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Decoupling of zero modes and covariance in the light-front formulation
of supersymmetric theories
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We show under suitable assumptions that zero modes decouple from the dynamics of non-zero modes in the
light-front formulation of some supersymmetric field theories. The implications for Lorentz invariance are
discussed.@S0556-2821~98!04922-4#
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I. INTRODUCTION

Although field theories quantized on the light front~LF!
have been studied for many years~see@1,2# and also@3,4# for
a review!, recent developments in non-perturbative stri
theory have generated additional interest. The first surp
was M~atrix! theory@5#, which was conjectured to be a non
perturbative description of M theory formulated in the in
nite momentum frame. Susskind and Motl provided ad
tional insight by suggesting that the finiteN version of
matrix theory was in fact the discrete light-cone quantizat
~DLCQ! of M theory @6#.

Soon afterwards, the validity of the matrix theory conje
ture was seemingly strengthened by the works of Seiberg@7#
and Sen@8#, but it was pointed out by Hellerman an
Polchinski @9# that a correct interpretation of their resul
required a detailed understanding of the~typically compli-
cated! dynamics of zero longitudinal momentum modes
the light-like compactification limit. In general, it was ob
served, that ‘‘DLCQ is not a free lunch.’’

The question we wish to address in this paper is the
lowing: When is the light-like limit a free lunch? Under
reasonable class of assumptions, we argue that the z
mode degrees of freedom in some supersymmetric field th
ries decouple, and so omitting them in a DLCQ calculat
leads to no inconsistency if the decompactification limit
taken prior to the light-like limit. This observation is intrigu
ing, since it suggests that the complicated zero-mode deg
of freedom studied in@9# might become totally irrelevant in
the continuum limit if enough supersymmetry is prese
Moreover, the ‘‘correctness of matrix theory’’ argument pr
vided by Seiberg may depend on this special property
supersymmetric theories.

Another issue that we address is Lorentz invariance.
show that in the light-front formulation, Lorentz invarianc
is maintained after a careful treatment of zero modes. H
ever, for the special case of supersymmetric theories,
boson and fermion zero modes that ensure Lorentz symm
cancel at least perturbatively. Thus, we are free to excl
them from the outset.
0556-2821/98/58~12!/125005~8!/$15.00 58 1250
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All of these observations suggest that the implementa
of DLCQ in the absence of zero modes yields no incons
tency for supersymmetric theories. In general, however,
needs to integrate out the zero-mode degrees of freedo
derive an effective Hamiltonian. We discuss these iss
next.

II. TADPOLE-IMPROVED LIGHT-FRONT
QUANTIZATION

It has been known for a long time that field theories qua
tized on a light frontx1[(x01x3)/&50 lead to a subtle
treatment of the zero modes@modes which are independen
of x2[(x02x3)/& @10##. This result holds both in the con
tinuum, when zero modes are discarded but also in DL
when the theory is formulated in a finite ‘‘box’’ in thex2

direction with periodic boundary conditions.
Various schemes have been invented to define LF qua

zation through a limiting procedure in order to investiga
these issues. For example, one can study LF perturba
theory by starting from covariant Feynman diagram expr
sions and then ‘‘derive’’ the LF Hamiltonian perturbatio
theory by carefully integrating over all energiesk2 in loop
integrations first~see for example Refs.@12,13# and refer-
ences therein!. An alternative prescription starts by quanti
ing the fields on a near light-like surface~using so-called«
coordinates! and then studying the evolution of the states
one takes the LF limit in an infinite volume@14#.

The basic upshot of these investigations is that, at leas
theories without massless degrees of freedom, zero mo
become high-energy degrees of freedom and ‘‘freeze ou
However, this does not mean that zero modes disapp
completely, since there is still a strong interaction pres
among the zero modes, giving rise to non-trivial vacuu
structure even in the LF limit. Nevertheless, because of
high energy scale for excitations within the zero-mode s
tor, one has been able to deriveeffective LF Hamiltonians,
where the zero modes have been integrated out, which
only on non-zero-mode degrees of freedom. Thus e
though these effective LF Hamiltonians contain only no
©1998 The American Physical Society05-1
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zero-mode degrees of freedom, they yield the same Gre
functions as a covariant calculation provided one consid
only Green’s functions where all external momenta ha
k1Þ0.

