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We argue that supersymmetric higher-dimension operators in the effective actions of M theory and type IIB
string theory do not affect the maximally supersymmetric vacua: ,Ad® and AdSXS* in M theory and
AdS;x S° in type 1IB string theory. All these vacua are described in superspace by a fixed point with all
components of supertorsion and supercurvature being supercovariantly constant. This follows from 32 unbro-
ken supersymmetries and allows us to prove that such vacua are [SGE56-282(198)10520-9

PACS numbds): 04.65+€, 11.25.Mj

[. INTRODUCTION to the equations of motion consistent with supersymmetry. If
all possible corrections to the equations vanish when evalu-
There is very limited knowledge of exact solutions in ated in a certain background, then, by definition, this back-
gravitational theories which include higher-dimension operaground is an exact solution of the full effective action. We
tors. An example of such a configuration is given bp@a  shall show that this situation holds for these solutions.
wave. This solves the non-linear equations of motion of pure In general, the possible corrections to the equations of
Einstein theory and can be proved to remain an exact solunotion could involve the curvature, derivatives of the curva-
tion in the presence of all possible higher-derivative termgure etc. It is a feature of these solutions that all relevant
respecting general covariance. tensors are covariantly constant. Hence the corrections can
It is interesting to find some solutions in M theory and only depend on the numerical values of these tensors. We
string theory which can be proved to be exact when all poswill then show that even these corrections do not affect the
sible corrections to the low-energy supergravity actions areolutions.
included, which respect not only the general covariance but This is most conveniently done in superspace. We find
also the local supersymmetry. It is natural to consider thehat in superspace, the equations of motion can be written in
vacuum solutions and use the power of 32 unbroken supeg form which have one free spinorial index. It turns out that
symmetries. all nonzero components of the superfields this back-
We shall look at four-dimensional anti—de Sitter spaceground have two spinor indices, and it is thus impossible to
(AdS) xS’ and AdSx S* solutions of M theory and AdS  construct a consistent nonzero correcti@sually of course,
X S° solution of 1IB string theory. There has been a greatone could have used spinorial derivatives to construct a cor-
deal of interest in these solutions lately because of the correction term, but as we have already said, all such terms
jecture[1—3] relating type 1IB string theory on AdX S°to  vanish) Thus the solution is uncorrected in the full effective
N=4 Yang-Mills theory. We shall attempt to argue that action.
there are no corrections to the form of this solution fram We first consider as a warm-up, the caseppfwaves in
corrections. This was already shown for the A#S® case pure gravity, and the AdX S? solution ofN=2, d=4 pure
to ordera’? in [4]. Similarly, we argue that there are hg ~ supergravity, where similar considerations allow us to prove
corrections to the form of AdX S’ and AdSXS* in M the exactness of the solutions. We then turn to the cases of
theory. The proof i{4] uses essentially the conformal flat- interest i.e. Ad$x S’ and AdSXxS* in eleven-dimensional
ness of AdSxS® space. Our general proof based on thesupergravity and Ads< S° in type 1IB string theory. Finally
maximal amount of unbroken supersymmetry will cover thewe conclude with discussions.
supersymmetric vacua of M theory whose metrics are not Recently, quantum corrections to the supersymmetric
conformally flat. black hole entropy in string theorjyp] and to the minimal
In the case of the M-theory solutions, we still do not havevalue of the central charge in supergravity thef8y have
a full formulation of the theory. However, we can study the been calculated. These corrections appear in theories related
low energy effective action as an expansion in powers of théo N=2 supergravity interacting with vector multiplets. Such
Planck length. We expect that the effective action will haveinteraction is not unique. The prepotential in presence of
N=1 supersymmetry in eleven dimensions, which constraingigher dimension operators is modifigg] but the theory is
its form. Also, in analogy with string theory, we expect that still supersymmetric. It has not been established whether the
an exact solution of the effective action is a solution of theexistence of such corrections is due to the modifications of
full theory. the solutions or just change of the AdS§ize in the Bertotti-
The strategy will be to write down all possible corrections Robinson throat. In all cases which we will study we will
deal only with maximal supersymmetry, 32 oh=11, d
=10(and 8 ind=4 for pure supergravity without extra mat-
*Email address: kallosh@physics.stanford.edu ter multiplets as a simplest mogleThese are purely geomet-
TEmail address: arvindra@leland.stanford.edu ric theories in superspace. There are no options in the choice
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of the prepotential. We expect therefore that the superfield In general the geometric superspace tensors must satisfy

