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DLCQ bound states ofN5„2,2… super-Yang-Mills theory at finite and large N
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We consider the (111)-dimensionalN5(2,2) supersymmetric matrix model which is obtained by dimen-
sionally reducingN51 super Yang-Mills theory from four to two dimensions. The gauge groups we consider
are U(N) and SU(N), whereN is finite but arbitrary. We adopt light-cone coordinates, and choose to work in
the light-cone gauge. Quantizing this theory via discretized light-cone quantization~DLCQ! introduces an
integerK which restricts the light-cone momentum-fraction of constituent quanta to be integer multiples of
1/K. Solutions to the DLCQ bound state equations are obtained for 2<K<6 by discretizing the light-cone
supercharges, which results in a supersymmetric spectrum. Our numerical results imply the existence of
normalizable massless states in the continuum limitK→`, and therefore the absence of a mass gap. The low
energy spectrum is dominated by string-like~or many parton! states. Our results are consistent with the claim
that the theory is in a screening phase.@S0556-2821~98!04624-4#

PACS number~s!: 11.10.Kk, 11.15.Tk
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I. INTRODUCTION

Supersymmetric gauge theories in low dimensions h
been shown to be related to non-perturbative objects in M
string theory @1#, and are therefore of particular intere
nowadays. More dramatically, there is a growing body
evidence suggesting that gauged matrix models in 011 and
111 dimensions may offer a non-perturbative formulati
of string theory@2,3#. There is also a suggestion that largeN
gauge theories in various dimensions may be related to t
ries with gravity@4#.

It is therefore interesting to study directly the no
perturbative properties of a class of supersymmetric ma
models at finite and largeN, whereN is the number of gauge
colors. In previous work@5,6#, we focused on two dimen
sional matrix models, since the numerical technique of d
crete light-cone quantization~DLCQ @7#! may be imple-
mented to determine bound state wave functions and ma

In this work, we extend these investigations by solvi
the DLCQ bound state equations for a two dimensional
persymmetric matrix model withN5(2,2) supersymmetry
Such a theory may be obtained by dimensionally reduc
N51 super Yang-Mills theory from four to two space-tim
dimensions@8#. Various studies related to this model can
found in the literature@9,10#, and it has recently been show
that this theory exhibits a screening phase@11#.

The contents of this paper are as follows. In Sec. II,
formulate theN5(2,2) supersymmetric matrix model in th
light-cone frame, and quantize the theory by imposing
nonical~anti!commutation relations for fermions and boso
respectively. In Sec. III, we briefly describe the DLCQ n
merical procedure, and present our numerical results for
bound state spectrum. The structure of bound state w
functions is also discussed. A summary of our work appe
in the discussion in Sec. IV. Details of the underlying fo
dimensionalN51 super Yang-Mills theory~i.e. before di-
mensional reduction! can be found in the Appendix.
0556-2821/98/58~12!/125006~9!/$15.00 58 1250
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II. LIGHT-CONE QUANTIZATION AND DLCQ
AT FINITE N

The two dimensionalN5(2,2) supersymmetric gaug
theory we are interested in may be formally obtained
dimensionally reducingN51 super Yang-Mills theory from
four to two dimensions. For the sake of completeness,
review the underlying four dimensional Yang-Mills theory
the Appendix.

Dimensional reduction of the four dimensional Yan
Mills action ~A14! given in the Appendix is carried out b
stipulating that all fields be independent of thetwo transverse
coordinates1 xI52xI ,I 51,2. We may therefore assume th
the fields depend only on the light-cone variabless6

5(1/&)(x06x3). The resulting two dimensional theor
may be described by the action

S111
LC 5E ds1ds2 trS 1

2
DaXID

aXI1
g2

4
@XI ,XJ#

2

2
1

4
FabFab1 iuR

TD1uR1 iuL
TD2uL

1&guL
Te2b I@XI ,uR# D , ~1!

where the repeated indicesa,b are summed over light-con
indices6, and I ,J are summed over transverse indices 1
The two scalar fieldsXI(s

1,s2) representN3N Hermitian
matrix-valued fields, and are remnants of the transverse c
ponents of the four dimensional gauge fieldAm , while
A6(s1,s2) are the light-cone gauge field components
the residual two dimensional U(N) or SU(N) gauge symme-
try. The two component spinorsuR anduL are remnants of
the right-moving and left-moving projections of a four com

1The space-time points in four dimensional Minkowski space
parametrized, as usual, by coordinates (x0,x1,x2,x3).
©1998 The American Physical Society06-1
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ponent real spinor in the four dimensional theory. The co
ponents ofuR anduL transform in the adjoint representatio
of the gauge group.Fab5]aAb2]bAa1 ig@Aa ,Ab# is the
two dimensional gauge field curvature tensor, whileDa
5]a1 ig@Aa ,•# is the covariant derivative for the~adjoint!
spinor fields. The two 232 real symmetric matricesb I , and
anti-symmetric matrixe2 , are defined in the Appendix.

