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We consider the (% 1)-dimensionalV=(2,2) supersymmetric matrix model which is obtained by dimen-
sionally reducingV/=1 super Yang-Mills theory from four to two dimensions. The gauge groups we consider
are UN) and SUN), whereN is finite but arbitrary. We adopt light-cone coordinates, and choose to work in
the light-cone gauge. Quantizing this theory via discretized light-cone quantiz@io@Q) introduces an
integerK which restricts the light-cone momentum-fraction of constituent quanta to be integer multiples of
1/K. Solutions to the DLCQ bound state equations are obtained €K& 6 by discretizing the light-cone
supercharges, which results in a supersymmetric spectrum. Our numerical results imply the existence of
normalizable massless states in the continuum Iinritec, and therefore the absence of a mass gap. The low
energy spectrum is dominated by string-lilee many partopstates. Our results are consistent with the claim
that the theory is in a screening phak®0556-282(198)04624-4

PACS numbgs): 11.10.Kk, 11.15.Tk

I. INTRODUCTION Il. LIGHT-CONE QUANTIZATION AND DLCQ
AT FINITE N

Supersymmetric gauge theories in low dimensions have The two dimensionalN=(2,2) supersymmetric gauge
been shown to be related to non-perturbative objects in M ofheory we are interested in may be formally obtained by
string theory[1], and are therefore of particular interest dimensionally reducingv=1 super Yang-Mills theory from
nowadays. More dramatically, there is a growing body offour to two dimensions. For the sake of completeness, we
evidence suggesting that gauged matrix models-iri.0and review the u_nderlying four dimensional Yang-Mills theory in
1+1 dimensions may offer a non-perturbative formulationthe® Appendix. , _ _
of string theory[2,3]. There is also a suggestion that lafge Dimensional reduction of the four dimensional Yang-

gauge theories in various dimensions may be related to the(])\fl_iIIS aqtion (AL4) given in _the Appendix is carried out by
ries with gravity[4]. stipulating that all fields be independent of thv transverse

. |__ —
It is therefore interesting to study directly the non- coordinateSx' = —x,,1=1,2. We may therefore assume that

. : . .the fields depend only on the light-cone variables
perturbative properties of a class of supersymmetric matrix

- ) =(1V2)(x°£x%). The resulting two dimensional theory
models at f|n|te. and largd, whereN is the number of gauge may be described by the action
colors. In previous work5,6], we focused on two dimen-

sional matrix models, since the numerical technique of dis- 1 92
crete light-cone quantizatioDLCQ [7]) may be imple- S&$1=J dotdo tr(EDaX,D"X,+Z[X| X512
mented to determine bound state wave functions and masses.
In this work, we extend these investigations by solving 1
the DLCQ bound state equations for a two dimensional su- - ZFaBFaB+i6;D+0R+i01L—D—0L
persymmetric matrix model witth'=(2,2) supersymmetry.
Such a theory may be obtained by dimensionally reducing T
N=1 super Yang-Mills theory from four to two space-time +V296 €281 X1, 6r] |, @

dimensiond8]. Various studies related to this model can be
found in the literatur¢9,10], and it has recently been shown where the repeated indicesp are summed over light-cone
that this theory exhibits a screening phasa|. indices =, andl,J are summed over transverse indices 1,2.
The contents of this paper are as follows. In Sec. Il, weThe two scalar fieldX,(o*,07) representN X N Hermitian
formulate theN'=(2,2) supersymmetric matrix model in the matrix-valued fields, and are remnants of the transverse com-
light-cone frame, and quantize the theory by imposing caponents of the four dimensional gauge fiedd,, while
nonical (anticommutation relations for fermions and bosonsA. (o *,07) are the light-cone gauge field components of
respectively. In Sec. lll, we briefly describe the DLCQ nu- the residual two dimensional B or SU(N) gauge symme-
merical procedure, and present our numerical results for th#y. The two component spinorg; and ¢, are remnants of
bound state spectrum. The structure of bound state wav&e right-moving and left-moving projections of a four com-
functions is also discussed. A summary of our work appears
in the discussion in Sec. IV. Details of the underlying four
dimensional\V=1 super Yang-Mills theoryi.e. before di-  The space-time points in four dimensional Minkowski space are
mensional reductioncan be found in the Appendix. parametrized, as usual, by coordinate8 x!,x2,x°).
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ponent real spinor in the four dimensional theory. The com- o, ~ 1 1 1 )
ponents ofgg and 6, transform in the adjoint representation P =g f do™ tr| — §J+52-J+— 2% X4]
of the gauge groupk ,z=d,Ag—dgA,Tig[A,,Az] is the -

two dimensional gauge field curvature tensor, whide, i .1

=4d,+ig[A,,-] is the covariant derivative for th@djoin + 5 (€BI[X,0r]) " ——€2B3[X5.0r1|. (D)
spinor fields. The two X 2 real symmetric matriceg, , and -

anti-symmetric matrix, are defined in the Appendix. The light-cone Hamiltonian propagates a given field configu-