structure is not modified in presence of corrections. some constraints in order to describe correctly the field con-
tents of supergravity theory. When the constraints are im-
Il. STABILITY OF pp WAVES posed, the geometric Bianchi identities are not identities any-

) . o more but equations which can be solved. The solutions
pp-wave geometries are spacetimes admitting a covariprovide the superspace form of supergravities. InKhe2,
antly constant null vector field d=4 case the full off-shell superspace solution is available.
V=0 I"=0 1) This_is analogous to thg WeII—_knovm=1, d=4 supergrav-
piv = v ity in superspace given in terms of 3 superfields:
Spacetimes with this property were first discovered byWasy:Cas.R- All c%mponents of the cor;stramed geometric
Brinkmann[7]. The existence of a covariantly constant null tensors like torsiofT 5 and curvaturdR,°® are expressed in
vector field has dramatic consequenf@k For instance, for terms of these three superfields and their covariant deriva-

the class ofd-dimensionalpp waves with metrics of the tives. On shellG,;(X,6)=0 and alsoR(X, #)=0. All pos-
form sible higher dimension operators would modify the form of

_ o classical equations of motion as follows:
ds?=2dudv + K(u,x )du?—dx dx, 2) - B
GQB:]—'CQ”(G,'R:WaW'DAG'DAR'DAW’DAW’ ce).

wherei,j=1,2,...,d—2, the Riemann curvature |§] ap ©®)

o= =21 (d0 K 3 _
nve (K)o ® It is expected that the RHS of the quantum corrected equa-
The Ricci tensor vanishes i is a harmonic function in the tion of motion will depend only on superfields and their co-

R

transverse space: variant derivatives, i.e. on all supertensors of the theory. If
one wishes to find out if some particular solution of classical
1 , 1 , equations remains a solution in the presence of the correc-
Ruo=— E(ava K)lulos R=— E(ﬁv‘? K)I,1#=0. tions, one has to study whether
(4) corr W
) F o3 (G=0R=0W,W,D,G=0D4R
The curvaturer,,,,, is therefore orthogonal tg* and toV#
in all its indices. SinceK is independent o), the metric —0DAW,DW, .. .), 7

solves Einstein equatior§,,,=0 if #2K=0. Possible cor-

rections to field equations may come from higher dimens_ior],anishes or not. The chiral superfiaMd, 5, has in the lowest
operators and depend on the curvature tensors and their cgsmponent® the gravitino field strength and in the first one
variant derivatives ¢* the Weyl tensor.

We proceed to th&l=2, d=4 case to study the super-
symmetric Bertotti-RobinsofBR) vacuum. We give below
A summary onN=2, d=4 off shell superspace with 4

Corrections to Einstein equations are quadratic or higher o Bosonic and 8 fermionic coordinates. The superaeometry is
der in curvature tensors. However, there is no way to con- ) perg y

tract two or more of Riemann tensors which will form a given in[9] and we use the two—component spinor notation
two-component tensor to provide the right-hand igelS) from there._ The structure group consists of Lorentz transfor-
of the Einstein equation coming from higher dimensions Op_mat|0ns W't.h Map=—~Mpa, 6‘.:.0’1'2’3 and central .charge
erators. Therefore all higher order corrections vanish f0|1ransf_ormat|ons|\/|_ij:ZM“, ,j=1,2. The geomeErdlc ten-
pp-waves solutions. They remain exact solutions of anySC'S include torsiomgc, the Liofe”tz curvaturd,,™ and
higher order in derivatives general covariant theory. This inthe central charge curvatufég’.

