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The real time evolution of non-equilibrium expectation values with soft length scales'>(eT) ! is
solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP
and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via
power lawsto asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational
dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small
frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of
exponential decay. In the process we rederive the HTL effective action asingequilibriumfield theory.
Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem
for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian
approximation fails to describe the dynamiosth at short and long times. We find that the distribution
function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel
kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and
find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We
find an unusual dressing dynamics of bare particles and anom@dmasithmio relaxation of hard quasipar-
ticles.[S0556-282(98)03722-9

PACS numbd(s): 11.10.Wx, 12.38.Mh

[. INTRODUCTION self-energy contains a leading contribution from the hard
momenta of ordeg®T? which gives the hard thermal loop
There is currently a great deal of interest in understandingHTL) contribution, and a subleading contribution from the
non-perturbative real time dynamics in gauge theories asoft scales. Thél? dependence is a reflection of the UV
high temperature, both within the realm of heavy ion colli- quadratic divergence of the zero temperature theory which is
sions and the study of the quark gluon plagrhag], as well ~ cutoff at momentum scales T by the Bose-Einstein factor.
as the possibility for anomalous baryon number violation inRestoring the appropriate’s we see that this contribution is
the electroweak theor§9,10]. In both situations the dynam- of order#(g®T%/%2) where the first: is associated with the
ics of soft gauge fields with typical length scate$gT) tis  loop and the denominator follows from the usual manner in
non-perturbative. which A enters with temperature. This term is therefore
Their treatment requires a resummation scheme wher@(T%/%) and reveals the usual Rayleigh-Jeans divergence.
one can consistently integrate out the hard scales associatedr hard external moment&¢,,~T) this one-loop correc-
with momenta~T to obtain an effective theory for the soft tion to the propagator is obviously subleading and bare per-
scales. This is the program of resummation of hard thermaiurbation theory is valid. But when the external momenta are
loops[11-15. Physically, the hard scale represents the typi-soft (Key~9T), clearly the one-loop correction is of the
cal energy of a particle in the plasma while the soft scale isame order as the tree level term. This is in fact at the heart
associated with collective excitatioh6]. of the breakdown of the perturbative expansion. The problem
The recognition of the non-perturbative physics associis resolved by using HTL-resummed propagators and verti-
ated with soft degrees of freedom has led to an effort taces for the soft external lines while hard scales may always
describe the dynamics by implementing numerical simulabe treated within the usual perturbation theory. This proce-
tions of classicalgauge theoriefl7-24 since soft degrees dure is akin to obtaining a Wilsonian effective action for the
of freedom have very large occupation numbers and could isoft modes by integrating out all the momenta above a cer-
principle be treated classicall)20]. Effective classical de- tain soft scale which in this case ¢sT. For a detailed dis-
scriptions for the infrared bosonic modes have been obtainecussion of the relevant issues we refer the interested reader to
consistently in scalar field theory by integrating out the hardhe original works of Braaten and Pisar$kil,12.
modeq 25]. However, it was recognized that the dynamics of  All of the HTL contributions may be divided into two
the soft modes in gauge theories is sensitive to the hardistinct categories(i) the contributions from tadpole dia-
modes[26—29 and that the Rayleigh-Jeans divergences asgrams and(ii) those from diagrams with discontinuities.
sociated with the hard modes provide non-trivial contribu-While the tadpole contributions are independent of the exter-
tions to the soft dynamics. nal momenta, the diagrams with discontinuities lead to mo-
For example, the one-loop correction to the gauge bosomentum dependent terms and it is these that lead to the non-
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local effective HTL Lagrangian. The non-locality of the HTL to one-loop order in the HTL approximation. In this approxi-
effective Lagrangian for the soft modes originates in the promation the long-time behavior of the condensate turns out to
cess of Landau damping which results in discontinuities bebe governed by the Landau discontinuities resulting in Lan-
low the light cong[11,13,30-32 A very interesting method dau damping processes. Although the HTL corrections to the
to deal with the non-locality in the HTL effective action in gauge boson self-energy are well-known, we believe that the
numerical simulations of classical gauge fields has been resalculation of thereal time dependence of the damping of
cently proposed33] and is based on the particle method soft excitations is new.
akin to that used in transport theory. This method has been While an understanding of the real-time relaxation of non-
used to study the diffusion of Chern-Simons number in aequilibrium, inhomogeneous field configurations is of funda-
lattice approach34]. A local Hamiltonian approach that is mental importance in the physics of relaxation in the QGP
intrinsically gauge invariant has also been recently proposef7], such a calculation also has phenomenological implica-
[35] and has the potential for numerical implementation. Ations for sphaleron induced B-violating processes. It has
proposal to study the classical dynamics of soft gauge fieldbeen recently pointed o{i27—29 that standard estimates of
in terms of an effective Langevin equation has been put fortlhe topological transition rate at finite temperature in the
in [29]. However in our view such a proposal does not seenelectroweak theory ignore the effects of damping in the ther-
to incorporate consistently the non-Markovian nature of themal bath and these authors have argued that Landau damping
noise that is a result of the non-localities associated witlplays a very important role. Since the sphaleron is an inho-
Landau damping. mogeneous excitation associated with a soft length scale
The focus of this article is precisely to study in detail the (~1/g?T) Landau damping effects and the full HTL-
real-time dynamics of the evolution of gauge fields, given arresummed propagators must necessarily be taken into ac-
arbitrary field condensate in the initial state. This study willcount when studying the sphaleron damping rg8¥s-29.
reveal thatLandau damping processaminate the most One of our main goals is to assess in detail the real time
relevant aspects of the dynamics and as argued above, detaen-equilibrium dynamics of soft excitations in the plasma
mine the non-local aspects of the HTL effective action. Thewith particular attention to a critical analysis of the long-
main goal of this investigation isi) to provide a deeper standing belief that the small frequency region of the spectral
understanding of the time scales associated with dissipativieinction dominates the long time relaxational dynamics. We
off-shell processesi(ii) a consistent microscopic description find, to the contrary that the Landau dampithgesholdsat
that can be used as a yardstick to test lattice results on reaks= =+ k determine the long- time dynamics and that the early
time correlation functions, andii) a detailed real-time de- time dynamics is sensitive to several moments of the total
scription of relaxation and kinetics of soft collective excita- spectral density. This is an important point that bears on
tions in gauge theories. recent arguments that seek to clarify the damping effects on
Landau damping7,11-13 occurs when a hard quasipar- the sphaleron ratf27—29. We analyze this novel result in
ticle from the thermal battfwith momentum~T) scatters detail both analytically and numerically, thus proving that
off a soft collective mode(momentum~gT), borrowing the long time behavior is dominated by the Landau damping
energy from(and damping the soft excitations in the pro- thresholdsand that the small frequency region gives rise to
cess. Simple kinematics dictates that these processes can acb-leading corrections to the long-time dynamics in the
cur only off shelland below the light-cone i.e. for spacelike leading order HTL approximation.
four-momentum. Furthermore, Landau damping gives a non- In this article we concentrate on the case of scalar elec-
zero contribution only in the presence of a heat bath androdynamics(SQED since this theory has the same HTL
when the external momentum is non-zero. Phrased differstructure(to lowest order as the non-Abelian cad&7,3§.
ently, the Landau discontinuities gparely thermal cutaris-  Most of our results can therefore, be taken over to the non-
ing only at non-zero temperature and lead to damping of\belian case with little or no changes at least in the lowest
spatially inhomogeneoufield configurations only. Whereas order HTL approximation. Scalar electrodynamics has al-
the real-time dynamics of similar processes has been studigdady been used as an example to study the HTL resumma-
in a scalar theory36], such a study is lacking for the case of tion for the infrared modeg38], but the scope of this article
gauge fields. The gauge boson self-energy in the presence igfdifferent in that we study explicitly the real time dynamics
these processes has been known for a long fBe32 and  of the damping processes.
can be computed in the imaginary time formalism of finite  After resummation of the one-loop HTL contributions, at
temperature field theory in the HTL limjB7]. long times the relaxation of either transverse or longitudinal
The main focus and goals of these article are: field expectation values is given by two contributions. The
To compute explicitly theeal time evolutiorof inhomo-  first is from the quasiparticle modes, and is standard—an
geneous field configuratiori®on-equilibrium field expecta- oscillatory function in time. The second contribution arises
tion values in the ultrarelativistic plasma as amitial value  from branch point singularities in the HTL self energies at
problem We linearize the field equations of motion in the nonzero frequency. These produce correlations in time which
condensate amplitude. In this weak field regime, the evoluare oscillatory times power law tails; these power law tails
tion equations for the condensate can be solved in closedre a new feature of HTL's. Long time power law tails in
form through Laplace transform. The analytic structure ofcurrent-current correlators have been recently reported in
the propagator in momentum spa@eplane determines the Ref.[28].
real time behavior of the solution. We obtain the propagator Furthermore we obtain consistently the effective Lange-
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vin equation for soft modes by integrating out the scalaron a gauge invariant description of the dynamics. Section 11l
fields and obtaining the influence functional for the gauges devoted to a derivation of the non-equilibrium equation of
invariant observables. This allows us to extract the noiségnotion for the inhomogeneous condensate to one-loop order
correlation function that displays all of the non-localities as-in the hard thermal approximation. The real time relaxational
sociated with HTLs and Landau damping. By deriving thedynamics of the inhomogeneous configuration via Landau
relevant fluctuation-dissipation relation we identify the damping is investigated in detail in Sec. IV. Contact is es-
proper correlation function that emerges in the classicaf@Plished with the fluctuation-dissipation theorem and sto-
limit. This analysis reveals that the range of both the dissichastic dynamics in Sec. V, where we derive a Langevin
pation kerel as well as the noise correlation function argl€Scription for the soft gauge invariant degrees of freedom in
determined by theoftscale. This results in the kernels being the thermal bath and recognize the relevant correlation func-
long-ranged, typically falling off with a power of time and t|on§ that emerge in ét_;em_b classu_:al_stochastm description.
with no Markovian limit. Again this result is deeply related W introduce a new kinetic description of transport phenom-
to the non-localities of the HTL effective action and preventse€na induced by the non-collisional Landau damping process

a local description of relaxational dynamics associated wit? Sec. V1. In this section we study the relaxation of the
Landau damping. distribution function for soft quasiparticles, bare particles

Our detailed analysis and the consistent formulation of thnd mention some interesting features of the relaxation for

influence functional starting from the microscopic Lagrang-nard quasiparticles. Finally, we summarize our analysis, dis-

ian, unequivocally leads us to the conclusion that an effecSUSS the modifications that will arise when higher order cor-

tive stochastic Langevin description of gauge field relaxatiof€ctions leading to collisional lifetimes are included and
to leading order in the HTL limit imon-Markovian Because present our conclusions and possible future directions of
of the long-range kernels associated with Landau damping, gtudy.
Markovian limit cannot be consistently extracted. This result
points out the limited utility of a Langevin equation for de- Il. PRELIMINARIES
scribing relaxation via Landau damping.

Having established the relaxation of inhomogenous gauge
field configurations via off-shell processes associated with!