Since we are working in the light-cone frame, it is natural ration in light-cone timer*, and contains all the non-trivial
to adopt the light-cone gaugde. = 0. With this gauge choice, gynamics of the interacting field theory.
the action(1) becomes Let us denote the two components of the spiggby the
fermion fieldsu®, «=1,2. Then, in terms of their Fourier
modes, the physical fields may be expanded at light-cone
time o™ =0 to give’

~S&$1=f do*do™ tr| 9, X,0_X,+i6kd, Og+i6]d_6,

1 2 . T 1 (= dk?
+5(0-AL)?+gAIT+V2G0l B X, O] X (o ):_f g
pq \/E o KT
2
+%[X|,XJ]2 , (2 ><[a:)q(kﬂe*ikﬂ’_+a:]Tp(k+)eik+"_],
1=1,2, (8)

whereJ*t=i[X, ,a_x,]+20§¢9R is the longitudinal momen-
tum current. The(Euler-Lagrange equations of motion for

0 +
the A, and g, fields are now uty(o7)= 1 f dk
V27 Jo V2
(92_A+:g‘]+, (3) a —ikto~ at ikto™
X[bp(k")e™ +hgy(k)e 1.
V2id_0.=—geB[ X, Or]. 4 a=12. (9)

These are evidently constraint equations, since they are irFor the gauge group W), the (antjcommutation relations
dependent of the light-cone time*. The “zero mode” of take the form

the constraints above provides us with the conditions | 5t
[apg(k™).a7a (k' T)]= 6850450k =K' ™), (10)

fdo‘f:O and JdU_E2BI[XI16R]:O: 5 {0 (K"), AN (K )} = 675, 84s8(k T =K' ), (1D

which will be imposed on the Fock space to select the physi\—NhIIe for SUN), we have the corresponding relations

cal states in the quantum theory. The first constraint above is

well known in the literature, and projects out the coIorIess[an(kﬂ,afsT(k’*)]=5”( SprOqs—
states in the quantized theof¥2]. The secondfermionic)

constraint is perhaps lesser well known, but certainly pro-
vides non-trivial relations governing the smalbehavior of
light-cone wave functiorfs13].

At any rate, Eqs(3),(4) permit one to eliminate the non- 1
dynamical fieldsA, and 6, in the expression for the light- = 5"5( Bpr Ogs— Népqérs) S(kt—k'*). (13
cone HamiltoniarP~, which is a particular feature of light-
cone gauge theories. There are no ghosts. We may theref
write down explicit expressions for the light-cone momen
tum P* and HamiltonianP~ exclusively in terms of the b
physical degrees of freedom represented by the two scalaly

1

N 5pq5,5) S(k*—k'™),

(12

{bg(k*),bA (k' )}

Ok important simplification of the light-cone quantization is
“that the light-cone vacuum is the Fock vacuifhn defined

fields X, and two-component spindiy: a:)q(k+)|0>=bgq(k+)|0)=0, (14)
_ . for all positive longitudinal moment&™>0. We therefore
P+=f do™ tr(9_X,0_X,+i6%5_ 6r), 6) havePE|0>:P‘|0)g:O.

2f we introduce a mass term, such relations become crucial in ®The symbol 1 denotes quantum conjugation, and does not trans-
establishing finiteness conditions. Jé8], for example. pose matrix indices.
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The *“charge-neutrality” condition[first integral con- %
straint from Eq.(5)] requires that all the color indices must QZZZSMJ do™ tr(d-XBayu,) (15
be contracted for physical states. Thus physical states are o
formed by color traces of the boson and fermion creation
operatorsa'T,b*" acting on the light-cone vacuum. A single Q- = Jw do— tr( —23/4J+ie u
trace of these creation operators may be identified as a single «=9 —w g_"2am-m
closed string, where each creation operdtar “parton”),
carrying some longitudinal momenturk®, represents a
“bit” of the string. A product of traced operators is then a
multiple string state, and the quantityNLis analogous to a
string coupling constaritl4]. where a=1,2, and repeated indices are summed. The two
At this point, we may determine explicit expressions for2x 2 real symmetric matrice8, are discussed in the Appen-
the quantized light-cone operatoPs™ by substituting the dix. By explicit calculation or otherwise, these charges sat-
mode expansiong),(9) into Egs.(6),(7). The mass operator isfy the following relationg:
M?=2P*P~ may then be diagonalized to solve for the
bound state mass spectrum. However, as was pointed out in {Q} 'QE}: 5aﬁz\/jp+ (17
[15], it is more convenient to determine the quantized ex-
pressions for the supercharges, since this leads to a regular-
ization prescription forP~ that preserves supersymmetry
even in the discretized theory. o
In order to elaborate upon this last remark, first note that {Q..Qp}=0, a,p=12. (19
the continuum theory possesses four supercharges, which
may be derived from the dimensionally reduced form of thelf we substitute the mode expansior8),(9) into Egs.
four dimensionalV=1 supercurrenfEq. (A6) in the Appen-  (15),(16) for the light-cone supercharg€¥, , we obtain the

