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I. INTRODUCTION All of these observations suggest that the implementation
of DLCQ in the absence of zero modes yields no inconsis-
Although field theories quantized on the light frafhfF)  tency for supersymmetric theories. In general, however, one
have been studied for many ye#sse[1,2] and alsd3,4] for  needs to integrate out the zero-mode degrees of freedom to
a review, recent developments in non-perturbative stringderive an effective Hamiltonian. We discuss these issues
theory have generated additional interest. The first surpriseext.
was M(atrix) theory[5], which was conjectured to be a non-
perturbative description of M theory formulated in the infi- Il. TADPOLE-IMPROVED LIGHT-FRONT
nite momentum frame. Susskind and Motl provided addi- QUANTIZATION
tional insight by suggesting that the finitd version of
matrix theory was in fact the discrete light-cone guantization It has been known for a long time that field theories quan-
(DLCQ) of M theory[6]. tized on a light frontx™=(x°+x3)/v2=0 lead to a subtle
Soon afterwards, the validity of the matrix theory conjec-treatment of the zero mod¢modes which are independent
ture was seemingly strengthened by the works of Seip8rg of x = (x°—x3)/v2 [10]]. This result holds both in the con-
and Sen[8], but it was pointed out by Hellerman and tinuum, when zero modes are discarded but also in DLCQ
Polchinski[9] that a correct interpretation of their results when the theory is formulated in a finite “box” in the™
required a detailed understanding of tfigpically compli-  direction with periodic boundary conditions.
cated dynamics of zero longitudinal momentum modes in  Various schemes have been invented to define LF quanti-
the light-like compactification limit. In general, it was ob- zation through a limiting procedure in order to investigate
served, that “DLCQ is not a free lunch.” these issues. For example, one can study LF perturbation
The question we wish to address in this paper is the foltheory by starting from covariant Feynman diagram expres-
lowing: When is the light-like limit a free lunch? Under a sions and then “derive” the LF Hamiltonian perturbation
reasonable class of assumptions, we argue that the zertiweory by carefully integrating over all energiks in loop
mode degrees of freedom in some supersymmetric field thedategrations first(see for example Ref$12,13 and refer-
ries decouple, and so omitting them in a DLCQ calculationences therein An alternative prescription starts by quantiz-
leads to no inconsistency if the decompactification limit ising the fields on a near light-like surfagesing so-callec:
taken prior to the light-like limit. This observation is intrigu- coordinatesand then studying the evolution of the states as
ing, since it suggests that the complicated zero-mode degreese takes the LF limit in an infinite volund4].
of freedom studied in9] might become totally irrelevant in The basic upshot of these investigations is that, at least for
the continuum limit if enough supersymmetry is presenttheories without massless degrees of freedom, zero modes
Moreover, the “correctness of matrix theory” argument pro- become high-energy degrees of freedom and “freeze out.”
vided by Seiberg may depend on this special property oHowever, this does not mean that zero modes disappear
supersymmetric theories. completely, since there is still a strong interaction present
Another issue that we address is Lorentz invariance. Wamong the zero modes, giving rise to non-trivial vacuum
show that in the light-front formulation, Lorentz invariance structure even in the LF limit. Nevertheless, because of the
is maintained after a careful treatment of zero modes. Howhigh energy scale for excitations within the zero-mode sec-
ever, for the special case of supersymmetric theories, thior, one has been able to derieffective LF Hamiltonians
boson and fermion zero modes that ensure Lorentz symmetryhere the zero modes have been integrated out, which act
cancel at least perturbatively. Thus, we are free to excludenly on non-zero-mode degrees of freedom. Thus even
them from the outset. though these effective LF Hamiltonians contain only non-
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FIG. 1. Typical self-energy diagrams for scalar fields which o an illustration of how Eq(2.5 arises, let us consider a
vanish if zero modes are not includeéd) “Tennis racket” shaped theory with quartic self-interactiorfs i.e. V()= %#2¢2

tadpole ing® theory,(b) generalized tadpole diagram if* theory. . . .
P ¢ vbg P gram éf oo 31\2¢%. In this case, the only Feynman diagrams which

