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Real-time relaxation and kinetics in hot scalar QED: Landau damping
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The real time evolution of non-equilibrium expectation values with soft length scales;k21.(eT)21 is
solved in hot scalar electrodynamics, with a view towards understanding relaxational phenomena in the QGP
and the electroweak plasma. We find that the gauge invariant non-equilibrium expectation values relax via
power lawsto asymptotic amplitudes that are determined by the quasiparticle poles. The long time relaxational
dynamics and relevant time scales are determined by the behavior of the retarded self-energy not at the small
frequencies, but at the Landau damping thresholds. This explains the presence of power laws and not of
exponential decay. In the process we rederive the HTL effective action usingnon-equilibriumfield theory.
Furthermore we obtain the influence functional, the Langevin equation and the fluctuation-dissipation theorem
for the soft modes, identifying the correlators that emerge in the classical limit. We show that a Markovian
approximation fails to describe the dynamicsboth at short and long times. We find that the distribution
function for soft quasiparticles relaxes with a power law through Landau damping. We also introduce a novel
kinetic approach that goes beyond the standard Boltzmann equation by incorporating off-shell processes and
find that the distribution function for soft quasiparticles relaxes with a power law through Landau damping. We
find an unusual dressing dynamics of bare particles and anomalous~logarithmic! relaxation of hard quasipar-
ticles. @S0556-2821~98!03722-9#

PACS number~s!: 11.10.Wx, 12.38.Mh
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I. INTRODUCTION

There is currently a great deal of interest in understand
non-perturbative real time dynamics in gauge theories
high temperature, both within the realm of heavy ion co
sions and the study of the quark gluon plasma@1–8#, as well
as the possibility for anomalous baryon number violation
the electroweak theory@9,10#. In both situations the dynam
ics of soft gauge fields with typical length scales.(gT)21 is
non-perturbative.

Their treatment requires a resummation scheme wh
one can consistently integrate out the hard scales assoc
with momenta'T to obtain an effective theory for the so
scales. This is the program of resummation of hard ther
loops@11–15#. Physically, the hard scale represents the ty
cal energy of a particle in the plasma while the soft scale
associated with collective excitations@16#.

The recognition of the non-perturbative physics asso
ated with soft degrees of freedom has led to an effort
describe the dynamics by implementing numerical simu
tions of classicalgauge theories@17–24# since soft degrees
of freedom have very large occupation numbers and coul
principle be treated classically@20#. Effective classical de-
scriptions for the infrared bosonic modes have been obta
consistently in scalar field theory by integrating out the h
modes@25#. However, it was recognized that the dynamics
the soft modes in gauge theories is sensitive to the h
modes@26–29# and that the Rayleigh-Jeans divergences
sociated with the hard modes provide non-trivial contrib
tions to the soft dynamics.

For example, the one-loop correction to the gauge bo
0556-2821/98/58~12!/125009~25!/$15.00 58 1250
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self-energy contains a leading contribution from the ha
momenta of orderg2T2 which gives the hard thermal loo
~HTL! contribution, and a subleading contribution from th
soft scales. TheT2 dependence is a reflection of the U
quadratic divergence of the zero temperature theory whic
cutoff at momentum scales.T by the Bose-Einstein factor
Restoring the appropriate\8s we see that this contribution i
of order\(g2T2/\2) where the first\ is associated with the
loop and the denominator follows from the usual manner
which \ enters with temperature. This term is therefo
O(T2/\) and reveals the usual Rayleigh-Jeans divergen
For hard external momenta (Kext;T) this one-loop correc-
tion to the propagator is obviously subleading and bare p
turbation theory is valid. But when the external momenta
soft (Kext;gT), clearly the one-loop correction is of th
same order as the tree level term. This is in fact at the h
of the breakdown of the perturbative expansion. The prob
is resolved by using HTL-resummed propagators and ve
ces for the soft external lines while hard scales may alw
be treated within the usual perturbation theory. This pro
dure is akin to obtaining a Wilsonian effective action for t
soft modes by integrating out all the momenta above a c
tain soft scale which in this case isgT. For a detailed dis-
cussion of the relevant issues we refer the interested read
the original works of Braaten and Pisarski@11,12#.

All of the HTL contributions may be divided into two
distinct categories:~i! the contributions from tadpole dia
grams and~ii ! those from diagrams with discontinuities
While the tadpole contributions are independent of the ex
nal momenta, the diagrams with discontinuities lead to m
mentum dependent terms and it is these that lead to the
©1998 The American Physical Society09-1
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local effective HTL Lagrangian. The non-locality of the HT
effective Lagrangian for the soft modes originates in the p
cess of Landau damping which results in discontinuities
low the light cone@11,13,30–32#. A very interesting method
to deal with the non-locality in the HTL effective action i
numerical simulations of classical gauge fields has been
cently proposed@33# and is based on the particle metho
akin to that used in transport theory. This method has b
used to study the diffusion of Chern-Simons number in
lattice approach@34#. A local Hamiltonian approach that i
intrinsically gauge invariant has also been recently propo
@35# and has the potential for numerical implementation.
proposal to study the classical dynamics of soft gauge fie
in terms of an effective Langevin equation has been put fo
in @29#. However in our view such a proposal does not se
to incorporate consistently the non-Markovian nature of
noise that is a result of the non-localities associated w
Landau damping.

The focus of this article is precisely to study in detail t
real-time dynamics of the evolution of gauge fields, given
arbitrary field condensate in the initial state. This study w
reveal thatLandau damping processesdominate the mos
relevant aspects of the dynamics and as argued above, d
mine the non-local aspects of the HTL effective action. T
main goal of this investigation is:~i! to provide a deepe
understanding of the time scales associated with dissipa
off-shell processes,~ii ! a consistent microscopic descriptio
that can be used as a yardstick to test lattice results on
time correlation functions, and~iii ! a detailed real-time de
scription of relaxation and kinetics of soft collective excit
tions in gauge theories.

Landau damping@7,11–13# occurs when a hard quasipa
ticle from the thermal bath~with momentum;T) scatters
off a soft collective mode~momentum;gT), borrowing
energy from~and damping! the soft excitations in the pro
cess. Simple kinematics dictates that these processes ca
cur only off shelland below the light-cone i.e. for spacelik
four-momentum. Furthermore, Landau damping gives a n
zero contribution only in the presence of a heat bath
when the external momentum is non-zero. Phrased dif
ently, the Landau discontinuities arepurely thermal cutsaris-
ing only at non-zero temperature and lead to damping
spatially inhomogeneousfield configurations only. Wherea
the real-time dynamics of similar processes has been stu
in a scalar theory@36#, such a study is lacking for the case
gauge fields. The gauge boson self-energy in the presen
these processes has been known for a long time@30–32# and
can be computed in the imaginary time formalism of fin
temperature field theory in the HTL limit@37#.

The main focus and goals of these article are:
To compute explicitly thereal time evolutionof inhomo-

geneous field configurations~non-equilibrium field expecta
tion values! in the ultrarelativistic plasma as aninitial value
problem. We linearize the field equations of motion in th
condensate amplitude. In this weak field regime, the evo
tion equations for the condensate can be solved in clo
form through Laplace transform. The analytic structure
the propagator in momentum space~s-plane! determines the
real time behavior of the solution. We obtain the propaga
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to one-loop order in the HTL approximation. In this approx
mation the long-time behavior of the condensate turns ou
be governed by the Landau discontinuities resulting in L
dau damping processes. Although the HTL corrections to
gauge boson self-energy are well-known, we believe that
calculation of thereal time dependence of the damping o
soft excitations is new.

While an understanding of the real-time relaxation of no
equilibrium, inhomogeneous field configurations is of fund
mental importance in the physics of relaxation in the QG
@7#, such a calculation also has phenomenological impli
tions for sphaleron induced B-violating processes. It h
been recently pointed out@27–29# that standard estimates o
the topological transition rate at finite temperature in t
electroweak theory ignore the effects of damping in the th
mal bath and these authors have argued that Landau dam
plays a very important role. Since the sphaleron is an in
mogeneous excitation associated with a soft length sc
(;1/g2T) Landau damping effects and the full HTL
resummed propagators must necessarily be taken into
count when studying the sphaleron damping rates@27–29#.

One of our main goals is to assess in detail the real t
non-equilibrium dynamics of soft excitations in the plasm
with particular attention to a critical analysis of the lon
standing belief that the small frequency region of the spec
function dominates the long time relaxational dynamics. W
find, to the contrary that the Landau dampingthresholdsat
v56k determine the long- time dynamics and that the ea
time dynamics is sensitive to several moments of the to
spectral density. This is an important point that bears
recent arguments that seek to clarify the damping effects
the sphaleron rate@27–29#. We analyze this novel result in
detail both analytically and numerically, thus proving th
the long time behavior is dominated by the Landau damp
thresholdsand that the small frequency region gives rise
sub-leading corrections to the long-time dynamics in
leading order HTL approximation.

In this article we concentrate on the case of scalar e
trodynamics~SQED! since this theory has the same HT
structure~to lowest order! as the non-Abelian case@37,38#.
Most of our results can therefore, be taken over to the n
Abelian case with little or no changes at least in the low
order HTL approximation. Scalar electrodynamics has
ready been used as an example to study the HTL resum
tion for the infrared modes@38#, but the scope of this article
is different in that we study explicitly the real time dynami
of the damping processes.

After resummation of the one-loop HTL contributions,
long times the relaxation of either transverse or longitudi
field expectation values is given by two contributions. T
first is from the quasiparticle modes, and is standard—
oscillatory function in time. The second contribution aris
from branch point singularities in the HTL self energies
nonzero frequency. These produce correlations in time wh
are oscillatory times power law tails; these power law ta
are a new feature of HTL’s. Long time power law tails
current-current correlators have been recently reported
Ref. @28#.

Furthermore we obtain consistently the effective Lang
9-2
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REAL-TIME RELAXATION AND KINETICS IN HOT . . . PHYSICAL REVIEW D 58 125009
vin equation for soft modes by integrating out the sca
fields and obtaining the influence functional for the gau
invariant observables. This allows us to extract the no
correlation function that displays all of the non-localities a
sociated with HTLs and Landau damping. By deriving t
relevant fluctuation-dissipation relation we identify th
proper correlation function that emerges in the class
limit. This analysis reveals that the range of both the dis
pation kernel as well as the noise correlation function
determined by thesoftscale. This results in the kernels bein
long-ranged, typically falling off with a power of time an
with no Markovian limit. Again this result is deeply relate
to the non-localities of the HTL effective action and preve
a local description of relaxational dynamics associated w
Landau damping.

Our detailed analysis and the consistent formulation of
influence functional starting from the microscopic Lagran
ian, unequivocally leads us to the conclusion that an eff
tive stochastic Langevin description of gauge field relaxat
to leading order in the HTL limit isnon-Markovian. Because
of the long-range kernels associated with Landau dampin
Markovian limit cannot be consistently extracted. This res
points out the limited utility of a Langevin equation for d
scribing relaxation via Landau damping.

Having established the relaxation of inhomogenous ga
field configurations via off-shell processes associated w
Landau damping, we ask how these processes contribu
the relaxation of the distribution function of transverse d
grees of freedom. Clearly the evolution of the distributi
function cannot be described to this order by a Boltzma
equation, since this kinetic approach only includes on-s
processes. Thus we provide one of the novel results of
work: we incorporate the non-equilibrium relaxation effec
from Landau damping into a kinetic equation that descri
the relaxation of the occupation number of transverse ga
fields. This kinetic equation incorporatesoff-shelleffects and
therefore constitutes an advance over the usual Boltzm
kinetic description in terms of completed collisions. We a
gue that since Landau damping results in an exchang
energy ~and momentum! between the quasiparticles in th
bath and the out-of-equilibrium field configuration, this
turn will naturally lead to a depletion of the particle numb
from the field configuration and must necessarily be includ
in any accurate kinetic description which aims to probe
laxational phenomena on the relevant time scales. A fra
work to study these transient, off-shell relaxational pheno
ena as initial value problems is given in Refs.@40–42#. The
analysis presented in this article implies a Dyson-like resu
mation that goes far beyond Boltzmann kinetics.