Since we are working in the light-cone frame, it is natu
to adopt the light-cone gaugeA250. With this gauge choice
the action~1! becomes

S̃111
LC 5E ds1ds2 trS ]1XI]2XI1 iuR

T]1uR1 iuL
T]2uL

1
1

2
~]2A1!21gA1J11&guL

Te2b I@XI ,uR#

1
g2

4
@XI ,XJ#

2D , ~2!

whereJ15 i@XI ,]2XI #12uR
TuR is the longitudinal momen-

tum current. The~Euler-Lagrange! equations of motion for
the A1 anduL fields are now

]2
2 A15gJ1, ~3!

& i]2uL52ge2b I@XI ,uR#. ~4!

These are evidently constraint equations, since they are
dependent of the light-cone times1. The ‘‘zero mode’’ of
the constraints above provides us with the conditions

E ds2J150 and E ds2e2b I@XI ,uR#50, ~5!

which will be imposed on the Fock space to select the ph
cal states in the quantum theory. The first constraint abov
well known in the literature, and projects out the colorle
states in the quantized theory@12#. The second~fermionic!
constraint is perhaps lesser well known, but certainly p
vides non-trivial relations governing the small-x behavior of
light-cone wave functions2 @13#.

At any rate, Eqs.~3!,~4! permit one to eliminate the non
dynamical fieldsA1 anduL in the expression for the light
cone HamiltonianP2, which is a particular feature of light
cone gauge theories. There are no ghosts. We may ther
write down explicit expressions for the light-cone mome
tum P1 and HamiltonianP2 exclusively in terms of the
physical degrees of freedom represented by the two sc
fields XI and two-component spinoruR :

P15E ds2 tr~]2XI]2XI1 iuR
T]2uR!, ~6!

2If we introduce a mass term, such relations become crucia
establishing finiteness conditions. See@13#, for example.
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P25g2E ds2 trS 2
1

2
J1

1

]2
2 J12

1

4
@XI ,XJ#

2

1
i

2
~e2b I@XI ,uR# !T

1

]2
e2bJ@XJ ,uR# D . ~7!

The light-cone Hamiltonian propagates a given field config
ration in light-cone times1, and contains all the non-trivia
dynamics of the interacting field theory.

Let us denote the two components of the spinoruR by the
fermion fieldsua, a51,2. Then, in terms of their Fourie
modes, the physical fields may be expanded at light-c
time s150 to give3

Xpq
I ~s2!5

1

A2p
E

0

` dk1

A2k1

3@apq
I ~k1!e2 ik1s2

1aqp
I† ~k1!eik1s2

#,

I 51,2, ~8!

upq
a ~s2!5

1

A2p
E

0

` dk1

&

3@bpq
a ~k1!e2 ik1s2

1bqp
a†~k1!eik1s2

#,

a51,2. ~9!

For the gauge group U(N), the ~anti!commutation relations
take the form

@apq
I ~k1!,ars

J†~k81!#5d IJdprdqsd~k12k81!, ~10!

$bpq
a ~k1!,brs

b†~k81!%5dabdprdqsd~k12k81!, ~11!

while for SU(N), we have the corresponding relations

@apq
I ~k1!,ars

J†~k81!#5d IJS dprdqs2
1

N
dpqd rsD d~k12k81!,

~12!

$bpq
a ~k1!,brs

b†~k81!%

5dabS dprdqs2
1

N
dpqd rsD d~k12k81!. ~13!

An important simplification of the light-cone quantization
that the light-cone vacuum is the Fock vacuumu0&, defined
by

apq
I ~k1!u0&5bpq

a ~k1!u0&50, ~14!

for all positive longitudinal momentak1.0. We therefore
haveP1u0&5P2u0&50.

in 3The symbol † denotes quantum conjugation, and does not tr
pose matrix indices.
6-2
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DLCQ BOUND STATES OFN5(2,2) SUPER-YANG- . . . PHYSICAL REVIEW D 58 125006
The ‘‘charge-neutrality’’ condition@first integral con-
straint from Eq.~5!# requires that all the color indices mu
be contracted for physical states. Thus physical states
formed by color traces of the boson and fermion creat
operatorsaI†,ba† acting on the light-cone vacuum. A sing
trace of these creation operators may be identified as a s
closed string, where each creation operator~or ‘‘parton’’ !,
carrying some longitudinal momentumk1, represents a
‘‘bit’’ of the string. A product of traced operators is then
multiple string state, and the quantity 1/N is analogous to a
string coupling constant@14#.