A. Self-interacting scalar fields

As an example, let us consider a scalar field theory w
cubic ~plus higher order! self-interactions. The presence
cubic self-interactions gives rise to ‘‘tennis racket’’ Feynm
diagrams@Fig. 1~a!#.

If zero modes are excluded, then obviously all ten
racket diagrams~which do contribute to Feynman perturb
tion theory! have no analogue in LF Hamiltonian perturb
tion theory. However, the crucial observation is that ten
racket diagrams are momentum independent and only lea
a mass renormalization proportional to^0ufu0&. Similarly, all
tennis racket insertions inton-point interactions only lead to
a renormalization of the (n21)-point interaction term; i.e.
all these diagrams can be easily integrated out.

More generally, one can show that for self-interacti
scalar fields,1 zero modes contribute only to diagrams wi
generalized tadpole topology. As a result, zero modes ca
integrated out easily. For a polynomial self-interaction

L5
1

2
]mf]mf2V~f! ~2.1!

where

V~f!5 (
k<n

ck

fk

k!
~2.2!

one thus finds, for the effective LF Hamiltonian@13#,

P25Ve f f~f!, ~2.3!

where the effective potential is also a polynomial of the sa
degree,

1Here and in the following we will implicitly restrict ourselves t
Green’s functions where all external momenta as well as arbit
sums and differences of external momenta have a non-vanis
plus component so that zero modes can only appear within loo

FIG. 1. Typical self-energy diagrams for scalar fields whi
vanish if zero modes are not included.~a! ‘‘Tennis racket’’ shaped
tadpole inf3 theory,~b! generalized tadpole diagram inf4 theory.
The grey blob represents an arbitrary self-energy insertion.
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Ve f f~f!5 (
k<n

ck
e f f f

k

k!
, ~2.4!

but with coefficients that are renormalized due to integrat
out zero-mode degrees of freedom:

ck
e f f5(

l 5k

n

cl^0u
f l 2k

~ l 2k!!
u0&. ~2.5!

As an illustration of how Eq.~2.5! arises, let us consider
theory with quartic self-interactions,2 i.e. V(f)5 1

2 m2f2

1 1
4! l2f4. In this case, the only Feynman diagrams whi

are improperly handled~they are set to zero! when the zero-
mode region (k150) is cut out are the generalized tadpo
diagrams@Fig. 1~b!#. In order to see why these diagrams gi
only a zero-mode contribution, let us consider the sum of
generalized tadpole diagrams, which can be easily done
using the full propagator for the scalar fields for which w
write down a spectral representation@15#

DF~p!5E
0

`

dM2
ir~M2!

p22M21 i«
~2.6!

with spectral densityr(M2).
As a side remark, for later use, we would like to point o

that the spectral density has a very simple representatio
terms of the LF Fock states. Upon inserting a complete se
eigenstates of the LF Hamiltonian into the scalar two-po
function @15#, one finds~see the Appendix!

r~M2!52p(
n

dS M2

2P1 2Pn
2D u^0uf~0!un,P1&u2

52p(
n

d~M22Mn
2!2P1u^0uf~0!un,P1&u2

5(
n

d~M22Mn
2!bn ~2.7!

where un,P1& is a complete set of eigenstates ofP2 ~with
eigenvaluesPn

25Mn
2/2P1) which we take to be normalized

to 1 and wherebn is the probability that the staten is in its
one boson Fock component~one boson which carries th
whole momentumP1). The sum can be evaluated at arb
trary but fixed total momentumP1 ~assuming we work in
the continuum limit!.

Using Eq.~2.6!, one finds, for the sum of all generalize
tadpole diagrams,3

2 iS tadpole5
l2

2
E

0

`

dM2r~M2!E d2k

~2p!2

1

k22M21 i«
.

~2.8!

ry
ng
s.

2For the general case, see Ref.@13#.
3Note that this result holds regardless of whether or not fermi

pairs contribute to the spectral density of the bosons.
5-2
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DECOUPLING OF ZERO MODES AND COVARIANCE IN . . . PHYSICAL REVIEW D 58 125005
The crucial point is that fork1Þ0, all poles lie only on one
side of the realk2 axis and the result is thus zero~up to a
contribution from the semi-circle at infinity, which disap
pears if one subtracts the one loop result!.