We compare the results from these new kinetic equati
to several different approximations to the kinetics. In co
paring the relaxation of dressed soft quasiparticles and
of bare particles and hard quasiparticles, we find a rem
able dressing dynamics of the degrees of freedom in the
dium, and anomalous relaxation for the hard quasipartic
We also argue that a proper kinetic description must inc
porate consistently the HTL effects and the quasiparticle
ture of the excitations.

In Sec. II we introduce the model under study and foc
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on a gauge invariant description of the dynamics. Section
is devoted to a derivation of the non-equilibrium equation
motion for the inhomogeneous condensate to one-loop o
in the hard thermal approximation. The real time relaxatio
dynamics of the inhomogeneous configuration via Land
damping is investigated in detail in Sec. IV. Contact is e
tablished with the fluctuation-dissipation theorem and s
chastic dynamics in Sec. V, where we derive a Lange
description for the soft gauge invariant degrees of freedom
the thermal bath and recognize the relevant correlation fu
tions that emerge in a~semi! classical stochastic description
We introduce a new kinetic description of transport pheno
ena induced by the non-collisional Landau damping proc
in Sec. VI. In this section we study the relaxation of t
distribution function for soft quasiparticles, bare particl
and mention some interesting features of the relaxation
hard quasiparticles. Finally, we summarize our analysis,
cuss the modifications that will arise when higher order c
rections leading to collisional lifetimes are included a
present our conclusions and possible future directions
study.

II. PRELIMINARIES

As mentioned in the Introduction, our ultimate goal is
understand relaxational processes associated with off-s
effects, such as Landau damping, in a non-Abelian ga
theory@7#. What we will do here is to treat the same proble
in the context of scalar quantum electrodynamics~SQED!
model. To leading order, we expect that this should be
good analogue of what happens in the non-Abelian cas
also has the advantage that it is simpler to deal with, and
we will see below, it can be cast from the outset in terms
gauge invariantvariables. This will eliminate any ambigu
ities associated with the usual problem of gauge depende
of off-shell quantities.

We will start with some inhomogeneous field configur
tion which is excited in the SQED plasma att50. What we
want to do is to follow the time development of this config
ration as it interacts with the hard modes in the plasma,
in particular, we want to know whether the relaxation is
the usually assumed exponential sort or something differ

Let us first reformulate SQED in terms of gauge invaria
variables. The SQED Lagrangian is given by

L5DmF† DmF2m2uFu22
1

4
FmnFmn,

DmF5~]m2 ieAm!F. ~2.1!

A description of the dynamics in terms of gauge invaria
observables begins with the identification of the constra
associated with gauge invariance. The Abelian gauge the
has two first class constraints, namely Gauss’s law and v
ishing canonical momentum forA0 . What we will do is
project the theory directly onto the physical Hilbert spac
defined as usual as the set of states annihilated by the
straints. The procedure is simple. First, we obtain gauge
variant observables that commute with the first class c
9-3
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DANIEL BOYANOVSKY et al. PHYSICAL REVIEW D 58 125009
straints and write the Hamiltonian in terms of these. All
the matrix elements between gauge invariant states~annihi-
lated by first class constraints! are the same as those th
would be obtained by fixing Coulomb gauge¹W •AW 50. The
Hamiltonian, when defined in the physical subspace, can
written solely in terms of transverse components and
cludes the instantaneous Coulomb interaction as would
obtained in Coulomb gauge. This instantaneous Coulomb
teraction can then be traded for agauge invariantLagrange
multiplier field A0(xW ,t) ~a non-propagating field whose ca
nonical momentum is absent from the Hamiltonian! linearly
coupled to the charge densityr(xW ,t) and obeying the alge
braic equation of motion¹2A0(xW ,t)5r(xW ,t). Alternatively,
one can use a phase-space path integral representation
generating functionals, trade the Coulomb interaction wit
Lagrange multiplier linearly coupled to the charge dens
and perform the path integral over the canonical moment
usual. Both methods lead to the following Lagrangian d
sity:

L5]mF† ]mF1
1

2
]mAW T•]mAW T

2eAW T• jWT2e2AW T•AW TF†F1
1

2
~¹A0!21e2A0

2F†F

2 ieA0~FḞ†2F†Ḟ!,

jWT5 i ~F†¹W TF2¹W TF† F!. ~2.2!

whereAT is the transverse component of the gauge field
In order to provide an initial value problem for studyin

the relaxational dynamics of charge density fluctuations
introduce an external sourceJL(xW ,t) linearly coupled toA0
and study the linear response to this perturbation. Furt
more, it is convenient to introduce external sources coup
to the transverse gauge fields to study the linear respons
transversegauge field configurations. These external fie
could in principle play the role of a semiclassical configu
tion coupled to small perturbations in a linearized appro
mation. Therefore we include external source terms in
Lagrangian density:

L→L2JL~xW ,t !A0~xW ,t !2JW T~xW ,t !•AW T~xW ,t !. ~2.3!

The relaxational dynamics of our initial inhomogeneo
configurations is clearly an out of equilibrium process, a
needs to be treated by an appropriate formalism@43–45#.

In the Schro¨dinger picture the dynamics is completely d
scribed by a time-evolved density matrixr̂ that obeys the
quantum Liouville equation:

i\
]r̂

]t
5@ r̂,H#, ~2.4!

whereH is the Hamiltonian of the system. The expectati
value of any operatorO is given by
12500
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^O&5Tr@ r̂~ t !O#. ~2.5!

For thermal initial conditions with an initial temperatur
given by 1/b, the density matrix att50 is r i5e2bHi and the
above expectation value can be rewritten easily as a fu
tional integral defined on a complex-time contour. Noti
that Hi is not the Hamiltonian of the system fort.0. The
system thus evolves out of equilibrium. The contour has t
branches running forward and backward in time and a th
leg along the imaginary axis stretching tot52 ib. This is
the standard Schwinger-Keldysh closed time path formu
tion of non-equilibrium field theory~see Refs.@43–45# for
details!. Fields defined on the forward and backward tim
contours are accompanied with (1) and (2) superscripts
respectively and are to be treated independently. The ex
tation value of any string of field operators may be obtain
by introducing independent sources on the forward and ba
ward time contours and taking functional derivatives of t
generating functional with respect to these sources.
imaginary time leg of the complex time contour does n
contribute to the dynamics. Since the path integral repres
a trace, the initial and final states must be identified a
therefore all the local bosonic fieldsO(xW ,t) satisfy the Kubo-
Martin-Schwinger~KMS! periodicity condition

O ~1 !~xW ,t0!5O ~b!~xW ,t02 ib!. ~2.6!

The non-equilibrium SQED Lagrangian is given by

Lnoneq5L@AW T
1 ,F1,F†1,A0

1#2L@AW T
2 ,F2,F†2,A0

2#.
~2.7!

Perturbative calculations are carried out with the follo
ing non-equilibrium Green’s functions: Scalar propagator

^F~a!†~xW ,t !F~b!~xW ,t8!&52 i E d3k

~2p!3 Gk
ab~ t,t8!e2 ikW•~xW2x8W !,

where (a,b)P$1,2%.

Gk
11~ t,t8!5Gk

.~ t,t8!Q~ t2t8!1Gk
,~ t,t8!Q~ t82t !,

~2.8!

Gk
22~ t,t8!5Gk

.~ t,t8!Q~ t82t !1Gk
,~ t,t8!Q~ t2t8!,

Gk
67~ t,t8!52Gk

,~. !~ t,t8!, ~2.9!

Gk
.~ t,t8!5

i

2vk
@~11nk!e

2 ivk~ t2t8!1nke
ivk~ t2t8!#,

~2.10!

Gk
,~ t,t8!5

i

2vk
@nke

2 ivk~ t2t8!1~11nk!e
ivk~ t2t8!#,

~2.11!

vk5AkW21m2; nk5
1

ebvk21
.

9-4
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REAL-TIME RELAXATION AND KINETICS IN HOT . . . PHYSICAL REVIEW D 58 125009
Photon propagators:

^ATi
~a!~xW ,t !AT j

~b!~xW ,t8!&52 i E d3k

~2p!3G i j
ab~k;t,t8!e2 ikW•~xW2x8W !,

G i j
11~k;t,t8!5Pi j ~kW !@G k

.~ t,t8!Q~ t2t8!

1G k
,~ t,t8!Q~ t82t !#,

G i j
22~k;t,t8!5Pi j ~kW !@G k

.~ t,t8!Q~ t82t !

1G k
,~ t,t8!Q~ t2t8!#,

G i j
67~k;t,t8!52Pi j ~kW !G k

,~. !~ t,t8!,

G k
.~ t,t8!5

i

2k
@~11Nk!e

2 ik~ t2t8!1Nke
ik~ t2t8!#,

~2.12!

G k
,~ t,t8!5

i

2k
@Nke

2 ik~ t2t8!1~11Nk!e
ik~ t2t8!#,

~2.13!

Nk5
1

ebk21
.

HerePi j (kW ) is the transverse projection operator:

Pi j ~kW !5d i j 2
kikj

k2
. ~2.14!

With these tools we are ready to begin our analysis
non-equilibrium SQED.

III. LINEAR RELAXATION

We now introduce the inhomogeneous non-equilibriu
expectation valuesAW T(xW ,t);A0(xW ,t) which are excited at
time t50 in the plasma. The non-equilibrium expectati
values of the transverse components represent electric
magnetic fields, whereas the expectation of the Lagra
multiplier field A0 corresponds to an initial charge density
the system.

The dynamics of these non-equilibrium expectation va
will be analyzed by treatingAW T(xW ,t);A0(xW ,t) as background
fields, i.e. the expectation values of the corresponding fie
in the non-equilibrium density matrix, and expanding the L
grangian about this configuration. Therefore we split the
12500
f
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quantum fields into c-number expectation values~which are
the non-equilibrium expectation value! and quantum fluctua-
tions about these expectation values:

AW T
~6 !~xW ,t !5AW T~xW ,t !1dAW T

~6 !~xW ,t !;

A0
~6 !~xW ,t !5A0~xW ,t !1dA0

~6 !~xW ,t ! ~3.1!

AW T~xW ,t !5^AW T
~6 !~xW ,t !&; A0~xW ,t !5^A0

~6 !~xW ,t !&
~3.2!

where the expectation values of the field operators are ta
in the time-evolved density matrix.

The equations of motion for the background field can
obtained to any order in the perturbative expansion by
posing the requirement that the expectation value of
quantum fluctuations in the time evolved density matrix va
ishes identically. This is referred to as the tadpole equa
@45# which follows from Eq.~3.1! and Eq.~3.2!:

^dAW T
~6 !&50; ^dA0

~6 !&50. ~3.3!

The equations obtained via this procedure are the equat
of motion obtained by variations of the non-equilibrium e
fective action. The perturbative expansion needed to co
pute the relevant expectation values is obtained by trea
all the linear terms @45# in the fluctuations as interaction
along with the usual interaction vertices.

Although in principle the tadpole method could be used
study arbitrary background configurations including no
perturbative ones~for e.g. sphalerons in the non-Abelia
case! we restrict our discussions to the small amplitude
gime in close analogy to the work of Ref.@36# for scalar field
theory. In other words, the effective action equation of m
tion will be studied in the linear approximation for the co
densate amplitude so thatO(A Ti

2 ) andO(A 0
2) and higher

orders will be neglected. In addition, the evolution kern
will be approximated to theone-looporder only.

Defining the Fourier components of the electromagne
condensate as

ATi~kW ,t !5E d3xeikW•xWATi~xW ,t !, ~3.4!

A0~kW ,t !5E d3xeikW•xWA0~xW ,t ! ~3.5!

we obtain the following equation of motion to one-loop ord
for the transverse part:
d2

dt2
ATi~kW ,t !1k2ATi~kW ,t !12e2^F†F&ATi~kW ,t !22e2E

0

t

dtE d3p

~2p!3vpvp1k

pTipT j@~11np1np1k!sin$~vk1p1vp!