Landau damping, we ask how these processes contribute fects[,ﬂsu\;:vr;] a;s Lan_clilaéj (:]amp.lngt;, tm attnhon-Abellan glauge
the relaxation of the distribution function of transverse de-€°"YL/J: at we will do here Is to treal the same problem

grees of freedom. Clearly the evolution of the distribution'” the context of scalar quantum electrodynam{8QED)

function cannot be described to this order by a Boltzman oddel. Tcl’ Ieadlnfg c;:dte[], we expectththat thE’bSPOUId be_"’.‘t
equation, since this kinetic approach only includes on-she(@00¢ anaiogue of what happens in the non-Abelian case, |

processes. Thus we provide one of the novel results of thi§IS° has the advantage that it is simpler to deal with, and as

work: we incorporate the non-equilibrium relaxation effectsV© will see bel?vw' it tc;lan b_?h9a3t _1;|ron|) the (t)utset n tet:.”‘s of
from Landau damping into a kinetic equation that describe auge invarlantvariables. 1his will eliminate any ambigu-

the relaxation of the occupation number of transverse gaug'gfesﬁasﬁoﬁ'ated \tAf['th the usual problem of gauge dependence
fields. This kinetic equation incorporateH-shelleffects and ot ori-shetl quantities.

therefore constitutes an advance over the usual Boltzmantn Weh\.N'H start V.\{'tg ;o?;]e gh(l)znsogleneoutsa%fbel?lvilor;ﬁgura-
kinetic description in terms of completed collisions. We ar- ion which is excited in the SQED plasma ' at we

gue that since Landau damping results in an exchange Jyant to do is to follow the time development of this configu-

energy (and momentuinbetween the quasiparticles in the ration as it interacts with the hard modes in the plasma, and

bath and the out-of-equilibrium field configuration, this in !{2 part|cu"Iar, we Wa(;]t to knom;_vxllhetk;er the relt?]?(atl?jnffls Oft
turn will naturally lead to a depletion of the particle number € usually assumed exponential Sort or something ditrerent.

from the field configuration and must necessarily be included I.'et us first reformulate SQE.D In terms of gauge invariant
in any accurate kinetic description which aims to probe re_vanables. The SQED Lagrangian is given by
laxational phenomena on the relevant time scales. A frame- 1
work to study these transient, off-shell relaxational phenom- L£=D,®'D*D—m? D)2~ ~F, F+,
ena as initial value problems is given in Ref40—42. The K’ 4= 1
analysis presented in this article implies a Dyson-like resum-
mation that goes far beyond Boltzmann Kinetics. D, ®=(d,—ieA,)d. 2.1
We compare the results from these new kinetic equations
to several different approximations to the kinetics. In com- A description of the dynamics in terms of gauge invariant
paring the relaxation of dressed soft quasiparticles and thatbservables begins with the identification of the constraints
of bare particles and hard quasiparticles, we find a remarkassociated with gauge invariance. The Abelian gauge theory
able dressing dynamics of the degrees of freedom in the mdias two first class constraints, namely Gauss’s law and van-
dium, and anomalous relaxation for the hard quasiparticlegshing canonical momentum foh,. What we will do is
We also argue that a proper kinetic description must incorproject the theory directly onto the physical Hilbert space,
porate consistently the HTL effects and the quasiparticle nadefined as usual as the set of states annihilated by the con-
ture of the excitations. straints. The procedure is simple. First, we obtain gauge in-
In Sec. Il we introduce the model under study and focusvariant observables that commute with the first class con-

As mentioned in the Introduction, our ultimate goal is to
nderstand relaxational processes associated with off-shell
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straints gnd write the Hamiltonian in .term_s of these._ AII of (OY=Ti[ p(H)O]. 2.5

the matrix elements between gauge invariant stéesihi-

lated by first class constraintare the same as those that For thermal initial conditions with an initial temperature
would be obtained by fixing Coulomb gau§e A=0. The  given by 13, the density matrix at=0 is p;=e~#"i and the
Hamiltonian, when defined in the physical subspace, can babove expectation value can be rewritten easily as a func-
written solely in terms of transverse components and intional integral defined on a complex-time contour. Notice
cludes the instantaneous Coulomb interaction as would bthat H; is notthe Hamiltonian of the system far-0. The
obtained in Coulomb gauge. This instantaneous Coulomb insystem thus evolves out of equilibrium. The contour has two
teraction can then be traded forgauge invariantLagrange  branches running forward and backward in time and a third
multiplier field Aq(x,t) (a non-propagating field whose ca- l€g along the imaginary axis stretching tte- —i 8. This is
nonical momentum is absent from the Hamiltoniéinearly ~ the standard Schwinger-Keldysh closed time path formula-

iy ; _ tion of non-equilibrium field theorysee Refs[43-45 for
coupled to _the charge_,- defs'n(ax’t) anq obeying the_ alge detaily. Fields defined on the forward and backward time
braic equation of motio’V<Ay(x,t) = p(x,t). Alternatively,

. X ontours are accompanied with-§ and (—) superscripts
Oneé can use a phase-space path integral representation of %pectively and are to be treated independently. The expec-
generating functionals, trade the Coulomb interaction with

S ! Ration value of any string of field operators may be obtained
Lagrange multiplier linearly coupled to the charge density,, inyo4ucing independent sources on the forward and back-

and ?egorhm therf)a(;h ||nte§]ral Or:’ erftrl}e C?‘“OE'Ca' mo_mer:jta &Rard time contours and taking functional derivatives of the
usual. Both methods lead to the following Lagrangian denyenerating functional with respect to these sources. The

Sity: imaginary time leg of the complex time contour does not
1 contribute to the dynamics. Since the path integral represents
L=9,d 3“(D+§<9MAT'<9”AT a trace, the initial and final states must be identified and

therefore all the local bosonic fields(i,t) satisfy the Kubo-
o L 1 Martin-SchwingerlKMS) periodicity condition
_eATJT—ezATAT(I)TCI)-l— E(VA0)2+e2qu)T(D N N )
O (x,tg)=0P(x,tg—iB). (2.9

. bt _ T
ieA(PP —D D), The non-equilibrium SQED Lagrangian is given by

J=i(@TV - V10T @), (2.2 Looneq= LIAT ,@F, 0T AT ]- L[A7 , &, 0T A .

2.7)
whereA+ is the transverse component of the gauge field. ) ) ) )
In order to provide an initial value prob|em for Studying Perturbative calculations are carried out with the follow-

the relaxational dynamics of charge density fluctuations wdnd non-equilibrium Green'’s functions: Scalar propagators:

introduce an external sourq{é_(i,t) linearly coupled toA, 3
and study the linear response to this perturbation. Further{®@T(x t)d®)(x,t"))= —if 3
more, it is convenient to introduce external sources coupled (2m)
to the transverse gauge fields to study the linear response _
transversegauge field configurations. These external fieldswhere @.b)e{+,—}.
could in principle play the role of a semiclassical configura- G (tt)=GI(t,t)O(t—t') +GE(t,t)O(t 1)
tion coupled to small perturbations in a linearized approxi- ko kAo kA i2 )
mation. Therefore we include external source terms in the '
Lagrangian density:

Gﬁb(t’t/)e—iﬁ.(i—ﬁ)’

G (L) =G (t,t)O(t'—t)+ G (t,t)O(t—t’),
L— L= T (X DA 1) — Tr(X,1)-Ap(x,t). (2.3
Gp T (tLt)=—G (1), (2.9
The relaxational dynamics of our initial inhomogeneous
configurations is clearly an out of equilibrium process, and
needs to be treated by an appropriate formali46+45.
In the Schrdinger picture the dynamics is completely de-

scribed by a time-evolved density matrixthat obeys the (2.10
guantum Liouville equation:

i : , 4 ,
~ Gk<(tit,):2_wk[nke_lwk(t_t )+(1+nk)elwk(t—t )],

i H ! . ’
Gk>(t,t’)= 2—wk[(1+ ne  ektt) 4 glext=t)],

dp A

|ﬁ5=[p,H], (2.9 (2.11)
whereH is the Hamiltonian of the system. The expectation o= VK2 +m2  n.= ! _
value of any operato® is given by efor—1
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Photon propagators:

a Yy ; d*k a 1 a—ik-(x=x"
(AR, HAP (Xt ))=—|Jwgijb(k;t,t Yok (=X,

;TG =P (R[G (tt)e(t—t')
+Gi (L1)O(t —1)],

G (kt,t) =P (K[G (L,t)O(t' —1)
+Gi (L1)O(t-t)],

i (ktt)==P(k) G T,

i o -
Gr (1) = 5[ (14N K4 Nght=1],

(2.12
[ _ ) . ,

glf(t,t’): E[Nke_lk(t_t )+(1+ Nk)elk(t—t )]'

(2.13
N.= 1
k— eﬂk——l
HerePij(IZ) is the transverse projection operator:
- Kik;

Pij(K)=&;;— 7 (2.149

PHYSICAL REVIEW D 58 125009

guantum fields into c-number expectation valg@ebich are
the non-equilibrium expectation valuand quantum fluctua-
tions about these expectation values:

A (X,1) = Ar(X,)+ SAL(X,1);
AGT (X, 1) = Ao(x,t) + SAG(X,) (3.

Ar(x,0)=(AF(x,1));  A(x,H)=(AS"(x,1))

(3.2

where the expectation values of the field operators are taken
in the time-evolved density matrix.

The equations of motion for the background field can be
obtained to any order in the perturbative expansion by im-
posing the requirement that the expectation value of the
quantum fluctuations in the time evolved density matrix van-
ishes identically. This is referred to as the tadpole equation
[45] which follows from Eq.(3.1) and Eq.(3.2):

(6AF)Y=0; (8A5)=0. (3.3
The equations obtained via this procedure are the equations
of motion obtained by variations of the non-equilibrium ef-
fective action. The perturbative expansion needed to com-
pute the relevant expectation values is obtained by treating
all the linear terms[45] in the fluctuations as interactions
along with the usual interaction vertices.

Although in principle the tadpole method could be used to
study arbitrary background configurations including non-
perturbative onegfor e.g. sphalerons in the non-Abelian
case we restrict our discussions to the small amplitude re-

With these tools we are ready to begin our analysis ofyime in close analogy to the work of R¢86] for scalar field

non-equilibrium SQED.

Ill. LINEAR RELAXATION

theory. In other words, the effective action equation of mo-
tion will be studied in the linear approximation for the con-
densate amplitude so thé}(A2,) and O(A3) and higher

orders will be neglected. In addition, the evolution kernel

expectation valuesdr(x,t); Ao(X,t) which are excited at

Defining the Fourier components of the electromagnetic

time t=0 in the plasma. The non-equilibrium expectation condensate as

values of the transverse components represent electric and
magnetic fields, whereas the expectation of the Lagrange

multiplier field Ay corresponds to an initial charge density in ATi(IZ,t)=f d3xe'k"‘ATi(>Z,t), (3.9
the system.