At this point, we may determine explicit expressions f
the quantized light-cone operatorsP6 by substituting the
mode expansions~8!,~9! into Eqs.~6!,~7!. The mass operato
M2[2P1P2 may then be diagonalized to solve for th
bound state mass spectrum. However, as was pointed o
@15#, it is more convenient to determine the quantized
pressions for the supercharges, since this leads to a reg
ization prescription forP2 that preserves supersymmet
even in the discretized theory.

In order to elaborate upon this last remark, first note t
the continuum theory possesses four supercharges, w
may be derived from the dimensionally reduced form of
four dimensionalN51 supercurrent@Eq. ~A6! in the Appen-
dix!:
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Qa
1525/4E

2`

`

ds2 tr~]2XIb Iahuh! ~15!

Qa
25gE

2`

`

ds2 trS 223/4J1
1

]2
e2ahuh

1221/4i@XI ,XJ#~b IbJe2!ahuhD , ~16!

where a51,2, and repeated indices are summed. The
232 real symmetric matricesb I are discussed in the Appen
dix. By explicit calculation or otherwise, these charges s
isfy the following relations:4

$Qa
1 ,Qb

1%5dab2&P1 ~17!

$Qa
2 ,Qb

2%5dab2&P2 ~18!

$Qa
2 ,Qb

1%50, a,b51,2. ~19!

If we substitute the mode expansions~8!,~9! into Eqs.
~15!,~16! for the light-cone superchargesQa

6 , we obtain the
following ‘‘momentum representations’’ for these charges
Qa
1521/4iE

0

`

dkAkb Iah@aIi j
† ~k!bh i j ~k!2bh i j

† ~k!aIi j ~k!# ~20!

and

Qa
25

i221/4g

Ap
E

0

`

dk1dk2dk3d~k11k22k3!~e2!ah

3H 1

2Ak1k2
S k22k1

k3
D @bh i j

† ~k3!aIim~k1!aIm j~k2!2aIim
† ~k1!aIm j

† ~k2!bh i j ~k3!#

1
1

2Ak1k3
S k11k3

k2
D @aIim

† ~k1!bhm j
† ~k2!aIi j ~k3!2aIi j

† ~k3!aIim~k1!bhm j~k2!#

1
1

2Ak2k3
S k21k3

k1
D @aIi j

† ~k3!bh im~k1!aIm j~k2!2bh im
† ~k1!aIm j

† ~k2!aIi j ~k3!#

2
1

k1
@bb i j

† ~k3!bh im~k1!bbm j~k2!1bh im
† ~k1!bbm j

† ~k2!bb i j ~k3!#

2
1

k2
@bb i j

† ~k3!bb im~k1!bhm j~k2!1bb im
† ~k1!bhm j

† ~k2!bb i j ~k3!#

1
1

k3
@bh i j

† ~k3!bb im~k1!bbm j~k2!1bb im
† ~k1!bbm j

† ~k2!bh i j ~k3!#1@~b IbJ2bJb I !e2#ab

4Surface terms contributing to the central charge are assumed to be vanishing.
6-3
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3S 1

4Ak1k2

@bb i j
† ~k3!aIim~k1!aJm j~k2!1aJim

† ~k1!aIm j
† ~k2!bb i j ~k3!#

1
1

4Ak2k3

@aJi j
† ~k3!bb im~k1!aIm j~k2!1bb im

† ~k1!aJm j
† ~k2!aIi j ~k3!#

1
1

4Ak3k1

@aIi j
† ~k3!aJim~k1!bbm j~k2!1aIim

† ~k1!bbm j
† ~k2!aJi j~k3!# D J , ~21!
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where repeated indices are always summed:a,b,h51,2
~spinor indices!, I ,J51,2 @SO~2! vector indices#, and i , j ,m
51, . . . ,N ~matrix indices!.

In order to implement the DLCQ formulation5 of the
bound state problem—which is tantamount to imposing
riodic boundary conditionss2;s212pR—we simply re-
strict the momentum variable~s! appearing in the expression
for Qa

6 @Eqs. ~20!,~21!# to the following discretized set o
momenta: $(1/K)P1,(2/K)P1,(3/K)P1, . . . %. Here, P1

denotes the total light-cone momentum of a state, and m
be thought of as a fixed constant, since it is easy to form
Fock basis that is already diagonal with respect to the qu
tum operatorP1 @7#. The integerK is called the ‘‘harmonic
resolution,’’ and 1/K measures the coarseness of o
discretization—we recover the continuum by taking the lim
K→`. Physically, 1/K represents the smallest positive6 unit
of longitudinal momentum-fraction allowed for each part
in a Fock state.