The grey blob represents an arbitrary self-energy insertion. )
are improperly handle@they are set to zejavhen the zero-

zero-mode degrees of freedom, they yield the same Greenf§ode region k™ =0) is cut out are the generalized tadpole
functions as a covariant calculation provided one considerdiagramgFig. 1(b)]. In order to see why these diagrams give

only Green's functions where all external momenta haveonly a zero-mode contribution, let us consider the sum of all
kT =#0. generalized tadpole diagrams, which can be easily done by

using the full propagator for the scalar fields for which we

A. Self-interacting scalar fields write down a spectral representatidib]

As an example, let us consider a scalar field theory with o
cubic (plus higher orderself-interactions. The presence of Ap(p)=f dMm?
cubic self-interactions gives rise to “tennis racket” Feynman 0

diagramgFig. 1(a)]. ) . 2
If zero modes are excluded, then obviously all tennisw'tg spqual de”StSOf(Ml)t- Id like t int out
racket diagramsgwhich do contribute to Feynman perturba- S aside remark, for later use, we would fike to point out
that the spectral density has a very simple representation in

tion theory have no analogue in LF Hamiltonian perturba- ; ;
tion theory. However, the crucial observation is that tennigS'Ms of the LF Fock states. Uppn Inserting a complete set of
genstates of the LF Hamiltonian into the scalar two-point

racket diagrams are momentum independent and only lead . .
a mass renormalization proportional{@|0). Similarly, all Unction[15], one finds(see the Appendix
tennis racket insertions into-point interactions only lead to M2
a renorma!lzatlon of then(— 1)-.p0|.nt interaction term; i.e., p(MZ)zzq-,E 5(F_ pn) |<0|¢(0)|n,p+>|2
all these diagrams can be easily integrated out. n
More generally, one can show that for self-interacting
scalar fields, zero modes contribute only to diagrams with :272 S(M?— M§)2p+|<o|¢(o)|n,p+>|2
generalized tadpole topology. As a result, zero modes can be n
integrated out easily. For a polynomial self-interaction

ip(M?)

_ 2.6
p2—|\/|2+i8 29

L =2 3(M*=Mp)b, @7
£=§aﬂ¢aﬂ¢—V(¢) (2.9
where|n,P*) is a complete set of eigenstatesRf (with
where eigenvalued, = Mﬁ/ZP*) which we take to be normalized
to 1 and wherd,, is the probability that the state is in its
P~ one boson Fock componene boson which carries the
V(¢)=k§<: Cklr (2.2 whole momentunrP*). The sum can be evaluated at arbi-
=" ' trary but fixed total momentur®* (assuming we work in
. : I the continuum limiy.
one thus finds, for the effective LF HamiltonigbS], Using Eg.(2.6), one finds, for the sum of all generalized
P =V, (&), (23 tadpole diagrams,
. - . A2 (o d?k 1
where the effective potential is also a polynomial of the same _ js tadpole_—_ f szp(Mz)f .
degree, 2 Jo (2m)2 k2—=M?+ie
(2.8

'Here and in the following we will implicitly restrict ourselves to
Green’s functions where all external momenta as well as arbitrary 2For the general case, see Rgf3].
sums and differences of external momenta have a non-vanishing®Note that this result holds regardless of whether or not fermions
plus component so that zero modes can only appear within loopspairs contribute to the spectral density of the bosons.
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The crucial point is that fok* #0, all poles lie only on one d?k y#K, + Mg 1
side of the reak ™ axis and the result is thus zefop to a —iE(p)ZQZJ R I I R
contribution from the semi-circle at infinity, which disap- (2m)" kK —mg+ie (p—k)*—ma+ie
pears if one subtracts the one loop result d%k 4t 1