The dynamics of these non-equilibrium expectation value R L
will be analyzed by treatingl(x,t);.Aq(X,t) as background Ao(k,t):f d3xe* *Ag(x,1) (3.5

fields, i.e. the expectation values of the corresponding fields
in the non-equilibrium density matrix, and expanding the La-we obtain the following equation of motion to one-loop order
grangian about this configuration. Therefore we split the fullfor the transverse part:

2 3

pTiij[(1+ np+ np+k)Sin{(wk+p+ a)p)

G RO AR D+ 26X @) Ari(k, 1) —2¢ f de (2m) w0
p+k

X(t_T)}+(np nk+p)sm{(wk+p wp) T)}]ATJ(I( T)= \7T|(kt) (3.6

Herep+; refers to the component of the spatial momenmmhich is transverse to the wave-vecﬁnandAT,-(IZ, T) stands for
the Fourier transform of the external sourg(x,t) in Eq. (2.3).
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The tadpole term which appears due to the 4-point “seagull” vertex can be evaluated easily in the limiffwharand
yields the following hard thermal loop contribution

1+2n, d®k €212
20 (2m)3 6

2e2<<DT<D>=2e2f (3.7

We remark that in evaluating the tadpole diagram above and in all subsequent calculations it issalsusgedhat the
zero temperature divergences have already been absorbed in the proper mass and wavefunction renormalizations.
The longitudinal part obeys a similar equation:

R t d3p Wi+ .

szo(k,t)—FezJ'Ode (2m)? ( :}pp—l)(1+np+np+k)sm{(wk+p+wp)(t—f)}

[ L 1) (=i psinf (o p— 0p) (1= 1} Aok, )= T (KD, 39
p

It should be noted that the equation of motion for the longitudinal component has no time derivatives, indicating the non-
dynamical nature of the field. The source term for the longitudinal component is interpreted as an external disturbance that
induces a charge density fluctuation in the SQED plasma. The response to a general disturbance can be obtained by convo-
lution from the result of linear response to the impulsive perturbation.

We also note that unlike the transverse case, there is no contribution from the tadpole term to the effective action equations
of motion. This fact will be important in understanding the origin of a non-zero Debye mass.

The nonlocal terms in Eq$3.6) and (3.8) are the one-loop self-energies for the transverse and longitudinal components
respectively, resulting from the photon-Higgs trilinear coupling. The first piece in the nonlocal terms proportiorahjo 1
+nyp is the difference of the following creation and annihilation processes in the mediéim y— ®® with Bose factor
(1+np)(1+np4y) and® P — y with a statistical factonyn, ;. The piece proportional tang—ny, ) is the Landau damping
contribution[13,46. Whenk= 0 this contribution vanishes indicating that it affects inhomogeneous excitations only. Further-
more, it has no zero temperature counterpart since the Bose fgetar ;. , vanishes identically af= 0. This term arises from
the difference of the processesb—® with statistical factor (¥ ny,,)n, and ®— y® with the factor (Hny)n.,,.

Although it does not give rise to an imaginary part for te-shellself-energy, it will nevertheless have an effect on the
physical processes associated with the relaxation of the inhomogeneous condensate as described in detail below.

We can solve Eq93.6), (3.8 via the Laplace transform. Introducing the Laplace transformed fields

Ari(k,8)= f:dte‘S‘An(E,t), (3.9

Ag(k,s)= foxdte’StAo(IZ,t), (3.10

and performing the transform on the above equations of motion we get following the same methods a$36]Ref.

-~ d® wpipt o
(sz+k2+e2T2/6)ATi(k,s)—2e2f . P (1+np+np ) ktp " p .
27) wpoi,p S*t+ (w4 pt wp)
Wp+p— W ~ >
+(Np=Nksp) 2P 5 | PTiPTjATi(K,S)
$*+ (Wi p— wp)
=SAri(K,0)+ Ari(K,0) + Tri(K,S) (3.1

for the transverse part, and

+1

ar (warp_l

wk+p+wp +<wk+p
S+ (s p+ wp)? wp

(L+np+ng.4)

wk+p_wp ~
n,—n Ap(k,s
( p k+p)sz+(wk+p_wp)2‘|] O( )
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for the longitudinal component. The Laplace transform vari-where
ables plays the role of aiimaginary time component of the

photon four-momentum. 5

- ’,E=—2e2f— iPT
IV. REAL TIME LANDAU DAMPING pij(@",k) (zw)3wpwk+ppT'pT‘
With the equations of motion for the non-equilibrium ex- X[(1+N,+Np51) 80— 0y p— wp)
pectation value in hand, we turn to the analysis of its time
evolution, paying particular attention to those parts of the +(Np=Nysp) S(@gsp—wp—w')]. (4.2

spectral density which contribute to the long time dynamics.

We do this by solving Eqs3.11), (3.12) via the inverse The one-loop transverse self-energy in tplane is given
Laplace transform. Recall that this requires an integratio®y
along a contour parallel to the imaginasyaxis placed in
such a way so as to have all the singularities of the integrand 0272 .
to the left of the contour. To do this, we will need a clear Py K)st (s)= Pij(E)Jrf do’ w pij(w’,E,s),
understanding of the analytic structure of the photon self- 6 2402
energy in thes-plane. We will explicitly outline the details of 4.3
the calculation for the transverse part only, since those for '

the longitudinal part are similar. where we have recognized the fact tlpa}tocPij(IZ).

Using P;(K).Arj(K,s) = Ari(K,s) the Laplace transform

A. The transverse part L
P of the transverse part of the condensate is given by

It is illuminating to write the equation of motiofB.11) in

terms of a spectral density functign;(w’,K) [36]:
! s A7i(K,0) + Ari(K,0) + Tri(K,5)

o Ai(k,s)= K2a st . 49
(s2+k2+e?T?/6) A+i(k,S) s?+k*+3(s)
The real time dependence of the inhomogeneous background
J do’ p”(w k)ATJ(k S) is given by the inverse Laplace transform of the above ex-
24’2 pression which is in fact the retarded propagator defined in
R o o the s-plane. The inverse transform is calculated by perform-
=sAi(k,0) + A7i(k,0) + Jri(k,S) 4.1 ing the following integral along the Bromwich contour.
|
. ctie ds ctie ds S.A-r,(k 0) + Agi(k,0)+ Fri(K, s)
A-k,t=J —.eS‘A-k,s=f —est 4.
TI( ) c—ioo 277| TI( ) c—iw 27_” s —|—k2+2 (S) ( 5)

Here we choose=0, such that the contour is to the right of all the singularities ingipéane.

The time dependence of this integral crucially depends on the analytic properties of the propagator and hence a clear
understanding of the poles and cuts of the retarded propagator is essential. At this stage we will set the external current to zero,
and analyze the contribution of the sources at the end of this subsection.

In all of the above and in what follows it is implicitly assumed that the zero temperature divergences have been dealt with
already by renormalizing the amplitude of the field, i.e. wave-function renormalization and that we are working with the
subtracted spectral function. Recall that the divergences are determined solely by zero temperature fluctuations.

We define the real and imaginary parts of the self-energy near the imaginary axis through

S iwx0")=3k(io+0")+iZ|(io=x0"). (4.6)

In fact it is easy to see from E@¢4.3) that

E}thoJr):ISgr(w)g(pij(|w|)_9ij(_|w|))

d3
—+—sgrrw>f LS'DT[(anme)a(wmﬁwp—|w|>
+(np_nk+p){5(wk+p_ wp_|w|)_ 5(wk+p_wp+|w|)}]- 4.7
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This shows thaf|(iw—0")=~-X|(io+0") and that the T 0?2 ol 02 |k+o
cuts will appear whenever the delta functions are satisfied. Et(iw+0+)=? 2—+ X 1-— In o
Analysis of the arguments of the delta functions reveals that k k @

the two-particle cuts arising from the first term in E¢.7) 212 2

stretch froms=*i(m+ wy) to s==*i%. The second and +ie_77 2( -2 0 (k2— w?)

third terms in Eq.(4.7) contain the hard thermal contribu- 12k k2

tions. They have support whe#) , ,— wp:IZ- p= =+ » which (4.10

corresponds to the four-vectom(IZ) being spacelike. The

resulting branch cut runs frore= —ik to s=+ik. Hence and agrees with known result31,32,37,38,4p

these processes are induced only by off-shell space-like pho- In addition to the branch cut singularities, the retarded
tons. These HTL contributions lead t@ndau dampingIn propagator will also have isolated poles corresponding to the
summary, the physical region singularities and the Landaguasiparticle excitations which can propagate in the plasma.
discontinuities show up as discontinuities in the imaginaryThe poles for the transverse excitations will be given by the
part of the self-energ®'(s) when approaching the imagi- solutions to

nary axis of thes-plane i.e.s=iw.

In addition, as argued in the previous section the contri- ) e’T? w3 wp 2 +wp
bution of the physical region cuts from= *i(m+w) to wp=K"+ —5- ZFJF i 2 I — | 41D
s=*iw to the self-energy areInT only, and therefore sub- P
leading compared with th®(T?) terms. . )

Furthermore the long time dynamics due to the cuts will L e T m ﬂ( 1— ﬁ) O (K= w2) 4.12
be dominated by the threshol@s the end-points Since the 12 k k2 P '

end-points of the Landau damping discontinuities ares at

wi.ik, they will be th'e dominant contributjon and the two They will be in the physical sheet provided the imaginary
particle cuts frons= *i(m+ w,) to s= oo will be sublead- part vanishes at the pole.

ing at long times. Thus we can simply focus on Landau’ g g1 the equation cannot be solved analytically, in the
damping both as the leading high temperature and long imgqe of interest when the external momenta are extremely

cqnt(ibutiqns. This argument is necessary becausg it ia Not 5ot (for e.g. k~e’T<eT) representing a small amplitude
priori obvious that the high temperature and long time I|m|tsIong wavelength field configuration, the approximate loca-

are described by the same processes. ti f th les is found to b&s=+iwo=+i(eT/3
The leading term in the self-energyT? is given by [lglnsg 37 38$ poles is found to bes=tiwp=2i(eT/3)

The two-particle cuts were shown to run frass £i(m

dn ) + wy) to =i wheremis the mass of the scalar. A consis-
__r

2
Ef(iwi0+):ie—sgr(w)f dp pz( tent HTL resummation should also include the shift in the
87 dp scalar masses, thus ensuring that to this order the quasiparti-

cle pole is in the physical sheet. Higher order contributions

1
X f dx(1—x?)kx will provide a collisional broadening to the pole. It is a note-
-1 worthy point that the quasiparticle poles are located beyond
X[ 8(kx—|o|) = 8(kx+|w|)] the Landau discontinuities which str_etch fronik to +ik in
the s-plane, and below the two-particle threshold.
e2T2r w2 , In summary, to this order in the HTL approximation, the
== 12 Kk 1- F O (k= w9). analytic structure of the retarded propagator in the high tem-

perature limit features a Landau discontinuity running from
(4.9 —ik to +ik and quasiparticle poles &= *iw,(k). The

two-particle cut contributions have been shown to give a

subleading contribution both in temperature and in the long
The real part can be obtained either by using dispersion raime dynamics.
lations or by explicitly solving for the hard thermal self-  Using Eq.(4.5 we can now invert the transform by de-
energy by calculating the relevant integrals and we find  forming the contour and wrapping it around the poles and the
cuts to pick up the corresponding residues and discontinui-
ties repectively so that

is )
iSTk + O(lnT)
4.9

2T2

Y=

s>
ZE‘FI—

SZ
1+ —

% In

k

Ari(K, )= A"k, ) + AL (K, ). (4.13

The contributions from the quasiparticle poles add up to give
a purely oscillatory behavior in time. The residues at the
From this expression the transverse self-energy along thpoles give rise to a wave function renormalization with both
imaginary axis when approaching from the right, can be read-dependent andT-independent contributions. Thd-
off easily: independent contribution contains the typical logarithmic di-
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vergence and has been absorbed in the usual zero tempera- -1

