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Perturbative expansion around the Gaussian effective potential of the fermion field theory
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We have extended the perturbative expansion method around the Gaussian effective action to fermionic field
theory, by taking the two-dimensional Gross-Neveu model as an example. We have computed both the zero-
temperature and the finite-temperature effective potentials of the Gross-Neveu model up to the first perturba-
tive correction terms, and have found that the critical temperature, at which dynamically broken symmetry is
restored, is significantly improved for the small value of the flavor nun{l89556-282(98)09920-2

PACS numbes): 11.15.Bt

I. INTRODUCTION 1. PERTURBATIVE EXPANSION AROUND
THE GAUSSIAN EFFECTIVE ACTION

. . . OF THE GROSS-NEVEU MODEL
One of the most important problems in quantum field

theory is to develop efficient methods of the nonperturbative To give a brief review on the background field method
approximation. The variational Gaussian approximatior[5], we start from the action
method has provided an efficient and convenient device in
obtaining nonperturbative information from various quantum :J' d
field theories[1]. The variational method, however, has a SLe] IXLLH(x). 0, (X)), @
serious shortcoming in that it does not provide a systematic _ _ ) .
technique to compute the correction terms to the approximdl the d-dimensional space time, whege can be a bosonic
tion. Efforts to establish a systematic method to improve thé’ ferr,nlonlc f|eld .vanatl)le. The generating functional for
variational approximation have been made by the authors O(TSreen s functions is defined by
Refs.[2] and[3].

Recently, a systematic method of perturbative expansion (0+|O—>JEeiWEf Dye!Sleltide, 2
around the Gaussian effective acti6cBEA) [4] has been
developed based on the background field metfld This  \nare\W[J] is the generating functional for the connected
method provides an efficient device to compute the generaig een's functions is the external source, and the integral
ing functionals for the one-particle-irreducible Green’s func'convention,quEfdde(x)¢(x), is used in the exponent.

tions in perturbation series, whose zeroth-order term is thg§ne vacuum expectation value of the field operator in the
GEA. For the effective potentials of time-independent sysyresence of external source is defined by

tems, the result of this method is the same as that of the
variational perturbation theory developed by Cea and Te- . )
desco[3]. It has been shown, for the quantum mechanical <PE<¢(X)>J:5J(X)W[J], 3
anharmonic oscillator, that the perturbative correction greatly
improves the Gaussian approximation even at the first nonand the effective action is defined by the Legendre transfor-
trivial correction level[4]. mation,

It is the purpose of this paper to extend the perturbative
expansion method around GEA to the case of fermionic field T[o]=W[J]- ¢J. (4)
theories. In the next section a brief review on background
field method is given. We then develop the perturbative ©XThe functional derivative of [ %] with respect top gives
pansion method around GEA for the two-dimensional Gross-
Neveu model. In Sec. lll, we evaluate the finite-temperature P
effective potential for the Gross-Neveu mof{ie], and show —TI[e]=-1J, (5)
how the perturbative correction improves the critical tem- op
perature, at which dynamically broken symmetry is restored, ) )
from that of the Gaussian approximation. We conclude withWhich is of the same form as the classical equation of mo-

some discussions in the last section. tion. , _ _
We now introduce a new actioB[ ¢+ B] obtained by

shifting the field¢ by a background fiel@. This new action

defines a new effective actioi[¢,B], where g is the

*Email address: ghlee@theory.yonsei.ac.kr vacuum expectation value @b field in the presence of the
"Email address: thlee@theory.yonsei.ac.kr background fieldB. One can then show that the effective
*Email address: jhyee@phya.yonsei.ac.kr action (4) can be represented as
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I[¢]=T[¢=08]5; 6) Lo:@m%—g%zpaa—%az, @=123.. N, (7

In other words, the effective actidi{ ¢] can be obtained by Whered, is a two-dimensional Dirac field witlr denoting
summing all the on@s-particle-irreducible diagrams with no the flavor component. The generating functional for Green's

~ . . N . functions is then given by

externaly lines. This greatly simplifies the perturbative com-
putation of the effective action. — — PPN — =

It has been shown in Ref4] that one can rearrange the Z[”v”"]]zf DyDyDoe!Fxbotini=iintiod — (g)
diagrams in the effective actiof®) in such a way that the
propaga’[or used in the perturba‘[ive expansion becomes thwe are interested in the effective action as a functional of the
of the Gaussian approximation, and the zeroth-order term ofacuum expectation value of the composite field operator,
the effective action consists of the GEA. (o)=—g{y), and thus we shift only the composite opera-