In order to compensate for the omission of all generaliz
tadpole diagrams in naive LF quantization, we thus ad
counter-term equal to the sum of all these omitted diagra
i.e., a calculation that omits all explicit zero-mode degrees
freedom, but adds a mass counter-termdS5S tadpole, will
give the same results as a calculation that includes all z
modes explicitly. The connection with Eq.~2.5! can now be
seen by noting that the vacuum expectation value off2 is
~up to a combinatoric factor! identical to the right hand side
~RHS! of Eq. ~2.8!.

In summary, one finds the following~for self-interacting
scalar fields! @13#:

~i! Zero modes contribute ton-point functions involving
only k1Þ0 modes only through generalized tadpo
~sub-!diagrams. By generalized tadpole diagrams
mean diagrams where a sub-diagram is connecte
the rest of the diagram only at one single point a
hence there is no momentum transfer through t
point.

~ii ! n-point functions calculated with the ‘‘tadpole
improved’’ effective LF Hamiltonian~2.3!,~2.4!, ~2.5!
and without explicit zero-mode degrees of freedo
are equivalent to covariant perturbation theory gen
ated byL, Eq. ~2.1!, to all orders in perturbation
theory.

B. Yukawa interactions

As a generic example for a theory with fermions, let
now consider a Yukawa theory with scalar couplings:

L5c̄~ igm]m2mF2gf!c2
1

2
f~h1mB

2 !f. ~2.9!

If zero modes are excluded, then two classes of Feynm
diagrams~to be discussed below! are treated improperly in
the LF Hamiltonian perturbation series.

Obviously, LF theory without zero modes cannot gener
any tadpole~i.e. tennis racket! self-energies for the fermions
Since the above Lagrangian contains a scalar Yukawa
pling, such diagrams are in general non-zero. Their omiss
in naive LF quantization can be easily compensated by
placing

mF→mF
e f f[mF1g^0ufu0&. ~2.10!

The second class of diagrams which cannot be gener
by a zero-mode free LF field theory is more subtle. As
example, let us consider the one loop fermion self-energ4

4For simplicity, we will write down the expressions only in
11 dimensions, but it should be emphasized that the conclus
are also valid in 311 dimensions@12#.
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2 iS~p!5g2E d2k

~2p!2

gmkm1mF

k22mF
21 i«

1

~p2k!22mB
21 i«

52 iSLF1g2E d2k

~2p!2

g1

2k1

1

~p2k!22mB
21 i«

~2.11!

where

2 iSLF5g2E d2k

~2p!2

gmk̃m1mF

k22mF
21 i«

1

~p2k!22mB
21 i«

~2.12!

and k̃15k1 while k̃25mF
2/2k1 is the on mass shell energ

for the fermion. Obviously, Eq.~2.11! is a mere algebraic
rewriting of the original Feynman self-energy. The importa
point is that the second term on the RHS of Eq.~2.11! has
the same pole structure as a tadpole diagram and thus ca
be generated by a LF Hamiltonian. Indeed, as one can ea
verify, second order perturbation theory with the canoni
LF Hamiltonian yields only~the matrix elements of! SLF and
a disagreement between self-energies calculated in cova
perturbation theory and those calculated in LF Hamilton
perturbation theory~without zero modes! emerges. Before
we proceed to analyze more general diagrams which su
from a similar problem, let us understand intuitively how th
second term arises:

In the LF formulation, not all components of the fermio
field are independent degrees of freedom. Multiplying t
Dirac equation

~ igm]m2mF2gf!c50 ~2.13!

by g1 one finds that

2i ]2c~2 !5~mF1gf!g1c~1 ! , ~2.14!

wherec (6)[
1
2 g7g6c. Equation~2.14! is a constraint equa

tion and it is often used to eliminate the dependent com
nentc (2) prior to quantization. This gives rise to ‘‘induced
four point interactions

L ~4!52g2c~1 !
† f

1

i&]2

fc~1 ! ~2.15!

in the Lagrangian after eliminating the constrained fieldc (2)
and hence it is possible to generate ‘‘induced tadpoles’’ d
grams by contracting for example the two scalar fields in E
~2.15!.

