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It is shown analytically that an external tidal gravitational field increases the secular stability of a fully
general relativistic, rigidly rotating neutron star that is near marginal stability, protecting it against gravitational
collapse. This stabilization is shown to result from the simple fact that the eddd¥, R) required to raise
a tide on such a star, divided by the square of the tide’s quadrupole ma@nént decreasing function of the
star’s radiuRR, (d/dR)[ M (Q,R)/Q?]<0 (where, aR changes, the star’s structure is changed in accordance
with the star's fundamental mode of radial oscilladiotf (d/dR)[ sM(Q,R)/Q?] were positive, the tidal
coupling would destabilize the star. As an application, a rigidly rotating, marginally secularly stable neutron
star in an inspiraling binary system will be protected against secular collapse, and against dynamical collapse,
by tidal interaction with its companion. The “local-asymptotic-rest-frame” tools used in the analysis are
somewhat unusual and may be powerful in other studies of neutron stars and black holes interacting with an
external environment. As a by-product of the analysis, in an appendix the influence of tidal interactions on
mass-energy conservation is elucidafegD556-282(98)05222-9

PACS numbe(s): 04.40.Dg, 04.30.Db, 97.60.Jd, 97.8@

I. INTRODUCTION AND SUMMARY destabilization seen by Wilson, Mathews, and Maronetti
does not occur in reality, but instead is an artifact of poor-
Wilson, Mathews, and Maronetfil] have carried out accuracy approximations or is due to some error in their
fully relativistic numerical simulations of the radiation- computations.
reaction-induced inspiral of a binary neutron star system. To In this paper we present another analysis that reveals sta-
make their computations tractable, they employed severdlilization, not destabilization. Our justification for yet an-
approximations of ill-understood accuracy. The stars in theiother paper on this subject is twofoléirst, our analysis has
simulations were identical and were near the maximum albroader validity than previous ones—it is fully relativistic,
lowed mass for an isolated neutron star. Correspondinglynot post-Newtonian, and unlike the two previous fully rela-
when the stars were far apart in their orbit, each was stablgvistic analyses of stability1,5], it is fully analytic and not
against gravitational collapse. Surprisingly, as the stars spbased on numerical simulations; it permits the stars to rotate
raled inward, the simulations indicated that their gravita-with arbitrary angular velocitythough with spins aligned
tional interaction destabilized them, triggering them to col-with the orbital angular momentumand it allows an arbi-
lapse before their inspiral ended. The magnitude of thdrary mass ratioSecond our analysis employs an unusual
destabilization and mathematical arguments to expldif]it approach, which may be useful for other problems in fully
suggest that it should show up in the first post-Newtoniarrelativistic binary evolution: it is formulated in the local
approximation to general relativity. asymptotic rest frame of one of the two stars and employs
Several researchers have argued that this surprising destnergy and angular momentum arguments that relate to that
bilization is wrong: Lai[2] has shown that tidal interactions star alone and not to the binary system as a whole. Although
between two nearly Newtonian stars will tend to stabilizethis approach is unusual within general relativity, it is well
them against gravitational collapse, not destabilize themknown in Newtonian and post-Newtonian theory. It, in fact,
Lai's stabilization effect is formally of Newtonian origin, but is a relativistic generalization of Lai'§2] post-Newtonian
because of the compactness of neutron stars, its magnitudepsoof of stabilization.
of much higher post-Newtonian order. Wisenjaih has elu- This paper is organized as follows: In Sec. Il we treat an
cidated Lai's conclusion by showing that at first post-idealized problem that illustrates our method: the stabiliza-
Newtonian magnitude, the stars’ gravitational interactions ddion of a non-spinning neutron star placed in a non-rotating
not alter their individual central densities, and Brady andexternal tidal gravitational field. Then in Sec. Ill we gener-
Hughes[4] have shown the same at first order in the masslize to a spinning star and rotating tidal field, and as an
ratio M, /M, when the two stars are fully relativistic and one application we deduce theecularstabilization of a spinning
is much less massive than the othbt;<<M,. Baumgarte neutron star in an inspiraling binary. In Sec. IV we argue
et al.[5] have carried out numerical simulations of the fully from this secular stabilization result that, if an inspiraling
relativistic equilibrium states of a binary neutron star systenbinary’s neutron stars are secularly stable at large orbital
in synchronous, circular orbit—simulations analogous toradii, then they cannot bdynamically destabilized during
those of Wilson, Mathews, and Maronetti. Not only do thesethe inspiral, and we make some concluding remarks. In an
simulations show no sign of interaction-induced collapseappendix we elucidate the influence of tidal interactions on
when combined with “turning-point” criteria for secular sta- energy conservation, in the Newtonian limit. The relativistic
bility, they actually reveal a stabilization of the stars. version of this issue is a central aspect of the proof of stabil-
On the basis of these analyses, it seems likely that thiy given in the body of the paper.
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M ized by a stiffer equation of statgigher adiabatic index
e (M R ) than secular motions and thus will be more stable. Corre-
ot\o spondingly, all equilibria on the larg®z branch, being secu-
larly stable, must also be dynamically stable, as must be the
critical configuration itself. For an ancient, further discussion
of these issues but in a different language, see [8¢f.