3~ t2t!%1~np2nk1p!sin$~vk1p2vp!~ t2t!%#AT j~kW ,t!5JTi~kW ,t !. ~3.6!

HerepTi refers to the component of the spatial momentumpW which is transverse to the wave-vectorkW andAT j(kW ,t) stands for
the Fourier transform of the external sourceAW T j(xW ,t) in Eq. ~2.3!.
9-5
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The tadpole term which appears due to the 4-point ‘‘seagull’’ vertex can be evaluated easily in the limit whereT@m and
yields the following hard thermal loop contribution

2e2^F†F&52e2E 112nk

2vk

d3k

~2p!3
.

e2T2

6
. ~3.7!

We remark that in evaluating the tadpole diagram above and in all subsequent calculations it is alwaysassumedthat the
zero temperature divergences have already been absorbed in the proper mass and wavefunction renormalizations.

The longitudinal part obeys a similar equation:

k2A0~kW ,t !1e2E
0

t

dtE d3p

~2p!3F S vk1p

vp
21D ~11np1np1k!sin$~vk1p1vp!~ t2t!%

1S vk1p

vp
11D ~np2nk1p!sin$~vk1p2vp!~ t2t!%GA0~kW ,t!5JL~kW ,t !. ~3.8!

It should be noted that the equation of motion for the longitudinal component has no time derivatives, indicating th
dynamical nature of the field. The source term for the longitudinal component is interpreted as an external disturba
induces a charge density fluctuation in the SQED plasma. The response to a general disturbance can be obtained
lution from the result of linear response to the impulsive perturbation.

We also note that unlike the transverse case, there is no contribution from the tadpole term to the effective action e
of motion. This fact will be important in understanding the origin of a non-zero Debye mass.

The nonlocal terms in Eqs.~3.6! and ~3.8! are the one-loop self-energies for the transverse and longitudinal compo
respectively, resulting from the photon-Higgs trilinear coupling. The first piece in the nonlocal terms proportional to1np

1nk1p is the difference of the following creation and annihilation processes in the medium@46# : g→F̄F with Bose factor

(11np)(11np1k) andF̄F→g with a statistical factornpnp1k . The piece proportional to (np2nk1p) is the Landau damping
contribution@13,46#. Whenk50 this contribution vanishes indicating that it affects inhomogeneous excitations only. Fu
more, it has no zero temperature counterpart since the Bose factornk2nk1p vanishes identically atT50. This term arises from
the difference of the processesgF→F with statistical factor (11nk1p)np and F→gF with the factor (11np)nk1p .
Although it does not give rise to an imaginary part for theon-shellself-energy, it will nevertheless have an effect on t
physical processes associated with the relaxation of the inhomogeneous condensate as described in detail below.

We can solve Eqs.~3.6!, ~3.8! via the Laplace transform. Introducing the Laplace transformed fields

ÃTi~kW ,s!5E
0

`

dte2stATi~kW ,t !, ~3.9!

Ã0~kW ,s!5E
0

`

dte2stA0~kW ,t !, ~3.10!

and performing the transform on the above equations of motion we get following the same methods as in Ref.@36#,

~s21k21e2T2/6!ÃTi~kW ,s!22e2E d3p

~2p!3vpvk1p
F ~11np1np1k!

vk1p1vp

s21~vk1p1vp!2

1~np2nk1p!
vk1p2vp

s21~vk1p2vp!2GpTipT jÃT j~kW ,s!

5sATi~kW ,0!1ȦTi~kW ,0!1J̃Ti~kW ,s! ~3.11!

for the transverse part, and

H k21e2E d3p

~2p!3F S vk1p

vp
21D ~11np1np1k!

vk1p1vp

s21~vk1p1vp!2
1S vk1p

vp
11D ~np2nk1p!

vk1p2vp

s21~vk1p2vp!2G J Ã0~kW ,s!

5J̃L~kW ,s! ~3.12!
125009-6



ri

x-
m
th
cs

io

an
ar
el
f
fo

und
ex-

in
m-

REAL-TIME RELAXATION AND KINETICS IN HOT . . . PHYSICAL REVIEW D 58 125009
for the longitudinal component. The Laplace transform va
ables plays the role of an~imaginary! time component of the
photon four-momentum.

IV. REAL TIME LANDAU DAMPING

With the equations of motion for the non-equilibrium e
pectation value in hand, we turn to the analysis of its ti
evolution, paying particular attention to those parts of
spectral density which contribute to the long time dynami

We do this by solving Eqs.~3.11!, ~3.12! via the inverse
Laplace transform. Recall that this requires an integrat
along a contour parallel to the imaginarys axis placed in
such a way so as to have all the singularities of the integr
to the left of the contour. To do this, we will need a cle
understanding of the analytic structure of the photon s
energy in thes-plane. We will explicitly outline the details o
the calculation for the transverse part only, since those
the longitudinal part are similar.

A. The transverse part

It is illuminating to write the equation of motion~3.11! in
terms of a spectral density functionr i j (v8,kW ) @36#:

~s21k21e2T2/6!ÃTi~kW ,s!

1E
2`

1`

dv8
v8

s21v82
r i j ~v8,kW !ÃT j~kW ,s!

5sATi~kW ,0!1ȦTi~kW ,0!1J̃Ti~kW ,s! ~4.1!
12500
-

e
e
.

n

d

f-

r

where

r i j ~v8,kW !522e2E d3p

~2p!3vpvk1p

pTipT j

3@~11np1np1k!d~v82vk1p2vp!

1~np2nk1p!d~vk1p2vp2v8!#. ~4.2!

The one-loop transverse self-energy in thes-plane is given
by

Pi j ~kW !S t~s!5
e2T2

6
Pi j ~kW !1E

2`

`

dv8
v8

s21v82
r i j ~v8,kW ,s!,

~4.3!

where we have recognized the fact thatr i j }Pi j (kW ).
Using Pi j (kW )AT j(kW ,s)5ATi(kW ,s) the Laplace transform

of the transverse part of the condensate is given by

ÃTi~kW ,s!5
sATi~kW ,0!1ȦTi~kW ,0!1J̃Ti~kW ,s!

s21k21S t~s!
. ~4.4!

The real time dependence of the inhomogeneous backgro
is given by the inverse Laplace transform of the above
pression which is in fact the retarded propagator defined
the s-plane. The inverse transform is calculated by perfor
ing the following integral along the Bromwich contour.
a clear
nt to zero,

alt with
ith the
ATi~kW ,t !5E
c2 i`

c1 i` ds

2p i
estÃTi~kW ,s!5E

c2 i`

c1 i` ds

2p i
est

sATi~kW ,0!1ȦTi~kW ,0!1J̃Ti~kW ,s!

s21k21S t~s!
. ~4.5!

Here we choosec>0, such that the contour is to the right of all the singularities in thes-plane.
The time dependence of this integral crucially depends on the analytic properties of the propagator and hence

understanding of the poles and cuts of the retarded propagator is essential. At this stage we will set the external curre
and analyze the contribution of the sources at the end of this subsection.

In all of the above and in what follows it is implicitly assumed that the zero temperature divergences have been de
already by renormalizing the amplitude of the field, i.e. wave-function renormalization and that we are working w
subtracted spectral function. Recall that the divergences are determined solely by zero temperature fluctuations.

We define the real and imaginary parts of the self-energy near the imaginary axis through

S t~ iv601!5SR
t ~ iv601!1 iS I

t~ iv601!. ~4.6!

In fact it is easy to see from Eq.~4.3! that

S I
t~ iv601!57sgn~v!

p

2
~r i j ~ uvu!2r i j ~2uvu!!

56
e2

8p2
sgn~v!E d3pp2sin2u

vpvk1p
@~11np1nk1p!d~vk1p1vp2uvu!

1~np2nk1p!$d~vk1p2vp2uvu!2d~vk1p2vp1uvu!%#. ~4.7!
9-7
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DANIEL BOYANOVSKY et al. PHYSICAL REVIEW D 58 125009
This shows thatS I
t( iv201)52S I

t( iv101) and that the
cuts will appear whenever the delta functions are satisfi
Analysis of the arguments of the delta functions reveals
the two-particle cuts arising from the first term in Eq.~4.7!
stretch froms56 i (m1vk) to s56 i`. The second and
third terms in Eq.~4.7! contain the hard thermal contribu
tions. They have support whenvk1p2vp.kW• p̂56v which
corresponds to the four-vector (v,kW ) being spacelike. The
resulting branch cut runs froms52 ik to s51 ik. Hence
these processes are induced only by off-shell space-like
tons. These HTL contributions lead toLandau damping. In
summary, the physical region singularities and the Lan
discontinuities show up as discontinuities in the imagin
part of the self-energyS t(s) when approaching the imag
nary axis of thes-plane i.e.s5 iv.

In addition, as argued in the previous section the con
bution of the physical region cuts froms56 i (m1vk) to
s56 i` to the self-energy are} lnT only, and therefore sub
leading compared with theO(T2) terms.

Furthermore the long time dynamics due to the cuts w
be dominated by the thresholds~or the end-points!. Since the
end-points of the Landau damping discontinuities are as
'6 ik, they will be the dominant contribution and the tw
particle cuts froms56 i (m1vk) to s56` will be sublead-
ing at long times. Thus we can simply focus on Land
damping both as the leading high temperature and long t
contributions. This argument is necessary because it is na
priori obvious that the high temperature and long time lim
are described by the same processes.

The leading term in the self-energy}T2 is given by

S I
t~ iv601!.6

e2

8p
sgn~v!E dp p2S 2

dnp

dp D
3E

21

1

dx~12x2!kx

3@d~kx2uvu!2d~kx1uvu!#

56
e2T2p

12

v

k S 12
v2

k2 D Q~k22v2!.

~4.8!

The real part can be obtained either by using dispersion
lations or by explicitly solving for the hard thermal sel
energy by calculating the relevant integrals and we find

S t~s!52
e2T2

12 F2
s2

k2
1 i

s

kS 11
s2

k2D lnS is2k

is1kD G1O~ lnT!.

~4.9!

From this expression the transverse self-energy along
imaginary axis when approaching from the right, can be r
off easily:
12500
d.
at

o-

u
y

i-

ll

u
e

t

e-

he
d

S t~ iv101!5
e2T2

12 F2
v2

k2
1

v

k S 12
v2

k2 D lnUk1v

k2vUG
1 i

e2T2p

12

v

k S 12
v2

k2 D Q~k22v2!

~4.10!

and agrees with known results@31,32,37,38,46#.
In addition to the branch cut singularities, the retard

propagator will also have isolated poles corresponding to
quasiparticle excitations which can propagate in the plas
The poles for the transverse excitations will be given by
solutions to

vP
2 5k21

e2T2

12 F2
vP

2

k2
1

vP

k S 12
vP

2

k2 D lnUk1vP

k2vP
UG ~4.11!

1 i
e2T2p

12

vP

k S 12
vP

2

k2 D Q~k22vP
2 !. ~4.12!

They will be in the physical sheet provided the imagina
part vanishes at the pole.

Though the equation cannot be solved analytically, in
case of interest when the external momenta are extrem
soft ~for e.g. k;e2T!eT) representing a small amplitud
long wavelength field configuration, the approximate loc
tion of the poles is found to bes56 ivP.6 i (eT/3)
@31,32,37,38#.

The two-particle cuts were shown to run froms56 i (m
1vk) to 6 i` wherem is the mass of the scalar. A consi
tent HTL resummation should also include the shift in t
scalar masses, thus ensuring that to this order the quasip
cle pole is in the physical sheet. Higher order contributio
will provide a collisional broadening to the pole. It is a not
worthy point that the quasiparticle poles are located bey
the Landau discontinuities which stretch from2 ik to 1 ik in
the s-plane, and below the two-particle threshold.