Of course, as soon as we implement the DLCQ proced
which is specified unambiguously by the harmonic resolut
K, the integrals appearing in the definitions forQa

6 are re-
placed by finite sums, and the eigenequation 2P1P2uC&
5M2uC& is reduced to a finite matrix diagonalization pro
lem. In this last step, we use the fact thatP2 is proportional
to the square of any one of the two superchargesQa

2 , a
51,2 @Eq. ~18!#, and so the problem of diagonalizingP2 is
equivalent to diagonalizing any one of the two superchar
Qa

2 . As was pointed out in@15#, this procedure yields a
supersymmetric spectrum for any resolutionK. In the
present work, we are able to perform numerical diagonal
tions for 2<K<6 with the help ofMATHEMATICA and a
desktop PC.

In the next section, we discuss the details of our num
cal results.

5It might be useful to consult@12,15,16,17# for an elaboration of
DLCQ in models with adjoint fermions. An extensive list of refe
ences on DLCQ and light-cone field theories appears in the rev
in @18#.

6We exclude the zero modek150 in our analysis; the massiv
spectrum is not expected to be affected by this omission@19#, but
there are issues concerning the light-cone vacuum that involvek1

50 modes@20,21#.
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III. DLCQ BOUND STATE SOLUTIONS

We consider discretizing the light-cone superchargeQa
2

for a particularaP$1,2%, and for the values 2<K<6. For a
given resolutionK, the light-cone momenta of partons in
given Fock state must be some positive integer multiple
P1/K, whereP1 is the total light-cone momentum of th
state.

Of course, the fact that we may choose any one of the
supercharges to calculate the spectrum provides a strong
for the correctness of our computer program and consiste
of the DLCQ formulation. It turns out, however, that the
are a few surprises in store. First of all, the supersymme
algebra @Eqs. ~17!–~19!# is certainly true in a continuum
space-time, but there is no obvious reason to expect
these relations should also hold exactly in a discretized v
sion of the theory. From our numerical studies, however,
find that relations~17! and ~19! are indeed exactly satisfie
in the discretized theory.

A potential problem arises, however, in relation~18!. First
of all, one finds thatQ1

2 and Q2
2 do not anti-commute:

$Q1
2 ,Q2

2%Þ0. However, this is not too surprising, since on
can trace this anomaly to the truncation of momenta~i.e.
there is a non-zero lower bound onk1! following from the
DLCQ procedure. In particular, as we increase the reso
tion, the non-zero matrix entries in$Q1

2 ,Q2
2% become more

and more sparsely distributed, and we expect them to occ
a subset of measure zero in the continuum limitK→`. This
is substantiated by direct inspection of the matrix$Q1

2 ,Q2
2%

for different values ofK.
We also encounter a further anomaly when computing

difference (Q1
2)22(Q2

2)2. According to relation~18!, this
difference is precisely zero in the continuum, but in the d
cretized theory, it is non-vanishing. As we discussed abo
this can be understood as an artifact of the truncated
menta in the DLCQ formulation, and disappears in the c
tinuum limit K→`.

Nevertheless, we should worry at this stage about
definition of the light-cone Hamiltonian. Relation~18! sug-
gests that we may define the DLCQ light-cone Hamilton
as the square of any one of the supercharges. Becaus
difference (Q1

2)22(Q2
2)2 is non-vanishing in the discretize

theory, we have two possible choices for defining the lig
cone Hamiltonian: P1

25(1/&) (Q1
2)2 or P2

2

5(1/&) (Q2
2)2. Surprisingly, after diagonalizing each o

these operators for differentK, the spectrum of eigenvalue

w

6-4
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turns out to be identical. This is certainly another attract
feature of DLCQ that deserves further study.7

Of course, this implies that the spectrum of the theory
finite K is independent of the choice of supercharge, a
therefore well defined. It would be interesting to investiga
whether other physical observables are independent of
observed anomaly in the supersymmetry algebra.

Let us begin with a discussion of massless states. First
gauge symmetry U(N), the U~1! degrees of freedom explic
itly decouple, and this provides trivial examples of massl
states, which can be seen in the DLCQ analysis. Con
quently, all the non-trivial dynamics is contained in th
SU(N) gauge theory. ForK52, the SU(N) Fock space con-
sists of two parton states only. Moreover, sinceQa

2 increases
or decreases the number of partons by 1, it necessarily a
hilates all Fock states, and so all states are massless. H
ever, forK>3, determining the existence~or not! of mass-
less states in the SU(N) theory turns out to be a highly
non-trivial problem involving the full dynamics of th
Hamiltonian. We will therefore restrict our attention to th
bound state spectrum of the SU(N) gauge theory.