Before discussing the general case, it is very instructive
investigate the one loop fermion self-energy in more det
First one notes that the 2nd order perturbation theory resu
~2.12! is divergent atk1→0:

ns
5-3
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M. BURKARDT, F. ANTONUCCIO, AND S. TSUJIMARU PHYSICAL REVIEW D58 125005
SLF5
g2

8p
E

0

p1 dk1

k1~p12k1!

k1g21
mF

2

2k1 g11mF

p22
mF

2

2k1 2
mB

2

2~p12k1!

.

~2.16!

This divergence is cancelled by the self-induced inertia te
which arises from normal ordering, Eq.~2.15!,

Sn.o.5
g2

8p E
0

p1 dk1

k1
, ~2.17!

yielding

SLF1Sn.o.5
g2

4p
E

0

1

dx
xpmgm1mF

x~12x!p22mF
2~12x!2mB

2x

1
g2

4p

g1

p1 ln
mB

2

mF
2 . ~2.18!

Several important observations can be made from Eq.~2.18!.
First of all, even though including the normal ordering te
renders the self-energy finite, the final result disagrees
general with the covariantly calculated result@the first term
on the RHS in Eq.~2.18!#. Furthermore, the additional term
breaks covariance~parity invariance!.5 However, most im-
portantly, the unwanted term vanishes formF5mB , which
indicates already a crucial cancellation between bosonic
modes and fermionic zero modes. In the rest of this pa
we will demonstrate, for the case of certain supersymme
theories, that this cancellation goes beyond the one loop
sult.

After this more intuitive discussion of zero-mode effec
for fermions, let us now formally derive the counter-term
that arise for a theory with Yukawa interactions. For th
purpose, it is useful to identify those Feynman diagrams~ex-
ternal momenta non-zero! where zero modes in internal line
give a non-zero contribution to the total amplitude. Diagra
which suffer from the same problem as the one-loop ferm
self-energy are all diagrams where the internal lines in
fermion self-energy are dressed by arbitrary self-interacti
~Fig. 2!.

Let us assume that all counter-terms that are necessa
achieve agreement between LF perturbation theory~no zero
modes! and covariant perturbation theory have been adde
all sub-loops in Fig. 2; i.e., we assume that there exist
12500
,

in

ro
r,
ic
e-

s
n
e
s

to

to
a

covariant spectral representation for fermion propaga
within the loop

SF~p!5 i E
0

`

dM2
gmpmr1~M2!1Mr2~M2!

p22M21 i«
. ~2.19!

Similar to the scalar case, the fermion spectral density h
very simple representation in terms of the eigenstates of
LF Hamiltonian as well~see the Appendix!:

r1~M2!5
2p

2P1 (
n

dS M2

2P1 2Pn
2D u^0uC2~0!un,P1&u2

5(
n

d~M22Mn
2! f n . ~2.20!

The spectral representation for bosons, Eq.~2.6!, from the
previous section is also still valid~of course with a different
spectral function since we now deal with a different theor!.
For later use, we also note that completeness of the
eigenstates implies the normalization condition

E
0

`

dM2r1~M2!5E
0

`

dm2r~m2!51 ~2.21!

for the spectral densities.
Using the above spectral representations@Eqs. ~2.6! and

~2.20!# for the internal propagators, we now calculate t
necessary counter-term self-consistently. The covariant s
energy for the diagram in Fig. 2 thus reads

FIG. 2. Fermion self-energy diagram, which is treated impro
erly when zero modes are excluded. The shaded blobs repre
arbitrary self-energy insertions.
hysical
2 iSF5g2E
0

`

dM2E
0

`

dm2E d2k

~2p!2

gnknr1~M2!1Mr2~M2!

k22M21 i«

r~m2!

~p2k!22m21 i«
. ~2.22!

We will now calculate the piece which is missed when the vicinity of bothk150 andp12k150 is omitted in the integration

5This fact has been used in Ref.@16# to determine the necessary counterterm non-perturbatively by demanding covariance for p
amplitudes.
5-4
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in Eq. ~2.22! ~naive LF quantization with omission of fermion and boson zero modes respectively!. Using the one-loop
analysis as a guide, it is clear that the only problems arise in theg1 component of the self-energy. In order to further isola
the troublemaker, we use the algebraic identity

k2

k22M21 i«

1

~p2k!22m21 i«
5

1

2p1

2~p12k1!p21M22m2

~k22M21 i«!@~p2k!22m21 i«#
1

1

2p1 F 1

k22M21 i«
2

1

~p2k!22m21 i«
G .

