF . . . PHYSICAL REVIEW D 58 125010
FIG. 6. Contour diagrams of the zero interaction energy den
on thex-z plane for Sp~4! theory.a andb monopoles are located a
~0, 0! and~0, 10!; mass ratiosma :mb are chosen to be~from top to
bottom! 4, 19, 66, 99.
12501
its. In both cases the limiting interaction energy density b
comes negative outside the core of thea monopole; this
means that the contour cannot keep growing and rem
simply connected all the way as one increases the mass r
After the breaking point, the part of the contour that su
rounds thea monopole is stabilized, but the other part u
dergoes a very different evolution in the two cases: In
SU~3! case that part of the contour keeps growing, but gra
ally moves away from thea monopole~because of the scal
of the graphs, it might not be able to see that easily, but
shortest distance between the two parts of the contou
increasing!. In the Sp~4! case, however, the situation is th
opposite; the other part of the contour eventually shrinks
finally disappears~this happens before going to the limit!. It
should be mentioned that in Sp~4! case if theb monopole is
inside the core of thea monopole, the contour could shrin
and be stabilized without breaking into two pieces at firs

The difference in the contour diagram of the two cas
explains their different massless limits and accounts for
formation of the non-Abelian cloud. Although in both cas
the interaction alters the energy distribution by accumulat
energy in certain regions, in the case of SU~3! that region is
ever expanding and the effect of the interaction~therefore the
massless monopole itself! is smeared out over the infinitel
large area; so the final energy density is completely do
nated by the remaining massive monopole. On the ot
hand, in the Sp~4! case, the interaction extracts energy a
deposits it into a small region~in some sense one can sa
that the interaction is more ‘‘localized’’ in this case!; as a
result it affects the energy density distribution significant
and because of the interaction, the massless monopole
not grow into infinite size as it would if isolated. The non
Abelian cloud is just the effect of such an interaction.

VI. CONCLUSIONS

So far we have analyzed the energy density of two mo
pole systems in SU~3! and Sp~4! theories and obtained som
idea on how the massless cloud forms. Based on these re
one can make some qualitative conjectures on what m
happen in general cases where the interaction energy ca
defined as

r int5r total2rmassive2rmassless. ~70!

The basic property ofr int we learned from the previous ob
servation is that when the total magnetic charge is pur
Abelian, the interaction is more ‘‘localized’’ in contrast t
the opposite case. Such an interaction extracts energy f
distant regions, accumulates it in the vicinity of massi
monopoles, and gradually builds up the structure of the n
Abelian cloud. This is fairly similar to the Sp~4! case.

When the total magnetic charge is non-Abelian, howev
qualitatively different situations could arise in general. T
see this, let us look at the case with the symmetry-break
pattern SU(N)→U(1)3SU(N22)3U(1) (N.4). Let
a1 , . . . ,aN21 denote simple roots. When the system co
tains massivea1 , aN21 and would-be masslessa i ( i
52, . . . ,N23) monopoles~notice that theaN22 monopole

ty
0-9
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CHANGHAI LU PHYSICAL REVIEW D 58 125010
is absent, and so the total magnetic charge of the syste
non-Abelian!, only massive monopoles survive at the ma
less limit. This can be seen by noticing that the system un
consideration is equivalent to the system studied in@8#
~which contains theaN22 monopole as well, and so the tot
magnetic charge is Abelian! with the aN22 monopole re-
moved. From@8# we know that the only cloud parameter
the system is given by

D5 (
i 52

N21

uxi2xi 21u. ~71!

So removing any massless monopole is equivalent to rem
ing the whole cloud~since it makes the cloud size infinity!.
Therefore only massive monopoles survive. This situatio
similar to the SU~3! case we have studied. But there are oth
systems which do not show such a direct analogue. As
example we can go back to our Sp~4! theory and consider a
system withN massivea monopoles andN21 would-be
masslessb monopoles~so the total magnetic charge is no
Abelian!. At massless limit, the massless monopoles in t
system will form a non-Abelian cloud rather than disappe
ing. This is because such a system can be obtained by
moving oneb monopole from a system containingN (N
.1) a2b pairs. At the massless limit the latter syste

FIG. 7. r int /mb in SU~3! theory at the massless limit~this curve
is independent ofD).
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contains a non-Abelian cloud with many independent s
parameters. Removing oneb monopole will not make all
these parameters infinity and therefore will not destroy
whole cloud. Another way to understand this is to notice t
when the extraa monopole is removed, we are left with
system made ofN21 a2b pairs~it can be called an Abe-
lian subsystem! which certainly contains the non-Abelia
cloud. Since removing thea monopole will not create cloud
the cloud must exist in the original system. This argum
can be generalized.

These examples reveal the complexity of the gene
cases. It seems that at the massless limit a system wi
non-Abelian total magnetic charge can still contain mass
monopoles~in the form of a non-Abelian cloud! in a ‘‘maxi-
mal Abelian subsystem.’’ We think further considerations
such situations will be interesting.

Note added.While writing this paper, we noticed the ap
pearance of@17# from which the energy density of SU~3! and
Sp~4! monopoles can also be obtained.
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FIG. 8. r int in Sp~4! theory at the massless limit forD510 ~this
curve has a weak dependence onD).
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