The results of our DLCQ numerical diagonalization
(Qa

2)2 at resolutionK53 are summarized in Table I. To te
our numerical algorithm, we diagonalize~the square of! each
supercharge, and find the same spectrum—which is con
tent with supersymmetry. Let us now consider resolutionK
54. The results of our numerical diagonalizations are p
sented in Table II. If we express the masses in unitsg2N/p,
then there are no 1/N corrections at resolutionsK53 and
K54. However, forK>5, one sees 1/N effects in the spec-
trum. In Table III, we list bound state masses forN53, 10,
100 and 1000 at resolutionK55. At this resolution, there are
472 bosons and 472 fermions. Table III illustrates mass s
tings that occur in the spectrum as a result of 1/N interac-
tions, which become increasingly important as we decre

7One suggestion is that these ‘‘discrepancies’’ in the operator
gebra are related to large gauge transformations arising from
light-like compactification in DLCQ, and are therefore expected
vanish in the continuum limitK→`. For finite K, the operator
‘‘anomalies’’ we observed may be gauge equivalent to zero.

TABLE I. SU(N) bound state massesM2 in units g2N/p for
resolutionK53 ~six significant figures!. When expressed in thes
units, the masses are independent ofN ~i.e. there are no 1/N cor-
rections at this resolution!, and so these results are applicable
any N.1. The notation ‘‘414’’ above implies an exact 8-fold
mass degeneracy in the DLCQ spectrum with 4 bosons and 4
mions. In total, there are 20 bosons and 20 fermions.

Bound state massesM2 for K53
M2 Mass degeneracy

0 818
1.30826 414

12.6273 414
22.0645 414
12500
e
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N. For example, atN51000, there is an apparent dege
eracy in the numerical spectrum atM252.18043 which is
visibly broken whenN510.

It turns out that these states are easily identified as we
bound multi-particles at large~but finite! N. To show this,
note that bound states atK52 are necessarily massless—
M2(K52)50—while for K53, the lightest non-zero mas
state satisfiesM2(K53)51.30826. The mass square
M2(K55) of a freely interactingmulti-particlecomposed of

l-
he

r-

TABLE II. SU(N) bound state massesM2 in units g2N/p for
resolutionK54 ~six significant figures!. When expressed in thes
units, the masses are independent ofN ~i.e. there are no 1/N cor-
rections at this resolution!, and so these results are applicable f
any N.1. In total, there are 92 bosons and 92 fermions at t
resolution.

Bound state massesM2 for K54
M2 Mass degeneracy

0 32132
1.20095 818
4.00943 414

12.2424 414
12.2962 818
15.0490 414
15.2822 414
19.5028 818
20 414
22.5321 414
23.1272 414
28.6177 414
28.6955 414

TABLE III. SU( N) bound state massesM2 in units g2N/p for
resolutionK55 ~six significant figures!, and forN53, 10, 100 and
1000. We have selected the lightest 10 states in each case,
mass degeneracy 414 for non-zero masses. Massless states h
degeneracy 92192. Note that if a state has degeneracy 818, then
we include it twice~e.g. forN53, there is a bound state with mas
squaredM251.13442 with degeneracy 818!. Convergence in the
largeN limit is evident.

Bound state massesM2 for K55, andN53,10,100,1000
M2

N53 N510 N5100 N51000

0.0 0.0 0.0 0.0
0.0442062 0.0112824 0.00679546 0.00674981
0.658859 0.634820 0.630485 0.630441
1.13442 1.08578 1.08135 1.08131
1.13442 1.11224 1.10995 1.10993
1.23157 1.56551 1.57314 1.57321
1.29964 2.09691 2.17960 2.18043
1.55373 2.10814 2.17971 2.18043
1.76132 2.14535 2.18009 2.18043
1.77999 2.14571 2.18009 2.18043
6-5
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oneK52 particle and oneK53 particle now follows from
simple kinematics@22#:

M2~K55!

5
5

M2~K53!

3
1

M2~K52!

2
. ~22!

The result isM2(K55)52.18043, after inserting the ob-
served values forM2(K53) andM2(K52). Note that this
value for M2(K55) is a prediction for the mass of two
freely interacting particles at resolutionK55 ~or, equiva-
lently, carryingK55 units of light-cone momentum!. Thus,
for large enoughN ~or for sufficiently small coupling 1/N!,
we expect to see bound states approaching this two-fr
body mass. Table III confirms this prediction. Such predi
tions of multi-particle masses were also carried out for t
N5(1,1) model@5#, and are a strong consistency test of th
~typically complex! numerical algorithms adopted in this
work.

Note, in general, that the 1/N interactions increase the
masses of light particles, and decrease the mass of he
particles~see Table III!.