+2_1/4i[X| !XJ](BlﬁJEZ)anun)! (16)

{Qu . Qpl=6,p2v2P" (18

dix): following “momentum representations” for these charges:
|
Q: =2 [ "k, 2l (0D (k) bl ()2 (0] @0
and
i271/4g 0
Q=" | dadhadhadils ko) (o),
o
1 Ka—ka| 4 t t
X 2k, | K [b5ij(K3)ajim(K)amj(ka) = ajim(K1) @jmj(k2) b (Ka) ]
1n2
1 (kitks| ) )
+2\/W K, [@)im (K1) bymi(k2) yij (Ks) — &yij (Ks) @lim (K1) b ymj(k2) ]
1R3
1 (kotks| : :
+2\/W K, [ayij (K3)bim(K1) Qimj(K2) = byim(K1) @jmj(k2)ayij (ka) ]
2R3

1

- k—ltbgij (Ka)b im(K1)Dgmi(ka) + b1 (k) bh (ko) bgij(K3) ]
1

- k—z[b;” (Ka)Dgim(K1) D ymi(ka) + b (k) b! (ko) bgis (ka) ]

1
- k—s[b“;ij<k3>bﬁim<k1>bﬁm,-<kz)+ b him(K)Dhmi(K2)b i (ka) 1+ [ (8183 — BaB1) €21 up

4Surface terms contributing to the central charge are assumed to be vanishing.

125006-3



ANTONUCCIO, PAULI, PINSKY, AND TSUJIMARU PHYSICAL REVIEW D58 125006
1
t t t
X m[bﬁij(k3)alim(kl)aij(k2)+aJim(kl)almj(k2)bBij(k3)]

1
+ ———[al;;(ks)bgim(k1)aimj(Ka) + bk al (ko) aij (Ks)]

4\Koks
1
T t +
+ 2 rgkl[a“j (kS)aJim(kl)bﬁmj(k2)+a|im(k1)bﬁm]‘(k2)ajij(ks)]) ] , 1)
[
where repeated indices are always summegs, »=1,2 lll. DLCQ BOUND STATE SOLUTIONS

(spinor indiceg |,J=1,2[S0O(2) vector indice$ andi,j,m

=1, N (matrix indices. for a particulara €{1,2}, and for the values K<6. For a

In order to implement the DLCQ formulatidrof the . : . _
bound state problem—uwhich is tantamount to imposing pe_g!ven resolutiork, the light-cone momenta of partons in &
L - S . given Fock state must be some positive integer multiple of
riodic boundary conditiong™ ~ o~ +27mR—we simply re-

. X R ; P*/K, whereP* is the total light-cone momentum of the
strict the momentum variall® appearing in the expressions g

for Q. [Egs. (20),(21)] to the following discretized set of  of course, the fact that we may choose any one of the two
momenta: {(1/K)P",(2K)P",(3K)P™,...}. Here, P"  supercharges to calculate the spectrum provides a strong test
denotes the total light-cone momentum of a state, and mafor the correctness of our computer program and consistency
be thought of as a fixed constant, since it is easy to form af the DLCQ formulation. It turns out, however, that there
Fock basis that is already diagonal with respect to the quarare a few surprises in store. First of all, the supersymmetry
tum operatoP™* [7]. The integeiK is called the “harmonic  algebra[Egs. (17)—(19)] is certainly true in a continuum
resolution,” and 1K measures the coarseness of ourspace-time, but there is no obvious reason to expect that
discretization—we recover the continuum by taking the limitthese relations should also hold exactly in a discretized ver-
K—oc. Physically, 1K represents the smallest posiﬁumit sion of the theory. From our numerical studies, however, we
of longitudinal momentum-fraction allowed for each partonfind that relation(17) and (19) are indeed exactly satisfied
in a Fock state. in the discretized theory.