In order to compensate for the omission of all generalized =—i3 g+ ng 5 T
tadpole diagrams in naive LF quantization, we thus add a (2m)° 2k™ (p—k)*—mg+ie
counter-term equal to the sum of all these omitted diagrams; (2.12)

i.e., a calculation that omits all explicit zero-mode degrees of
freedom, but adds a mass counter-tefi= 3 'adrole ||

: ; ; Where
give the same results as a calculation that includes all zer
modes explicitly. The connection with E(R.5 can now be
seen by noting that the vacuum expectation valuebdfis d’k  y*k,+meg 1
(up to a combinatoric factpiidentical to the right hand side —iELF=ng 77 MZ - 5 .
(RHS) of Eq. (2.8). (2m)° k*—mg+ie (p—k)*—mg+ie

In summary, one finds the followin@or self-interacting (2.12

scalar fields[13]:

~ L~ o i
()  Zero modes contribute to-point functions involving  &"d k" =k" while k”=mg/2k" is the on mass shell energy
only k* #0 modes only through generalized tadpolefor th? fermion. .Ot.)V'OUSIV’ Eq(2.1)) is a mere algebra|c
(subjdiagrams. By generalized tadpole diagrams Werev.vrmlng of the original Feynman self-energy. The important
mean diagrams where a sub-diagram is connected oint is that the second term on the RHS of £211 has
the rest of the diagram only at one single point and e same pole structure as a ta_dpole diagram and thus cannot
. be generated by a LF Hamiltonian. Indeed, as one can easily
hence there is no momentum transfer through thafe it second order perturbation theory with the canonical
. pomt_. ) ] B LF Hamiltonian yields onl\{the matrix elements o&,, - and
(i) n-point functions calculated with the “tadpole- , gisagreement between self-energies calculated in covariant
improved” effective LF Hamiltonian2.3),(2.4), (2.5 perturbation theory and those calculated in LF Hamiltonian
and without explicit zero-mode degrees of freedomperturbation theory(without zero modesemerges. Before
are equivalent to covariant perturbation theory generwe proceed to analyze more general diagrams which suffer
ated by £, Eq. (2.1), to all orders in perturbation from a similar problem, let us understand intuitively how this
theory. second term arises:
In the LF formulation, not all components of the fermion
field are independent degrees of freedom. Multiplying the

. . ) Dirac equation
As a generic example for a theory with fermions, let us

now consider a Yukawa theory with scalar couplings:

B. Yukawa interactions

(iv*d,—Me—g¢)y=0 (2.13

_ 1
L=p(i7"0,~Me=g@)y— 5 $(O+Me) b (29 |+ (o finds that

If zero modes are excluded, then two classes of Feynman ; _ +
diagrams(to be discussed belgvare treated improperly in 200§ =(Metgd)y dis), (214
the LF Hamiltonian perturbation series. B

Obviously, LF theory without zero modes cannot generatévherey.,=3y" y~ ¢. Equation(2.14 is a constraint equa-
any tadpoldi.e. tennis rack@tself-energies for the fermions. tion and it is often used to eliminate the dependent compo-
Since the above Lagrangian contains a scalar Yukawa colenty(- prior to quantization. This gives rise to “induced”
pling, such diagrams are in general non-zero. Their omissiofPur point interactions
in naive LF quantization can be easily compensated by re-
placing

1
LY==yl d——dy (219
me—meE '=mg+g(0| ¢|0). (2.10 D %5vag 7T

The second class of diagrams which cannot be generatgf the Lagrangian after eliminating the constrained figld,
by a zero-mode free LF field theory is more subtle. As anynq hence it is possible to generate “induced tadpoles” dia-
example, let us consider the one loop fermion self-erfergy grams by contracting for example the two scalar fields in Eq.
(2.15.
Before discussing the general case, it is very instructive to
“For simplicity, we will write down the expressions only in 1 investigate the one loop fermion self-energy in more detail.
+1 dimensions, but it should be emphasized that the conclusionirst one notes that the"®order perturbation theory result
are also valid in 31 dimensiong12]. (2.12 is divergent ak ™ —0:

125005-3



M. BURKARDT, F. ANTONUCCIO, AND S. TSUJIMARU PHYSICAL REVIEW D68 125005

2
+

KTy~ +

Yy +me

@ (o dk 2k+
87 Jo kT(pT—k") omé m3
P T 200~k
(2.16

This divergence is cancelled by the self-induced inertia term,
which arises from normal ordering, E(2.15),

=

92 p* dk*

En.o.:8ﬂ_ 0 K+

: (2.17

yielding FIG. 2. Fermion self-energy diagram, which is treated improp-

2 Xp“yﬂ-i—m,: erly when zero modes are excluded. The shaded blobs represent

g . . .
Se+S  =— f dx arbitrary self-energy insertions.
LEETNO T4 Jo o T x(1—x)p?— m(1—x) — m3x

covariant spectral representation for fermion propagators
g® y* mB within the loop
+——In—. (2.18
41 p* mF

© z M?2)+ M p,(M?
p):iJ' sz?’puPl( )+ Mpy( ). (2.19

Several important observations can be made from(E49). p2—M2+ig

First of all, even though including the normal ordering term

renders the self-energy finite, the final result disagrees iSimilar to the scalar case, the fermion spectral density has a
general with the covariantly calculated resfihie first term  very simple representation in terms of the eigenstates of the
on the RHS in Eq(2.18]. Furthermore, the additional term LF Hamiltonian as wel(see the Appendijx

breaks covariancéparity invarianc&® However, most im-
portantly, the unwanted term vanishes fog=mg, which M2) = 2 sl
indicates already a crucial cancellation between bosonic zero p1(M*)= 2P < 2P*
modes and fermionic zero modes. In the rest of this paper,
we will demonstrate, for the case of certain supersymmetric
theories, that this cancellation goes beyond the one loop re-
sult.

After this more intuitive discussion of zero-mode effects The spectral representation for bosons, Ef6), from the
for fermions, let us now formally derive the counter-termsprevious section is also still valigf course with a different
that arise for a theory with Yukawa interactions. For thisspectral function since we now deal with a different theory
purpose, it is useful to identify those Feynman diagréexs  For later use, we also note that completeness of the LF
ternal momenta non-zeravhere zero modes in internal lines eigenstates implies the normalization condition
give a non-zero contribution to the total amplitude. Diagrams
which suffer from the same problem as the one-loop fermion * a2 PN DY o
self-energy are all diagrams where the internal lines in the J dMZpy(M )_J drp(n)=1
fermion self-energy are dressed by arbitrary self-interactions
(Fig. 2. for the spectral densities.

Let us assume that all counter-terms that are necessary to Using the above spectral representatipBgs. (2.6) and
achieve agreement between LF perturbation théooyzero  (2.20] for the internal propagators, we now calculate the
modes and covariant perturbation theory have been added toecessary counter-term self-consistently. The covariant self-
all sub-loops in Fig. 2; i.e., we assume that there exists @&nergy for the diagram in Fig. 2 thus reads

2

Pn) [{(0]¥_(0)[n,P*)|?

=>, S(M?=M?)f,. (2.20

(2.2)

d’k v”kvpl(Mz)JrMpz(Mz) p(p?)
TiZe= gfdM f d"f (2m)2 K—M2+is (p—K)2— u2+is’ 2.22

We will now calculate the piece which is missed when the vicinity of Botlk0 andp* —k™ =0 is omitted in the integration

SThis fact has been used in R¢16] to determine the necessary counterterm non-perturbatively by demanding covariance for physical
amplitudes.
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in Eq. (2.22 (naive LF quantization with omission of fermion and boson zero modes respettildding the one-loop
analysis as a guide, it is clear that the only problems arise inytheomponent of the self-energy. In order to further isolate
the troublemaker, we use the algebraic identity

k™ 1 1 2(pt—kH)p +M2—pu? 1 1 1
= + - :
k2>—M?+ie (p—k)2—u2+ie 2p* (K2*—=M2?+ig)[(p—k)?—u?+ie] 2pT |[kK2—M2+ie (p—Kk)2—u+ie
(2.23