. . ; (i)
ture wave-function renormalization. We thus obtain Z'[T]=

1- 2

(4.1

I0° | oomeTrs
. . .~ . sin(wpt) Here Z'(T) is the temperature dependent wave function
APRO(K t)=Z[T]| Ari(k,0)co wpt) + A7i(K,0) —} renormalization defined on-shell at the quasiparticle pole
@p whose leading HTL contribution is obtained from the self-
(4.14 energy(4.10. The continuum contribution is given by

. 2 (x SHiew+0")[Ari(k,0) wcog wt)+ Ari(K,0)sin(wt)]
Hikty=—] d : :
Az Trfo @ [w2—K2=3h(iw) ]2+ [Z](io+0")]? 419

Evaluating Eqgs(4.13), (4.14 and(4.16 att=0 we obtain an important sum rule,

ARNES ZJkd wXi(io+0") 1 (4.17)
— w == .
mJo  [w?-K?—3R(iw)]*+[Z(io+07)]?

|

_This sum rule is a consequence of the canonigal commu- ATi(IZ,t)=ATi(E,O)[1—e2T2t2Ae+ OtH]

tation relations but its content in the HTL approximation is
that in the high temperature limit the wave function renor- .. e’T? )
malisation which is evaluatedn-shellis completely deter- +ATi(kiO)Ao?t[1+O(t )], (419

mined by the Landau discontinuities which originate from
strongly off-shelprocesses. A similar sum rule was also ob-

tained ip[ll] using different methods. . whereA,, are constants depending on the wave-function
The integral over the cut4.16 cannot be evaluated in renormalization and moments of the spectral density.

closed form but its long time asymptotics is dominated by At ong times, the dominant contributions are from the
the end-point contributions as can be understood from th@earest singularities in the complex plane. This includes
following argument. The integral along the realaxis from  the usual contributions from the quasiparticle modes at
=0 to w=k can be obtained by deforming the integral into +wp, given by Eq.(4.14. In addition, there is also the
the upper complexw plane so that it runs along=iz;0  contributions from the branch points at= =k, Eq. (4.18.
<z<o, then around an arc at infinity and back to the realThere is no contribution fronm=0, because the HTL self-
axis along the linew=k+iz;0<z<o for the termoe'®! energy is regular about zero frequency.
and similarly into the lower complex plane for the term  Figure 1 shows the cut contributiad $"'(k,t)/ A(k,0)
xe ! A detailed analysis of the asymptotic behavior ofvs time for e?T?/k?=2 and Fig. 2 showst?2A45"(k,t)/
the integral reveals that only the=k end-point contributes
because the contributions from= 0 vanish for large faster 008 . . . :
than any negative power df This is a consequence of the AT for er2T212 = 2and ket ——
regular behavior of the spectral density in the vicinity«of 0.04
=0.

We find the contribution from the@ =k end-point in the 003 |
long time limitt>1/k to be given by

0.02

Lt 12 . cogkt) . . sin(kt) oty
cut - _ . 7 .
Azikt) = 72 Ari(k,0) 2 +Ari(k,0) 2 0
1
X|1+0 T” (4.18 001 |
R 2‘0 4I0 6‘0 8Io 100
From the sum rulg4.16 and(4.17) we find that thesarly FIG. 1. Cut contributiond $"(k,t)/ Ar(k,0) for e?T?/12=2 and
time behavior is approximately given by k=1 vst.
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Int t

__ ||HMH||}LHHH‘HWHHH"Hllm .

) ” TR H:‘MH?yu‘u‘l};t;wu e

FIG. 2. t2X A$(k,t)/ A7(k,0) vs t(in units of 1/K for m3/k?=12;m3=e?T%3.

Ar(k,0) vst (in units of 1k) for mp/k?=12 for the case +oo 7 (k,s) must have singularities somewhere in the left
A+i(k,0)=0. half-plane. Otherwise, it will be an entire function which is
The point being made is that the real time dynamics of thezero at infinity and therefore identically zefd@.he singulari-

condensate is completely determined by the analytic struaies of 7;;(k,s) in the left-halfs plane yield contributions to

ture of the retarded propagator and tjlebal structureof ATi(R,t) through Eq.(4.5) which decrease exponentially in

the spectral density in theplane. _ _time ase . They are therefore subdominant compared
The second important point to note is that the long timeith the Landau cut contribution.18).

behavior is gpower IaWNt_Z (times oscillationsandnot an The source term contribution from the sms# i w region
exponential decayThis means that Landau damping effects .o e understood simply as follows. Within the above hy-

cannot be reproduced by phenomenological “viscous” . ~ .
terms of the type~TI'(d/dt) neither at long nor at short pothesis, t_he source tergi;(k,iw) can be expanded in a
Taylor series for smallv

times. The failure of such a phenomenologically motivated
ansatz was already noticed at zero temperature in different
contexts in Ref[44]. We stress that such a description not - o . . )
only fails to reproduce the power law behavior but in fact Jri(Kiiw)=Jo(K) +J1(K) o+ O(w”).
ignoresall the non-localphysics of Landau damping which
is so clearly encoded in the hard thermal loop kernels. .
One might argue that higher order processes, both Landau The even termJo(k) can be absorbed into a shift of
damping and collisional, could lead to an exponential relax-4+;(k,0), while the odd ternd;(k) can be absorbed into a

ation. However, the point of the above analysis is to arguenift of 4.,(k,0), Eq.(4.5. Thus as before the asymptotic
that the full relaxational physics will be described bg@n-  |arge time behavior is completely dominated by the branch
petition between the power laws from the lowest order Lan-points at w=+k. Under the above assumptions on the
dau damping contributions and the higher order exponentigl gp|ace transform of the external current, we find the general
damping. The time scale of interest will determine whichiime dependence to be given by
process dominates.

For non-zero external sources we can obtain the general
real time evolution by inserting the Laplace transform of the

. toe 12
source in Eq(4.5) AN K ) = — ———{[kAmi(K,0)— Si(k)]cog kt
Rk = — 5 5 {lkAn(k 0~ S (k) Jcogkt)
7 . % = N —st H K ) " 1
Jri(k.s) fo dte™"Inlk). +[Ani(R0) + Ci(K) Jsin(kt)} 1+0(;”.
o . . . (4.20
This is an analytic function ok for Re(s)>0 provided

Jri(Kk,t) is a non-singular function of time. Let us assume
that ~jTi(lZ,s) is analytic for Re§)>—«a, wherea>0 is a HereC;(w) andS;(w) stand for the Fourier cosine and sine
positive number.[Since 77i(k,s) vanishes for Ref)—  transforms of the sourceri(K,t), respectively:
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% R damping, and the two plasmon poles aiw,. The Bro-
Ci(w)= jo dtcog wt) Jri(k,1), mwich contour is then deformed to pick up the cut and pole
contributions so that

S(w)=JO dtsin(wt) Jri(k,t). Ag(K,t)=AB°'(K,t) + AUk, 1), (4.26
We emphasize that to this order in the HTL resummation,Where
the region neaw=~0 of the spectral density is regulémo ) sin(wgt)
branch singularitiesand thereforaloes notcontribute to the Ago'e(k,t): —z'[T]—O, (4.27
long time dynamics, which is completely determined by the @o
end point(branch poink at w=k. 1
33 (iw)
. Z\[T]= 1
B. Longitudinal part dw?

o=w,=eT/3

An analysis very similar to the one outlined above yields (4.28
the following expressions for the longitudinal component of
the photon self-energy in the case of an impulsive sourc@nd

JL(x,t)= 8%(x) 8(t) with spatial Fourier and Laplace trans-
form given bny,_(lZ,s)zl. The case of a more complicated Agut(lz,t):
source can be obtained by convolution. In this case we obtain

- szd Si(iw+0")sin(wt)
7o [+ Sh(i@) P+ [E (0 +01) ]2

(4.29
. 1
Ao(k,s)= < (4.21) Unlike the transverse components for which the sum rule is a
k“+X(s) consequence of the canonical commutation relations, for the

longitudinal component there is no equivalent sum rule be-

where cause the fieldhy(x) is a non-propagating Lagrange multi-
22 22 e plier.
EI(S):i_ii PIn fs K ) (4.22 The long time, asymptotic behavior of the longitudinal
3 6 ik is+k condensate is dominated by the end-points of the integral

o . i .. (4.29. The end-pointw=0 yields contributions that vanish
Thus the longitudinal self-energy along the imaginary axis ingg, long t faster than any negative power pfas it was the
the s-plane, when approaching from the right is obtained agase for the transverse p&dt16). We find that the long time
before to be asymptotics fott>1/k is dominated by the end-point contri-
bution atw=Kk,

S| O+—82T21 wl K+ w
(Iw+ )_ 3 _ﬂnk_ cut i cut " 1
- AGU(R,) =ag gkv)| 10| T |
T O gm0y, (423
6 k ’ ’ 12 (w
at (kty=———| dx
The location of the longitudinal quasiparticle or plasmon asymd e’T2Jo

poles is given by the following dispersion relation, cogkt+ a(x.)]

xXe

e’T? o |kt+to e’T?r w 2 4
2 v o d 2_ 2\ _ cX b cxX 97
Kt ol |7 e k@K Te)=0. \/Iog4—+—logz—+—
(4.24) kt 2 kt 16
4.3
For soft external moment&&eT) the plasmon poles can be (430
seen to be as=*iwy=*ieT/3. The real time dependence cX
of the longitudinal condensate is then found by inverting the wlogﬁ
transform using a(x,t)zarctanﬁ( (4.3))
L ferimds o 4 g
Ao(k,t):f —.eStAo(k,S) (425)
c—i 2i
1 6k>
where the contour is to the right of all the singularities as in = Eex 2+ e?T2|" (4.32

Eqg. (4.5. As in the transverse case, at high temperatures the
singularity structure is dominated by the discontinuity across The integral in Eq(4.30 cannot be expressed in terms of
the cut that runs from-ik to +ik corresponding to Landau elementary functions and it is related to théx) function
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04 T T T T T T T T T
t [log”2(kt/c) + pi*2/4] {cal A}_O0*cut}{vec k,t) —

0.3 | H

0.1 R
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0.2 |
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0 50 100 150 200 250 300 350 400 450 500

FIG. 3. t[log?(kt/c)+ 72/4] A S Y(K,t) as a function ot for e>T2=6 andk=1 [see Eqs(4.30—(4.33].