Of course, as soon as we implement the DLCQ procedure, A Potential problem arises, however, in relatids). First
which is specified unambiguously by the harmonic resolutiorPf all, one finds thatQ; and Q, do not anti-commute:
K, the integrals appearing in the definitions @ are re- 1Q1,Q2 }#0. However, this is not too surprising, since one
placed by finite sums, and the eigenequatidd™®~|¥) can trace this anomaly to the truncation o_f mome(ite.
= M2 W) is reduced to a finite matrix diagonalization prob- tN€r€ is @ non-zero lower bound &) following from the
lem. In this last step, we use the fact tifat is proportional DLCQ procedure. In pariicular, as we increase the resolu-

to the square of any one of the two superchargs oo e EEE B e O e o oocu
=1,2[Eqg.(18)], and so the problem of diagonalizify” is P y y P Py

equivalent to diagonalizing any one of the two superchar ea subset of measure zero in the continuum liki . This
a 9 g any : P 9% substantiated by direct inspection of the mafi), ,Q, }
Q, . As was pointed out irf15], this procedure yields a

' ! for different values oK.
supersymmetric spectrum for any resolutiéh In the We also encounter a further anomaly when computing the
present work, we are able to perform numerical diagonalizag;itterence 01)2—(Q;)2. According to relation(18), this

tions for 2<K<6 with the help 0fMATHEMATICA and & ifference is precisely zero in the continuum, but in the dis-

We consider discretizing the light-cone superchafhe

desktop PC. _ _ _ _cretized theory, it is non-vanishing. As we discussed above,
In the next section, we discuss the details of our numerithis can be understood as an artifact of the truncated mo-
cal results. menta in the DLCQ formulation, and disappears in the con-

tinuum limit K—oo.
Nevertheless, we should worry at this stage about the
51t might be useful to consultl2,15,16,17 for an elaboration of definition of the Ilght—c_one Hamlltonla_n. Relatidag) S-UQ_ :
DLCQ in models with adjoint ferr,nio,ns ,An extensive list of refer- gests that we may define the DLCQ light-cone Hamiltonian
: ) o : . as the square of any one of the supercharges. Because the
ences on DLCQ and light-cone field theories appears in the review,. —\2 2.2 N . .
in [18]. difference Q1)°-—(Q5) |s_non-var_1|sh|ng in th_e- _dlscret|z_ed
SWe exclude the zero mode' =0 in our analysis; the massive LN€OTY, we have two possible choices for defining the light-
spectrum is not expected to be affected by this omisgl@h but ~ CON€ Hamiltonian: Py =(1~72)(Q;)> or P,
there are issues concerning the light-cone vacuum that indolve = (1#2) (Q, )% Surprisingly, after diagonalizing each of
=0 modeg20,21]. these operators for differeit, the spectrum of eigenvalues
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TABLE I. SU(N) bound state masseéd? in units g?N/ for TABLE Il. SU(N) bound state massé4? in units g?N/r for
resolutionK =3 (six significant figures When expressed in these resolutionK=4 (six significant figures When expressed in these
units, the masses are independentNofi.e. there are no N cor- units, the masses are independentofi.e. there are no N cor-
rections at this resolutignand so these results are applicable for rections at this resolutignand so these results are applicable for
any N>1. The notation “4+4" above implies an exact 8-fold any N>1. In total, there are 92 bosons and 92 fermions at this
mass degeneracy in the DLCQ spectrum with 4 bosons and 4 feresolution.
mions. In total, there are 20 bosons and 20 fermions.

Bound state masséd? for K=4

Bound state massed? for K=3 M2 Mass degeneracy
M? Mass degeneracy

0 32+32
0 8+8 1.20095 8+8
1.30826 44 4.00943 44
12.6273 44 12.2424 44
22.0645 4-4 12.2962 8+8
15.0490 44
15.2822 44
turns out to be identical. This is certainly another attractive 19.5028 8+-8
feature of DLCQ that deserves further study. 20 4+4
Of course, this implies that the spectrum of the theory for 22.5321 44
finite K is independent of the choice of supercharge, and 23.1272 44
therefore well defined. It would be interesting to investigate 28.6177 44
whether other physical observables are independent of the 28.6955 44

observed anomaly in the supersymmetry algebra.
Let us begin with a discussion of massless states. First, for

gauge symmetry WN), the U1) degrees of freedom explic- N For example, atN=1000, there is an apparent degen-