~2.23!

Obviously, the first term on the RHS of Eq.~2.23! can be straightforwardly integrated overk2 and, for this term, the
‘‘zero-mode regions’’ (k150 andp12k150) can be omitted without altering the result of the integration. However, the
last terms on the RHS of Eq.~2.23! have the pole structure of simple tadpoles and hence their only contribution tok
integration is from zero modes of the fermionsk150 as well as the bosonsp12k150. This simple observation implies tha
the zero-mode counter-term from the class of diagrams in Fig. 2 reads@11#

2 idSF5
g2g1

2p1 E d2k

~2p!2 E0

`

dm2
r~m2!

k22m21 i«
2

g2g1

2p1 E d2k

~2p!2 E0

`

dM2
r1~M2!

k22M21 i«
~2.24!

where we made use of the normalization of the spectral functions~2.21!.
A similar zero-mode counter-term arises from ‘‘vacuum-polarization’’ type self-energies for the bosons where the f

and anti-fermion lines may be dressed but where there is no interaction among the fermion and anti-fermion~Fig. 3!. Using
again the above spectral representation~2.19! one finds, for this class of Feynman diagrams,

2 iS522g2E
0

`

dMA
2E

0

`

dMB
2E d2k

~2p2!

k•~k2p!r1~MA
2 !r1~MB

2 !1MAMBr2~MA
2 !r2~MB

2 !

~k22MA
21 i«!@~p2k!22MB

21 i«#
. ~2.25!
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The part of Eq.~2.25! where zero-mode contributions a
crucial arises from thek•(p2k) term in the numerator. In
order to see this, let us write

2k•~k2p!5~MA
21MB

22p2!1~k22MA
2 !1@~p2k!22MB

2 #

~2.26!

and we note that the first term on the RHS yields no ze
mode contribution when inserted in Eq.~2.25!. However, the
other two terms on the RHS of Eq.~2.26! cancel one of the
energy denominators and thus again yield a tadpole-like p
structure. One thus finds, for the contribution from the z
modes,

2 idS52g2E
0

`

dM2E d2k

~2p!2

r1~M2!

k22M21 i«
. ~2.27!

Empirical studies of Feynman diagrams up to three lo
@12# in Yukawa theories have shown that zero modes pla
role for k1Þ0 modes only in 2-point functions~except of
course through sub-diagrams!. Furthermore, of all the dia
grams contributing to the two point functions, only the ve
simple sub-class of diagrams discussed above seems
affected when zero modes are cut out. Diagrams with a m
complicated topology, such as crossed diagrams~except of
course through sub-diagrams!, require no zero-mode
counter-terms when the regionk150 is cut out. Although no
rigorous analytical proof exists at this stage, it is reasona
to assume that these are the only diagrams yielding co
12500
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butions from zero modes. In the following, we discuss t
consequences of this assumption for supersymmetric fi
theories.

III. ZERO MODES IN SUPERSYMMETRIC THEORIES

In order to study the implications of supersymmetry
zero-mode renormalization, let us consider a concrete
ample, namely a matrix model in 111 dimensions with the
action @17#

S5E d2x TrF1

2
~]mf!21

1

2
C̄ i /]C2

1

2
V2~f!

2
1

2
V8~f!C̄C G ~3.1!

where V(f)5mf2(l/AN)f2. The canonical LF Hamil-
tonian for this model has been discussed in Ref.@17# and we
refer the reader to this paper for details.

Obviously this model contains both three-point and fo
point interactions for the scalar field as well as a Yuka
coupling between the scalar field and the~Majorana! fermion
field; i.e., we can now directly apply the above zero-mo
analysis to this model.

First we note that ‘‘tennis racket’’ tadpole diagrams@Fig.
1~a!# must all vanish in a covariant calculation, since^f&
Þ0 would break the global matrix symmetry of the mod
On the LF, without zero modes, these diagrams are autom
cally zero for simple kinematic reasons and, therefore, th
5-5
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M. BURKARDT, F. ANTONUCCIO, AND S. TSUJIMARU PHYSICAL REVIEW D58 125005
is no need to add any zero-mode counter-terms for te
racket diagrams to the LF Hamiltonian.