[47]. For larget, one can derive an asymptotic expansion inand Fig. 4 shows (18fT?)cogkt+ B(kt)] [see Eqs(4.30—
inverse powers of Idgt/c] by integrating Eq(4.30 by parts:  (4.33], both figures should coincide for large enougbut
we see numerically a sizable discrepancy eventfob00
due to the slow convergence of the asymptotic expansion

. t== 12 cogkt+ B(kt)) 1
agg;mp(k't) = T T Kt 2 { o logt (4.33.
log? —+ — A saddle point analysis yields an intermediate asymptot-
4 ics of the form
(4.33
. 3y mcog kt
rlogkt ast (K, )~M (4.35
B(kt)=-arctan————. (4.39 e’T?tIn>Tkt]

2Kt— —

log~kt 4 which although is a relatively good estimate within a time

window (see Fig. % is seen numerically to have a discrep-
This expansion is not very good quantitatively unlegs  ancy of the same order as the dominant term above in a

very large. For example, fdtt=500, aut ;('Z,t) given by wider range of time. Nevertheless, the exact expression

: - el 4.30 i ily obtained ically f bit f
Eq. (4.30 approxmates&lg“t(k,t) up to 0.1%, whereas, the E)ara?nlesteerz.sw obtained numerically for arbitrary range o

dor?inant term in Eq.(4.33 is about 30% smaller than "~ The case of a general source requires a convolution. The
cu

Sy ndK.t). Figure 3 showst[logX(ktic)+a%/4]A5"(k,t)  cut contribution takes now the form

Sl (iw+0%)[CL(w)siN(wt)— S, (w)cog wt)]
[K2+3R(iw)]*+[S)(i0+0")]?

AC“‘(Et)=—3Jkd
o K w
7Jo

whereC, (w) and S, (w) stand fo»r the cosine and sine Fou- ?L(Iz,iw)=JOL+J1Lw+(’)(w2).
rier coefficients of the sourcg| (k,t), respectively.
For a longitudinal source fullfilling the same general ana-
lyticity assumptions as the transverse source we can expand As for Eq.(4.29 the end-pointv=0 of the integral4.29
in series for smallv as yields contributions that vanish for longfaster than any
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FIG. 4. (12£%T?)cogkt+ B(kt)] a function oft for e?T?=6 andk=1 [see Eqs(4.30—(4.33].

negative power of. Just as in the transverse case, this result R R . 12 cogkt) cogkt) 1

is a consequence of the fact that to this order in the HTLATi(K)=Ari(K0)| Z'= o~ —2 O(g)

resummation, the spectral density is regulao branch

points nearw=0. _ kol 2 12 sinkp sinky i1
To summarize, we gather the final results for the Ti( ,)wp T2 T2 K .

: ! : . t3
asymptotic real-time evolution of the transverse and longitu-
dinal non-equilibrium expectation value in the linear ap- (4.36
proximation
Transverse (no external source): The sum rule(4.17) implies that the coherent field configu-
Int
10f
5 H
! t
| DD Bbp D 0
-5
-10

FIG. 5. tx (In[t])>5X A §"(k,t) vs t(in units of 1/K for m3/k?=2.
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ration relaxes to an asymptotic amplitude whichsimaller The non-equilibrium partition function for the full field
than the initial, and the ratio of the final to the initial ampli- theory is
tude is completely determined by the thermal wave function
renorma_lhza_tlon.. . Z:f DAL DO DP ()1
Longitudinal (impulsive external source):

1. -
Xex;{if d4x[aM<D<+>TaM<b(+>+§(9MA<T”.aﬂA%”

- sin(wot . 1
Ak=-2 e g ko 1vo[ )|
0 > > > N
(4.37 —e AN ) g2AH). ALHG ()T (+)
The transverse and longitudinal wave function renormal- _[+—>_]H (5.0

izations Z[T],Z'[T] are given by Eqgs(4.15 and (4.28

respectively a.n.d’gg;mp(k’t) is given by Eqs(4.30, (433 4nq the effective action for the “systerthe soft photoris
while the positions of the poles;,w, can be obtained by  follows by performing the path integral over the “battithe
solving Egs.(4.11) and (4.24) respectively. hard scalafstreating the “system” degrees of freedom as
In summarywe find that the long time dynamics is domi- background fields. This means that all subsequent expecta-
nated by the Landau damping thresholdsvat =k, not by  tion values will be evaluated in the reduced density matrix
the w~0 region of the spectral density. The early time dy-which defines the effective field theory for the system de-
namics is determined by moments of the total spectral dengrees of freedom. It is then convenient to introduce the “cen-
sity. Long time power law tails had recently found in the ter of mass” and “relative” coordinates
current correlators in Ref28].

AT =Arx—. (5.2
V. LANGEVIN DESCRIPTION FOR THE SOFT MODES
AND FLUCTUATION-DISSIPATION RELATION
In terms of these redefined fields the effective action can be
obtained to one-loop order via a systematic loop-expansion
eof the reduced partition function:

A. Langevin description

So far we have studied the damping of soft modes in th
plasma by the hard particles from the microscopic point of
view. In this section we provide a stochastic description of
the relaxation of gauge fields via a semiclassical Langevinseff[ATi 7RTi]=f d“x( ~Rpid®Ari
equation with a Markovian damping kernel and a Gaussian
white noise. — 28R Ar( DT D)
A semiclassical description treats the hard modes as a

“bath” and the soft modes as the “system.” The bath de- je? o o
grees of freedom are integrated out, their main effect being + TJ d*x' RriO)Rr[(i 5 001 (x"))
encoded in a dissipative kernel and a stochastic noise inho-

mogeneity in the resulting Langevin equation. The dissipa- +<j£I'T)(X)j(T})(X,»]RT]'(X,)

tive kernel is related to the stochastic correlation function of

the noise via a generalized fluctuation-dissipation relation.

Physically the stochasticity arises because the hard scales +ie2f d4X,RTi(X)[<ng'T)(X)j(Ter)(X,)>
which are integrated out in the HTL scheme and are respon-

sible for Landau damping will also provide random kicks to

the soft degrees of freedom. = (5015 (X)) 10 (xo—xg) Arj(X) | -
This section is devoted toraicroscopic derivatiorof the
Langevin equation for the inhomogeneous gauge field con- (5.3

figuration, to leading order in the hard thermal loop program.

This is achieved explicitly by integrating out the hard modesThe transverse curreit;(x) was introduced in Eq(2.2) and
which provide a natural realization of the “bath” variables the curent-current correlators can be calculated easily using
while the soft modes are to be treated as the “system” varithe defining formulas for the free scalar propagators in Egs.
ables. The methodology of this approach is based on thg.8)—(2.11). In order to make explicit the soft momentum
Feynman-Vernon influence functiong4#8] which has al- scales of interest we perform a spatial Fourier transform, in
ready been used to describe dissipation and decoherencetarms of which the reduced effective action, including the
guantum systems from a microscopic thepty¢,49,5Q. influence functional of the hard modes is given by
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Setfl Ari,Rril +Np ) SN (wp+ @i p) (T=17)]
3y ) 2 +(Ny— Ny i) Si i t—t')
:f d fdt|—RTi(k,t) d_+k2+2e2<c1>T<p>> (Mo~ oS (ierp = 0p) (1= 1)
(2m)° dt? XO(t—t") (5.5

t
xATi(—lz,t)—f dt’Ryi(k, 1) Dy (k;t,t") Arj(—K,t')
clearly gives a causal contribution to the effective action as
seen in Eq.5.4). The fact that it is real follows from the
+iJ dt’RTi(IZ,t)/\/ij(k;t,t’)RTJ-(—E,t’)} (5.4  properties of the non-equilibrium Green’s functiofsgs.
(2.10 and(2.11)] which imply that

whereD;; and \Vj; will be shown to be the dissipation and
noise kernels respectively. The dissipation kernel which is , , , ,
given by peClively P G5 ()G, (L) = GZ (1) Gy, o(L,t)
3 ~2iIm[Gy (t,t") G p(t,t))].

. ) d°p
Dii(th,t')=4lezf (27)3pTipTJ[Gg(t,t')Gf+p(t,t')

Furthermore the dissipation kernel is in fact precisely the

et ' > ! _t!
Gp (L) Gici p(L1)]O( ) one-loop self-energy which appears in the effective action

d3p equation of motion Eq(3.6). The noise kernel on the other
:2e2f ———————pripr{(1+n, hand isacausaland gives arimaginary contribution to the
(27) wpoi effective action

R d®p
M,—(k;t,t')=—e2J —— PriPTi[Gp (1,1 Giy (L) + G (41) Gy p(1,t)]

(2m)®
e’ d®p ’
=—f3—pnpn{(1+np+np+k+2npnp+k)coi(wp+wk+p)(t—t )]
2) (2m) WpOitp
+(Np+Npi i+ 2NN, 1) €08 (@y 4 p— wp) (t—t") ]} (5.9
Therefore,
M;“RGU d®ppripriGy (1,t) Gy p(tit') (5.7

which means that the noise-noise correlator and the dissipation kernel are the real and imaginary parts respectively of the same
analytic function of {—t’). Thus they are automatically related by dispersion relations which reveal the fluctuation-dissipation
theorem within this context.

The imaginary, non-local, acausal part of the effective action gives a contribution to the path-integral that may be rewritten
in terms of a stochastic field 450]

d3k
(2m)®

z=f DRTi(E)DR;(lZ)ex;{—f dtdt’ R#i(E,t)/\/H(k;t,t')RTj(E,t')l

3

«| DRn(@DR?i(E)Da(IZ)Dgi*(I@P[f]exr{i | dtS—ka(E.an(—IZ,tHc.c.

(2m)? (5.9

where the noise has a Gaussian probability distribution ~ with zero mean and non-Markovian correlations:

P[§]=exr{—f dtdt’gi(lz,t)Ni_jl(k;t,t’)gj(—E,t’)} (B DY =0:
(5.9 RS
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UERDER 1)) = (2383 K+ KN (Kt ') expressions for the dissipative and noise kernels without per-
nE nm (5_1@ forming the HTL approximation. A standard analysis of the
spectral representatid9,51] of the equilibrium correlators
where((- - -}) is the stochasticaverage with the probability leads to the following result for the Fourier transform of the

distribution P[ £]. noise-noise correlation function
In the hard thermal loop approximation the leading terms
in the noise kernel can be calculated explicitly, giving /v”(lz,w): Al—llm[E{ft(IZ;w)]cot?’{BTw _ (5.16
. e’T®  Isinfk(t—t)] cogk(t—t')]
Nij(kitt)= 6 Pij(k) K3(t—t")3 K2(t—t')2 | Finally taking temporal Fourier transforms of both sides of

(5.11) the Langevin equatio5.15 and averaging over the noise
with the Gaussian distribution function we find
Clearly these artong rangecorrelations which cannot be
replaced by local delta function in any regime of approxima-;; 4_ (g ) A (—K. —
tion. In fact the Fourier transform of the kernel yields ((Arilk o) Ari(—k, = @)

=|ﬂ¥i<i,w)lz+p<ﬁ,w>cotr{ﬁ—w}

M(IZ,w):ffmda—t'wi,-<E;t—t'>e*iw<‘*"> 2
5.1 R
(612 p(K,w)
213 2 o
=Pij(|2)%(l—w—2)(k2—w2) 1 Im[37'(K, )]
k 4 (0= 02— RESF(K, ) ])2+ (IM[2[F(K 0)])2
=Pij(|2)%z|(iw+0+), (5.13 (5.17)

whereX (io+0%) is the imaginary part of the self-energy yvhere the_tildes stand for the Fourier transform at’fl;{k,.t)
given by Eq.(4.10 responsible of the Landau damping pro- is a solution of the homogeneous_ eqliatlon, which is pre-
cesses. cisely given by Eq(4.36 [assumingAY.(k,t=0)=0 which
This clearly shows Landau damping to be the origin of thecan be relaxed with the proper generalizafiohhe double
noise correlation and also provides an explicit realization obrackets stand for averages over the noise with the probabil-
the fluctuation-dissipation theorem. We draw attention to thdty distribution (5.9), (5.10. This is the form of the usual
factor of T/w which arises from the highi limit of the Bose ~ fluctuation-dissipation relation, which we obtained consis-
factor (1+2n,) (see belowand leads to a noise-noise cor- tently by integrating out the hard modes and deriving the
relation «e2T3. This result is in accord with the usual influence functional48,49 for the transverse components of
fluctuation-dissipation relation, in which the noise-noise corthe gauge invariant fields. The semiclassical Langevin equa-
relation function has one more power Btthan the dissipa- tion is useful in order to obtain semiclassical correlation

tive contribution to the Langevin equation. functions by averaging the solution of a partial differential
The Langevin equation itself is obtained via the saddleequation over a stochastic Gaussian noise. The question
point condition[50] arises: to which correlation function of the microscopic

theory are these stochastic averages related? The answer to

SSett . this question is found by writing a spectral representation of
SRE =¢&i(k,t) (5.149  the equilibrium correlato A; ((t).A; _g(t")) in which the
ikt oo brackets stand for averages in the equilibrium density matrix.