In summary, to this order in the HTL approximation, th
analytic structure of the retarded propagator in the high te
perature limit features a Landau discontinuity running fro
2 ik to 1 ik and quasiparticle poles ats56 ivp(k). The
two-particle cut contributions have been shown to give
subleading contribution both in temperature and in the lo
time dynamics.

Using Eq.~4.5! we can now invert the transform by de
forming the contour and wrapping it around the poles and
cuts to pick up the corresponding residues and disconti
ties repectively so that

ATi~kW ,t !5A Ti
pole~kW ,t !1A Ti

cut~kW ,t !. ~4.13!

The contributions from the quasiparticle poles add up to g
a purely oscillatory behavior in time. The residues at t
poles give rise to a wave function renormalization with bo
T-dependent andT-independent contributions. TheT-
independent contribution contains the typical logarithmic
9-8
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vergence and has been absorbed in the usual zero tem
ture wave-function renormalization. We thus obtain

A Ti
pole~kW ,t !5Zt@T#FATi~kW ,0!cos~vPt !1ȦTi~kW ,0!

sin~vPt !

vP
G ,

~4.14!
m
is

or

m
b

b
th

to

a

m
o

e

12500
ra-
Zt@T#5F12

]S t~ iv!

]v2 G
v5vP.eT/3

21

. ~4.15!

Here Zt(T) is the temperature dependent wave functi
renormalization defined on-shell at the quasiparticle p
whose leading HTL contribution is obtained from the se
energy~4.10!. The continuum contribution is given by
A Ti
cut~kW ,t !5

2

pE0

k

dv
S I

t~ iv101!@ATi~kW ,0!vcos~vt !1ȦTi~kW ,0!sin~vt !#

@v22k22SR
t ~ iv!#21@S I

t~ iv101!#2
. ~4.16!

Evaluating Eqs.~4.13!, ~4.14! and ~4.16! at t50 we obtain an important sum rule,

Zt@T#1
2

pE0

k

dv
vS I

t~ iv101!

@v22k22SR
t ~ iv!#21@S I

t~ iv101!#2
51. ~4.17!
ion

e

-

This sum rule is a consequence of the canonical com
tation relations but its content in the HTL approximation
that in the high temperature limit the wave function ren
malisation which is evaluatedon-shell is completely deter-
mined by the Landau discontinuities which originate fro
strongly off-shellprocesses. A similar sum rule was also o
tained in@11# using different methods.

The integral over the cut~4.16! cannot be evaluated in
closed form but its long time asymptotics is dominated
the end-point contributions as can be understood from
following argument. The integral along the realv axis from
v50 to v5k can be obtained by deforming the integral in
the upper complexv plane so that it runs alongv5 iz;0
,z,`, then around an arc at infinity and back to the re
axis along the linev5k1 iz;0,z,` for the term}eivt

and similarly into the lower complex plane for the ter
}e2 ivt. A detailed analysis of the asymptotic behavior
the integral reveals that only thev5k end-point contributes
because the contributions fromv50 vanish for larget faster
than any negative power oft. This is a consequence of th
regular behavior of the spectral density in the vicinity ofv
50.

We find the contribution from thev5k end-point in the
long time limit t@1/k to be given by

A Ti
cut~kW ,t ! 5

t→`

2
12

e2T2HATi~kW ,0!
cos~kt!

t2
1ȦTi~kW ,0!

sin~kt!

kt2
J

3F11OS 1

t D G . ~4.18!

From the sum rule~4.16! and~4.17! we find that theearly
time behavior is approximately given by
u-

-

-

y
e

l

f

ATi~kW ,t !5ATi~kW ,0!@12e2T2t2De1O~ t4!#

1ȦTi~kW ,0!Do

e2T2

k2
t@11O~ t2!#, ~4.19!

where De,o are constants depending on the wave-funct
renormalization and moments of the spectral density.

At long times, the dominant contributions are from th
nearest singularities in the complexv plane. This includes
the usual contributions from the quasiparticle modes atv5
6vP , given by Eq.~4.14!. In addition, there is also the
contributions from the branch points atv56k, Eq. ~4.18!.
There is no contribution fromv50, because the HTL self
energy is regular about zero frequency.

Figure 1 shows the cut contributionA T
cut(k,t)/AT(k,0)

vs time for e2T2/k252 and Fig. 2 showst2A T
cut(k,t)/

FIG. 1. Cut contributionA T
cut(k,t)/AT(k,0) for e2T2/1252 and

k51 vs t.
9-9
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FIG. 2. t23A T
cut(k,t)/AT(k,0) vs t ~in units of 1/k! for mD

2 /k2512;mD
2 5e2T2/3.
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AT(k,0) vs t ~in units of 1/k) for mD
2 /k2512 for the case

ȦTi(kW ,0)50.
The point being made is that the real time dynamics of

condensate is completely determined by the analytic st
ture of the retarded propagator and theglobal structureof
the spectral density in thes-plane.

The second important point to note is that the long ti
behavior is apower law;t22 ~times oscillations! andnot an
exponential decay. This means that Landau damping effec
cannot be reproduced by phenomenological ‘‘viscous
terms of the type;G(d/dt) neither at long nor at shor
times. The failure of such a phenomenologically motiva
ansatz was already noticed at zero temperature in diffe
contexts in Ref.@44#. We stress that such a description n
only fails to reproduce the power law behavior but in fa
ignoresall the non-localphysics of Landau damping whic
is so clearly encoded in the hard thermal loop kernels.

One might argue that higher order processes, both Lan
damping and collisional, could lead to an exponential rel
ation. However, the point of the above analysis is to arg
that the full relaxational physics will be described by acom-
petition between the power laws from the lowest order La
dau damping contributions and the higher order exponen
damping. The time scale of interest will determine whi
process dominates.

For non-zero external sources we can obtain the gen
real time evolution by inserting the Laplace transform of t
source in Eq.~4.5!

J̃Ti~kW ,s!5E
0

`

dte2stJTi~kW ,t !.

This is an analytic function ofs for Re(s).0 provided
JTi(kW ,t) is a non-singular function of time. Let us assum
that J̃Ti(kW ,s) is analytic for Re(s).2a, wherea.0 is a
positive number.@Since J̃Ti(kW ,s) vanishes for Re(s)→
12500
e
c-

e

d
nt
t
t

au
-
e

-
al

ral

1`,J̃Ti(kW ,s) must have singularities somewhere in the l
half-plane. Otherwise, it will be an entire function which
zero at infinity and therefore identically zero.# The singulari-
ties of J̃Ti(kW ,s) in the left-halfs plane yield contributions to
ATi(kW ,t) through Eq.~4.5! which decrease exponentially i
time as e2at. They are therefore subdominant compar
with the Landau cut contributions~4.18!.

The source term contribution from the smalls5 iv region
can be understood simply as follows. Within the above h
pothesis, the source termJ̃Ti(kW ,iv) can be expanded in a
Taylor series for smallv

J̃Ti~kW ,iv!5J0~kW !1J1~kW !v1O~v2!.

The even term,J0(kW ) can be absorbed into a shift o

ȦTi(kW ,0), while the odd termJ1(kW ) can be absorbed into
shift of ATi(kW ,0), Eq. ~4.5!. Thus as before the asymptot
large time behavior is completely dominated by the bran
points at v56k. Under the above assumptions on t
Laplace transform of the external current, we find the gene
time dependence to be given by

A Ti
cut~kW ,t ! 5

t→`

2
12

e2T2kt2
$@kATi~kW ,0!2Si~k!#cos~kt!

1@ȦTi~kW ,0!1Ci~k!#sin~kt!%F11OS 1

t D G .
~4.20!

HereCi(v) andSi(v) stand for the Fourier cosine and sin
transforms of the sourceJTi(kW ,t), respectively:
9-10
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Ci~v!5E
0

`

dtcos~vt !JTi~kW ,t !,

Si~v!5E
0

`

dtsin~vt !JTi~kW ,t !.

We emphasize that to this order in the HTL resummati
the region nearv'0 of the spectral density is regular~no
branch singularities! and thereforedoes notcontribute to the
long time dynamics, which is completely determined by t
end point~branch point! at v5k.

B. Longitudinal part

An analysis very similar to the one outlined above yie
the following expressions for the longitudinal component
the photon self-energy in the case of an impulsive sou
JL(xW ,t)5d3(xW )d(t) with spatial Fourier and Laplace tran
form given byJ̃L(kW ,s)51. The case of a more complicate
source can be obtained by convolution. In this case we ob

A0~kW ,s!5
1

k21S l~s!
~4.21!

where

S l~s!5
e2T2

3
2

e2T2

6

s

ik
BPlnS is2k

is1kD . ~4.22!

Thus the longitudinal self-energy along the imaginary axis
the s-plane, when approaching from the right is obtained
before to be

S l~ iv101!5
e2T2

3 F12
v

2k
lnUk1v

k2vUG
2 i

e2T2p

6

v

k
Q~k22v2!. ~4.23!

The location of the longitudinal quasiparticle or plasm
poles is given by the following dispersion relation,

k21
e2T2

3 F12
v

2k
lnUk1v

k2vUG2 i
e2T2p

6

v

k
Q~k22v2!50.

~4.24!

For soft external momenta (k!eT) the plasmon poles can b
seen to be ats56 iv0.6 ieT/3. The real time dependenc
of the longitudinal condensate is then found by inverting
transform using

A0~kW ,t !5E
c2 i`

c1 i` ds

2p i
est Ã0~kW ,s! ~4.25!

where the contour is to the right of all the singularities as
Eq. ~4.5!. As in the transverse case, at high temperatures
singularity structure is dominated by the discontinuity acr
the cut that runs from2 ik to 1 ik corresponding to Landau
12500
,

e

f
e

in

n
s

e

e
s

damping, and the two plasmon poles at6 iv0 . The Bro-
mwich contour is then deformed to pick up the cut and p
contributions so that

A0~kW ,t !5A 0
pole~kW ,t !1A 0

cut~kW ,t !, ~4.26!

where

A 0
pole~kW ,t !52Zl@T#

sin~v0t !

v0
, ~4.27!

Zl@T#5F ]S l~ iv!

]v2 G
v5vo.eT/3

21

~4.28!

and

A 0
cut~kW ,t !52

2

pE0

k

dv
S I

l ~ iv101!sin~vt !

@k21SR
l ~ iv!#21@S I

l ~ iv101!#2
.

~4.29!

Unlike the transverse components for which the sum rule
consequence of the canonical commutation relations, for
longitudinal component there is no equivalent sum rule
cause the fieldA0(x) is a non-propagating Lagrange mult
plier.

The long time, asymptotic behavior of the longitudin
condensate is dominated by the end-points of the inte
~4.29!. The end-pointv50 yields contributions that vanish
for long t faster than any negative power oft, as it was the
case for the transverse part~4.16!. We find that the long time
asymptotics fort@1/k is dominated by the end-point contr
bution atv5k,

A 0
cut~kW ,t !5aasymp

cut ~kW ,t !F11OS 1

t D G ,
aasymp

cut ~kW ,t ![2
12

e2T2E
0

`

dx

3e2x
cos@kt1a~x,t !#

Alog4
cx

kt
1

5p2

2
log2

cx

kt
1

9p4

16

~4.30!

a~x,t ![arctan

p log
cx

kt

3p2

4
1 log2

cx

kt

~4.31!

c[
1

2
expF21

6k2

e2T2G . ~4.32!

The integral in Eq.~4.30! cannot be expressed in terms
elementary functions and it is related to then(x) function
9-11
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FIG. 3. t@ log2(kt/c)1p2/4#A 0
cut(kW ,t) as a function oft for e2T256 andk51 @see Eqs.~4.30!–~4.33!#.
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The
@47#. For larget, one can derive an asymptotic expansion
inverse powers of log@kt/c# by integrating Eq.~4.30! by parts:

aasymp
cut ~kW ,t ! 5

t→`

2
12

e2T2t

cos~kt1b~kt!!

log2
kt

c
1

p2

4

F11OS 1

logt D G
~4.33!

b~kt![2arctan
p logkt

log2kt2
p2

4

. ~4.34!

