
PHYSICAL REVIEW D, VOLUME 58, 125001
Perturbative expansion around the Gaussian effective potential of the fermion field theory
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We have extended the perturbative expansion method around the Gaussian effective action to fermionic field
theory, by taking the two-dimensional Gross-Neveu model as an example. We have computed both the zero-
temperature and the finite-temperature effective potentials of the Gross-Neveu model up to the first perturba-
tive correction terms, and have found that the critical temperature, at which dynamically broken symmetry is
restored, is significantly improved for the small value of the flavor number.@S0556-2821~98!09920-2#

PACS number~s!: 11.15.Bt
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I. INTRODUCTION

One of the most important problems in quantum fie
theory is to develop efficient methods of the nonperturba
approximation. The variational Gaussian approximat
method has provided an efficient and convenient device
obtaining nonperturbative information from various quantu
field theories@1#. The variational method, however, has
serious shortcoming in that it does not provide a system
technique to compute the correction terms to the approxi
tion. Efforts to establish a systematic method to improve
variational approximation have been made by the author
Refs.@2# and @3#.

Recently, a systematic method of perturbative expans
around the Gaussian effective action~GEA! @4# has been
developed based on the background field method@5#. This
method provides an efficient device to compute the gene
ing functionals for the one-particle-irreducible Green’s fun
tions in perturbation series, whose zeroth-order term is
GEA. For the effective potentials of time-independent s
tems, the result of this method is the same as that of
variational perturbation theory developed by Cea and
desco@3#. It has been shown, for the quantum mechani
anharmonic oscillator, that the perturbative correction gre
improves the Gaussian approximation even at the first n
trivial correction level@4#.

It is the purpose of this paper to extend the perturba
expansion method around GEA to the case of fermionic fi
theories. In the next section a brief review on backgrou
field method is given. We then develop the perturbative
pansion method around GEA for the two-dimensional Gro
Neveu model. In Sec. III, we evaluate the finite-temperat
effective potential for the Gross-Neveu model@6#, and show
how the perturbative correction improves the critical te
perature, at which dynamically broken symmetry is restor
from that of the Gaussian approximation. We conclude w
some discussions in the last section.
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II. PERTURBATIVE EXPANSION AROUND
THE GAUSSIAN EFFECTIVE ACTION

OF THE GROSS-NEVEU MODEL

To give a brief review on the background field meth
@5#, we start from the action

S@f#5E ddxL@f~x!,]mf~x!#, ~1!

in the d-dimensional space time, wheref can be a bosonic
or fermionic field variable. The generating functional f
Green’s functions is defined by

^01u02&J[eiW[E DweiS[w] 1 iJw, ~2!

whereW@J# is the generating functional for the connect
Green’s functions,J is the external source, and the integr
convention,Jf[*ddxJ(x)f(x), is used in the exponent
The vacuum expectation value of the field operator in
presence of external source is defined by

ŵ[^f~x!&J5
d

dJ~x!
W@J#, ~3!

and the effective action is defined by the Legendre trans
mation,

G@ŵ#[W@J#2ŵJ. ~4!

The functional derivative ofG@ŵ# with respect toŵ gives

d

dŵ
G@ŵ#52J, ~5!

which is of the same form as the classical equation of m
tion.

We now introduce a new actionS@f1B# obtained by
shifting the fieldf by a background fieldB. This new action

defines a new effective actionG̃@w̃,B#, where w̃ is the
vacuum expectation value off field in the presence of the
background fieldB. One can then show that the effectiv
action ~4! can be represented as
©1998 The American Physical Society01-1
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G@ŵ#5G̃@w̃50,B#uB5ŵ . ~6!

In other words, the effective actionG@ŵ# can be obtained by
summing all the one-w̃-particle-irreducible diagrams with n
externalw̃ lines. This greatly simplifies the perturbative com
putation of the effective action.

It has been shown in Ref.@4# that one can rearrange th
diagrams in the effective action~6! in such a way that the
propagator used in the perturbative expansion becomes
of the Gaussian approximation, and the zeroth-order term
the effective action consists of the GEA.

To extend this method to the case of fermionic field the
ries, we consider the two-dimensional Gross-Neveu mo
@6# described by the Langrangian density,
se
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L05c̄ai ]”ca2gc̄acas2
1

2
s2, a51,2,3 . . .N, ~7!

whereca is a two-dimensional Dirac field witha denoting
the flavor component. The generating functional for Gree
functions is then given by

Z@h,h̄,J#5E Dc̄DcDsei *d2xL01 i h̄c1 i c̄h1 isJ. ~8!