A straightforward but tedious exercise following the steps

leading to described i39,51] reveals that this relation is given by

2

d
(K 240 (K 2/ T (K ~ N ~ N 1 N N
dtz.AT,(k,t)-i-k Ari(k,t)+2e <CI) (I)>AT|(k,t) <<ATi(k7w)ATi(_k7_w)>>: E{(Ai(k,w)Ai(—k,—w»

t . - N
—f dt' Dy (k;t,t") Agj(k,t') +(Ai(—k,— o)Ak w))}
o (5.18
=&(k,t"). (5.15 ) o
which again is a result known to be a consequence of the
fluctuation-dissipation relation in simple systems. The corre-
lation function(5.18 has a finite, non-trivial classical limit
The general form of the fluctuation-dissipation relationand agrees with the one proposed to be studied within the
can be established at this level by retaining the completeontext of classical field theory if23].

B. Fluctuation-dissipation relation
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The real-time analysis presented here agrees with the geive Boltzmann approach will yield no population relaxation
eral picture discussed in Ref27-29. Moreover, our analy- via Landau damping. However this is conceptually inconsis-
sis reveals the precise range of the kernels. tent because we have learned in the previous sections that an

Clearly the situation will be more complicated in QCD initial coherent configuration will relax to an amplitude
where a separation between hard and soft degrees of freedagtaller than the initial by these processes and we would
must be implemented in order to obtain the influence funcexpect such a relaxation to contribute to a depletion of the
tional for the soft degrees of freedom. However, the procénymper of quanta of the initial state. The resolution of this
dure detailed in this section can be carried out ConSiStent%consistency requires one to heyonda simple Boltzmann

once this separation is introduced. o _approach and to include off-shell processes in the kinetic
Of course the main rationale for obtaining a '—ange"'”description. This is the focus of this section.

equation is to provide a semiclassical scheme to implement The contribution of off-shell processes to thenon-
the calculation of correlation functions from the solutions of gqyilibrium evolution of particle distributions is ignored in
stochastic differential equations. Howgver, we note that UNmost approaches towards kinetics. Recently an approach to
less a successful scheme to deal with the non-MarkoviaRinetics that incorporates off-shell effects has been proposed
ker_ne_ls is implemented the advantages of a Langevin d&y describe processes in which relaxation competes with
s<_:r|pt|or_1 are at bes_t formal. Igno_nng the non-locallt_les of thegther fast scalep40,41, in particular near phase transitions
d|53|pat|ve anq noise .kernels will clearl_y miss th_e |mportant[40]_ The importance of off-shell contributions to the evolu-
physics associated with Landau damping. A naive Markovsjon of particle distributions has also been recognized within
ian approximation is not only uncontrolled and unwarranteéne context of fast kinetics in semiconductAg].
but clearly very untrustworthy in view of _th_e fact t.hat the. This section is devoted to a study of kinetics asiritial
relevant kernels are all long-ranged an_d |t_ is preC|se_Iy thig,alue problen{40-47 in order to reveal the role played by
long-ranged nature of these kernels which is responsible fog¢t shell processes in transport phenomena and relaxation in
the important dissipative effects of Landau damping. Thenhe medium.
importance and difficulties of keeping these non-localities in \ye derive a kinetic equation that takes into account mi-
a classical lattice description has been recognizefB8-  croscopic time scales in the theory from first principles al-
35]. lowing us to analyze clearly the effect afff-shell non-
collisional Landau damping processes on the evolution of the
photon distribution. This framework will allow us to make
contact with the relaxation of a coherent initial configuration
The real-time formulation of non-equilibrium quantum studied in the previous sections. We want to study both the
field theory allows us to obtain the corresponding kineticrelaxation of an initial distribution of asymptotic photons
equations for the relaxation of the occupation number owith free dispersion relatiof)(k)=k, as well as for the
population of quanta. In particular our goal is to obtain thequasiparticles with dispersion relatiof} (k) = w,(k) with
kinetic equation for the relaxation of the expectation value ofw,(k) being the solution of the dispersion equatighll
the number of soft quanta. In keeping with the focus of thisi.e. the “true,” in-medium pole. We will distinguish be-
article we will only consider the population relaxation to tween these two physically different cases and address them
lowest order in the HTL approximation and concentrateseparately.
mainly on the understanding of relaxation via Landau damp- This approach begins by defining a suitable number op-
ing. erator [40]. In the case of asymptotic photons this is the
Kinetic approaches towards describing transport phenonusual number operator in terms of the canonical field and
ena and relaxational dynamics typically require a wide sepamomenta which is given by the energy per momentum k
ration between microscopic time and length scales, namelglivided by the frequency. In the case of quasiparticles the
the thermal(or Compton wavelength(mean separation of energy stored in the plasma has two components: the free
particles and the relaxation scaldsmean free path and re- field part plus the response from the medium. From classical
laxation timg. This approach which ultimately leads to the electromagnetism of polarizable medi&2] in linear re-
Boltzmann transport equations involves the identification ofsponse, the two contributions lead to an energy density in the
slow and fast variables which justifies a gradient expansionmedium that is quadratic in terms of the electric and mag-
This is a coarse graining procedure that averages over microetic fields, each term however, multiplied by a coefficient
scopic time scales and leads to irreversible time evolution. that involves derivatives of the dielectric and permeability
In the collisional approach to Boltzmann kinetics only thetensors with respect to frequen@2]. The contribution from
distribution-changing processes that conserve energy arttie plasma collective modes is obtained by evaluating these
momentum are considered, and these are weighted by tlemefficients at the plasma frequency. Using Kramers Kronig
corresponding Bose/Fermi statistical factors. Off-shell pro-dispersion relationg52], these coefficients are related to the
cesses that occur on time scales shorter than the relaxatioesidue of the dielectric constant at the plasma poles. This
scale are not included; therefore only processes with asympelation has been formalized at the field theoretical level by
totically on-shell final states are accounted for in this de-Migdal in his pioneering work on collective modes in me-
scription. Landau damping processes which contribute viaium where he developed the quantization procedure in me-
thermal loops to forward scattering are not included in thedium in terms of quasiparticle operatd&3]. This field the-
typical Boltzmann equation. Thus we anticipate that the naeretical treatment automatically leads to the identification of

VI. KINETICS OF LANDAU DAMPING
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these coefficients with the residues of the retarded propaga- L. R o ) 1
tors at the plasmon poles, i.e. the wave function renormal-N;= n [Ar(K) - Ap(—K)+ Q2A(K) - Ar(—K)]— —
ization. Migdal obtains in this manner the energy density 4 Zy 2Zy
corresponding to on-shell collective modes in terms of the (6.3
quasiparticle operatof$3]. . ]

More recently the energy density of the plasma includingWhere for asymptotic photonslkf k’.ZL:1 (we neglgct
the polarization effects has been obtained in terms of operdle'® the zero temperature contributicand for collective
tors that create and destroy collective modes in the pIasm@OdeSQk:wpt(k);Z =Z[T] with wy(k) being the plas-
by Blaizot and lancy54]. The results of these authors is Mon pole and’[T] the wave function renormalization in the
consistent with the collective mode quantization and the entiTL limit. This formulation now permits to treat the collec-
ergy density obtained by Migd#3] and with the results of {ivé modes much in the same manner as the usual renormal-
classical polarizable med{®2). Blaizot and lancy54] use  1z€d in and out fields in S-matrix theory, i.e. by rewriting the
the collective mode decomposition of the transverse gaug@Ct'O” in terms of the renormalized fields and introducing

field counterterms that reflect the true position of the pole and
residue.
. Z .. L It turns out to be easier to work with the Heisenberg op-
AL(t)= > [ex(K)a,(k)e i@p®t - . .
2wp(K)\=12 erator N, rather than the number operator and is obtained
using the Heisenberg operator equations which are easily
+ e (—K)al(—k)e'rt] (6.1)  seento be
where the operatom{(l?);a)\(IZ) have a retarded propagator KT(E,t)IﬁT(—IZ,t)

with unit residue at the plasmon pole a@} is the wave
function renormalization. P U 2t N
Migdal [53] and Blaizot and lanc(i54] prove that the I(—k)=— (k*+2e( 0 D) + Qi) Ar(k,t) — j7(k,t)

energy density associated with the collective modes in th9vhere the counterterm accounts for the definition of the

medium can be written as : , RN )
number of quasiparticles addi;(k) represents the canonical

R R momentum conjugate to the transverse electromagnetic field
£k =wp(k) 2 al(K)ay(K). 62 £ (k)
N=1,2 TK).
We now consider an initial state described by a density
This result is the same as that obtained in the classical theompatrix for which theexpectation valuef the above number
of polarizable media when the electric and magnetic fieldoperator for on-shell collective modes is non-vanishing.
(transversgare written in terms of collective mod¢s2]. Using these equations the expectation value of the
Thus following Migdal[53] and Blaizot and lancli54]  Heisenberg rate operator in the initial density matrix is ob-
we introduce the Heisenberg number operator of on-shelained in the following form which is rather convenient for
collective modes subsequent calculations:

I 265(dTDY)+ 808 9 L L
202! ERJT(KU'AT(_k,t N == 202! ERAT(kvt)'AT(k:t ))
k= k k= k

(N (D) =Ny (t)=—

(AT (Kt - AT (=K D) i=pr 64

This formulation has been previously applied to the study of photon production in a strongly out of equilibrium phase
transition[40].