To extend this method to the case of fermionic field theotor; o—o+B. Then the generating functional for the
ries, we consider the two-dimensional Gross-Neveu modereen’s functions in the presence of the background feld
[6] described by the Langrangian density, is given by

2[ 77’;,\],8] _ J' Dapwpaeifdzx%ﬂ./ﬁ 1/2 (o+B)2—gyg(o+B) +iny+ign+icd

_ e—(i/2)Bze—iB(5/i5J)eig(5/i5n)(5/i;)(5/i5J)j DEDlpDUeifdszK*lwi;¢p+i%+iaa

:de(Kfl)de(_iKEl/Z))ef(iIZ)BzefiB(é‘/i6J)efg(é‘léna)(6/6;3)(6/§J)e;K7;+(l/2)JKBJ, (9)
|
where back to the same poinfcactus-type diagrajnwhich con-
. _ stitues GEA, i.e., the first term in the right-hand side of Eq.
K™"=—(4+igB), (11).
. _ To extract such cactus-type diagrams out of the perturba-
Kg =—i. (100 tive expansion, we define the primed functional derivative as
The first three factors_ of the last line of_E@) represent the s 5 s\ 5 & & 5
one-loop effective action, and the remaining factor, upon set- — | = — —+GX—. (12
L~ B — . . onl Sk 83| onk oyl 8¢ s
ting o=(1/)(8/8J)logZ[ 5,1,J,B]=0, gives the higher Ma ©7a Ma ©7a

loop contributions to the effective action. Note that the fer-
mion propagator in Eq(10) already contains the interaction
effect through the background fiel, which is the reason

Then the primed derivative acting on the generating func-
tional becomes

why the procedure of computing higher loop contributions is ,
simplified. 0 0 0} aren+26y
In order to rearrange the generating functional so that the Sn} Sy 83

functional derivative terms in Eq9) represent the perturba- L _
tive expansion around GEA, we follow the procedure of Ref. =(7G)X(G7)X(Ggd)Xe7Cnt(1/23Ge], (13
[4]. To do this, we consider the following relation:
which does not contain any cactus-type diagrams. In order to
5 &6 § G+ (1/2)3Gg) express the generating fgnctior(ﬁ) in terms pf the primed
S oo 59 derivative, we need to find Green’'s functio® and Gg
Ta ©7a which satisfy

— XX X/ ~\X X ;Grl+(1/2).]G J _ _
[Gaa+(G7])a( WG)a](GBJ) € B 1 (11) efg(ﬁ/ﬁﬂa)(ﬁ/&?a)(5/53)e77K77+(1/2)JKBJ
where the repeated indeximplies the integration ovex,

! ] : _ (5183) 5= 9(( 81 872) (8 57) (81 53)) amGn+(1/2)IGgd
and G and Gy are arbitrary two-point Green'’s functions for Ne* e : : e o

fermionic and bosonic fields, respectively. Note that this type (14)
of functional derivative appears in the expansion of the func-
tional derivative factor in Eq(9). Equation(11) contains a By using the definition of the primed derivativ&2), we

diagram where an internal line coming out of a point goeseasily findG, Gg, N, andA that satisfy Eq(14):
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N=1, A=-09G,,, G=K, Gg=Kg, (15 I'[B]

Vet B]=— ,

where the new Green'’s functiod and Gg are the same as f d?x
those of Eq.(10). The reason why the Green’s functio@s

andGg are simple in this case is that we have introduced th§yhere B is the space-time—independent background field.
composite operatosr, which turns the four-fermion interac- Ty the effective potential of the Gross-Neveu model, up to
tion into the three-particle interaction. From E¢®.and14)  the first-order perturbative correction term, is given by

one finally obtains the effective action:

(20

_ Ver(mM)=Vg(m) +Vp(m), (21
eTB1=7[5,9,9,B][;-
L7 15=0 whereV is the Gaussian effective potential,