We are interested in the effective action as a functional of
vacuum expectation value of the composite field opera

^s&52g^c̄c&, and thus we shift only the composite oper
tor; s→s1B. Then the generating functional for th
Green’s functions in the presence of the background fielB
is given by
Z̃@h,h̄,J,B#5E Dc̄DcDsei *d2xc̄ i ]”c21/2 ~s1B!22gc̄c~s1B!1 i h̄c1 i c̄h1 isJ

5e2~ i /2!B2
e2 iB~d/ idJ!eig~d/ idh!~d/ i h̄ !~d/ idJ!E Dc̄DcDsei *d2xc̄K21c1 i h̄c1 i c̄h1 isJ

5det~K21!det~2 iK B
~1/2!!e2~ i /2!B2

e2 iB~d/ idJ!e2g~d/dha!~d/dh̄a!~d/dJ!eh̄Kh1~1/2!JKBJ, ~9!
q.

ba-
as

nc-

r to
where

K2152~]”1 igB!,

KB
2152 i . ~10!

The first three factors of the last line of Eq.~9! represent the
one-loop effective action, and the remaining factor, upon
ting s̃5(1/i )(d/dJ)log Z̃@h,h̄,J,B#50, gives the higher
loop contributions to the effective action. Note that the f
mion propagator in Eq.~10! already contains the interactio
effect through the background fieldB, which is the reason
why the procedure of computing higher loop contributions
simplified.

In order to rearrange the generating functional so that
functional derivative terms in Eq.~9! represent the perturba
tive expansion around GEA, we follow the procedure of R
@4#. To do this, we consider the following relation:

d

dha
x

d

dh̄a
x

d

dJx
eh̄Gh1~1/2!JGBJ

5@Gaa
xx1~Gh!a

x~ h̄G!a
x#~GBJ!xeh̄Gh1~1/2!JGBJ, ~11!

where the repeated indexx implies the integration overx,
andG andGB are arbitrary two-point Green’s functions fo
fermionic and bosonic fields, respectively. Note that this ty
of functional derivative appears in the expansion of the fu
tional derivative factor in Eq.~9!. Equation~11! contains a
diagram where an internal line coming out of a point go
t-

-

s

e

.

e
-

s

back to the same point~cactus-type diagram! which con-
stitues GEA, i.e., the first term in the right-hand side of E
~11!.

To extract such cactus-type diagrams out of the pertur
tive expansion, we define the primed functional derivative

S d

dha
x

d

dh̄a
x

d

dJxD 8
[

d

dha
x

d

dh̄a
x

d

dJx
1Gaa

xx d

dJx
. ~12!

Then the primed derivative acting on the generating fu
tional becomes

S d

dha
x

d

dh̄a
x

d

dJxD 8
eh̄Gh1~1/2!JGBJ

5~ h̄G!a
x~Gh!a

x~GBJ!xeh̄Gh1~1/2!JGBJ, ~13!

which does not contain any cactus-type diagrams. In orde
express the generating functional~9! in terms of the primed
derivative, we need to find Green’s functionsG and GB
which satisfy

e2g~d/dha!~d/dh̄a!~d/dJ!eh̄Kh1~1/2!JKBJ

5NeA~d/dJ!e2g„~d/dha!~d/dh̄a!~d/dJ!…8eh̄Gh1~1/2!JGBJ.

~14!

By using the definition of the primed derivative~12!, we
easily findG, GB , N, andA that satisfy Eq.~14!:
1-2
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N51, A52gGaa , G5K, GB5KB , ~15!

where the new Green’s functionsG andGB are the same a
those of Eq.~10!. The reason why the Green’s functionsG
andGB are simple in this case is that we have introduced
composite operators, which turns the four-fermion interac
tion into the three-particle interaction. From Eqs.~9! and~14!
one finally obtains the effective action:

eiG[B]5Z̃@h,h̄,J,B#u s̃50

5det~K21!det~2 iK B
1/2!e2~ i /2!B2

I @B#, ~16!

where

I @B#5e2~B1gKaa!~d/dJ!e2g„~d/dha!~d/dh̄a!~d/dJ!…8

3eh̄Kh1~1/2!JKBJu s̃50 . ~17!

Since the functionalI @B# does not contain any cactus-typ
diagrams, the coefficient ofI @B# in Eq. ~16! gives rise to the
GEA, as in the case of scalarf4 theory @4#. SinceI @B# can
be expanded as a power series in the coupling constantg, we
have the perturbative expansion of the effective act
around GEA.