This expansion is not very good quantitatively unlesst is
very large. For example, forkt5500, aasymp

cut (kW ,t) given by

Eq. ~4.30! approximatesA 0
cut(kW ,t) up to 0.1%, whereas, th

dominant term in Eq.~4.33! is about 30% smaller than
aasymp

cut (kW ,t). Figure 3 showst@ log2(kt/c)1p2/4#A 0
cut(kW ,t)
u-

a
a

12500
and Fig. 4 shows (12/e2T2)cos@kt1b(kt)# @see Eqs.~4.30!–
~4.33!#, both figures should coincide for large enought but
we see numerically a sizable discrepancy even fort5500
due to the slow convergence of the asymptotic expans
~4.33!.

A saddle point analysis yields an intermediate asymp
ics of the form

aasymp
cut ~kW ,t !'

3Apcos~kt!

e2T2t ln2.5@kt#
~4.35!

which although is a relatively good estimate within a tim
window ~see Fig. 5! is seen numerically to have a discre
ancy of the same order as the dominant term above i
wider range of time. Nevertheless, the exact express
~4.30! is easily obtained numerically for arbitrary range
parameters.

The case of a general source requires a convolution.
cut contribution takes now the form
A 0
cut~kW ,t !52

2

pE0

k

dv
S I

l ~ iv101!@CL~v!sin~vt !2SL~v!cos~vt !#

@k21SR
l ~ iv!#21@S I

l ~ iv101!#2
,

whereCL(v) andSL(v) stand for the cosine and sine Fo

rier coefficients of the sourceJL(kW ,t), respectively.
For a longitudinal source fullfilling the same general an

lyticity assumptions as the transverse source we can exp
in series for smallv as
-
nd

J̃L~kW ,iv!5J0L1J1Lv1O~v2!.

As for Eq.~4.29! the end-pointv50 of the integral~4.29!
yields contributions that vanish for longt faster than any
9-12
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FIG. 4. (12/e2T2)cos@kt1b(kt)# a function oft for e2T256 andk51 @see Eqs.~4.30!–~4.33!#.
su
T

he
itu
p

-

negative power oft. Just as in the transverse case, this re
is a consequence of the fact that to this order in the H
resummation, the spectral density is regular~no branch
points! nearv50.

To summarize, we gather the final results for t
asymptotic real-time evolution of the transverse and long
dinal non-equilibrium expectation value in the linear a
proximation

Transverse (no external source):
12500
lt
L

-
-

ATi~kW ,t !5ATi~kW ,0!FZt2
12

e2T2

cos~kt!

e2T2

cos~kt!

t2 1OS 1

t3D G
1ȦTi~kW ,0!F Zt

vp
2

12

e2T2

sin~kt!

e2T2

sin~kt!

kt2
1OS 1

t3D G .
~4.36!

The sum rule~4.17! implies that the coherent field configu
FIG. 5. t3(ln@t#)2.53A 0
cut(k,t) vs t ~in units of 1/k! for mD

2 /k252.
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ration relaxes to an asymptotic amplitude which issmaller
than the initial, and the ratio of the final to the initial amp
tude is completely determined by the thermal wave funct
renormalization.

Longitudinal (impulsive external source):

A0~kW ,t !52Zl@T#
sin~v0t !

v0
1aasymp

cut ~kW ,t !F11OS 1

t D G .
~4.37!

The transverse and longitudinal wave function renorm
izations Zt@T#,Zl@T# are given by Eqs.~4.15! and ~4.28!

respectively andaasymp
cut (kW ,t) is given by Eqs.~4.30!, ~4.33!

while the positions of the polesvp ,v0 can be obtained by
solving Eqs.~4.11! and ~4.24! respectively.

In summary:we find that the long time dynamics is dom
nated by the Landau damping thresholds atv56k, not by
the v'0 region of the spectral density. The early time d
namics is determined by moments of the total spectral d
sity. Long time power law tails had recently found in th
current correlators in Ref.@28#.

V. LANGEVIN DESCRIPTION FOR THE SOFT MODES
AND FLUCTUATION-DISSIPATION RELATION

A. Langevin description

So far we have studied the damping of soft modes in
plasma by the hard particles from the microscopic point
view. In this section we provide a stochastic description
the relaxation of gauge fields via a semiclassical Lange
equation with a Markovian damping kernel and a Gauss
white noise.

A semiclassical description treats the hard modes a
‘‘bath’’ and the soft modes as the ‘‘system.’’ The bath d
grees of freedom are integrated out, their main effect be
encoded in a dissipative kernel and a stochastic noise in
mogeneity in the resulting Langevin equation. The dissi
tive kernel is related to the stochastic correlation function
the noise via a generalized fluctuation-dissipation relati
Physically the stochasticity arises because the hard sc
which are integrated out in the HTL scheme and are resp
sible for Landau damping will also provide random kicks
the soft degrees of freedom.

This section is devoted to amicroscopic derivationof the
Langevin equation for the inhomogeneous gauge field c
figuration, to leading order in the hard thermal loop progra
This is achieved explicitly by integrating out the hard mod
which provide a natural realization of the ‘‘bath’’ variable
while the soft modes are to be treated as the ‘‘system’’ v
ables. The methodology of this approach is based on
Feynman-Vernon influence functional@48# which has al-
ready been used to describe dissipation and decoheren
quantum systems from a microscopic theory@44,49,50#.
12500
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The non-equilibrium partition function for the full field
theory is

Z5E DATi
~6 !DF~6 !DF~6 !†

3expF i E d4xH ]mF~1 !†]mF~1 !1
1

2
]mAW T

~1 !
•]mAW T

~1 !

2eAW T
~1 !

• jWT
~1 !2e2AW T

~1 !
•AW T

~1 !F~1 !†F~1 !

2@1→2#J G ~5.1!

and the effective action for the ‘‘system’’~the soft photons!
follows by performing the path integral over the ‘‘bath’’~the
hard scalars! treating the ‘‘system’’ degrees of freedom a
background fields. This means that all subsequent expe
tion values will be evaluated in the reduced density ma
which defines the effective field theory for the system d
grees of freedom. It is then convenient to introduce the ‘‘ce
ter of mass’’ and ‘‘relative’’ coordinates

ATi
~6 !5ATi6

RTi

2
. ~5.2!

In terms of these redefined fields the effective action can
obtained to one-loop order via a systematic loop-expans
of the reduced partition function:

Se f f@ATi ,RTi#5E d4xH 2RTi]
2ATi

22e2RTiATi^F
†F&

1
ie2

4 E d4x8RTi~x!RT j@^ j Ti
~1 !~x! j T j

~2 !~x8!&

1^ j Ti
~2 !~x! j T j

~2 !~x8!&#RT j~x8!

1 ie2E d4x8RTi~x!@^ j Ti
~2 !~x! j T j

~1 !~x8!&

2^ j Ti
~1 !~x! j T j

~2 !~x8!&#Q~x02x08!AT j~x8!J .

~5.3!

The transverse currentj Ti(x) was introduced in Eq.~2.2! and
the curent-current correlators can be calculated easily u
the defining formulas for the free scalar propagators in E
~2.8!–~2.11!. In order to make explicit the soft momentum
scales of interest we perform a spatial Fourier transform
terms of which the reduced effective action, including t
influence functional of the hard modes is given by
9-14
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Se f f@ATi ,RTi#

5E d3k

~2p!3E dtH 2RTi~kW ,t !S d2

dt2
1k212e2^F†F& D

3ATi~2kW ,t !2E t

dt8RTi~kW ,t !Di j ~k;t,t8!AT j~2kW ,t8!

1 i E dt8RTi~kW ,t !Ni j ~k;t,t8!RT j~2kW ,t8!J ~5.4!

whereDi j andNi j will be shown to be the dissipation an
noise kernels respectively. The dissipation kernel which
given by

Di j ~kW ;t,t8!54ie2E d3p

~2p!3
pTipT j@Gp

,~ t,t8!Gk1p
, ~ t,t8!

2Gp
.~ t,t8!Gk1p

. ~ t,t8!#Q~ t2t8!

52e2E d3p

~2p!3vpvk1p

pTipT j$~11np
12500
is

1np1k!sin@~vp1vk1p!~ t2t8!#

1~np2np1k!sin@~vk1p2vp!~ t2t8!#%

3Q~ t2t8! ~5.5!

clearly gives a causal contribution to the effective action
seen in Eq.~5.4!. The fact that it is real follows from the
properties of the non-equilibrium Green’s functions@Eqs.
~2.10! and ~2.11!# which imply that

Gp
,~ t,t8!Gk1p

, ~ t,t8!2Gp
.~ t,t8!Gk1p

. ~ t,t8!

;2i Im@Gp
,~ t,t8!Gk1p

, ~ t,t8!#.

Furthermore the dissipation kernel is in fact precisely
one-loop self-energy which appears in the effective act
equation of motion Eq.~3.6!. The noise kernel on the othe
hand isacausaland gives animaginary contribution to the
effective action
the same
pation

ewritten
Ni j ~kW ;t,t8!52e2E d3p

~2p!3
pTipT j@Gp

,~ t,t8!Gk1p
, ~ t,t8!1Gp

.~ t,t8!Gk1p
. ~ t,t8!#

5
e2

2 E d3p

~2p!3vpvk1p

pTipT j$~11np1np1k12npnp1k!cos@~vp1vk1p!~ t2t8!#

1~np1np1k12npnp1k!cos@~vk1p2vp!~ t2t8!#%. ~5.6!

Therefore,

Ni j }ReF E d3ppTipT jGp
,~ t,t8!Gk1p

, ~ t,t8!G ~5.7!

which means that the noise-noise correlator and the dissipation kernel are the real and imaginary parts respectively of
analytic function of (t2t8). Thus they are automatically related by dispersion relations which reveal the fluctuation-dissi
theorem within this context.

The imaginary, non-local, acausal part of the effective action gives a contribution to the path-integral that may be r
in terms of a stochastic field as@50#

Z5E DRTi~kW !DRTi* ~kW !expF2E dtdt8
d3k

~2p!3
RTi* ~kW ,t !Ni j ~k;t,t8!RT j~kW ,t8!G

}E DRTi~kW !DRTi* ~kW !Dj i~kW !Dj i* ~kW !P@j#expF i E dt
d3k

~2p!3
j i~kW ,t !RTi~2kW ,t !1c.c.G ~5.8!
where the noise has a Gaussian probability distribution

P@j#5expF2E dtdt8j i~kW ,t !N i j
21~k;t,t8!j j~2kW ,t8!G

~5.9!
with zero mean and non-Markovian correlations:

^^j i~kW ,t !&&50;
9-15
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^^j i~kW ,t !j j~kW8,t8!&&5~2p!3d~3!~kW1kW8!Ni j ~kW ;t,t8!,
~5.10!

where^^•••&& is thestochasticaverage with the probability
distributionP@j#.

In the hard thermal loop approximation the leading ter
in the noise kernel can be calculated explicitly, giving

Ni j ~kW ;t,t8!.
e2T3

6
Pi j ~kW !Fsin@k~ t2t8!#

k3~ t2t8!3
2

cos@k~ t2t8!#

k2~ t2t8!2 G .

~5.11!

Clearly these arelong rangecorrelations which cannot b
replaced by local delta function in any regime of approxim
tion. In fact the Fourier transform of the kernel yields

Ñi j ~kW ,w!5E
2`

1`

d~ t2t8!Ni j ~kW ;t2t8!e2 iv~ t2t8!

~5.12!

5Pi j ~kW !
e2T3

24k S 12
v2

k2 D Q~k22v2!

5Pi j ~kW !
T

2v
S I~ iv101!, ~5.13!

whereS I( iv101) is the imaginary part of the self-energ
given by Eq.~4.10! responsible of the Landau damping pr
cesses.