cludes supergravities and string theory with ali possible There are two superfields defining the off-shell super-
sigma model and string loop corrections to the effective acspace. There is one spinorial superfidlfj(X, 6,6) which

tion, as long as these corrections respect general covarianoganishes on shell and therefore represents the superfield
Note that supersymmetry played no role in establishing thigquations of motion of the theory. There is also a chiral

G v FZOJ"(R/LV)\(r!DaRMV)\(r! T ) (5)

7

non-renormalization theorem. superfield W, 4;; satisfying D, W,;=0. The lowest §°
component of the superfiel is the form field, the next one
IIl. SUPERSYMMETRIC BERTOTTI-ROBINSON ' is the gravitino field strength and the second @Aés the
VACUUM Weyl tensor
Our next example i?N=2, d=4 pure supergravity with- W, ij()(,,9)|6=0:(gab)aﬁ|:ab i(X), (8)

out matter multiplets. A vacuum solution with 8 unbroken
supersymmetries is given by the Ag8S? metric and a two-

i . =
form which is a volume form of the AdSspace. Before D Wy ik(X,0)] 9-0= hagy k(X), ©)
consideringN=2 theory we will explain our strategy in -
terms of the more familiar superspaceNE 1 supergravity. DuDW,s (X, )] 9=0=Capys(X), (10)
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D D g iW,sk1(X, 0)] g=0=D ;5F 16 i(X). (11  All non-vanishing components of torsion and curvature are
“ constant and given by Eq13) as in the flat superspace as

According to our conditions on the corrections to field Well as new constant torsions and curvatures:
equations respecting=2 supersymmetry we get the quan-

tum corrected field equation in the form Tagik=—105;War, Fip=€e"W5F, (17)
To(X,0)=F 2 (T,W,W,DAT,DAW,DW, . . .). Ru gi%0= — 2iC . 5(T™WER) 2 etc. (18)
(12) '

Now we can look what will happen with corrections to the

Exactness of flat superspaddat superspace has the fol- r(]aquation of motion with account of Eqél4) and (16).

lowing properties. There is a hon-vanishing constant torsio
and central charge curvature:

TH(X,6)=F. 0 (Wi, WED). (19
4 —2ig 5. B L ;
Taipi=210apdis Faigi =Capdi o) - 13 ytis not possible to build the object’ *°" with one fermi-

onic index from the available supercovariantly constant su-

perfields. Therefore we do not see any possibility for the

supersymmetric BR vacuum to be corrected by higher di-
ension supersymmetric operators.

The superfield (X, 8), WJ,(X, #) vanish. If one would try
to constructF.“°"" out of only constant structures in Eq.
(13), one could see that no such structures are available a
therefore the flat superspace cannot have quantum correc-
tions.

A superspace form of the near horizon black hole geom-
etry with a 2-form and with enhancement of supersymmetry The background is in the AdSase
near the horizon has been studied befd@ 11]. It has been
found that the supersymmetric branching radR) vacuum
corresponds to a supercovariantly constant superfiélg

[the superfieldl’ia(x, 0,0)=0 since we consider the solution )
of the classical field equatiohs €
quatio RS Po= — == (rhm— 77l
(21)

IV. AdS,x S” AND AdS,x S* VACUA OF M THEORY

AdS)
Fﬁnnpl: €€mnps: (20)