The linear term in the exponent of Eq.~17! generates
tadpole diagrams, which do not contribute to the effect
action @4#. Note that Eq.~17! has the same structure as t
higher-order contribution part of Eq.~9! except that Eq.~17!
involves only the primed derivative. We can therefore co
pute the perturbative correction terms to GEA using the sa
procedure as the conventional background field method
using the Feynman rule~in momentum space!,

propagators:K5
i

g•p1m
, m5gB, KB5 i ,

vertex: 2g,

loop integral: E d2p

~2p!2
. ~18!

Thus the perturbative correction,I @B# to GEA, consists of
one-s̃-particle-irreducible bubble diagrams with no extern
lines and without cactus-type diagrams, as in the case of4

theory @4#.
Up to the first nontrivial contribution fromI @B#, the ef-

fective action for the Gross-Neveu model can easily
shown to be

G52 iTr ln~K21!2
1

2
B21 ig2~KB!xy~Kca!xy~Kac!xy ,

~19!

where the first two terms are the GEA and the last term is
first-order perturbative correction to GEA.

The effective potential is defined by
12500
e

n

e

-
e
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Ve f f@B#[2
G@B#

E d2x

, ~20!

where B is the space-time–independent background fie
Thus the effective potential of the Gross-Neveu model, up
the first-order perturbative correction term, is given by

Ve f f~m!5VG~m!1VP~m!, ~21!

whereVG is the Gaussian effective potential,

VG5
1

2
B22NE dp

2p
Ap21m25

m2

2g2
1

Nm2

4p2 S ln
m2

L2
21D ,

~22!

andVP is the perturbative correction,

VP5
N

2
g2m2F E dp

2p

1

Ap21m2G 2

5
Ng2

8p2
m2S ln

m2

L2D 2

,

~23!

with L being the ultraviolet momentum cutoff.
To extract physical information from the effective pote

tials VG or Ve f f , we need to renormalize them. We ca
renormalize the effective potentials by requiring the ren
malization conditions,

d2V

dm2U
m5m0

5
1

gR
2

, ~24!

gs5gRsR , ~25!

wherem0 represents a renormalization point.
For the Gaussian effective potential,VG , the renormaliza-

tion condition becomes

d2VG

dm2 U
m5m0

5
1

gR
2

5
1

g2
1

N

2pS ln
m0

2

L2
12D . ~26!

Substituting Eq.~26! into Eq.~22!, one obtains the renormal
ized Gaussian effective potential,

VG5
1

2

m2

gR
2

1
Nm2

4p S ln
m2

m0
2

23D , ~27!

which is equivalent to that of the large-N approximation@6#.
For the perturbatively corrected Gaussian effective pot

tial, Ve f f of Eq. ~21!, the renormalization condition~24! be-
comes

d2V

dm2U
m5m0

5
1

gR
2

5
1

g2
1

N

2pS ln
m0

2

L2
12D

1
Ng2

4p2F ln
m0

2

L2
216 ln

m0
2

L2
14G . ~28!
1-3
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Requiring that the renormalized coupling constantgR be fi-
nite, we find the condition

g25pS 216A12
4

ND Y ln
m0

2

L2
~29!

for which the effective potential can be made finite. The c
of the negative sign in Eq.~29! leads to unphysical theory
Taking the case of the positive sign in Eq.~29!, we finally
obtain the renormalized effective potential,

V5
1

2

m2

gR
2

1NA12
4

N

m2

4pS ln
m2

m0
2

23D , ~30!

which clearly shows that the higher-order corrections to
Gaussian or the large-N approximation. This shows that ou
method is meaningful whenN is larger than 4 for the Gross
Neveu model.

III. EFFECTIVE POTENTIAL AT FINITE TEMPERATURE

To illustrate how our method improves the Gaussian
proximation, we compute the first nontrivial perturbati
tia

it

12500
e

e

-

correction term to the Gaussian effective potential at fin
temperature and evaluate the critical temperature, by u
the imaginary time formulation of the finite-temperatu
quantum field theory. The generating functional for the th
mal Green’s functions is given by

Zb@J#5NE
periodic

Dwe*0
bdt*dxL~w,ẇ !1wJ, ~31!

where t is the imaginary time with periodb, the inverse

temperature,ẇ5]w/]t, and the functional integration is
performed only for the periodic fieldw. Since the finite-
temperature generating functional~31! is of the same form as
the zero-temperature generating functional~2! except that it
is defined in Euclidean space with periodic boundary con
tions, we can evaluate the perturbative expansion by follo
ing the same procedure as in the last section, except tha
Feynman rule is now modified by
propagator:
i

g•p2m
, pm5~p05 ivn ,p1!, vn5~2n11!pb21,

loop integration:
i

b (
i 52`

` E dp

2p
. ~32!
po-

ial.
ite
One can then find the finite-temperature effective poten
up to the first perturbative correction,