In the next subsection we shall study the influence of an
external tidal field on the secular stability of configurations
that are nearly criticalnearly at the maximum of the mass-
radius curvg As an aid in that study, it will be useful to

R e consider momentarily static, spherical stars that are deformed
slightly away from equilibrium. For a star containihgbary-

FIG. 1. The mass-radius curve for static, spherical equilibriumons (with N very nearly equal taN,), we obtain such a
configurations(neutron stanswith some equation of state(p). non-equilibrium configuration as follows: Begin with the

equilibrium configuration that had,=N and radiuR.(N,).

Throughout we use geometrized units in which the speedxpand it or contract it slightly to the desired new radius

of light and Newton’s gravitation constant are unity. In this deformation, displace each fluid element by an
amount proportional to the equilibrium configuration’s
Il. STATIC STAR AND STATIC TIDAL FIELD fundamental-mode eigenfuncticﬁ(i) of secular vibration,

and then remove all kinetic energy of deformation. The re-
sulting deformed configuration will have a masyN,R)
Consider a family of nonrotating, spherical neutron starghat differs slightly from the equilibrium masd ;(N.=N).
characterized by a one-parameter equation of sfte In practice, the mass of the deformed star can be com-
=P(p), whereP is pressure ang is density of total mass- puted using not the star’s true eigenfunction, but rather the
energy. We shall refer to these starsegiilibrium configu-  gjgenfunctioné,(X) of the zero-frequency mode of the criti-
rations and shall denote their massess measured by the ¢a| configuration. This is because the mass is an extremum
Keplerian orbits of distant planetby M., their total num-  yith respect to deformations of the s{a; the two eigen-

ber of baryons byNe, and their radii (defined as functionsf andf differ by fractional amounts of order
circumference/z) by R.. The mass-radius relatidl .(R,) —(N=Ng)/N,, a%d so theymasses of the configurations ob-

of these equilibrium configurations has the qualitative form_ . ) o > )
shown in Fig. 1, andN,(R,) has a similar shape; cf. Refs tained by deformations to radid® via the & motion and the
. il e €. 1 . . -

A. Momentarily static, spherical star

[6, 7]. &, motion will differ by a fractional amount of order
As is well known, the equilibrium configuration of maxi- n°—which is never of interest in this paper. .
mum masgsolid circle in Fig. 1critical configuration mass The configurations obtained by the above construction are

M, and radiusR,) is secularly marginally stable: It pos- characterized by two parameteis,R), and their masses are
sesses a zero-frequency mode of expan&mwrcontractiopn  functions of these parameteid,(N,R).
that takes it horizontally in the figure to another equilibrium  For ease of analysis, we shall now convert to dimension-
configuration with the same mass. Equilibria on the largerless variables:
radius side of the critical configuration are secularly stable;
those on the lower-radius side are secularly unstghlg. m= M=Mo N—=No R=R,
By secularis meant a mode of stellar deformation which Mo No ' Ro
is slow enough for pycnonuclear reactidipsessure-induced
nuclear reactionsto keep its matter always at the end point These variables characterize a configuration’s fractional de-
of nuclear evolution; so the pressure and density change4ations from the critical configuration.
experienced by the stellar matter follow the same equation of Figure 2 shows the dimensionless mass-radius relation
stateP(p) as characterizes the equilibrium configuration it-m(n,r) for configurations with fixed baryon number
self. The slowest of the pycnonuclear reactions are “modi{dashed curves along with the equilibrium configurations
fied URCA reactions”(essentially3 and inverses decays, (solid curve. Because the equilibria on the positivdsranch
driven as the star deforms by the rising or falling Fermiare stable against secular deformatigwith eigenfunction
energies of the star's electrons, protons, and neutrons; the§), they lie at minima of the dashed curves; because those on
can require time scales of minutes or longer to equilibratehe negativa- branch are unstable, they lie at maxima of the
near and below nuclear densities, and so in principle thelashed curves.
stellar deformations can be secular only on time scales These dashed curves, when expressed as a power series,
longer than this(In practice, these slow reactions have only have the following form:
a weak effect on the equation of state near and above nuclear
densities; so their slowness is often ignored for near critical m=ar3+(by+b;r)n, 2
neutron stars.
Faster(dynamica)l motions, in which some of the pycno- where higher-order terms are of no importance in this paper,
nuclear reactions do not go to completion, will be characterand wherea, by, andb, are all positive. This form is dic-