DAWEE K= O:DaiWEE K= DaiWEE K= DcWEE k=0.
(14
eZ

The integrability condition for the existence of the covari- R(Sph)mnps=§(nﬁ1nf‘,— 7o), (22
antly constant superfield is verified by checking that the so-
lution admits 'KiIIing spinors of the maximal dimension. It 4.4 for the AdS case
can also be simply understood by observing that for the su-
persymmetric BR the lowest® component of the superfield
is covariantly constant ixX space, the nex#* component
vanishes since the background is bosonic and the se¢ond
component of the superfield vanishes since the Weyl tensor e?
vanishes and the forrf is covariantly constant ixX space. RADS)  PS— — — (P pS— S 7P,
The higher components of the superfield are not independent 9
and therefore also vanish. The self-dual form is

Sph
FEnnpp)s: €€mnps: (23)

(24)

2
[J ] N 1 2 3 4e
Fil = €l (e%0el + e200e?). (15) R<Sph>mnp5=?(77?n77ﬁ—nﬁmﬁ)-

Therefore all components of the superfisitivanish except (29
the first one which is a constant self-dual form. It breaks the )
Lorentz part of the structure grouO(1,3) of the super- The relevar_n on—_sheII superspace was constrqcted in
space witha=0,1,2,3 into a produck O(1,1)X SO(2), with [13,14. There_|s a smg!e superfidlV, s, (X, 6). The field
a4=0,1 anda=3,4. The first one is related to the tangentcf)”te“t_ of this superﬂeld follows from that of eleven-
space of Ad$and the second one to that §f. dimensional supergravity. _
Thus ourBR vacuum in the superspacan be described ~ 11€ first few components of the superfield are

by a covariantly constant superfiewgﬁ which consist of
two parts:

Iwe follow the notation of13] with the exception of renaming
spinorial indices in tangent space framto « to be in agreement
Wap = €abs  Wyp =€ (16)  with other sections of this paper.
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Wistu(X, 0) | o= 0=Fstu(X), (26) R 1.
o b 5SUSY(D[r¢s]): ) Rrsmny™ "€
(D aWisto(X, )] g=0= 6(¥{rsD1hs) u( X), 27 L
+ E[Tr 'Tsy p]EFtUUWFXyZp
~ 1 . A
(Da(D[r¢s])B)|H:O: 8 Rrsmn(X)y™" +Tt[l;UWDr]EFtuUW)=0, (32

1 ow xyzp| & ~ which is exactly the statement that til#¢ component van-
+§[Tr ,Ts p]Ftqu(X)nyzp ishes.

Thus we have shown that the integrability condition for
the 32 Killing spinors of the vacua provides the proof that

owa A
+T[2UWDr]FtUUw(X) : 28 the superfield is covariantly constant:

ap
. . . . DaW;sty=0=D ;W,51y =D, W51, =0. (32
Here TS is a product ofy matrices defined if13].
The equation of motion of classical supergravity in super- Let us look now at the corrected equations of motion.
space is SinceD AW, ¢,= 0 the corrections can depend only bf;,
and other constant tensors like matrices etc. Again we
(YD) Wieru( X, 8) =0, (29 obser\{e that_ it i§ impo;sib_le to get one spinpria_l index with-
out using spinorial derivatives, but such derivatives are zero

on all the terms. Hence there is no possible correction we can

In a generic background one can write down correction§ : : 7
! ; . . . x St
to the RHS of the superfield equations involving the super- rite down. This shows that the A8S" and AdS

) e . . solutions are exact.
fields, derivatives of the superfield etc. There is no reason to
expect that such corrections will vanish in general.

5
We now claim that the supersymmetric AGSS’ and V. AdSgx S* VACUUM OF STRING THEORY

AdS;x S* vacua of M theory are described by a fixed point  we have, in this case, to consider the superspace formu-
in superspace, where all components of torsion, curvaturgtion of type 11B supergravity. This was constructed 112].
and 4-form are covarlantly constant. To prove this it is suf- The background has a nonzero five-form field Strength

ficient to prove that the superfiel,s,(X, #) is supercova- and a nonzero curvature. These split into the AdS part and
riantly constant(since all other superfields can be derivedihe sphere part. For the AdS part, we have
from it).