=de(K Hdet( —iK5?e "2FI[B], (1) .
V—152 Nfdp\/ﬁ_m+Nm

°73 2 P T e

where

I[B]= e—(B+gKaa)(5/§J)e—g((§/5na)(6/§;a)(5/6J))’ . . .
andVp; is the perturbative correction,

f dp 1 > Ng? o[ | m?\ 2

Since the functional[ B] does not contain any cactus-type 27 \[p?+m? 8772m nA2 '

diagrams, the coefficient ¢f B] in Eq. (16) gives rise to the (23

GEA, as in the case of scalar* theory[4]. Sincel[B] can _ _ _

be expanded as a power series in the coupling congtame ~ With A being the ultraviolet momentum cutoff.

have the perturbative expansion of the effective action 10 extract physical information from the effective poten-

around GEA. tials Vg or Ve¢s, We need to renormalize them. We can
The linear term in the exponent of E€l7) generates renormalize the effective potentials by requiring the renor-

tadpole diagrams, which do not contribute to the effectivemalization conditions,

action[4]. Note that Eq(17) has the same structure as the

XE;Kn+(l/2)JKBJ|;_O_ (17)
B N
VP:Egzm2

higher-order contribution part of E¢Q) except that Eq(17) dz_V _ i 24)
involves only the primed derivative. We can therefore com- dm? - gé’
pute the perturbative correction terms to GEA using the same Mm=Mo
procedure as the conventional background field method, by
using the Feynman rulén momentum spage 97=0roR, (29)
. wherem, represents a renormalization point.
: , m=gB, Kg=i, For the Gaussian effective potentidll; , the renormaliza-

ropagators: K =
propag y-ptm tion condition becomes

vertex: —g, d?vg 1 1 N[ m}
=—=—+—In—+2]. (26)
dm? gr g7 27\ A?
dzp m=mg
loop integral: f . 18 . . .
pinteg (2m)? (18) Substituting Eq(26) into Eq.(22), one obtains the renormal-

ized Gaussian effective potential,

onew-particle-irreducible bubble diagrams with no external Ve=— — +
lines and without cactus-type diagrams, as in the casg*of ) P
theory[4].

Up to the first nontrivial contribution from[B], the ef-  which is equivalent to that of the lard¢-approximatior| 6].
fective action for the Gross-Neveu model can easily be For the perturbatively corrected Gaussian effective poten-

: (27)

Thus the perturbative correctiokiB] to GEA, consists of
1 m? Nm2( m?

shown to be tial, V¢ Of Eq. (21), the renormalization conditio(®4) be-
comes
. _ 1 ,
F=—iTrIn(K 1)_EBZ+|92(KB)xy(Kca)xy(Kac)xy, d2v 1 1 N | mg )
— =—==+—In=+
(19 dne| T g2 g7 2m| A2
m—mo
where the first two terms are the GEA and the last term is the NoZ m2 m2
first-order perturbative correction to GEA. + _g{ I—2+6In—+4[. (29
The effective potential is defined by 472 A2 A?
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Requiring that the renormalized coupling constgptbe fi-  correction term to the Gaussian effective potential at finite

nite, we find the condition temperature and evaluate the critical temperature, by using
5 the imaginary time formulation of the finite-temperature
2 4 Mo guantum field theory. The generating functional for the ther-
g=m| —1x\/1- = In— (29 , . L
N A2 mal Green’s functions is given by

for which the effective potential can be made finite. The case
of the negative sign in Eq29) leads to unphysical theory.
Taking the case of the positive sign in E§9), we finally

obtain the renormalized effective potential, Zg[J]=N f

periodic
Y 1m2+N\/1 4m2(|m2 3) (30
= —_ — —_———— n— —_ s
where 7 is the imaginary time with periogB, the inverse

which clearly shows that the higher-order corrections to the - . . S
Gaussian or the largi-approximation. This shows that our €mPperature.p=de/Jr, and the functional integration is
method is meaningful wheN is larger than 4 for the Gross- Performed only for the periodic fielg. Since the finite-

Depel6aUdXL(e.0)+ 93, (31)

Neveu model. temperature generating functior{8l) is of the same form as
the zero-temperature generating functiot@l except that it
Il EEFECTIVE POTENTIAL AT FINITE TEMPERATURE is defined in Euclidean space with periodic boundary condi-

tions, we can evaluate the perturbative expansion by follow-
To illustrate how our method improves the Gaussian aping the same procedure as in the last section, except that the
proximation, we compute the first nontrivial perturbative Feynman rule is now modified by

propagator: v p—m’ P,=(Po=iwn,P1), w,=(2n+ 1) 7B~ L,
[ d
loop integration: — 2 _p (32
j=—o 21

One can then find the finite-temperature effective potential, 1 dp
up to the first perturbative correction, Vg=-2N Ef Zln(1+e‘ﬁ‘“)
dp 1
1 dpjo 1 8o —zmzN[f——F ,m
ngf(O'):EUZ—ZNJZE-I-Eln(l-l-e s )} g 2m o) BM
’m?N
| Ng'? Jdp 1, © + 2SR BmT 36
> | ) 2r el Y g | OO

with m=go andF(B,m) are defined by

wherew = \p?+gZo?.