itly decouple, and this provides trivial examples of massles%racy in the numerical spectrum Bt2=2.18043 which is
states, which can be seen in the DLCQ analysis. Consgl-isibIy broken wherN= 10 '

qSlfJe(th;y' a%" ;ﬁﬁegfn'gm‘i ;ﬁ?}imsi%SNi)nggﬂtzin:Cde icnonthe It turns out that these states are easily identified as weakly
gaug Y. ' P bound multi-particles at largébut finite) N. To show this,

sists of two parton states only. Moreover, silg@e increases .
P y ee note that bound states &=2 are necessarily massless—

or decreases the number of partons by 1, it necessarily anr}{/-I 2(K = 2)= 0—while for K =3, the lightest non-zero mass

hilates all Fock states, and so all states are massless. Hovsvt-ate satisfiesM?(K =3)=1.30826. The mass squared

ever, forK=3, determining the existender nop of mass- M2(K=5) of a freely interactingnulti-particle composed of

less states in the SO theory turns out to be a highly
non-trivial problem involving the full dynamics of the
Hamiltonian. We will therefore restrict our attention to the ~ TABLE IIl. SU(N) bound state mass@8? in units g°N/r for
bound state spectrum of the S\UX gauge theory_ resolutionK =5 (six significant figures and forN=3, 10, 100 and
The results of our DLCQ numerical diagona”zation of 1000. We have selected the |Ightest 10 states in each case, with
(Q;)z at resolutiorkK = 3 are summarized in Table I. To test Mass degeneracy-+44 for non-zero masses. Massless states have
our numerical algorithm, we diagonalizhe square ofeach ~ degeneracy 9292. Note that if a state has degeneracy& then
supercharge, and find the same spectrum—which is consi&® 'ndga%'_tiwl'g‘jjég' f?k: Nd:3’ there 'i'g bgund state with T;ss
tent with supersymmetry. Let us now consider resoluon squarecvl: = . with degeneracy-88). Convergence in the

. . o largeN limit is evident.
=4. The results of our numerical diagonalizations are pre- g

sented in Table II. If we express the masses in wyfts/ 7, Bound state masséd? for K =5, andN=3,10,100,1000

then there are no W corrections at resolutionK=3 and 2

K=4. However, forK=5, one sees N effects in the spec- N=3 N=10 M N=100 N=1000

trum. In Table lll, we list bound state masses k+ 3, 10,

100 and 1000 at resolutidh=>5. At this resolution, there are 0.0 0.0 0.0 0.0

472 bosons and 472 fermions. Table Il illustrates mass split- 0.0442062 0.0112824 0.00679546 0.00674981

tings that occur in the spectrum as a result dfl Iriterac- 0.658859 0.634820 0.630485 0.630441

tions, which become increasingly important as we decrease 1.13442 1.08578 1.08135 1.08131
1.13442 1.11224 1.10995 1.10993
1.23157 1.56551 1.57314 1.57321

"One suggestion is that these “discrepancies” in the operator al- 1.29964 2.09691 2.17960 2.18043

gebra are related to large gauge transformations arising from the 1.55373 2.10814 2.17971 2.18043

light-like compactification in DLCQ, and are therefore expected to 1.76132 2.14535 2.18009 2.18043

vanish in the continuum limiK—~. For finite K, the operator 1.77999 2.14571 2.18009 2.18043

“anomalies” we observed may be gauge equivalent to zero.
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able splittings in the spectridinwhich has the effect of
smearing out the points in Fig. 1. The qualitative features of

ME_E; the spectrum expected from a screening theory are therefore
g N also present for smaller values Nf
17.5 So far, we have only discussed properties of the DLCQ
15 i . spectrum—such as bound state masses and their correspond-
P ing degeneracies—but solving the DLCQ bound state equa-
12.5 P . . tions also involves deriving explicit numerical expressions
10 ; i for bound statevave functionsThis is of particular interest

to us here since we would like to know whether such a
7.5 . theory exhibits a mass gap or not. In the context of our
DLCQ analyses, this involves establishing, in addition to the
trivial light-cone vacuum, the existence—or not—ohar-
malizablemassless state in the continuum thelry «.

N

ul
*r rumesr we o
Pooss @

1 According to the literature, théV=(2,2) model is be-

0.05 0.1 0.15 0.2 0.25 0.3 0.35 lieved not to have a mass gdf]. We now outline how our
numerical results support such a claim.