This clearly shows Landau damping to be the origin of
noise correlation and also provides an explicit realization
the fluctuation-dissipation theorem. We draw attention to
factor ofT/v which arises from the highT limit of the Bose
factor (112nv) ~see below! and leads to a noise-noise co
relation }e2T3. This result is in accord with the usua
fluctuation-dissipation relation, in which the noise-noise c
relation function has one more power ofT than the dissipa-
tive contribution to the Langevin equation.

The Langevin equation itself is obtained via the sad
point condition@50#

dSe f f

dRi~kW ,t !
U

R50

5j i~kW ,t ! ~5.14!

leading to

d2

dt2
ATi~kW ,t !1k2ATi~kW ,t !12e2^F†F&ATi~kW ,t !

2E
2`

t

dt8Di j ~k;t,t8!AT j~kW ,t8!

5j i~kW ,t8!. ~5.15!

B. Fluctuation-dissipation relation

The general form of the fluctuation-dissipation relati
can be established at this level by retaining the comp
12500
s

-

e
f
e

-

e

te

expressions for the dissipative and noise kernels without
forming the HTL approximation. A standard analysis of t
spectral representation@39,51# of the equilibrium correlators
leads to the following result for the Fourier transform of t
noise-noise correlation function

Ñi j ~kW ,v!5
1

4
Im@S i j

ret~kW ;v!#cothFbv

2 G . ~5.16!

Finally taking temporal Fourier transforms of both sides
the Langevin equation~5.15! and averaging over the nois
with the Gaussian distribution function we find

^^ÃTi~kW ,v!ÃTi~2kW ,2v!&&

5uÃTi
H ~kW ,v!u21r~kW ,v!cothFbv

2 G
r~kW ,v!

5
1

4

Im@S i j
ret~kW ,v!#

~v22vk
22Re@S i j

ret~kW ,v!#!21~ Im@S i j
ret~kW ,v!#!2

~5.17!

where the tildes stand for the Fourier transform andÃTi
H (kW ,t)

is a solution of the homogeneous equation, which is p

cisely given by Eq.~4.36! @assumingȦTi
H (kW ,t50)50 which

can be relaxed with the proper generalization#. The double
brackets stand for averages over the noise with the proba
ity distribution ~5.9!, ~5.10!. This is the form of the usua
fluctuation-dissipation relation, which we obtained cons
tently by integrating out the hard modes and deriving
influence functional@48,49# for the transverse components
the gauge invariant fields. The semiclassical Langevin eq
tion is useful in order to obtain semiclassical correlati
functions by averaging the solution of a partial different
equation over a stochastic Gaussian noise. The ques
arises: to which correlation function of the microscop
theory are these stochastic averages related? The answ
this question is found by writing a spectral representation
the equilibrium correlator̂Ai ,kW(t)Ai ,2kW(t8)& in which the
brackets stand for averages in the equilibrium density mat
A straightforward but tedious exercise following the ste
described in@39,51# reveals that this relation is given by

^^ÃTi~kW ,v!ÃTi~2kW ,2v!&&5
1

2
$^Ai~kW ,v!Ai~2kW ,2v!&

1^Ai~2kW ,2v!Ai~kW ,v!&%

~5.18!

which again is a result known to be a consequence of
fluctuation-dissipation relation in simple systems. The cor
lation function~5.18! has a finite, non-trivial classical limi
and agrees with the one proposed to be studied within
context of classical field theory in@23#.
9-16
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REAL-TIME RELAXATION AND KINETICS IN HOT . . . PHYSICAL REVIEW D 58 125009
The real-time analysis presented here agrees with the
eral picture discussed in Refs.@27–29#. Moreover, our analy-
sis reveals the precise range of the kernels.

Clearly the situation will be more complicated in QC
where a separation between hard and soft degrees of free
must be implemented in order to obtain the influence fu
tional for the soft degrees of freedom. However, the pro
dure detailed in this section can be carried out consiste
once this separation is introduced.

Of course the main rationale for obtaining a Langev
equation is to provide a semiclassical scheme to implem
the calculation of correlation functions from the solutions
stochastic differential equations. However, we note that
less a successful scheme to deal with the non-Markov
kernels is implemented the advantages of a Langevin
scription are at best formal. Ignoring the non-localities of t
dissipative and noise kernels will clearly miss the import
physics associated with Landau damping. A naive Mark
ian approximation is not only uncontrolled and unwarran
but clearly very untrustworthy in view of the fact that th
relevant kernels are all long-ranged and it is precisely
long-ranged nature of these kernels which is responsible
the important dissipative effects of Landau damping. T
importance and difficulties of keeping these non-localities
a classical lattice description has been recognized in@33–
35#.

VI. KINETICS OF LANDAU DAMPING

The real-time formulation of non-equilibrium quantu
field theory allows us to obtain the corresponding kine
equations for the relaxation of the occupation number
population of quanta. In particular our goal is to obtain t
kinetic equation for the relaxation of the expectation value
the number of soft quanta. In keeping with the focus of t
article we will only consider the population relaxation
lowest order in the HTL approximation and concentra
mainly on the understanding of relaxation via Landau dam
ing.

Kinetic approaches towards describing transport phen
ena and relaxational dynamics typically require a wide se
ration between microscopic time and length scales, nam
the thermal~or Compton! wavelength~mean separation o
particles! and the relaxation scales~mean free path and re
laxation time!. This approach which ultimately leads to th
Boltzmann transport equations involves the identification
slow and fast variables which justifies a gradient expans
This is a coarse graining procedure that averages over m
scopic time scales and leads to irreversible time evolutio

In the collisional approach to Boltzmann kinetics only t
distribution-changing processes that conserve energy
momentum are considered, and these are weighted by
corresponding Bose/Fermi statistical factors. Off-shell p
cesses that occur on time scales shorter than the relax
scale are not included; therefore only processes with asy
totically on-shell final states are accounted for in this d
scription. Landau damping processes which contribute
thermal loops to forward scattering are not included in
typical Boltzmann equation. Thus we anticipate that the
12500
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ive Boltzmann approach will yield no population relaxatio
via Landau damping. However this is conceptually incons
tent because we have learned in the previous sections th
initial coherent configuration will relax to an amplitud
smaller than the initial by these processes and we wo
expect such a relaxation to contribute to a depletion of
number of quanta of the initial state. The resolution of th
inconsistency requires one to gobeyonda simple Boltzmann
approach and to include off-shell processes in the kin
description. This is the focus of this section.

The contribution of off-shell processes to thenon-
equilibrium evolution of particle distributions is ignored i
most approaches towards kinetics. Recently an approac
kinetics that incorporates off-shell effects has been propo
to describe processes in which relaxation competes w
other fast scales@40,41#, in particular near phase transition
@40#. The importance of off-shell contributions to the evol
tion of particle distributions has also been recognized wit
the context of fast kinetics in semiconductors@42#.

This section is devoted to a study of kinetics as aninitial
value problem@40–42# in order to reveal the role played b
off-shell processes in transport phenomena and relaxatio
the medium.

We derive a kinetic equation that takes into account m
croscopic time scales in the theory from first principles
lowing us to analyze clearly the effect ofoff-shell non-
collisional Landau damping processes on the evolution of
photon distribution. This framework will allow us to mak
contact with the relaxation of a coherent initial configurati
studied in the previous sections. We want to study both
relaxation of an initial distribution of asymptotic photon
with free dispersion relationV(k)5k, as well as for the
quasiparticles with dispersion relationV(k)5vp(k) with
vp(k) being the solution of the dispersion equation~4.11!
i.e. the ‘‘true,’’ in-medium pole. We will distinguish be
tween these two physically different cases and address t
separately.

This approach begins by defining a suitable number
erator @40#. In the case of asymptotic photons this is t
usual number operator in terms of the canonical field a
momenta which is given by the energy per momentum
divided by the frequency. In the case of quasiparticles
energy stored in the plasma has two components: the
field part plus the response from the medium. From class
electromagnetism of polarizable media@52# in linear re-
sponse, the two contributions lead to an energy density in
medium that is quadratic in terms of the electric and m
netic fields, each term however, multiplied by a coefficie
that involves derivatives of the dielectric and permeabil
tensors with respect to frequency@52#. The contribution from
the plasma collective modes is obtained by evaluating th
coefficients at the plasma frequency. Using Kramers Kro
dispersion relations@52#, these coefficients are related to th
residue of the dielectric constant at the plasma poles. T
relation has been formalized at the field theoretical level
Migdal in his pioneering work on collective modes in m
dium where he developed the quantization procedure in
dium in terms of quasiparticle operators@53#. This field the-
oretical treatment automatically leads to the identification
9-17



ag
a
it
th

in
er
sm
is
e

ug

r

th

eo
ld

he

e
-
mal-
e

ng
nd

p-

ed
sily

the
l

field

ity

the
b-
r

DANIEL BOYANOVSKY et al. PHYSICAL REVIEW D 58 125009
these coefficients with the residues of the retarded prop
tors at the plasmon poles, i.e. the wave function renorm
ization. Migdal obtains in this manner the energy dens
corresponding to on-shell collective modes in terms of
quasiparticle operators@53#.

More recently the energy density of the plasma includ
the polarization effects has been obtained in terms of op
tors that create and destroy collective modes in the pla
by Blaizot and Iancu@54#. The results of these authors
consistent with the collective mode quantization and the
ergy density obtained by Migdal@53# and with the results of
classical polarizable media@52#. Blaizot and Iancu@54# use
the collective mode decomposition of the transverse ga
field

AW kW
t
~ t !5A Zk

t

2vp~k! (
l51,2

@eWl~kW !al~kW !e2 ivp~k!t

1eWl~2kW !al
†~2kW !eivp~k!t# ~6.1!

where the operatorsal
†(kW );al(kW ) have a retarded propagato

with unit residue at the plasmon pole andZk
t is the wave

function renormalization.
Migdal @53# and Blaizot and Iancu@54# prove that the

energy density associated with the collective modes in
medium can be written as

E~k!5vp~k! (
l51,2

al
†~kW !al~kW !. ~6.2!

This result is the same as that obtained in the classical th
of polarizable media when the electric and magnetic fie
~transverse! are written in terms of collective modes@52#.

Thus following Migdal @53# and Blaizot and Iancu@54#
we introduce the Heisenberg number operator of on-s
collective modes
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N̂kW5
1

4VkZ k
t
@AẆ T~kW !•AẆ T~2kW !1Vk

2AW T~kW !•AW T~2kW !#2
1

2Z k
t

~6.3!

where for asymptotic photonsVk5k;Z k
t 51 ~we neglect

here the zero temperature contribution! and for collective
modesVk5vp(k);Z k

t 5Zt@T# with vp(k) being the plas-
mon pole andZt@T# the wave function renormalization in th
HTL limit. This formulation now permits to treat the collec
tive modes much in the same manner as the usual renor
ized in and out fields in S-matrix theory, i.e. by rewriting th
action in terms of the renormalized fields and introduci
counterterms that reflect the true position of the pole a
residue.

It turns out to be easier to work with the Heisenberg o

erator Ṅ̂k rather than the number operator and is obtain
using the Heisenberg operator equations which are ea
seen to be

AẆ T~kW ,t !5PW T~2kW ,t !

PẆ T~2kW ,t !52~k212e2^F†F&1dVk
2!AW T~kW ,t !2 jWT~kW ,t !

where the counterterm accounts for the definition of
number of quasiparticles andPW T(kW ) represents the canonica
momentum conjugate to the transverse electromagnetic
AW T(kW ).

We now consider an initial state described by a dens
matrix for which theexpectation valueof the above number
operator for on-shell collective modes is non-vanishing.

Using these equations the expectation value of
Heisenberg rate operator in the initial density matrix is o
tained in the following form which is rather convenient fo
subsequent calculations:
phase

n powers
hes
he

e read off
be
^ Ṅ̂k&~ t !5Ṅk~ t !52
1

2VkZ k
t

]

]t9
@^ jWT

1~kW ,t !•AW T
2~2kW ,t9!&# t5t92

2e2^F†F&1dVk
2

2VkZ k
t

]

]t9
@^AW T

1~kW ,t !•AW T
2~kW ,t9!&

1^AW T
1~kW ,t9!•AW T

2~2kW ,t !&# t5t9 . ~6.4!