Ve f f
b ~s!5

1

2
s222NE dp

2pFv2 1
1

b
ln~11e2bv!G

1
Ng4s2

2 F E dp

2p

1

vS 12
2

ebv11
D G 2

, ~33!

wherev5Ap21g2s2.
To renormalize the effective potential~33!, it is conve-

nient to separate the zero-temperature and the fin
temperature parts of the effective potential:

Ve f f
b 5V01Vb , ~34!

where

V05
1

2
s222NE dp

2p

v

2
1

g2m2N

2 F E dp

2p

1

vG2

, ~35!
l,

e-

Vb522N
1

bE dp

2p
ln~11e2bv!

2g2m2NF E dp

2p

1

vGF~b,m!

1
g2m2N

2
@F~b,m!#2, ~36!

with m5gs andF(b,m) are defined by

F~b,m![E dp

2p

1

v

2

ebv11
. ~37!

We note that the zero-temperature part of the effective
tential ~35! is the same as Eq.~34! of the last section, and we
need only to renormalize this part of the effective potent
Thus we have the renormalized effective potential at fin
temperature,

Ve f f
b 5

1

2

m2

gR
2

1NA12
4

N

m2

4pS ln
m2

m0
2

23D 1Vb , ~38!
1-4
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wherem5gRsR . SinceF(b,m) is finite, the renormaliza-
tion condition~29! reduces the finite-temperature part of t
effective potential,Vb , to

Vb522N
1

bE dp

2p
ln~11e2bv!

2
N

2pF12A12
4

NGm2F~b,m!. ~39!

The symmetry that is broken at zero temperature is
stored as temperature increases beyond the critical temp
ture. It is well known that the critical temperature should
zero in two-dimensional space time@7#, while the large-N @8#
and the Gaussian approximations of the Gross-Neveu m
imply the nonvanishing critical temperature. To see how
perturbatively improved Gaussian approximation improv
this result, we now evaluate the critical temperature from
effective potential~39!.

Dynamical symmetry breaking in the Gross-Neveu mo
is manifested by the fact that the minimum of the ze
temperature effective potential occurs at the nonvanish
value of the composite field,sR5sm , which breaks the
symmetry of the classical potential, i.e., the symmetry un
s→2s. sm is determined by

dV0

ds U
s5sm

511NA12
4

N

g2

2pS ln
sm

2

s0
2

22D 50. ~40!

As the temperature increases, the value ofsm(b) at which
Ve f f

b is minimized decreases. At the critical temperature,Tc

51/bc , sm(b) vanishes, which implies symmetry restor
tion. Thus the critical temperature is determined by

dV

ds U
sR5sm~bc!50

50, ~41!

which, together with Eqs.~38! and ~39!, gives the value of
the critical temperature,

Tc50.57gRsm . ~42!

Due to Eq.~40!, this can be written as

Tc50.57gRs0expF 12
p

gR
2

1

NA12
4

N
G , ~43!
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wheres0 represents the renormalization point. The critic
temperature in the Gaussian approximation can similarly
obtained:

Tc
gaussian50.57gRsm

gaussian50.57gRs0expF12
p

gR
2

1

NG .

~44!

Although the critical temperatureTc from the perturbatively
corrected Gaussian approxmation does not vanish, i
smaller than that of the Gaussian approximation. This sho
that the perturbatively improved Gaussian approximat
significantly improves the critical temperature for smallN,
the flavor number of the fermion field even at the first-ord
correction level.

IV. DISCUSSION

We have extended the method of the perturbative exp
sion around GEA developed in Ref.@4# to the fermionic field
theory, taking the Gross-Neveu model as an example. T
method is based on the observation that the Gaussian e
tive action consists of cactus-type diagrams, which are
tracted out of the functional derivative part of the effecti
action, i.e., the last two factors of the last line of Eq.~9!, by
introducing the primed functional derivative defined in E
~12!. This procedure effectively rearranges the diagrams
such a way that the zeroth-order term of the effective act
consists of the GEA. Due to the introduction of the compo
ite field, s52gc̄c, as an order parameter, the expans
works only for the flavor numberN larger than 4.

In the last section the finite-temperature effective pot
tial of the Gross-Neveu model is obtained up to the fi
nontrivial perturbative correction terms, and the critical te
perature, at which the dynamically broken symmetry is
stored, is evaluated. The result shows a significant impro
ment of the critical temperature compared to the Gauss
and the large-N results for small values of the flavor numbe
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