Obviously, the first term on the RHS of E.23 can be straightforwardly integrated ovkr and, for this term, the
“zero-mode regions” k* =0 andp* —k* =0) can be omitted without altering the result of the integration. However, the two
last terms on the RHS of Eq2.23 have the pole structure of simple tadpoles and hence their only contribution to the
integration is from zero modes of the fermiokis=0 as well as the bosons" —k™ =0. This simple observation implies that
the zero-mode counter-term from the class of diagrams in Fig. 2 fdddls

2.+ d2k o 2 2.+ d2k 0 MZ
_ing:g_erf f dMZ Py ). _g 7+ f f dMZL)_ (2.24
2p (2m)? Jo K2—u’+ie 2P (27)? k?—M?3+ie

where we made use of the normalization of the spectral funct@m2g).

A similar zero-mode counter-term arises from “vacuum-polarization” type self-energies for the bosons where the fermion
and anti-fermion lines may be dressed but where there is no interaction among the fermion and antifeigni®n Using
again the above spectral representati®19 one finds, for this class of Feynman diagrams,

_izz_zngdezAJ'dezf d?k k'(k_p)pl(M,IZ\)Pl(MzB)+ MAMBPZ(M,ZA)p2(M§). (2.29

(272) (K*—Ma+ie)[(p—k)2—M3+ig]

The part of Eq.(2.25 where zero-mode contributions are butions from zero modes. In the following, we discuss the
crucial arises from thé- (p—k) term in the numerator. In consequences of this assumption for supersymmetric field
order to see this, let us write theories.

2k- (k—p)=(Ma+M3—p?)+(K2=MZ) +[(p—k)2—M3] IIl. ZERO MODES IN SUPERSYMMETRIC THEORIES
(2.26

In order to study the implications of supersymmetry on

zero-mode renormalization, let us consider a concrete ex-
and we note that the first term on the RHS yields no zero-

mode contribution when inserted in E@.25. However, the Zzgﬁ[{%‘mely a matrix model inl1 dimensions with the
other two terms on the RHS of ER.26) cancel one of the
energy denominators and thus again yield a tadpole-like pole

structure. One thus finds, for the contribution from the zero (. 1 , 1— 1,
modes, 5—f dox Tr 5((9,@) t5 Vidw— 5V ()
V(T (3.0
(27)% kK>*—M? +ie

where V(¢) = ud— (N N)p?. The canonical LF Hamil-

Empirical studies of Feynman diagrams up to three loopgonian for this model has been discussed in REf] and we
[12] in Yukawa theories have shown that zero modes play aefer the reader to this paper for details.
role for k* #0 modes only in 2-point functiongexcept of Obviously this model contains both three-point and four-
course through sub-diagramg-urthermore, of all the dia- point interactions for the scalar field as well as a Yukawa
grams contributing to the two point functions, only the very coupling between the scalar field and tiMgjorang fermion
simple sub-class of diagrams discussed above seems to beld; i.e., we can now directly apply the above zero-mode
affected when zero modes are cut out. Diagrams with a moranalysis to this model.
complicated topology, such as crossed diagréexsept of First we note that “tennis racket” tadpole diagrafifsg.
course through sub-diagrams require no zero-mode 1(a)] must all vanish in a covariant calculation, singé)
counter-terms when the regiéri =0 is cut out. Although no  #0 would break the global matrix symmetry of the model.
rigorous analytical proof exists at this stage, it is reasonabl®©n the LF, without zero modes, these diagrams are automati-
to assume that these are the only diagrams yielding contrially zero for simple kinematic reasons and, therefore, there
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| prM?) =272 o(MZ=MD|(0[¥_(0)|n,P)[?
=272, o(MZ=MD|(0V2[Q,¢(0)]In,P™)[?

=272, 8(M2=M2)2P"|(0]¢(0)[n,P")[?,

=p(M?). 3.7

Therefore the spectral densitipsand p; must be equal.