This formulation has been previously applied to the study of photon production in a strongly out of equilibrium
transition@40#.

The expectation values are calculated by inserting the operators into the closed time path integral and expanding i
of a. SincedVk

2 is of ordera the second term in Eq.~6.4! is calculated as a tadpole in free field theory and it vanis
identically. Let us consider the case in which the initial density matrix at timet0 is diagonal in the basis of eigenstates of t
number operator, and evolves subsequently with the interaction Hamiltonian. To lowest order ina we find the expectation
value of the rate to be@40#

Nk̇~ t !5
e2

4p3VkZ k
t E t

dt8E dp@p22~pW • k̂!2#@Gp
.~ t,t8!Gk1p

. ~ t,t8!Ġk
,~ t8,t !2Gp

,~ t,t8!Gk1p
, ~ t,t8!Ġk

.~ t8,t !#Q~ t2t8!.

~6.5!

The theta function ensures that this expression is causal. The Green’s functions for the scalars and the photons can b
from Eqs.~2.10!, ~2.11!, ~2.12! and ~2.13! but with the frequencyVk replacing the bare frequency. Finally the rate can
written as@40#
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ṄkW~ t !5
e2

16p3VkZ k
t E d3p

vpvk1p
p2sin2uE

t0

t

dt$cos@~vp1vk1p1Vk!~ t2t!#@~11Nk~ t0!!~11np!~11nk1p!2Nk~ t0!npnk1p#

1cos@~vp1vk1p2Vk!~ t2t!#@~11Nk~ t0!!npnk1p2Nk~ t0!~11np!~11nk1p!#1cos@~vp2vk1p1Vk!~ t2t!#

3@~11Nk~ t0!!~11np!nk1p2Nk~ t0!np~11nk1p!#1cos@~vp2vk1p2Vk!~ t2t!#@~11Nk~ t0!!~11nk1p!np

2Nk~ t0!nk1p~11np!#%. ~6.6!
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We note that the expression above depends on the o
pation number of the gauge field at the initial timet0 only—
this is obviously a consequence of the fact that perturba
theory at lowest order, neglects the change in occupa
number. Recently we have proposed@40# a Dyson-like re-
summation of the perturbative expansion that includes
shell effects in the relaxation of the population. This resu
mation scheme is obtained by the replacementNk(t0)
→Nk(t) in Eq. ~6.6! resulting in a non-Markovian descrip
tion. The resulting kinetic equation with memory is akin
that obtained via the generalized Kadanoff-Baym appro
mation @42# in non-relativistic many body systems. This a
proximation has been recently shown to coincide with
exact result in the weak coupling limit in a solvable model
relaxation @56,57# and will be shown below to imply a
Dyson-resummation of the perturbative series. The kin
Eq. ~6.6! has an obvious interpretation in terms of gain m
nus loss processes@40#, but the retarded time integrals an
the cosine functions replace the more familiar energy c
serving delta functions. Taking the occupation number o
side the integral and integrating to large times, thereby
placing the cosines by delta functions as in a Boltzma
description would lead to a vanishing right hand side sin
none of the resulting energy conserving delta functions
be satisfied. However, the non-Markovian kinetic equat
~6.6! will lead to non-trivial relaxational dynamics that wi
be studied in detail below.
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Let us consider the situation in which the initial state h
been prepared far in the past, i.e.t0→2`.

An equilibrium solution is simply

Nk
eq5const ~6.7!

where the constant is arbitrary because none of the resu
energy-conserving delta functions can be satisfied for
values ofVk either corresponding to the bare frequencies
the quasiparticle poles. This is a consequence of the off-s
processes, a detailed understanding of this feature will
provided elsewhere@56,57#.

Let us now consider departures from this equilibrium s
lution and study the relaxation of a disturbance in the dis
bution function introduced in the system att50 so that

Nk~ t50!5Nk
eq1dNk~0!. ~6.8!

Denoting the particle distribution fort.0 by

Nk~ t.0!5Nk
eq1dNk~ t ! ~6.9!

we obtain a rate equation fordNk(t) which is now the same
as in the previous step except that the time integrals str
from 0 to t instead oft0→2` to t
never

ng to

g the
o be
d

dt
dNkW~ t !5

e2

16p3VkZ k
t E d3p

vpvk1p
p2sin2uE

0

t

dt$~11np1np1k!@cos@~vp1vk1p1Vk!~ t2t!#2cos@~vp1vk1p2Vk!

3~ t2t!##~np1k2np!@cos@~vp2vk1p1Vk!~ t2t!#2cos@~vp2vk1p2Vk!~ t2t!##%dNk~t!. ~6.10!

Terms independent ofNk vanish identically since the time integrals for those terms yield delta functions which are
satisfied.

Although this non-Markovian but linear equation will be solved exactly by Laplace transform below, it is illuminati
compare the different approximations that are obtained under the assumption that the relaxation time scale fordNk is much
longer than the time scale of the non-local kernels. Under this assumption, which will be analyzed below,dNk(t) can be
replaced bydNk(t) and taken outside of the integral leading to a Markovian description. A further approximation, takin
upper limit of the remaining integral tot→` leads to the familiar Boltzmann equation, thus the two approximations t
compared with the ‘‘exact’’ solution are the following.

Markovian:
9-19
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d

dt
dNk

M~ t !52G~ t !dNk
M~ t ! ~6.11!

G~ t !52
e2

16p3VkZ k
t E d3p

vpvk1p
p2sin2uE

0

t

dt$~11np1np1k!@cos@~vp1vk1p1Vk!~ t2t!#2cos@~vp1vk1p2Vk!~ t2t!##

3~np1k2np!@cos@~vp2vk1p1Vk!~ t2t!#2cos@~vp2vk1p2Vk!~ t2t!##%, ~6.12!
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dNk
M~ t !5e2*0

t G~ t8!dt8dNk
M~0!. ~6.13!

Boltzmann:

d

dt
dNk

B~ t !52G~`!dNk
B~ t ! ~6.14!

dNk
B~ t !5e2G~`!tdNk

B~0!. ~6.15!

Taking the limitt→` in G(t), the cosines become energ
conserving delta functions and comparing with the expr
sion for the transverse self-energy given by Eq.~4.7!, it is
straightforward to see that in the Boltzmann approximat
we obtain

d

dt
dNk

B~ t ! 5
t→`

2
S I

t~Vk!

Vk
dNk

B~ t ![0, ~6.16!

with S I
t(Vk) being the imaginary part of the transverse se

energy evaluated atVk . This result is the familiar relation
ship between the relaxation rate of the particle distribut
G(`) and the damping rate, which is determined by t
imaginary part of the self-energyon-shelland vanishes in the
present case because the damping processes areoff-shell.

The solution of the non-Markovian equation~6.10! is ob-
tained by Laplace transform and given in general by

dNk~ t !5dNk~0!E
c2 i`

c1 i` ds

2p i

est

s2Sk~s!
, ~6.17!

wherec is a real constant chosen so that the contour is to
right of the singularities of the integrand andSk(s) is the
Laplace transform of the non-local kernel given by

Sk~s!5
e2

16p3Vk
E d3p

vpvk1p
p2

3sin2uH F s

s21~vp1vk1p1Vk!
2

2
s

s21~vp1vk1p2Vk!
2G
12500
-

n

-

n
e

e

3~11np1nk1p!1F s

s21~vp2vk1p1Vk!
2

2
s

s21~vp2vk1p2Vk!
2G ~np1k2np!J .

~6.18!

The expression~6.17! clearly shows that the non
Markovian rate equation~6.10! implies a Dyson-like resum-
mation of the perturbative series as anticipated before.

Comparing the non-Markovian rate equation~6.10! to the
Markovian approximation~6.11! one can clearly see that th
Markovian approximation averages over the time scales
the kernel, whereas the non-Markovian equation includes
contribution of coherent processes throughout the history
the kernel. If the range of the kernel was indeed shorter t
the relaxation time of the population, the real-time solutio
of both equations will differ by terms of the order of the rat
of the time scale of the kernel to the relaxation time scale
the distribution. However, in situations in which the kernel
long-ranged as is the case under consideration, the n
Markovian expression allows the inclusion of coherent
fects in the relaxation.

The dominant contribution toS(s) in the HTL limit arises
from the Landau damping term leading to the simplified e
pression

Sk~s!52
e2T2ks

12Vk
E

21

1 x~12x2!

s21~kx2Vk!
2

dx. ~6.19!

More explicitly,

Sk~s!52
e2T2

12k H 4s1
s~k21s223Vk

2!

2k2Vk

3 log
s21~k2Vk!

2

s21~k1Vk!
21

k22Vk
213s2

2ik2

3 log
~s1 ik !21Vk

2

~s2 ik !21Vk
2 J . ~6.20!

It is easy to show that this form ofSk(s) is in fact related
to the self-energy in the HTL limit by the following illumi-
nating equation:

Sk~s!5
S t~s2 iVk!2S t~s1 iVk!

2iVk
. ~6.21!
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REAL-TIME RELAXATION AND KINETICS IN HOT . . . PHYSICAL REVIEW D 58 125009
The real-time solutions to Eqs.~6.10!, ~6.17! and~6.18! in
the HTL limit with Eq. ~6.19! will now be given for the cases
of quasiparticle and bare particle respectively. This analy
will reveal the range of validity of the assumptions leading
the Markovian approximation.

A. Quasiparticle: Vk5vp„k…

When Vk is chosen to be the quasi-particle pole,vp(k)
.k we note that the integrand of Eq.~6.17! has a single
isolated pole ats50. Indeed, the limit ofs→0 in Sk(s)
would lead to delta functions in Eq.~6.19! which, however,
cannot be satisfied forVk5vp(k). Therefore,Sk(0)50 and
s50 is an isolated single pole and completely determines
asymptotic limit of the real-time solution. This can also
seen by looking at Eq.~6.21!, from which the analytic struc-
ture is explicit. Clearly,Sk(s) vanishes ats50 because
S t(2 ivp(k))5S t( ivp(k)). Furthermore from the known
singularity structure ofS t(s) one concludes thatSk(s) must
have branch cuts fori (vp(k)2k),s, i (vp(k)1k) and
2 i (vp(k)2k),s,2 i (vp(k)1k). Using Eq. ~6.21!, it is
now a straightforward exercise to see that the residue at
pole at s50 is given by (122]S t( iV)/]V2)21 which to
this order is'Zt@T#2 where Zt@T# the ~transverse! wave
function renormalization given in Eq.~4.15!.

Again the long time behavior is completely dominated
the end points of the cut, leading to the asymptotic resul

dNk~ t ! 5
t→`

dNk~0!H Zt@T#1
e2T2p2

12Zt@T#kvp~k!t2

3F cos~vp~k!1k!t

~vp~k!1k!2S 11
e2T2D1

3k2 D
2

cos~vp~k!2k!t

~vp~k!2k!2S 11
e2T2D2

3k2 D G J ~6.22!

where

D6[11S 1

2
6

vp~k!

k D logS 16
k

vp~k! D .

We clearly see that asymptotically the population has rela
to a smaller value and the ratio of the asymptotic to
initial population is determined by the square of the therm
wave-function renormalization. This is in agreement with t
analysis of the relaxation of the expectation value of
field—since Nk}AT

2 it is expected that the ratio of th
asymptotic value of the quasi-particle population to the i
tial value be proportional to the square of the same rela
for the expectation value of the field.

Therefore the relaxation of the quasiparticle number
its origin in Landau damping, this is consistent with the
sults of Blaizot and Iancu@54# who proved that the time
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derivative of the total energy is related to Landau dampi
Since the quasiparticle number is related to the energy of
collective modes the relaxation of the quasiparticle num
is directly related to Landau damping.

This intuition is also borne out in the usual Boltzman
approach wherein the relaxation rate of the distribution fu
tion ~in the relaxation time approximation! is twice the
damping rate for the quasiparticle.