The expectation values are calculated by inserting the operators into the closed time path integral and expanding in powers
of «. Since 595 is of ordera the second term in E(6.4) is calculated as a tadpole in free field theory and it vanishes
identically. Let us consider the case in which the initial density matrix at tijre diagonal in the basis of eigenstates of the
number operator, and evolves subsequently with the interaction Hamiltonian. To lowest ordevarfind the expectation
value of the rate to bg40]

2

N € t ) > ' > INA<[ 4! < ’ < NP4 ’
Nk(t):—4w39kz‘kf dt’f dp[p®—(p-K)ZI[G, (t,t) G p(t,t )Gy (t,1) =Gy (1,1 )G o, )G (1,110 (t—t).
(6.5

The theta function ensures that this expression is causal. The Green'’s functions for the scalars and the photons can be read off
from Egs.(2.10, (2.11), (2.12 and(2.13 but with the frequency, replacing the bare frequency. Finally the rate can be
written as[40]
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: e? d3p t
Sy 2
Ng(t)= 167TBQ|(ZL~[ wpwk+pp szaftodT{COf{(wp"‘ O pT Q) (1= 7 I[(1+ N (to) ) (1+np) (1 + Ny p) — Ni(to) NNy ]

+Cos{(wp+wk+p_ﬂk)(t_ ) ][(1+ Nk(to))npnk+p_Nk(tO)(l+ np)(1+ nk+p)]+COS{(wp_ wk+p+Qk)(t_ 7)]
XL(L+Ny(to)) (1+np)nis p— Ni(to)Np(1+ Ny p) [+ cod (wp— oy p— Qi) (= 7) JL(L+ Ny (to) ) (1+ Ny p)Ny

—Ni(to) Ny p(1+np) 1} (6.6)

We note that the expression above depends on the occu- Let us consider the situation in which the initial state has
pation number of the gauge field at the initial titgeonly—  been prepared far in the past, itg— — .
this is obviously a consequence of the fact that perturbation An equilibrium solution is simply
theory at lowest order, neglects the change in occupation
number. Recently we have proposetD] a Dyson-like re- NE%= const (6.7)
summation of the perturbative expansion that includes off-

shell effects in the relaxation of the population. This resum- . _ .
mation scheme is obtained by the replaceméh(t,) where the constant is arbitrary because none of the resulting

—Ny(7) in Eq. (6.6) resulting in a non-Markovian descrip- energy—conserving delta funct_ions can be satisfied fpr the

tion. The resulting kinetic equation with memory is akin to Values of€ly either corresponding to the bare frequencies or

that obtained via the generalized Kadanoff-Baym approxi-the quasiparticle pqles. Thisis a consequence of the offjshell

mation[42] in non-relativistic many body systems. This ap- Processes, a detailed understanding of this feature will be

proximation has been recently shown to coincide with theProvided elsewherg56,57. , .

exact result in the weak coupling limit in a solvable model of L€t us now consider departures from this equilibrium so-

relaxation [56,57 and will be shown below to imply a Iutl(_)n and Study. the relaxatllon of a disturbance in the distri-

Dyson-resummation of the perturbative series. The kineti@Ution function introduced in the systemtat0 so that

Eq. (6.6) has an obvious interpretation in terms of gain mi-

nus loss processdd0], but the retarded time integrals and N (t=0)=Np% 6N, (0). (6.8

the cosine functions replace the more familiar energy con-

serving delta functions. Taking the occupation number out-

side the integral and integrating to large times, thereby re-
lacing the cosines by delta functions as in a Boltzmann

(Fj)escrigtion would Ieadyto a vanishing right hand side since Ni(t>0) =Ny %+ N (1) 6.9

none of the resulting energy conserving delta functions can

be satisfied. However, the non-Markovian kinetic equationwe obtain a rate equation f@N,(t) which is now the same

(6.6) will lead to non-trivial relaxational dynamics that will as in the previous step except that the time integrals stretch

Denoting the particle distribution far>0 by

be studied in detail below. from O tot instead oft;——~ to t
d e? d3p 212 t
&5Nk(t): l&TSQkZLJ wpa)k+pp Sl 0J'0d7'{(1+ np+ np+k)[COS{((up+ wk+p+Qk)(t_T)]_Coi(wp+ (,!)ker_Qk)
X (t=7)]1(Npsx—Np)[cod (wp— @y p+ Qi) (1= 7) ]~ o (wp— wys p = Qi) (1= 7) ]1} SNK( 7). (6.10

Terms independent dfi, vanish identically since the time integrals for those terms yield delta functions which are never
satisfied.

Although this non-Markovian but linear equation will be solved exactly by Laplace transform below, it is illuminating to
compare the different approximations that are obtained under the assumption that the relaxation time sbglésfanuch
longer than the time scale of the non-local kernels. Under this assumption, which will be analyzed &¢j¢w), can be
replaced bysN,(t) and taken outside of the integral leading to a Markovian description. A further approximation, taking the
upper limit of the remaining integral tb—c0 leads to the familiar Boltzmann equation, thus the two approximations to be
compared with the “exact” solution are the following.

Markovian:
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%mﬁ”(t):—r(t)m&”(t) (6.11)
e? d3p . t
(=~ 16773%?] oosP smzefodr{<1+np+np+k>[cos{<wp+wk+p+nk><t—r)]—cos{(wpmw—nk)(t—m]
X(Np+k—Np)[Cod (wp— wys p+ Q) (1= 7) ]~ €O (0p— i1 p— Q) (t— 7)1}, (6.12
|
with solution S
SNY () =e~JoF1dt sNM (), (6.13 e S (0p= opipt0°
Boltzmann: _52+(wp—:>k+p—9k)2 (Npsk—Np) [ -
25Nk(t)——l“(00)5NE(t) (6.14) (6.18

The expression(6.17) clearly shows that the non-
Markovian rate equatiof6.10 implies a Dyson-like resum-
SNB()=e TI'6NE(0). (6.15  mation of the perturbative series as anticipated before.
Comparing the non-Markovian rate equati@l10 to the
Taking the limitt—o in I'(t), the cosines become energy Markovian approximatiort6.11) one can clearly see that the
conserving delta functions and comparing with the expresMarkovian approximation averages over the time scales of
sion for the transverse self-energy given by E47), it is  the kernel, whereas the non-Markovian equation includes the
straightforward to see that in the Boltzmann approximatiorcontribution of coherent processes throughout the history of
we obtain the kernel. If the range of the kernel was indeed shorter than
the relaxation time of the population, the real-time solutions
oo t( 5 of both equations will differ by terms of the order of the ratio
SNE k(t)=0, (6.16 of the time scale of the kernel to the relaxation time scale of
the distribution. However, in situations in which the kernel is

long-ranged as is the case under consideration, the non-
with 3[(£,) being the imaginary part of the transverse self-Markovian expression allows the inclusion of coherent ef-
energy evaluated &,. This result is the familiar relation- fects in the relaxation.

ship between the relaxation rate of the particle distribution The dominant contribution tS(s) in the HTL limit arises

I'(«) and the damping rate, which is determined by thefrom the Landau damping term leading to the simplified ex-
imaginary part of the self-energyn-shelland vanishes in the pression
present case because the damping processeaxfzsiell

d
_5Nk(t)

The solution of the non-Markovian equati¢d. 10 is ob- e’T?ks (1 x(1—x?)
tained by Laplace transform and given in general by Sk(s)=- 120, J-1s +(kx—Qk)2dX' (6.19
ctiz ds et More explicitly,

ONi(t) = N (0) cfixﬁ?k(s)’ (6.17

S4®) e2T2| s(k?+s?>—307)
k(S)=— 2
wherec is a real constant chosen so that the contour is to the 1 2k
right of the singularities of the integrand a®)(s) is the P+ (k-0Q)2 k> Qz+33
Laplace transform of the non-local kernel given b
P given by X109 g E
e? d®p (s+ik)2+ Q2
s [ g O] .
(9)= 16730,) ©porip” oY —ikPr 0z (620
_ s It is easy to show that this form & (s) is in fact related
X Sirf 6 2 3 to the self-energy in the HTL limit by the following illumi-
$™H (wpt o pt ) nating equation:
S SHs—iQ) -2 (s+iQy)
s2+(wp+wk+p—nk)2] S(8)= 210, : 6.2
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The real-time solutions to Eg&.10, (6.17) and(6.18 in derivative of the total energy is related to Landau damping.
the HTL limit with Eq. (6.19 will now be given for the cases Since the quasiparticle number is related to the energy of the
of quasiparticle and bare particle respectively. This analysisollective modes the relaxation of the quasiparticle number
will reveal the range of validity of the assumptions leading tois directly related to Landau damping.
the Markovian approximation. This intuition is also borne out in the usual Boltzmann
approach wherein the relaxation rate of the distribution func-
tion (in the relaxation time approximatipns twice the
, , . damping rate for the quasiparticle.

When (), is chosen to be the quasi-particle polg,(k) This relaxation has a simple interpretation. Consider the
>k we note that the integrand of E¢6.17) has a single case of a physical electron with interpolating operators de-
isolated pole ats=0. Indeed, the limit ofs—0 in 5(S)  fined to create single electrons with the physical mass and
would lead to delta functions in E¢6.19 which, however,  ynjit amplitude out of the in or out vacuum states. The
cannot be satisfied fd2 = wy(k). Therefores5,(0)=0 and  asymptotic correlation function in real time of these interpo-
s=0 is an isolated single pole and completely determines theyting operators has the oscillatory parts corresponding to the
asymptotiC I|m|t of the real-time Solytion. This Ca-n also bephysica| po'e(w|th unit residue7 but there are power law
seen by looking at E¢(6.21), from which the analytic struc-  corrections arising from the overlap of the states created by
ture is explicit. Clearly,S.(s) vanishes ats=0 because these operators with the multiparticle continuufss).

3! (—iwp(k))=3"(iwp(k)). Furthermore from the known \whereas at zero temperature the multiparticle continuum is
singularity structure oE'(s) one concludes thaf(s) must  peyond the two particle threshold, at finite temperature and
have branch cuts for(w,(k)—k)<s<i(wy(k)+k) and in the case under consideration, the leading contribution is
—i(wp(k) —k)<s<—i(wp(k)+k). Using Eq.(6.2D, it is  obtained from Landau damping corresponding to intermedi-
now a straightforward exercise to see that the residue at thigte states with space-like momenta.

pole ats=0 is given by (1-243'(iQ)/9Q?) " which to For the Markovian approximatiof6.13 we find, fort

this order is~Z'[T]?> where Z{[T] the (transversewave
function renormalization given in E@4.15.

A. Quasiparticle: Q= w,(k)

Again the long time behavior is completely dominated by or
the end points of the cut, leading to the asymptotic result _ Jtl“(t’)dt’mzazt(w) e°T#| [ cog (w—k)t]
0 dw? () k2 t?(wi—k)?
t—oo 62T2’772 P
= t _—
ON(t) = SN (0) | Z'[T]+ 122‘[T]kwp(k)t2 cog (wy+k)t] 6.23
t?(w+ k)2
cod (k) + k)t For e?T?/k?<1 we see that to lowest order &fT%/k? the
P 277D perturbative expansion of the Markovian solution coincides
(wp(K)+K)2| 1+ _2+) with the solution of the non-Markovian equation. However
P 3k for soft momenta such an expansion is not valid and the

cogw,(K)— Kt validity of the Markovian approximation must be questioned.

w _

- - eZTZD_ (622
(@p(K)—k)?| 1+~ )

B. Failure of the Markovian and Boltzmann approximation

To assess whether the Markovian and Boltzmann approxi-
mations will be reliable we must understand the different
where time scales, in particular the range of the kernel.