Since we have already seen that all tennis racket diagr
vanish in this model, the only diagrams that could still gi
rise to zero-mode counter-terms are the classes of self-en
diagrams depicted in Figs. 1~b!, 2 and 3.

For the zero-mode contributions to the fermion se
energy, matrix symmetry is not sufficient to prove that t
zero-mode counter-term vanishes and we have to invoke
persymmetry. Using the explicit expression for the sup
chargeQ2 in terms of the LF fields,

Q2[E dx2:Tr@&~]2f!C2#:, ~3.2!

we obtain the supersymmetry transformation

@Q2 ,f#52
i

&
C2 , ~3.3!

@Q2 ,C2#5&]2f, ~3.4!

which gives rise toQ2
2 5P1. Let us show that the spectra

densitiesr andr1 defined in the previous section are equ
owing to the supersymmetry. First note that the states
non-zero energy are paired by the action of supercha
Namely,

Q2un,P1&B5AP1un,P1&F , ~3.5!

Q2un,P1&F5AP1un,P1&B , ~3.6!

where theB and F denote bosonic and fermionic state, r
spectively. The fermionic state is normalized if the boso
state is, i.e.B^n,P1un,P1&B51, sinceQ2

2 5P1. Now we
can easily find

FIG. 3. Boson self-energy diagram, which is treated imprope
when zero modes are excluded. The solid and dashed lines
fermion and boson propagators respectively. The shaded blobs
resent arbitrary self-energy insertions.
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r1~M2!52p(
n

d~M22Mn
2!u^0uC2~0!un,P1&u2

52p(
n

d~M22Mn
2!u^0u&@Q2 ,f~0!#un,P1&u2

52p(
n

d~M22Mn
2!2P1u^0uf~0!un,P1&u2,

5r~M2!. ~3.7!

Therefore the spectral densitiesr andr1 must be equal.
Since fermions and bosons contribute with opposite si

~but equal strength! to the zero-mode part of the fermio
self-energy@Eq. ~2.24!#, the zero-mode contributions from
bosons and fermions to the fermion self-energy can
exactly.6

The boson self-energy is more complicated, since
have to consider two different classes of diagrams wh
zero modes contribute: tadpoles fromf4 interactions@Fig.
1~b!# as well as the vacuum polarization type graphs~Fig. 3!.
Using the results from the previous two sections, we find t
the zero-mode contribution from tadpoles to the mass re
Eqs.~2.8!,

dmboson ZM
2 54l2E

0

`

dM2r~M2!E d2k

~2p!2

1

k22M21 i«
.

~3.8!

For the contribution from zero modes in fermion loops to t
boson self-energy one finds instead

dm f ermion ZM
2 524l2E

0

`

dM2r1~M2!

3E d2k

~2p!2

1

k22M21 i«
, ~3.9!

and invoking again supersymmetry, we find that the con
butions from boson and fermion zero modes again can
Note that supersymmetry has played a dual role in obtain
this fundamental result. First of all, it relates the Yukaw
coupling and the scalar four-point coupling and thus the
efficients of Eqs.~3.8! and ~3.9! are the same. But the can
cellation between Eqs.~3.8! and~3.9! happens only becaus
the spectral densities are the same.

IV. SUMMARY

Even for theories with massive particles, where ze
modes are high energy degrees of freedom, they canno

6Note that there is a flaw in the discussion of the two loop ferm
self-energy for the supersymmetry~SUSY! Wess-Zumino model in
Ref. @12# which arises because the subtraction procedure emplo
in Ref. @12# breaks the supersymmetry. The unsubtracted resu
Ref. @12# is consistent with the above findings of a cancellati
between bosonic and fermionic zero-mode contributions.

y
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p-
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completely discarded. However, they can be integrated
which gives rise to an effective~tadpole improved! LF
Hamiltonian. In supersymmetric theories, there is scope f
complete cancellation between effective interactions indu
by bosonic zero modes and those induced by fermionic z
modes. There is of course the possibility of spontane
symmetry breaking, in which fields acquire a non-zero
pectation value. In such a scenario, the fermion-boson c
cellation may not occur, and we are left with the~difficult!
task of deriving an effective Hamiltonian. However, our o
servations suggest that for theories with enough supers
metry, the zero-mode degrees of freedom may be igno
As a result, as long as one is interested only in the dynam
of k1Þ0 modes in such massive supersymmetric theor
zero modes can be discarded. This implies that for such th
ries DLCQ~in the continuumK→` limit, and with the zero
modes discarded! leads to the same Green’s functions f
k1Þ0 modes as a covariant formulation. Clearly, it wou
be interesting to understand the precise connection betw
the decoupling of zero modes in supersymmetric theo
and various non-renormalization theorems that are know
exist. We leave this for future work.
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APPENDIX: SPECTRAL DENSITIES

In this appendix, we will derive some results which a
useful to relate spectral densities to eigenstates of a
Hamiltonian.