FIG. 1. Bound state mass&t? (in unitsg2N/ ) versus 1K for First, at resolutiorK=3 andN=1000, one identifies a

N=1000. We only plot masses satisfyimg2<16, but there are massless bosofand its superpartnershat has the forf?

many bound states above this & 5.
N

3

+

3

+

al !

aj )

a

tr 3 |0)+tr| &) 31|19,

2P+)

2P+)

oneK=2 particle and on& =3 particle now follows from

simple kinematic$22]:
where P* is the total(fixed momentum. At resolutiorkK
=4, one identifies a massless boson of the form

M2(K=5) M?*K=3) M23K=2)

= + . 22 + +
> 3 2 22 0.497134 {ra{ ZZ a 2': ) |0)
+ 3p~
The result isM?(K=5)=2.18043, after inserting the ob- +0.580827 [{ra} R a; ) |0)
served values foM?(K=3) andM?(K=2). Note that this 4
value for M2(K=5) is a prediction for the mass of two + 3P~
freely interacting particles at resolutidd=5 (or, equiva- +0.495501 [{rag e aj 2 ) |0)
lently, carryingk=>5 units of light-cone momentumThus,
for large enoughN (or for sufficiently small coupling M), +additional Fock states, (29

we expect to see bound states approaching this two-free-
body mass. Table Il confirms this prediction. Such predic-where “additional Fock states” represents a superposition of
tions of multi-particle masses were also carried out for thewo and four parton Fock states with amplitudes less than
N=(1,1) model[5], and are a strong consistency test of the0.25(typically, very small. It is therefore natural to identify
(typically compley numerical algorithms adopted in this the bound state solution above fiér=4 with theK=3 so-
work. lution [Eqg. (23)]. At K=5, something seems to go wrong;
Note, in general, that the N/ interactions increase the there are no massless states that may be characterized as a
masses of light particles, and decrease the mass of hea®yPerposition of predominantly two-parton states, as in Egs.
particles(see Table lIJ.
For K=6, there are over 4500 states in the Fock basis.
The resulting DLCQ spectrum fdd=1000 appears in Fig.  8Some splittings are in fact present fdr=1000, but are not seen
1, together with bound state masses obtained at the loweénr the numerical spectrum since we quote masses to only six sig-
resolutionsK =3, 4 and 5. It is apparent from this graph that “igicam figures. .
as we increas& (i.e. as we move from right to Ieft the The A'=(8,8) model, in contrast, was shown to have a mass gap
DLCQ spectrum seems to approach some dense subset of the;

positive real(vertica) axis. One may infer that in the con- . . . :

fi limit K th t d indeed “fill up” th consuming computationally when working at finke and not nec-

mugm |m|_ 7 .e Spec _rum oes |n. ee . i up™the essary when solving for spectra. A simpler procedure is just to

vertical axis, which is certainly compatible with a recent onormalize each Fock state byNi%2, whereq is the number of

study that suggested this theory should be in a screeningartons in the Fock statémplicitly implied in this work). Then the

phase[11]. relative size of each Fock state wave function indicates the relative
As we pointed out earlier, decreasiNgntroduces notice- importance of the Fock state to the overall bound state.

e choose not to normalize states to unity, since it is very time

125006-6



DLCQ BOUND STATES OFAN=(2,2) SUPER-YANG. .. PHYSICAL REVIEW D 58 125006

(23) and(24). However, there is a state with mass squated two-parton Fock states, one can always find a massless
M2=0.0067 (N=1000), which has the explicit form bound state dominated by Fock states with an arbitrarily
large number of partons for sufficiently lar¢fe The struc-
p* ture of the low energy spectrum is similar, consisting of
?) |0) bound states of all lengths permitted by the truncation pa-
rameterK. Such qualitative features of the spectrum were

+

a;

4p
0.52344 t{aJ{ <

N . o ; ;
0468159 t[ra{ 2|;> )ag(m; ) 0) exhibited also in théV'=(1,1) supersymmetric modg,15].
IV. DISCUSSION
([ 3P [2P7 . . .
+0.468159 tra;| —&—|az| ¢ |0) To summarize, we have performed a detailed analysis of
the DLCQ bound state spectrum of Af=(2,2) supersym-
N 4pP* N p* metric matrix model, which may be heuristically derived by
+0.52344 tra;| ——|a;| | ||0) dimensionally reducingv=1 super-Yang-Mills theory from
four to two space-time dimensions. The gauge group is
+additional Fock states, (25  SU(N), and we allowN to be finite, but arbitrarily large.