@
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The remaining coefficieng, is determined by the curvature
(d?M,/d R(f‘)0 of the equilibrium mass-radius relation at its
critical point[cf. Eq. (3)]:

~ 6(1-2M,/R,)

—d?M,

dRe

In Egs. (4) and later equations in this paper, the numerical
values have been inferred, with uncertainties typically no

) ) ) ) ) worse than a factor of 2, from the equilibrium configurations
FIG. 2. Solid curve: the dimensionless mass-radius relation fo'for plausible equations of stafe].

the equilibrium configurations of Fig. 1. Dashed curves: the dimen-

sionless mass-radius relation®n,r) for configurations of fixed

baryon numben that are obtained from an equilibrium configura- B. Static, tidally deformed star

tion via deformation along the fundamental eigenfunction of radial We now place a near-critical neutron star in a static, ex-

secular motion. ternal tidal gravitational field, which we characterize by the

space-time-space-time components of its Riemann tensor,
tated by the demand that far=0 the dashed curve be flat at p P P

r—0, that forn<0 the positiver branch have a minimum Rjoko=Ejk [9]. This tidal field will deform the star, i.e. will

(stable equilibriurn and the negative-branch have a maxi- gravitationally “polarize” it, giving it a gravitational mass

o quadrupole momeri;, . The tidal fieldf;, , quadrupole mo-
Q;J(mnéug;traeﬂ% g??h;hggg?]@;gu:;‘;e be no equilibria at mentZ;,, and total stellar mass/ (including the deforma-

o : ) tion energy and the energy of interaction between the defor-
The equilibrium configurations are located at the extremay aiion and the tidal fieldall show up as coefficients in a

of these mass-radius curves, i.e. at locations Whergq, e series expansion of the spacetime metric in the star's

(9m/dr),=0, which yields the following equilibrium rela- 55| asymptotic rest framgL0].2 For example, in harmonic

tions: (deDondey coordinates that are attached to the star's center

of mass, the time-time metric component has the form

r a

1. (40

0

—3a —3ab
ol me et (91012
1 1 .
M2 M3 Ijknjnk
B (b1/3)3/2 o g00:—1+27—2—rz—+2r7+3—rr+...
mezboneﬁuz—au2 (—ng)™4, (3

—Eninkrd+ L, (5)

where the upper sign is for the right bran¢$table stars,
lower mass at fixech,) and the lower sign, for the left
branch(unstable stars, higher mass at fixeg.

where the first ellipsis denotes higher-order terms mahd
the second ellipsis denotes higher-order terms idere, and

The coefficientsa, by, andb, are determined as follows ©ONlY herer is the coordinate radius computed as though the
in terms of the equilibrium configurations: As is well spat|al coordinates’ were preC|seI){ Ca_lrteSIe[_leIseWhere In
known—cf. Eq.(28) of Ref. [6]—the mass-energy required this Paper =(R—R,)/R, is the star's dimensionless radjus
to create one baryon and inject it into an arbitrary location in@"d N'=x'/r is the “unit radial vector.” The local
an equilibrium configuration, in local thermodynamic equi- 28Symptotic rest frame, where th’e expansiénis valid, is
libium with the matter there, is dM./dN, the region from the neutron star’s surface out to a distance

— ugV1—2M,/R,, whereug is the rest mass of one baryon where the external tidal field can no longer be regarded as
e e

at the star’s surface (1/56 the mass of°8e nucleus if the uniform.

star's matter has been “catalyzed to the end point of thermof—. Gor S';npl'cé% and d[ntac;:ct))(dance with thg case tha ltl'dal
nuclear evolution”[6]). Evaluating this “injection energy” I€ld produced by a distant binary companion, we shall as-
for the critical configuration, switching to dimensionless sume that the tidal field is axisymmetric, and we shall choose

iabl . . _ Eq. our(near.ly .Cartesiahharm_onic. coordinates so that its sym-
Laerlzgeefﬁa?nd comparing withd(n/dnc)o=bo [Ea. (3], metry axis is along the® direction. Then the induced quad-

bo=(wgNy/My)V1—-2M,/R,~0.8. (43
IReference[10] is the principal conceptual and mathematical