This relaxation has a simple interpretation. Consider
case of a physical electron with interpolating operators
fined to create single electrons with the physical mass
unit amplitude out of the in or out vacuum states. T
asymptotic correlation function in real time of these interp
lating operators has the oscillatory parts corresponding to
physical pole~with unit residue!, but there are power law
corrections arising from the overlap of the states created
these operators with the multiparticle continuum@55#.
Whereas at zero temperature the multiparticle continuum
beyond the two particle threshold, at finite temperature a
in the case under consideration, the leading contribution
obtained from Landau damping corresponding to interme
ate states with space-like momenta.

For the Markovian approximation~6.13! we find, for t
→`,

2E
0

t

G~ t8!dt8'2
]S t~v!

]v2 U
vp~k!

1OF S e2T2

k2 D S cos@~vk2k!t#

t2~vk2k!2

1
cos@~vk1k!t#

t2~vk1k!2 D G . ~6.23!

For e2T2/k2!1 we see that to lowest order ine2T2/k2 the
perturbative expansion of the Markovian solution coincid
with the solution of the non-Markovian equation. Howev
for soft momenta such an expansion is not valid and
validity of the Markovian approximation must be questione

B. Failure of the Markovian and Boltzmann approximation

To assess whether the Markovian and Boltzmann appr
mations will be reliable we must understand the differe
time scales, in particular the range of the kernel.

In the hard thermal approximation we find that the no
Markovian kinetic equation~6.10! reduces to

d

dt
dNk~ t !.2

e2T2k

12Vk
E

21

1

dx~12x2!xE
0

t

dtsin@kx~ t2t!#

3sin@Vk~ t2t!#dNk~t!. ~6.24!

The integral over the variablex inside the kernel can be
performed and we find that the kernel falls off as 1/(t2t)2

1•••. Then if eT/k!1 the relaxation time scale of th
population is longer than the range of the kernel and
Markovian approximation is warranted. In this case the d
crepancies between the non-Markovian and Markovian
sults are perturbatively small. On the other hand, for s
scales the relaxation time scales become comparable to
9-21
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DANIEL BOYANOVSKY et al. PHYSICAL REVIEW D 58 125009
time scale of the kernel and a Markovian approximation
certainly unjustified. The non-Markovian equation for rela
ation includes the coherent effects on similar time scales
are averaged out~coarse-grained! in the Markovian approxi-
mation.

C. Bare particle, or hard quasiparticle

For the case of the bare particle, the dispersion relatio
simply Vk5k – this is also the case for the largek limit of
the quasiparticle dispersion relation@31,32,37#. In this case,
the quantitySk(s)/s in Eq. ~6.18! has a logarithmic singular
ity ass→0, because the position of the putative poleVk has
moved to the tip of the cut and there is a pinching singu
ity. There is no longer a pole ats50 in the Laplace trans
form @s2Sk(s)#21, rather it diverges as (slns)21 as s→0.
This logarithmic divergence arising from the pinching sing
larity is very similar to that recently studied within the co
text of hard fermions@58#.

In the Markovian approximation~6.11! and in the hard
thermal loop limit, the rate equation becomes

d

dt
dNkW~ t !5

e2

4p2E dp
dnp

dp E21

1

dx~12x2!xp2

3E
0

t

dt$cos@k~12x!~ t2t!#%dNk~ t !

.2
e2T2

12k Fsin~2kt!

k2t2
1

2

kt

2
2

k3t3
1

2cos~2kt!

k3t3 GdNk~ t ! ~6.25!

which for long times yields a power law with an anomalo
exponent:

dNk~ t !;dNk~0!~kt!2e2T2/6k2
. ~6.26!

An anomalous exponent somewhat similar to this one
been found in@58# in the case of a hard fermion and it ha
the same origin, i.e., a pinching infrared singularity. The e
pression~6.25! reveals that the kernel is long ranged, fallin
off with an inverse power of time in this case. Therefore
Markovian approximation will be justified whene2T2/k2

!1 because only in this weak coupling limit is the popu
tion relaxationslower than the fall off of the kernel.

The solution of the non-Markovian equations~6.10!,
~6.18! in the HTL limit ~only the Landau damping contribu
tion is considered! is obtained again by inversion of th
Laplace transform. We find that the long time behavior
given by the end-points. In this case thev50 end-point
dominates yielding
12500
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s
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s

dNk~ t !5dNk~0!
e2T2

6 k2
ReE

0

`dy

y

3
e2y

F11
e2T2

6 k2
log

2kt

iyē
G 2

1S pe2T2

12k2 D 2 F11OS 1

t D G
~6.27!

whereē52.718 . . . is thebase of the natural logarithms.
It is illuminating to point out that asVk→k the logarith-

mic singularities in the real part of the transverse self-ene
imply that ~for fixed finite k)

]S t~v!

]v2 U
v→k

→`⇒Zt@T#→0. ~6.28!

As the pole approaches the tip of the cut~for finite k) the
residue becomes smaller until it vanishes exactly when
pole merges with the continuum. It is remarkable that in t
limit distortions of the distribution function relax complete
and vanish asymptotically. Although for the case of a ha
quasiparticle withk@eT the dispersion relation approache
that of a free particle,Zt@T#→1 and physics is perturbative
there is, however, slow relaxation. We note that none
these effects can be captured by a simple Boltzmann
proach since all of these phenomena are associated with
shell effects.

In the case of the distribution function for bare particle
we can interpret this anomalous relaxation as the dres
effect from the medium, i.e. at long times the bare partic
are completely dressed by the medium and disappear f
the spectrum.

The interpretation is different for the case of a hard qu
siparticle, in which case the free dispersion relation is o
tained in the limitk@eT. In this limit the effective coupling
eT/k!1 and the relaxation is slow. This result could b
important in understanding the relaxation of a distribution
photons produced in bremmstrahlung processes at high
ergy in the quark gluon plasma. A full study of the relaxati
of hard quasiparticles is beyond the realm of this article a
will be studied in detail elsewhere@57#.

VII. DISCUSSION AND CONCLUSIONS

Our goal in this article was to provide a detailed analy
of the real-time relaxation of soft gauge invariant no
equilibrium expectation value through the off-shell proce
of Landau damping. These determine the leading contri
tions to the thermal propagators in the hard thermal lo
limit and are the dominant contributions to the long-tim
asymptotics. The off-shell nature of these processes de
mine the non-Markovian nature of the relaxation phenom
associated with them. We focussed our study on the lead
HTL contributions to the relaxation of gauge invariant tran
verse and longitudinal non-equilibrium expectation value
scalar electrodynamics. These results will also apply to
mion electrodynamics and non-Abelian theories since
9-22
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REAL-TIME RELAXATION AND KINETICS IN HOT . . . PHYSICAL REVIEW D 58 125009
structure of the retarded Green’s function is the same u
this order in the HTL expansion. After providing an elega
re-derivation of the well known HTL effective action usin
the tools of non-equilibrium quantum field theory in the li
ear amplitude approximation@36#, we moved on to the main
goals of this article:

~i! to study in detail the relaxation in real time, in th
linear approximation~small amplitude! of the transverse and
longitudinal gauge invariant non-equilibrium expectati
value. The off-shell process of Landau damping results
power law relaxation of the transverse and logarithmic rel
ation of the longitudinal~plasmon or charge-density! excita-
tions. Both types of non-equilibrium expectation value re
to an asymptotic amplitude that depends on the ther
wave-function renormalization, which is completely dete
mined by Landau damping in the HTL limit. One of the ma
conclusions of this detailed analysis is that the relaxatio
dynamics asymptotically at long times and to leading or
in HTL resummation is completely determined by the beh
ior of the spectral density nearthe Landau damping thresh
olds at v56k ~a branch cut singularity!, the contribution
from the regionv'0 are regular~no branch point singulari-
ties! and therefore lead to subleading corrections to dyna
ics at long times and high temperature. This result is for b
longitudinal and transverse non-equilibrium expectat
value and is confirmed by an exhaustive analytic and num
cal study. The short time evolution of the non-equilibriu
expectation value is determined by moments of the to
spectral density. Therefore a complete understanding of
global analytic structure of the retarded propagator, in p
ticular the complete cut contribution from Landau dampi
processes is required.

This is special to the HTL resummation at one-loop:
higher orders, a branch point could develop atv50. Such a
branch point would produce pure power like tails, with
oscillations, and so dominate at large times.

We restricted ourselves in this paper to small amplitu
non-equilibrium expectation value so that we were confin
to the linear regime. New phenomena beyond the H
scheme are expected in the non-linear amplitude regi
Such regimes can be studied within self-consistent Hart
type approximations in the out of equilibrium framewo
@44#.

~ii ! We have obtained the influence functional~non-
equilibrium effective action! for the soft gauge invariant de
grees of freedom by integrating out the hard degrees of f
dom to leading order in the HTL approximation. Th
allowed us to obtain the Langevin equation for the soft
grees of freedom to leading order in HTL and to provide
microscopicab initio calculation of the dissipative and nois
kernels in the HTL limit. Both kernels display the non
localities associated with Landau damping and we find t
there is no region of time scales in which a Markovian a
proximation describes the dynamics correctly. As a bypr
uct we obtained the fluctuation-dissipation relation and r
ognized the correlation function that emerges in the class
limit. We established in detail that a Markovian descripti
of relaxation of transverse or longitudinal non-equilibriu
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expectation value is unwarranted to this order in the H
resummation.

~iii ! Having understood the relaxation of coherent no
equilibrium expectation value through off-shell effects
Landau damping we asked how these processes can b
corporated in the relaxation of the distribution function f
the transverse fields. A Boltzmann approach would yield
relaxation to lowest order in the HTL because there is
imaginary part on-shell for the transverse or longitudin
quasiparticles. Therefore a kinetic description of the rel
ation of the distribution function must necessarily go beyo
a Boltzmann collision approximation.

We provided a novel description of the kinetics of rela
ation of the distribution function for transverse degrees
freedom that includes off-shell effects and goes far beyo
the usual Boltzmann approach. We have compared the re
ation obtained from this non-Markovian kinetic equation
that described by the usual Boltzmann~which yields a trivial
result! and a Markovian version that includes coarse-grain
details of the off-shell processes. We have found that
distribution function for soft quasiparticles relaxes as
power (1/t2), and found an unusual dressing dynamics
bare particles. This kinetic approach also reveals unus
logarithmic real time relaxation for hard quasiparticles
sulting from infrared pinching singularities similar to thos
found in the case of hard fermions@58#.

The body of these results reveals new and unusual
tures of relaxation of soft degrees of freedom in gauge th
ries. These will obviously have to be taken seriously in
account in a full description of relaxational processes in
QGP and should also be important to clarify better the r
played by damping in the sphaleron rate in the symme
phase.

In higher order corrections there will arise contributio
from collisional processes that provide an imaginary part
shell. At next order for example both Compton scatteri
and pair-annihilation will contribute to collisional relaxatio
and will provide a collisional width both to the transver
and longitudinal~plasmon! degrees of freedom. The imag
nary part of the self-energy on-shell is typically associa
with a damping rate and associated with an exponential
cay of the amplitude. Excepting intermediate time sca
this exponential relaxation, however is not a proper desc
tion either at early or long times where power laws domin
the dynamics@36#. The relaxation associated with Landa
damping at lowest order, will have to be balanced with t
next order corrections which yield an approximate expon
tial relaxation and the resulting dynamics will depend on
details of the competition between these different proces
both Landau damping and collisional. Which process do
nates will depend on the particular time scale of interest
the time scales for competition between the two differe
type of phenomena will depend on the details of the per
bative contributions. The kinetic approach introduced h
could also prove useful to study the energy loss of qua
and leptons via off-shell processes in the QGP.

We plan to address this competition between Land
damping and collisional phenomena, along with an extens
of the treatment presented in this article to leptons an
more detailed study of non-Markovian kinetics in futu
work.
9-23
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