To renormalize the effective potentié®3), it is conve- _(dpl 2
: - F(Bm=| —— .
nient to separate the zero-temperature and the finite- 27 @ b0y ]
temperature parts of the effective potential:

(37)

We note that the zero-temperature part of the effective po-
fof=Vo+Vﬁ, (34) tential (35) is the same as E(_]34) of the last sectl_on, and we
need only to renormalize this part of the effective potential.
Thus we have the renormalized effective potential at finite
where temperature,

2 2 2
1 dp o g?m?N[ [ dp 1] g 1M Jio A M
Vo=—02—2Nf—:—+g U—i;} ., (39 Vei=2 g§+N 1" Nax '”mg 3
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where o represents the renormalization point. The critical

tion condition(29) reduces the finite-temperature part of thetemperature in the Gaussian approximation can similarly be

effective potentialVz, to

V= 2N1jdp| 1+e P
N 1- \/1——4
N

5 (39

m2F(3,m).

obtained:
Tgaussian:() 57 gaussianzo 57 exd 1— z i
c D QRron 2 /9Rrog 2N
R
(44)

The symmetry that is broken at zero temperature is reAlthough the critical temperaturg from the perturbatively

stored as temperature increases beyond the critical temperg@/Tected Gaussian approxmation does not vanish, it is
ture. It is well known that the critical temperature should beSMaller than that of the Gaussian approximation. This shows

zero in two-dimensional space tirfi], while the largeN [8]

that the perturbatively improved Gaussian approximation

and the Gaussian approximations of the Gross-Neveu modgignificantly improves the critical temperature for smill
imply the nonvanishing critical temperature. To see how thdhe flavor number of the fermion field even at the first-order

perturbatively improved Gaussian approximation improve

§orrection level.

this result, we now evaluate the critical temperature from the

effective potential39).

IV. DISCUSSION

Dynamical symmetry breaking in the Gross-Neveu model

is manifested by the fact that the minimum of the zero-

We have extended the method of the perturbative expan-

temperature effective potential occurs at the nonvanishingion around GEA developed in Ré#l] to the fermionic field

value of the composite fieldgg=0,, which breaks the

theory, taking the Gross-Neveu model as an example. This

symmetry of the classical potential, i.e., the symmetry undemethod is based on the observation that the Gaussian effec-

oc——0. o is determined by
dVO 4 g2 O'En
EU:U —1+NV1—NE In?—Z =0. (40

m

As the temperature increases, the valuerg{8) at which
VA, is minimized decreases. At the critical temperatdrg,
=1/B;, on(B) vanishes, which implies symmetry restora-
tion. Thus the critical temperature is determined by

dv
do

0, (41

TR=0(B) =0

which, together with Eqs(38) and (39), gives the value of
the critical temperature,

T.=0.5Mrom - (42
Due to Eq.(40), this can be written as
T 1
T=0.5Trooexp 1 — (43
9r

tive action consists of cactus-type diagrams, which are ex-
tracted out of the functional derivative part of the effective
action, i.e., the last two factors of the last line of K£g), by
introducing the primed functional derivative defined in Eq.
(12). This procedure effectively rearranges the diagrams in
such a way that the zeroth-order term of the effective action
consists of the GEA. Due to the introduction of the compos-

ite field, c=—gu, as an order parameter, the expansion
works only for the flavor numbeN larger than 4.

In the last section the finite-temperature effective poten-
tial of the Gross-Neveu model is obtained up to the first
nontrivial perturbative correction terms, and the critical tem-
perature, at which the dynamically broken symmetry is re-
stored, is evaluated. The result shows a significant improve-
ment of the critical temperature compared to the Gaussian
and the largeN results for small values of the flavor number.
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