The lowest component of the superfiald according to e €€mnpst (33
Eq. (26), is given by the form field strength. In the AdS
case, we havé 1,3 €g103, and in the Adg case, we have e?
F 45678016= €a5678910 These are manifestly covariantly con- RAIS | Ps= — 16 T Tm7h),
stant. (34)

The next component of the superfield, as shown in Eq.
(27), is the gravitino field strength and this vanishes sincewhere the indices run over the AdS indid@sto 4), and for

our vacua are purely bosonic. the sphere part, we have
The next component of the superfield is bosonic and is
shown in EQ.(28). Remarkably, it vanishes as wélis can gﬁf‘npph)sﬁ €€mnpst (35
be verified by explicit computation
The remaining higher components are given by some de- s e? s s
rivatives of the previous ones and therefore all vanish. Put- R( ph)mnpszl—G(ﬂﬁqﬂn_ M) (36)

ting these facts together, we see that the superfield

Wistu(X, 0) is supercovariantly constant. where the indices now run over the sphere indigso 9.

The vanishing of theg” component of the superfield is The important point about these values is that again, all the
related to the fact that these vacua have maximal supersymensors are covariantly constantXaspace.

metry. The integrability condition for the requirement that  The on-shell superspace description of type IIB string

the bosonic configuration admits maximal unbroken 32+theory is related tdN=2, d=10 chiral supergravity12].

dimensional supersymmetry is The superspace has some constrained torEfgn, Lorentz
curvatureR}idB andU(1) curvatureM 55 . Besides, there are

Ssusylr =D e+ TVYeF ,w=0. (300  the 3-formFagc, the 5-form Gagep and the scalar field

strengthP, .

It was shown if{15] (in the context of the study of the near !N the full non-linear theory there are two superfields,

horizon Killing spinors of M2 and M5 brangthat this equa- A ,(X,6,0) and Z;,.4dX,6,6). All geometric tensors are

tion yields functionals of these superfields and their covariant deriva-
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tives. A, (X,0,0) starts with the dilatino andz;, .4 spinors for the D3 branes near the horizon was established in
_ 1/192(§abcde starts  with the self-dual B-form L15]. This transfers to the statement that for the supersym-

H 5
1/192 504 X). Even though there is only one supermultip- Metric Ad$X S” vacuum we have
let, the second superfield is not a derivative of the first. The -
scalars of this theory belong to the coset space of OsusWVirpg =0. (38

SU(1,1)/U(1). Theconstruction in fact starts with the su- _ . . ) . . )
(L) This is the integrability condition for the requirement that the

perfield V(X, 6,6) which is an element 0BU(1,1). From  oq0nic  configuration admits maximal unbroken 32-
this aSU(1,1) singletP  is built where the scalars appear. In gimensional supersymmetry.

this form scalars can be found in derivatives/Aof(X, 6, 6). What we see is that the variation of the gravitino field
In the linear approximation one can also consider an anastrength vanishes. This also implies that the problematic ex-

lytic superfield A with D,A=0 and the constrainD*A  Pressions in the two superfields also vanish. This then im-

—D*A. This superfield in the proper basis depends only orP”eS that the superfields are supercovariantly constant.
half of the components of the superspace. The superinvari- L(_et_ us .IOOk at this from theﬁsuperspace perspectwe_. The
ants of the typeR? can be analyzed as superspace integral@rav't'no fle!sd ;trength forms ag, comppnent of the torsion
over 16 6. The #* component of this linear superfield is a €nSor and'y, is a function of the form field. The superspace
Wey! tensor. This automatically proves that the higher di-Bianchi identity defines the fermionic derivative of the tor-
mension operator with four powers of the Weyl tensor will SIN through
not change the background, which is conformally invariant 5 s s e 5
[4]. In what follows we will not use the linearized approxi- Rab,y"=DyTap+{DaThy* TayThe
mation and study the full theory. T ?Tbj—(a—b)}—iﬁ‘sM .