We discretize the light-cone supercharges via DLCQ, and
where “additional Fock states” above represents a superpdfind that certain supersymmetry relations are exactly satisfied
sition of four parton Fock states with relatively small ampli- even in the discretized formulation. In particular, relations
tudes. Evidently, it is natural to associate this bound statél?7) and(19) hold exactly in DLCQ. We find, however, that
with the massless bound staté®3) and (24) observed at relation(18) holds only approximately, although the discrep-
lower resolutions. ancy diminishes as the resoluti¢his increased. As a con-

At this point, we would like to know whether this non- sequence, the difference between the discrete light-cone su-
zero mass will persist in the continuum limK—, or  percharges @;)2—(Q,)? is non-zero. Surprisingly,
whether it is an artifact of the Fock state truncation enforcechowever, the eigenvalues a®{ )2 and (Q; )2 turn out to be
by the DLCQ procedure. identicalat any resolution, and so the DLCQ spectrum of the

As it turns out, solving the DLCQ bound state equationstheory has an unambiguous definition as the eigenvalues of
at resolutionk =6 reveals an exactly massle&®sonig so-  either supercharge squared. With this definition, the DLCQ
lution that is essentially a superposition of two-parton Fockspectrum turns out to bexactly supersymmetric at any reso-
statesas in Eqgs.(23), (24) and (25)], with wave functions |ution (see Tables | and I, for exampldt would be desir-
that have approximately the same shape, relative magnitudgble to understand why—in the DLCQ formulation—the su-
and sign as the wave functions appearing at lower resolysersymmetry operator algebra is only approximately
tions. The “glitch” in the spectrum observed Kt=5, there-  satisfied, while the spectrum itself appears to reflect unbro-
fore, appears to be an artifact of the numerical truncationken supersymmetry. Perhaps the observed anomaly in the
although it would be desirable to probe larger valueXof algebra cancels for physical observabfesshich would be
(e.g.K=7) to confirm this viewpoint. consistent with the idea that certain quantities are “gauge

At any rate, we have identified a series of DLCQ solu-equivalent” to zero.
tions that is expected to converge in the lirKit-o to a In Table Ill, we illustrate the dependence of bound state
massless bound state. This continuum solution would rulenasses on the number of gauge colds,Convergence is
out the possibility of a mass gap, in agreement With evident at largeN if we keepg?N constant. We also resolve

We should remark at this point that the Fock state repremass splittings in the spectrum as a result &f iiteractions
sentation of the lowest energy states in this model appears {gee Table IIl. It appears that decreasil (i.e. increasing
be significantly more complicated than solutions found inthe strength of the IV interactiong has the generic effect of
other field theories with massless particles—such as the ecreasing particle masses, except for very light particle
Hooft pion or Schwinger particle. A theory with complex states. Note that there is Nddependence of the spectrum at
adjoint fermions studied relatively recenfl¥6,17] revealed resolutionsKk =3 and 4—one needs to consid€e5 to ob-
many massless states with constant wave function solutiongerve any variation witt\.

In contrast, it turns out that any normalizable state in the |n Fig. 1, we plotted the DLCQ spectrum for resolutions
(continuum supersymmetric model studied here must be a =3, 4, 5 and 6, and observed that the supersymmetric

superposition of an infinite number of Fock stal@8]. An  spectrum approaches a dense subset of the positive real axis.
analogous situation occurred in the model witk (1,1) su-

persymmetry{5].

Finally, we comment on the “string-like” nature of
bound states that dominate the low energy spectrum. Al-
though we focused on a massless state composed of mainﬁg/I

2ve might be able to redefine the supercharg€s
RQ; R™1, QZ‘HSQ;S’l, for appropriate matriceR,S, so that
ation(18) holds exactly even in the discretized theory. However,
this would imply a non-vanishing result for relati¢h9). Neverthe-
less, it would be tempting to argue that this non-vanishing contri-
This is not a 1N effect. If we letN—o, the mass squared? bution (or “central charge’) reflects the topology induced by com-
doesnot converge to zero. pactification of the light-like circle in DLCQ24].
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This is compatible with the recent claim that the theory is in i
a screening phadd 1]. =5 w(IPITHF ). (AB)

By carefully studying the Fock state content of certain
bound states at different resolutions, we argued for the exi§p order to realize the four dimensional Dirac algebra
tence of a normalizable massless state in the continuum limitp .I',}=2g,, in terms of Majorana matrices, we use as
K—c. A mass gap is therefore expected to be absent in thiﬁuﬁding blocks the following three 22 real anti-
theory. _ commuting matrices:

We also observed that the low energy spectrum is domi-
nated by states with arbitrarily many partons—a constituent 0 1 0 -1 1 0
picture involving few-parton Fock states is obviously an in- €= ( 1 0), 62:(1 0 ) e3=<0 _1).
adequate representation for capturing the full low energy dy- (A7)
namics of this model.