For K56, there are over 4500 states in the Fock bas
The resulting DLCQ spectrum forN51000 appears in Fig.
1, together with bound state masses obtained at the lo
resolutionsK53, 4 and 5. It is apparent from this graph tha
as we increaseK ~i.e. as we move from right to left!, the
DLCQ spectrum seems to approach some dense subset o
positive real~vertical! axis. One may infer that in the con
tinuum limit K→`, the spectrum does indeed ‘‘fill up’’ the
vertical axis, which is certainly compatible with a recen
study that suggested this theory should be in a screen
phase@11#.

As we pointed out earlier, decreasingN introduces notice-

FIG. 1. Bound state massesM2 ~in unitsg2N/p! versus 1/K for
N51000. We only plot masses satisfyingM2,16, but there are
many bound states above this forK>5.
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able splittings in the spectrum8 which has the effect of
smearing out the points in Fig. 1. The qualitative features
the spectrum expected from a screening theory are there
also present for smaller values ofN.

So far, we have only discussed properties of the DLC
spectrum—such as bound state masses and their corresp
ing degeneracies—but solving the DLCQ bound state eq
tions also involves deriving explicit numerical expressio
for bound statewave functions. This is of particular interest
to us here since we would like to know whether such
theory exhibits a mass gap or not. In the context of o
DLCQ analyses, this involves establishing, in addition to
trivial light-cone vacuum, the existence—or not—of anor-
malizablemassless state in the continuum theoryK→`.

According to the literature, theN5(2,2) model is be-
lieved not to have a mass gap@1#. We now outline how our
numerical results support such a claim.9

First, at resolutionK53 and N51000, one identifies a
massless boson~and its superpartners! that has the form10

trFa1
†S P1

3 Da2
†S 2P1

3 D G u0&1trFa2
†S P1

3 Da1
†S 2P1

3 D G u0&,

~23!

where P1 is the total~fixed! momentum. At resolutionK
54, one identifies a massless boson of the form

0.497134 trFa1
†S 2P1

4 Da2
†S 2P1

4 D G u0&

10.580827 trFa1
†S P1

4 Da2
†S 3P1

4 D G u0&

10.495501 trFa2
†S P1

4 Da1
†S 3P1

4 D G u0&

1additional Fock states, ~24!

where ‘‘additional Fock states’’ represents a superposition
two and four parton Fock states with amplitudes less th
0.25 ~typically, very small!. It is therefore natural to identify
the bound state solution above forK54 with theK53 so-
lution @Eq. ~23!#. At K55, something seems to go wrong
there are no massless states that may be characterized
superposition of predominantly two-parton states, as in E

8Some splittings are in fact present forN51000, but are not seen
in the numerical spectrum since we quote masses to only six
nificant figures.

9TheN5(8,8) model, in contrast, was shown to have a mass
@6#.

10We choose not to normalize states to unity, since it is very ti
consuming computationally when working at finiteN, and not nec-
essary when solving for spectra. A simpler procedure is just
renormalize each Fock state by 1/N(q/2), whereq is the number of
partons in the Fock state~implicitly implied in this work!. Then the
relativesize of each Fock state wave function indicates the rela
importance of the Fock state to the overall bound state.
6-6
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~23! and~24!. However, there is a state with mass square11

M250.0067 (N51000), which has the explicit form

0.52344 trFa1
†S 4P1

5 Da2
†S P1

5 D G u0&

10.468159 trFa1
†S 2P1

5 Da2
†S 3P1

5 D G u0&

10.468159 trFa1
†S 3P1

5 Da2
†S 2P1

5 D G u0&

10.52344 trFa2
†S 4P1

5 Da1
†S P1

5 D G u0&

1additional Fock states, ~25!

where ‘‘additional Fock states’’ above represents a supe
sition of four parton Fock states with relatively small amp
tudes. Evidently, it is natural to associate this bound s
with the massless bound states~23! and ~24! observed at
lower resolutions.

At this point, we would like to know whether this non
zero mass will persist in the continuum limitK→`, or
whether it is an artifact of the Fock state truncation enforc
by the DLCQ procedure.

As it turns out, solving the DLCQ bound state equatio
at resolutionK56 reveals an exactly massless~bosonic! so-
lution that is essentially a superposition of two-parton Fo
states@as in Eqs.~23!, ~24! and ~25!#, with wave functions
that have approximately the same shape, relative magni
and sign as the wave functions appearing at lower res
tions. The ‘‘glitch’’ in the spectrum observed atK55, there-
fore, appears to be an artifact of the numerical truncat
although it would be desirable to probe larger values ofK
~e.g.K>7! to confirm this viewpoint.

At any rate, we have identified a series of DLCQ so
tions that is expected to converge in the limitK→` to a
massless bound state. This continuum solution would
out the possibility of a mass gap, in agreement with@1#.