The first step, as before, is to prove that all the superfields ay be e
are supercovariantly constant in this background. For the su- 1 4

7 =—(o )yRab,cd- (39)

perfield A (X, 6,6), the lowest component is the dilatino, 4

which automatically vanishes in this background. The next

component involves the 3-form field strength, which is alsoThe termDyTgb vanishes due to the Killing spinor equation,

automatically zero. The following component is the gravitinothe termDaTg7 vanishes since our form is covariantly con-

field strength which is also zero. However, at orddiin the  stant inX space. FinallyM ,;, vanishes for our background.

superfield, we have a non-trivial expression involving theWe are left with

curvature. We must show that this expression is zero.
The story is similar for the second superfi& . The . = 1

lowest (bosoni¢ component is the 5-form figjdmgtrength, Rab,y"= TayToe"™ Tay Toe’ —(a— b)_Z("Cd)iRabvcd'

which, as mentioned before, is covariantly constant in our (40)

vacuum. The next component is the gravitino field strength,

which vanishes. However, at ordé?, we obtain a non- This coincides with the integrability condition for the exis-

trivial expression involving the curvature. Again, we musttence of 32 unbroken supersymmetries and proves that the

show that this expression is zero. _ superfieldZ;, .q4d X, 6, 6) is covariantly constant and that all
o 5 ufin o rove 11 e 10 BT g f v supert .1 vansh
: To prove that the AdS< S® vacuum is exact we have to

fields are related to derivatives of the components aIreadg S . ) e
. -study the possibilities to modify the equations of motion in
referred to. Hence, if we can show that these problemati is vacuum

expressions vanish, we will have shown that the superfiel The equations of motion are those for the dilatino super-

A, is |dgnt|;:|ally ze;o, tand that the superfielg,cq. is su- field and the one for the gravitino as in previous cases. The
pefotvarlllan yconsbatnh. th bl i . equations of motion for bosonic fields come out as some

clually, since both these problematic expressions ar?ligher components of these fermionic equations. Following
preceded in the superfield by the gravitino field strength,[he same reasoning as in previous cases we may conclude
o ) fhat higher dimension supersymmetric operators cannot
gravitino field strength under supersymmetry tranSfO"n""'r'nodify this vacuum defined by a covariantly constant super-
tions.

. . . . field.
We will again use the existence of maximal supersymme-

try in this background to help us analyze this situation. The
Killing spinor equation is VI. NEW SUPERGEOMETRIES

In this section, we will present a description of the AdS
37) XS, AdS,XS; and AdSXS; geometries in superspace.
This provides an invariant description of these geometries,
much as the equatioR,s;,= — K2( 7t 7su— ru7st) Provides
As in the previous case of M2 and M5 branes near the horian invariant description of anti—de-Sitter geometry. We be-
zon, the integrability condition for the existence of such 32gin with the two M-theory solutions.

i 1 abcd
Ssusw =V, e—i @grabcda e=0.
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In the coordinate system in which the lowest componenhorizon M2 brane and that of the near horizon M5 brane. In
is also independent of the superfield is given by a constant the string case we have two vacua, the flat superspace and

completely antisymmetric tensor, for=2, that of the near horizon D3 braR&he X space geometry of
these configurations, X S97P~2 with forms was
l.vac PPN h f-g i AQSZ Sd P2 ith
W= €rsia,  7,8=0,1,2,3. (41)  found in[17]. Here we found the supergeometry of these

three vacua of M theory and two vacua of string theory.