In light of this highly complex bound state structure, it iS \we may now define four %4 pure-imaginary matrices as

tempting to suggest that we are probing a dynamical systefnsor products of the above matrices,
that might be more adequatelgind simply described by an

effective field theory in higher dimensiof$Following the  I'=je,€;, Il=igel, [?=ieel, [P=ie®e,,

remarkable proposals of matrix theory and the anti—de Sitter (A8)
and conformal field theory correspondence, it would be in- . _
teresting to pursue this speculation further. and it follows that these matrices satigly, ,I',}=2g,,, as

required. In our numerical work, we use this particular rep-
resentation.
To formulate the theory in light-cone coordinates, it is
F.A. is grateful for the hospitality bestowed by the Max- convenient to introduce matrices
Planck-Institute(Heidelberg where this work was begun.
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APPENDIX: SUPER-YANG-MILLS THEORY IN FOUR r ‘/j(r =19, T ( 0 i,B,)’ (A9)
DIMENSIONS
where the two X 2 real-symmetric matrice8,, | =1,2, are

Let us start with\V=1 super Yang-Mills theory in 31

dimensions with gauge group Nj or SU(N): defined by writing; = €; and 2= €.

It is now straightforward to verify thaP, =3I""T'~ and
Pr=3I""T'" project out the left- and right-moving compo-

53+1:f d*x trl — lpwpuq ! \fpuDMq; , (A1)  nents of the four-component spind. Defining ¢ by a re-
4 2 scaling, ¥ =24y, we introduce left- and right-moving
spinorsy, g as follows:
where
_ b=yrti, Yr=Pr¥, Y=P 4. (A10)
FMV:&MAV_aVAM—’_Ig[AM’AV]I (A2)
This decomposition is particularly useful when working with
D, V=0, ¥+ig[A,,¥] (A3) light-cone coordinates, since in the light-cone gauge one can
" Iz uo b . . .
express the left-moving componeit in terms of the right-
andu,r=0,...,3. TheMajorana spinot’ transforms in the ~Moving component by virtue of the fermion constraint
adjoint representation of the gauge group. That) space- €quation. We will derive this result shortly. In terms of the
time metricg,,, has signaturé+,—,—,—), and we adopt the usual four dimensional Minkowski space-time coordinates,

normalization tr{2T?) = 52° for the generators of the gauge the light-cone coordinates are given by
group.

The supersymmetry transformations 1 . .
persy y x*=5(x°+x3), ‘““time coordinate,”’ (A11)
oA, =iel' ¥ (A4)
1 X = i(x°—x3) “‘longitudinal space coordinate,”’
oW =5F, e (A5) ) ’ ’
(A12)
whereI'*"=3[T'#,I'"] give rise to the following supercur- x-=(xL,x?), ‘“‘transverse coordinates.” (A13)

rent:
Note that the “raising” and “lowering” of the= indices is
given by the rulex®=x-, while x'=—x, for 1=1,2, as
3The presence of two transverse scalar fields suggests a nobsual. It is now a routine task to demonstrate that the Yang-
critical string theory in four dimensions. Mills action (Al) is equivalent to
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LC N B S 1, fore eliminate any dependence ¢p (representing unphysi-
S3+1:f dx"dx dx tr §F+7+F+IF7I_ZFIJ cal degrees of freedonin favor of ¢, which carries the
eight physical fermionic degrees of freedom in the theory. In
addition, the equation of motion for tha, field yields

+igRD Y+ iy D_ Y — V2 28D yr], Gauss’ law
(A14) PAL=d_aA+gl" (A16)

wher(_a _the rgpeqtgd i_ndices] are _summed ovel,2. Some whereJ* =i[A, ,8,A|]+21//;l//R, and so theA, field may
surprising simplifications follow if we now choose to work giso be eliminated to leave the two bosonic degrees of free-

in the light-cone gauge A=A_=0. In this gaugeD_  gomA,, I =1,2. Note that the two fermionic degrees of free-
=d_, and so the(Euler-Lagrange equation of motion for  gom exactly match the bosonic degrees of freedom associ-
the left-moving fieldy, is simply ated with the transverse polarization of a four dimensional
gauge field, which is of course consistent with the supersym-
0 :ié 8D, (A15) metry. We should emphasize that unlike the usual covariant
LT p TAPIEITR formulation of Yang-Mills theory, the light-cone formulation

here permits one to remowxplicitly any unphysical degrees
which is evidently a non-dynamical constraint equation,of freedom in the Lagrangiator Hamiltonian; there are no
since it is independent of the light-cone time. We may thereghosts, and supersymmetry is manifest.
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