We should remark at this point that the Fock state rep
sentation of the lowest energy states in this model appea
be significantly more complicated than solutions found
other field theories with massless particles—such as th
Hooft pion or Schwinger particle. A theory with comple
adjoint fermions studied relatively recently@16,17# revealed
many massless states with constant wave function soluti
In contrast, it turns out that any normalizable state in
~continuum! supersymmetric model studied here must be
superposition of an infinite number of Fock states@23#. An
analogous situation occurred in the model withN5(1,1) su-
persymmetry@5#.

Finally, we comment on the ‘‘string-like’’ nature o
bound states that dominate the low energy spectrum.
though we focused on a massless state composed of m

11This is not a 1/N effect. If we letN→`, the mass squaredM2

doesnot converge to zero.
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two-parton Fock states, one can always find a mass
bound state dominated by Fock states with an arbitra
large number of partons for sufficiently largeK. The struc-
ture of the low energy spectrum is similar, consisting
bound states of all lengths permitted by the truncation
rameterK. Such qualitative features of the spectrum we
exhibited also in theN5(1,1) supersymmetric model@5,15#.

IV. DISCUSSION

To summarize, we have performed a detailed analysis
the DLCQ bound state spectrum of anN5(2,2) supersym-
metric matrix model, which may be heuristically derived b
dimensionally reducingN51 super-Yang-Mills theory from
four to two space-time dimensions. The gauge group
SU(N), and we allowN to be finite, but arbitrarily large.

We discretize the light-cone supercharges via DLCQ, a
find that certain supersymmetry relations are exactly satis
even in the discretized formulation. In particular, relatio
~17! and~19! hold exactly in DLCQ. We find, however, tha
relation~18! holds only approximately, although the discre
ancy diminishes as the resolutionK is increased. As a con
sequence, the difference between the discrete light-cone
percharges (Q1

2)22(Q2
2)2 is non-zero. Surprisingly,

however, the eigenvalues of (Q1
2)2 and (Q2

2)2 turn out to be
identicalat any resolution, and so the DLCQ spectrum of t
theory has an unambiguous definition as the eigenvalue
either supercharge squared. With this definition, the DLC
spectrum turns out to beexactly supersymmetric at any res
lution ~see Tables I and II, for example!. It would be desir-
able to understand why—in the DLCQ formulation—the s
persymmetry operator algebra is only approximat
satisfied, while the spectrum itself appears to reflect unb
ken supersymmetry. Perhaps the observed anomaly in
algebra cancels for physical observables,12 which would be
consistent with the idea that certain quantities are ‘‘gau
equivalent’’ to zero.

In Table III, we illustrate the dependence of bound st
masses on the number of gauge colors,N. Convergence is
evident at largeN if we keepg2N constant. We also resolv
mass splittings in the spectrum as a result of 1/N interactions
~see Table III!. It appears that decreasingN ~i.e. increasing
the strength of the 1/N interactions! has the generic effect o
decreasing particle masses, except for very light part
states. Note that there is noN dependence of the spectrum
resolutionsK53 and 4—one needs to considerK>5 to ob-
serve any variation withN.

In Fig. 1, we plotted the DLCQ spectrum for resolutio
K53, 4, 5 and 6, and observed that the supersymme
spectrum approaches a dense subset of the positive real

12We might be able to redefine the superchargesQ1
2

→RQ1
2R21, Q2

2→SQ2
2S21, for appropriate matricesR,S, so that

relation~18! holds exactly even in the discretized theory. Howev
this would imply a non-vanishing result for relation~19!. Neverthe-
less, it would be tempting to argue that this non-vanishing con
bution ~or ‘‘central charge’’! reflects the topology induced by com
pactification of the light-like circle in DLCQ@24#.
6-7
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This is compatible with the recent claim that the theory is
a screening phase@11#.

By carefully studying the Fock state content of certa
bound states at different resolutions, we argued for the e
tence of a normalizable massless state in the continuum
K→`. A mass gap is therefore expected to be absent in
theory.

We also observed that the low energy spectrum is do
nated by states with arbitrarily many partons—a constitu
picture involving few-parton Fock states is obviously an
adequate representation for capturing the full low energy
namics of this model.

In light of this highly complex bound state structure, it
tempting to suggest that we are probing a dynamical sys
that might be more adequately~and simply! described by an
effective field theory in higher dimensions.13 Following the
remarkable proposals of matrix theory and the anti–de S
and conformal field theory correspondence, it would be
teresting to pursue this speculation further.
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APPENDIX: SUPER-YANG-MILLS THEORY IN FOUR
DIMENSIONS

Let us start withN51 super Yang-Mills theory in 311
dimensions with gauge group U(N) or SU(N):

S3115E d4x trS 2
1

4
FmnFmn1

i

2
C̄GmDmC D , ~A1!

where

Fmn5]mAn2]nAm1 ig@Am ,An#, ~A2!