Since fermions and bosons contribute with opposite signs
(but equal strengthto the zero-mode part of the fermion
self-energy[Eq. (2.24], the zero-mode contributions from

FIG. 3. Boson self-energy diagram, which is treated improperly . -
when zero modes are excluded. The solid and dashed lines aPeOSO”S and fermions to the fermion self-energy cancel

6
fermion and boson propagators respectively. The shaded blobs reﬁxaetly' i . i
resent arbitrary self-energy insertions. The boson self-energy is more complicated, since we

have to consider two different classes of diagrams where
is no need to add any zero-mode counter-terms for tenni§ero modes contribute: tadpoles froif interactions[Fig.
(b)] as well as the vacuum polarization type grafffig. 3).

ket di he LF Hamiltonian. ; ) X ,
racket diagrams to the amitonian sing the results from the previous two sections, we find that

Since we have already seen that all tennis racket diagran}%e zero-mode contribution from tadpoles to the mass reads
vanish in this model, the only diagrams that could still give 5.(2.9 P ,

rise to zero-mode counter-terms are the classes of self-ener
diagrams depicted in Figs(l), 2 and 3. .

For the ;ero—mode cqntnbuﬂong 'to the fermion self- 5lu“goson ZM:4)\2J szp(Mz)f
energy, matrix symmetry is not sufficient to prove that the 0

d%k 1
(2m)2 kK2=M3+ie

zero-mode counter-term vanishes and we have to invoke su- (3.8
persymmetry. Using the explicit expression for the super- o ) .
chargeQ_ in terms of the LF fields, For the contribution from zero modes in fermion loops to the
boson self-energy one finds instead
QiEJ’ dxf:Tr[\/Q(&,qﬁ)\P,]:, (32) 6/J’fzermi0n ZM:_4)\2J}) szpl(MZ)
we obtain the supersymmetry transformation d?k 1 3.9
(27)? K>—M?+ig’ '
i
[Q_,p]l=— 5\1’, , (3.3 and invoking again supersymmetry, we find that the contri-

butions from boson and fermion zero modes again cancel.
Note that supersymmetry has played a dual role in obtaining
[Q_,V_]=v2d_4, (3.4  this fundamental result. First of all, it relates the Yukawa

coupling and the scalar four-point coupling and thus the co-
efficients of Eqs(3.8) and(3.9) are the same. But the can-

; ; ; 2 _p+
wh|ch_g|ves rse t(Q—._ P . Let us s_how that _the spectral cellation between Eq$3.8) and(3.9) happens only because
densitiesp and p, defined in the previous section are equal%he spectral densities are the same

owing to the supersymmetry. First note that the states o
non-zero energy are paired by the action of supercharge.

Namely, IV. SUMMARY
Even for theories with massive particles, where zero
Q_|n,P")g= ‘/p+|n,P+>F, (3.5 modes are high energy degrees of freedom, they cannot be
Q,ln,P+>F:\P+|n,P+>B, (36)

®Note that there is a flaw in the discussion of the two loop fermion
) o self-energy for the supersymmetf8USY) Wess-Zumino model in
where theB andF denote bosonic and fermionic state, re- gef. [12] which arises because the subtraction procedure employed
spectively. The fermionic state is normalized if the bosoniciy Ref. [12] breaks the supersymmetry. The unsubtracted result in
state is, i.e.5(n,P*|n,P")g=1, sinceQ?=P*. Now we  Ref.[12] is consistent with the above findings of a cancellation
can easily find between bosonic and fermionic zero-mode contributions.
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completely discarded. However, they can be integrated ouglementary raising and lowering operators. For a real scalar
which gives rise to an effectivétadpole improved LF  field, the canonical commutation relations at equal LF time,
Hamiltonian. In supersymmetric theories, there is scope for a

complete cancellation between effective interactions induced i

by bosonic zero modes and those induced by fermionic zero [(x7),0-(y )]=5(x"~y"), (A3)
modes. There is of course the possibility of spontaneous
symmetry breaking, in which fields acquire a non-zero ex-
pectation value. In such a scenario, the fermion-boson carft
cellation may not occur, and we are left with ttdifficult)