Since all the components of torsion and curvature in super-
wmavac_; . (42) space for all these vacua are found to be supercovariantly
constant(and actually constant in the coordinate system re-

These tensors break the structure group of the superspat&ed to the near horizon geometry of branes concluded
SO(1,10) to the productSO(1,3)xSO(7) and SO(1,6) that there are no corrections modifying such vacua.
X SO(4), respectively. Now we can give a superspace defi- Although we have established that the form of the geom-
nition of the AdSx S’ and AdSxS* vacua of M theory €try is unchanged, we cannatpriori exclude a change in
where all components of torsion, curvature and forms aréhe values of the parameters. We believe, however, that in
covariantly constant. In addition to the flat superspace strudghese cases, the Dirac quantization condition fixes the flux of
tures, which are independent &, we have a few more the field strength through the sphere to be an integer, and
X, 6-independent components of supercurvature and supethus the flux should not be affected by small deformations.
torsion (we only give the nonzero valuges This fixes the parameters of the solution in terms of the
Planck length. In addition, the Planck length may itself be
renormalized from its bare value, because we cannot ex-
clude, via this analysis, the appearance in the effective action
L of terms proportional to the original equations of motion
_ L\pac rpst mn_ . Oc\mNWwzwpac (which vanish on shell
TZr_EWpSt”(TE Ve Rag=(¥"S)ap™ " Wawow: In even dimensions for the self-dual vaocdSsx S° and
(44  AdS,xS? the transformation of the gravitino field strength
L can be brought to a form which depends on the Weyl tensor
[ . _ tUOW XY ZD1 a AC \ A DAC and derivatives of the form field. In particular it means that
RFSM—ZRVS (ymn)?7= = [T, T p]WthWWXVZP' Eq. (40) can be rewritten using Einstein’s equation and one
(45  finds that it is equivalent to the vanishing of the Weyl tensor.

) It is then simple to observe that itilse conformal flatness of
where for the constant tensov§;s;, we have to substitute these vacueand the fact that the form is constant, which
their values(41) or (42) for each vacuum. The value of the force the superfields to be supercovariant. This was the ar-
spacetime curvature in E¢A5) precisely shows that the Kill- - gument used 10,11 with respect to Bertotti-Robinson
ing spinor integrability equation(31) is satisfied since vacuum and for the analysis &* terms in[4]. Now how-

and forp=>5 by a dual one:

[ 1
Top= =57V )ap: Freap=—5 (F¥odap, (43

DFtuw=0 for both vacua. ever we see that this is only a part of a larger pictimeodd
For the Ad3X Ss background, we have dimension where there are both electric as well as magnetic
c . ) supersymmetric vacua which are dual to each other, the met-
T.5= "1(0%ap Fagy=—1(0a)g,y, (49 ric of AdS,; xS P~ 2 s not conformally flaf18]. Still the
integrability condition for the existence of theaximal un-
Fagy=—1(0 sy Gabcap=(Tabdap: (47)  broken supersymmetas shown e.g. in the M-theory case in

_ Eq. (28) provides the crucial vanishing of the component of
T7 .= '_( bedeyy (48) the basic superfield depending on the curvature.
as~ 1927 pYabcde: Given the strong argument for the exactness of both
the  maximally  supersymmetric  flat  superspace
7 cdeny SO(1,d—1)-symmetric vacuum and the compactified ones
TaE_ @(" e)ﬁgabcde' (49 with SO(1p+1)XSO(d—p—3) symmetry, it is tempting
to speculate that the branes which accordinflfd interpo-

1 late between these vacua may also be proven to be exact.

Ragab=— 2—4(0°de)aggabcde, (50)  This however may be more difficult to establish since only
1/2 of unbroken supersymmetry is available. The second half
Rab,yézTayéTbeﬁ_Tay?Tb?é_(a_b)- (51) of supersymmetries which are broken generate ultrashort

multiplets, and all relevant superfields are not covariantly
constant but ultrashokdepend on half o#'s). Recently an
VII. DISCUSSION absence of corrections froR* terms to equations for

We have established that the A4S S%~P~2 vacua of
M theory and string theory are uncorrected by higher-
dimension supersymmetric operators. Thus we have thre€’t has been anticipated ifl6] that the exactness of AgSS®
distinct vacua in M theory, flat superspace, that of the neamay be derived using 32 unbroken supersymmetries.
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