DmC5]mC1 ig@Am ,C#, ~A3!

andm,n50, . . . ,3. TheMajorana spinorC transforms in the
adjoint representation of the gauge group. The~flat! space-
time metricgmn has signature~1,2,2,2!, and we adopt the
normalization tr(TaTb)5dab for the generators of the gaug
group.

The supersymmetry transformations

dAm5 iēGmC ~A4!

dC5
1

2
FmnGmne ~A5!

whereGmn5 1
2 @Gm,Gn# give rise to the following supercur

rent:

13The presence of two transverse scalar fields suggests a
critical string theory in four dimensions.
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Jm5
i

2
tr~GrsGmFrsC!. ~A6!

In order to realize the four dimensional Dirac algeb
$Gm ,Gn%52gmn in terms of Majorana matrices, we use
building blocks the following three 232 real anti-
commuting matrices:

e15S 0 1

1 0D , e25S 0 21

1 0 D , e35S 1 0

0 21D .

~A7!

We may now define four 434 pure-imaginary matrices a
tensor products of the above matrices,

G05 ie2^ e1 , G15 ie1^ 1, G25 ie3^ 1, G35 ie2^ e2 ,
~A8!

and it follows that these matrices satisfy$Gm ,Gn%52gmn , as
required. In our numerical work, we use this particular re
resentation.

To formulate the theory in light-cone coordinates, it
convenient to introduce matrices

G65
1

&
~G06G3!, G I5S ib I 0

0 ib I
D , ~A9!

where the two 232 real-symmetric matricesb I , I 51,2, are
defined by writingb15e1 andb25e3 .

It is now straightforward to verify thatPL[ 1
2 G1G2 and

PR[ 1
2 G2G1 project out the left- and right-moving compo

nents of the four-component spinorC. Defining c by a re-
scaling, C521/4c, we introduce left- and right-moving
spinorscL,R as follows:

c5cR1cL , cR5PRc, cL5PLc. ~A10!

This decomposition is particularly useful when working wi
light-cone coordinates, since in the light-cone gauge one
express the left-moving componentcL in terms of the right-
moving componentcR by virtue of the fermion constrain
equation. We will derive this result shortly. In terms of th
usual four dimensional Minkowski space-time coordinat
the light-cone coordinates are given by

x15
1

&
~x01x3!, ‘ ‘ time coordinate,’ ’ ~A11!

x25
1

&
~x02x3!, ‘ ‘ longitudinal space coordinate,’ ’

~A12!

x'5~x1,x2!, ‘ ‘ transverse coordinates.’ ’ ~A13!

Note that the ‘‘raising’’ and ‘‘lowering’’ of the6 indices is
given by the rulex65x7 , while xI52xI for I 51,2, as
usual. It is now a routine task to demonstrate that the Ya
Mills action ~A1! is equivalent to
n-
6-8
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S311
LC 5E dx1dx2dx'trS 1

2
F12

2 1F1IF2I2
1

4
FIJ

2

1 icR
TD1cR1 icL

TD2cL2 i&cL
Te2b IDIcRD ,

~A14!

where the repeated indicesI ,J are summed over$1,2%. Some
surprising simplifications follow if we now choose to wor
in the light-cone gauge A15A250. In this gaugeD2

[]2 , and so the~Euler-Lagrange! equation of motion for
the left-moving fieldcL is simply

]2cL5
1

&
e2b IDIcR , ~A15!

which is evidently a non-dynamical constraint equatio
since it is independent of the light-cone time. We may the
e

c
ys
,

ji-

m
,’’

in
,’

12500
,
-

fore eliminate any dependence oncL ~representing unphysi
cal degrees of freedom! in favor of cR , which carries the
eight physical fermionic degrees of freedom in the theory.
addition, the equation of motion for theA1 field yields
Gauss’ law

]2
2 A15]2] IAI1gJ1 ~A16!

whereJ15 i@AI ,]2AI #12cR
TcR , and so theA1 field may

also be eliminated to leave the two bosonic degrees of f
domAI , I 51,2. Note that the two fermionic degrees of fre
dom exactly match the bosonic degrees of freedom ass
ated with the transverse polarization of a four dimensio
gauge field, which is of course consistent with the supersy
metry. We should emphasize that unlike the usual covar
formulation of Yang-Mills theory, the light-cone formulatio
here permits one to removeexplicitly any unphysical degree
of freedom in the Lagrangian~or Hamiltonian!; there are no
ghosts, and supersymmetry is manifest.
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