task of deriving an effective Hamiltonian. However, our ob- _ . = dk’ e
servations suggest that for theories with enough supersym- P(x"x"=0)= fo W[ak*e ta.e 1
metry, the zero-mode degrees of freedom may be ignored. (A4)
As a result, as long as one is interested only in the dynamics

of k" #0 modes in such massive supersymmetric theories

t 9 + _t+ i
zero modes can be discarded. This implies that for such the(\))\_/here[ak+,aq+]— o(k”—g") with all other commutators

ries DLCQ(in the continuunK — e limit, and with the zero vanishing. Inserting EqA4) into Eq. (A2) one thus finds
modes discardgdeads to the same Green’s functions for
k*#0 modes as a covariant formulation. Clearly, it would 2 -+

. ! . . =2, 8(M,—2 by, A5
be interesting to understand the precise connection between p(a) ; (Ma=2p p7)by (A5
the decoupling of zero modes in supersymmetric theories
and various non-renormalization theorems that are known t@ here
exist. We leave this for future work.

re satisfied if one expands

2
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is the probability to find the statm,p®) in the one boson

Fock componentnote thatb, is p*™ independent

For the spectral density; entering the full fermion

In this appendix, we will derive some results which arepropagator a similar result can be derived. Using the repre-
useful to relate spectral densities to eigenstates of a LEentation

APPENDIX: SPECTRAL DENSITIES

Hamiltonian.
We start by expressing the spectral density for a scalar 0 —i 0 i
field, which has a simple expression in terms of the eigen- 7’02( 0 ) 712( i O)’ (A7)
states of the LF Hamiltoniafl5]:
i.e.
p(p)=2m2 fdprTé(p:—pw
. Yo+ 9t 0 O
X 8(py =P )I0I(0)npy)I% (A1) Y= :@( | o)' (A8)

where we split up the sum over states into a sum over states finds. for the “kinei b of ical Di
at fixed momentunp, and a sunti.e. integral overp, . In one hinds, for the “kinelic energy” of a canonical Lirac

the next step we integrate ovpj, where we make use of field,
both of thes(p*™ —p,) and the relation between the LF en- — ;.
ergy of the state and its invariant maggs=M2/2p;} , yield- L=Viy 9, V+---=vV2V1id, ¥_+---  (A9)
ing
where
Mo _ o2
p(p)=272 8|55 —p" |[(04(0)|n,p")| v
noAeP =y |- (AL0)
+

— + 2_ —nt +\|2
4mp ; S(MZ—2p~p")|(0]4(0)|n,p*)|% Equation(A9) implies

(A2) s el
2{¥_ vl }=8(x"—y") (A11)

In order to relate Eq(A2) to the Fock expansion of the
eigenstate$n,p*) we use the expansion @f(0) in terms of and henceX™ =0)
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+

= dk I o _ _
\P,<x*)=2*1’4f [bee™ K +dfelx ], 2p"py(p)=272 fdp:6<p:—p+>5<pn—p )
0

N2
(A12) Xv2(0| ¥ _(0)|n,p; )(n,p; W (0)]0)
whereb,+ andd,+ satisfy the anti-commutation relations

=47p* > 8(Mi—2p~p)KO[W_(0)|n,py)I?
{ber,dl }={drdl}=8(k"—q").  (A13) n " "
. . : (A15)
In order to use this result to obtain a representation of spec-
tral densities in terms of the LF eigenstates, we start from thand therefore
definition[15]
pi(P)=2 A(M7—2pp ")y, (A16)
(P1PLY"+ P2)ap=27 2 J dpy 8Py —P*) 8Py —P7)
" where
X(0[W 4 (0)[n,py )(n,py | ¥45(0)|0), e fwdk*b Nk 7
= n,

(A14) n ( | 0 k| pn> ( )
multiply by y* and take theDirac) trace in order to project is the (p* independentprobability for the state to be in its
out p,, yielding one fermion Fock component.
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