In the hard thermal approximation we find that the non-

1 wpk) Markovian kinetic equatiori6.10 reduces to
D.=1+|zx——|log| 1= .
2 k wp(K)
d e’T%k (1 5 o
We clearly see that asymptotically the population has relaxed g SNk(t)=— EI dx(1—-x )Xf drsinkx(t—17)]
to a smaller value and the ratio of the asymptotic to the kJ-1 0
initial population is determined by the square of the thermal X sin Q(t— 1) N (7). (6.29

wave-function renormalization. This is in agreement with the
analysis of the relaxation of the expectation value of theThe integral over the variable inside the kernel can be
field—since NkocA$ it is expected that the ratio of the performed and we find that the kernel falls off ast+¢)?
asymptotic value of the quasi-particle population to the ini-+---. Then if eT/k<1 the relaxation time scale of the
tial value be proportional to the square of the same relatiopopulation is longer than the range of the kernel and the
for the expectation value of the field. Markovian approximation is warranted. In this case the dis-
Therefore the relaxation of the quasiparticle number hasrepancies between the non-Markovian and Markovian re-
its origin in Landau damping, this is consistent with the re-sults are perturbatively small. On the other hand, for soft
sults of Blaizot and lancy54] who proved that the time scales the relaxation time scales become comparable to the
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time scale of the kernel and a Markovian approximation is e2T2 =dy
certainly unjustified. The non-Markovian equation for relax- SN, (t)= 5Nk(0)—2Ref —
ation includes the coherent effects on similar time scales that 6k oY
are averaged outoarse-grainedn the Markovian approxi- ey 1
mation. X 1+0 —”
1+e2T2| 2t)” [ 7e’T? ? t
C. Bare particle, or hard quasiparticle 6.27
For the case of the bare particle, the dispersion relation is '
simply =k — this is also the case for the larggimit of ~ wheree=2.718.. .. is thebase of the natural logarithms.
the quasiparticle dispersion relatipdl,32,37. In this case, It is illuminating to point out that ag),—k the logarith-

the quantityS,(s)/s in Eqg.(6.18 has a logarithmic singular- mic singularities in the real part of the transverse self-energy
ity ass—0, because the position of the putative pOlghas  imply that (for fixed finite k)
moved to the tip of the cut and there is a pinching singular-

ity. There is no longer a pole &=0 in the Laplace trans- 3 w) .
form [s—S.(s)] %, rather it diverges asslns) * ass—0. ol —0=Z[T]-0. (6.28
This logarithmic divergence arising from the pinching singu- R PN

larity is very similar to that recently studied within the con-
textyof hardyfermion$58] y As the pole approaches the tip of the €t finite k) the
In the Markovian apbroximatior(nG.lJ) and in the hard residue becomes smaller until it vanishes exactly when the

thermal loop limit, the rate equation becomes pole merges with the continuum. It is remarkable that in this
limit distortions of the distribution function relax completely

and vanish asymptotically. Although for the case of a hard
d SNE(t) = e J’ q d”pJ1 Ix(1—x2)xp? quasiparticle withk>eT the dispersion relation approaches
dt K= A2 pd_p 1 X(1=x%)xp that of a free particleZ'[ T]— 1 and physics is perturbative,

there is, however, slow relaxation. We note that none of

t these effects can be captured by a simple Boltzmann ap-
X jodT{Coik(l_X)(t_ )1} NK(1) proach since all of these phenomena are associated with off-
shell effects.
e’T?|sin(2kt) 2 In the case of the distribution function for bare particles,
=TIk ?ﬂL kt we can interpret this anomalous relaxation as the dressing
L effect from the medium, i.e. at long times the bare particles
> 2cog2kt) are completely dressed by the medium and disappear from
T I SNU(t 6.2 the spectrum.
3;3 3;3 k(D) (6.29 ; L
k=t k=t The interpretation is different for the case of a hard qua-

siparticle, in which case the free dispersion relation is ob-
tained in the limitk>eT. In this limit the effective coupling
which for long times yields a power law with an anomalouseT/k<1 and the relaxation is slow. This result could be
exponent: important in understanding the relaxation of a distribution of
photons produced in bremmstrahlung processes at high en-
ergy in the quark gluon plasma. A full study of the relaxation
21262 of hard quasiparticles is beyond the realm of this article and
ONi(t) ~ 6Nk (0) (k1) : (6.26  will be studied in detail elsewhei&7].

— . VII. DISCUSSION AND CONCLUSIONS
An anomalous exponent somewhat similar to this one has

been found if58] in the case of a hard fermion and it has  Our goal in this article was to provide a detailed analysis
the same origin, i.e., a pinching infrared singularity. The ex-of the real-time relaxation of soft gauge invariant non-
pression(6.25 reveals that the kernel is long ranged, falling equilibrium expectation value through the off-shell process
off with an inverse power of time in this case. Therefore aof Landau damping. These determine the leading contribu-
Markovian approximation will be justified whea?T?/k?>  tions to the thermal propagators in the hard thermal loop
<1 because only in this weak coupling limit is the popula-limit and are the dominant contributions to the long-time
tion relaxationslowerthan the fall off of the kernel. asymptotics. The off-shell nature of these processes deter-
The solution of the non-Markovian equatior{.10), mine the non-Markovian nature of the relaxation phenomena
(6.18 in the HTL limit (only the Landau damping contribu- associated with them. We focussed our study on the leading
tion is consideredis obtained again by inversion of the HTL contributions to the relaxation of gauge invariant trans-
Laplace transform. We find that the long time behavior isverse and longitudinal non-equilibrium expectation value in
given by the end-points. In this case the=0 end-point scalar electrodynamics. These results will also apply to fer-
dominates yielding mion electrodynamics and non-Abelian theories since the
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structure of the retarded Green’s function is the same up texpectation value is unwarranted to this order in the HTL
this order in the HTL expansion. After providing an elegantresummation.

re-derivation of the well known HTL effective action using  (iii) Having understood the relaxation of coherent non-
the tools of non-equilibrium quantum field theory in the lin- equilibrium expectation value through off-shell effects of

ear amplitude approximatidi36], we moved on to the main L@ndau damping we asked how these processes can be in-
goals of this article: corporated in the relaxation of the distribution function for

(i) to study in detail the relaxation in real time, in the the transverse fields. A Boltzmann approach would yield no
. ) . ' relaxation to lowest order in the HTL because there is no
linear approximatiorismall amplitudg of the transverse and iy aginary part on-shell for the transverse or longitudinal
longitudinal gauge invariant non-equilibrium expectation gyasiparticles. Therefore a kinetic description of the relax-
value. The off-shell process of Landau damping results iration of the distribution function must necessarily go beyond
power law relaxation of the transverse and logarithmic relaxa Boltzmann collision approximation.

ation of the longitudinalplasmon or charge-densjtgxcita- We provided a novel description of the kinetics of relax-
tions. Both types of non-equilibrium expectation value relaxation of the distribution function for transverse degrees of
to an asymptotic amplitude that depends on the thermdreedom that includes off-shell effects and goes far beyond
wave-function renormalization, which is completely deter-the usual Boltzmann approach. We have compared the relax-
mined by Landau damping in the HTL limit. One of the main &tion obtained from this non-Markovian kinetic equation to
conclusions of this detailed analysis is that the reIaxationa‘ih"’lt described by the usual Boltzmafwhich yields a trivial

) . ; . resul) and a Markovian version that includes coarse-grained
_dynamlcs asympt_otlc_ally at long times an_d to leading OrOIerdetails of the off-shell processes. We have found that the
in HTL resummation is completely determined by the behavyjisyrinution function for soft quasiparticles relaxes as a

ior of the spectral density nedne Landau damping thresh- nower (112), and found an unusual dressing dynamics for
olds at ==k (a branch cut singularily the contribution  pare particles. This kinetic approach also reveals unusual
from the regionw~0 are regulafno branch point singulari- logarithmic real time relaxation for hard quasiparticles re-
ties) and therefore lead to subleading corrections to dynamsulting from infrared pinching singularities similar to those
ics at long times and high temperature. This result is for bottfound in the case of hard fermiofS8].

longitudinal and transverse non-equilibrium expectation The body of these results reveals new and unusual fea-
value and is confirmed by an exhaustive analytic and numeritures of relaxation of soft degrees of freedom in gauge theo-
cal study. The short time evolution of the non-equilibrium N€S- These will obviously have to be taken seriously into

. : : ccount in a full description of relaxational processes in the
expectation v.alue is determined by moments of 'the tota GP and should also be important to clarify better the role
spectral density. Therefore a complete understanding of th layed by damping in the sphaleron rate in the symmetric
global analytic structure of the retarded propagator, in Parphase.

ticular the complete cut contribution from Landau damping’ | higher order corrections there will arise contributions
processes is required. from collisional processes that provide an imaginary part on-
This is special to the HTL resummation at one-loop: atshell. At next order for example both Compton scattering
higher orders, a branch point could developvat 0. Such a  and pair-annihilation will contribute to collisional relaxation
branch point would produce pure power like tails, with noand will provide a collisional width both to the transverse
oscillations, and so dominate at large times. and longitudinal(plasmon degrees of freedom. The imagi-
We restricted ourselves in this paper to small amplitudenary part of the self-energy on-shell is typically associated
non-equilibrium expectation value so that we were confinedvith a damping rate and associated with an exponential de-
to the linear regime. New phenomena beyond the HTLcay of the amplitude. Excepting intermediate time scales,
scheme are expected in the non-linear amplitude regimehis exponential relaxation, however is not a proper descrip-
Such regimes can be studied within self-consistent Hartredion either at early or long times where power laws dominate
type approximations in the out of equilibrium framework the dynamicg36]. The relaxation associated with Landau
[44]. damping at lowest order, will have to be balanced with the
(i) We have obtained the influence function@on-  next order corrections which yield an approximate exponen-
equilibrium effective actionfor the soft gauge invariant de- tial relaxation and the resulting dynamics will depend on the
grees of freedom by integrating out the hard degrees of freadetails of the competition between these different processes,
dom to leading order in the HTL approximation. This both Landau damping and collisional. Which process domi-
allowed us to obtain the Langevin equation for the soft denates will depend on the particular time scale of interest and
grees of freedom to leading order in HTL and to provide athe time scales for competition between the two different
microscopicab initio calculation of the dissipative and noise type of phenomena will depend on the details of the pertur-
kernels in the HTL limit. Both kernels display the non- bative contributions. The kinetic approach introduced here
localities associated with Landau damping and we find thatould also prove useful to study the energy loss of quarks
there is no region of time scales in which a Markovian ap-and leptons via off-shell processes in the QGP.
proximation describes the dynamics correctly. As a byprod- We plan to address this competition between Landau
uct we obtained the fluctuation-dissipation relation and recdamping and collisional phenomena, along with an extension
ognized the correlation function that emerges in the classicaif the treatment presented in this article to leptons and a
limit. We established in detail that a Markovian descriptionmore detailed study of non-Markovian kinetics in future
of relaxation of transverse or longitudinal non-equilibrium work.
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