We start by expressing the spectral density for a sc
field, which has a simple expression in terms of the eig
states of the LF Hamiltonian@15#:

r~p!52p(
n
E dpn

1d~pn
12p1!

3d~pn
22p2!u^0uf~0!un,pn

1&u2, ~A1!

where we split up the sum over states into a sum over st
at fixed momentumpn

1 and a sum~i.e. integral! over pn
1 . In

the next step we integrate overpn
1 where we make use o

both of thed(p12pn
1) and the relation between the LF e

ergy of the state and its invariant masspn
25Mn

2/2pn
1 , yield-

ing

r~p!52p(
n

d S Mn
2

2p1 2p2D u^0uf~0!un,p1&u2

54pp1(
n

d~Mn
222p2p1!u^0uf~0!un,p1&u2.

~A2!

In order to relate Eq.~A2! to the Fock expansion of th
eigenstatesun,p1& we use the expansion off~0! in terms of
12500
t,

a
d

ro
s
-
n-

-
d.
cs
s,
o-

en
s
to

F

ar
-

es

elementary raising and lowering operators. For a real sc
field, the canonical commutation relations at equal LF tim

@f~x2!,]2f~y2!#5
i

2
d~x22y2!, ~A3!

are satisfied if one expands

f~x2,x150!5E
0

` dk1

A4pk1
@ak1e2 ik1x2

1ak1
† eik1x2

#,

~A4!

where @ak1,aq1
†

#5d(k12q1) with all other commutators
vanishing. Inserting Eq.~A4! into Eq. ~A2! one thus finds

r~q!5(
n

d~Mn
222p2p1!bn , ~A5!

where

bn[4pp1u^0uf~0!un,p1&u25U^0u E
0

`

dk1akun,p1&U2

~A6!

is the probability to find the stateun,p1& in the one boson
Fock component~note thatbn is p1 independent!.

For the spectral densityr1 entering the full fermion
propagator a similar result can be derived. Using the rep
sentation

g05S 0 2 i

i 0 D , g15S 0 i

i 0D , ~A7!

i.e.

g1[
g01g1

&
5&S 0 0

i 0D , ~A8!

one finds, for the ‘‘kinetic energy’’ of a canonical Dira
field,

L5C̄ ig1]1C1•••5&C2
† i ]1C21••• ~A9!

where

C5S C2

C1
D . ~A10!

Equation~A9! implies

&$C2 ,C2
† %5d~x22y2! ~A11!

and hence (x150)
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C2~x2!5221/4E
0

` dk1

A2p
@bke

2 ik1x2
1dk

†eik1x2
#,

~A12!

wherebk1 anddk1 satisfy the anti-commutation relations

$bk1,dq1
† %5$dk1,dq1

† %5d~k12q1!. ~A13!

In order to use this result to obtain a representation of sp
tral densities in terms of the LF eigenstates, we start from
definition @15#

~r1pmgm1r2!ab52p(
n
E dpn

1d~pn
12p1!d~pn

22p2!

3^0uCa~0!un,pn
1&^n,pn

1uC̄b~0!u0&,

~A14!

multiply by g1 and take the~Dirac! trace in order to projec
out r1 , yielding
th
do
l-

e

12500
c-
e

2p1r1~p!52p(
n
E dpn

1d~pn
12p1!d~pn

22p2!

3&^0uC2~0!un,pn
1&^n,pn

1uC2
† ~0!u0&

54pp1(
n

d~Mn
222p2p1!u^0uC2~0!un,pn

1&u2

~A15!

and therefore

r1~p!5(
n

d~Mn
222p2p1! f n , ~A16!

where

f n[U^0u E
0

`

dk1bkun,pn
1&U2

~A17!

is the (p1 independent! probability for the staten to be in its
one fermion Fock component.
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