Performing the same calculation slightly away from the criti- foundation for this paper’s analysis. The physical concepts that un-

cal configuration, we obtain derlie Ref.[10] and this paper, including the validity of the equiva-
lence principle for “extended” self-gravitating bodies such as neu-
weNo /R, tron stars, date back to Wheeler's discussion of equations of motion
b;=————-=~0.6. (4b) in Sec. 20.6 of Misner, Thorne, and Whee({®TW) [11] and to
V1-2M,/R, references therein.
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rupole moment also possesses this symmetry, and the comadius R, and a corresponding mass defietAM in the
ponents of the tidal field and quadrupole moment take thatar's equatorial region a little lower than radiBs As an
form example, for a uniform-density Newtonian sfag], 8=3.

The workW(Q,¢&), which the fixed tidal fieldS does on
the star as its quadrupole moment grows from zero to the
value Q, can be deduced by examining the flow of energy
through the star’s local asymptotic rest frame. That energy
Here the signs are chosen such thaind Q are both posi-  flow can be described by the Landau-Lifshitz pseudotensor
tive. [17] for the metric(5) with & fixed andQ time varying. By

In the next few paragraphs, culminating with E§j5), we  integrating the pseudotensor over a sphérén the star's
shall compute the magnitud@ of the quadrupole moment |ocal asymptotic rest frame, we obtain the rate of change of

that is induced by a given tidal field. We do so by the the star's total mass-enerfhe quantityM appearing in the
following thought experiment: Begin with a near critical, metric (5)]:

spherical configuration of madé, baryon numbelN, and

radiusR, and turn on the tidal field without letting the star dM

deform. Then allow the star to deform of its own accord, in ar —f (—ot
response to the fixed tidal fielfl The deformation will de-

velop on the time scale of the starfsmode quadrupolar : .
o N C ,..cf. Secs. 20.2 and 20.3 of R¢fL1]. Thisd.AM/dt consists of
oscillations?> ~0.3 msec, which is far faster than the starstw0 parts: the rated/dt)W(Q.£) that work is done by the

radial motions; thus, its angle-averaged raduill remain :
essentially unchanged during the deformation. As the defor?Xternal field on the star and the rate of chadgg,/dt of

mation proceeds, i.e. a8 grows, the tidal field does work the interaction energy of the external field and the stellar

W(Q,€) on the star; i.e., it increases the star’s total massgeformatmn:

energy (excluding quadrupole-tidal interaction enerdyy

that amount. Some portiodM (Q,R) of the work W goes dMm = dW(Q.8) dE"“.

into producing the stellar deformatidpushing mass up in dt dt dt

the polar regions and down in the equatorial regiptise

rest goes into the kinetic energy of quadrupolar vibrationsThis split of dM/dt into two parts is elucidated in the Ap-

Suppose that we extract the kinetic energy; then the star wilPendix and will be analyzed at greater length in a subsequent

settle down into the deformed configuration that has releasei@per[18]. The integral(9) has been evaluated by Zhang

the most kinetic energy, i.e. the configuration that minimized 19] using techniques described in REI0] and foundations

the potential energy function laid in [20]. The result, in a general situation where béth
and Q may be changing, s

1
P) IzzE - Q. (6)

1
5xx: gyy: - z gzzE &, Ixx:Iyy: - 2

10n;d2A; 9)

(10

V(N,R,Q,6)=M(N,R)+ SM(Q,R) ~W(Q,§).  (7)
dM  dW(Q,6) dEy

The quadrupolar deformation energ (Q,R) can be +
X . . . . dt dt dt

deduced in cgs units by dimensional arguments. It obviously
must be quadratic iQ, proportional to Newton'’s gravitation 1 d -
constantG and independent of the speed of light which =5 &5 19q Gt
means it must have the fordM = 3G Q ?/R® whereR is the
configuration’s radiugthe only length scale available other do 3d(&Q)
than those, of ordeR, that characterize the star’s internal =3 E*‘ 5 dt (11)

structur@. Here B is a dimensionless coefficient of order
unity that depends on dlmensllonless aspects of the_ starfne following argument tells us how much of this mass-
internal structure. In geometrized unit$S¢c=1), this  gnergy change goes into work and how much into interaction

mass-energy of deformation is energy: (i) The interaction energ§,;, can depend only on
the instantaneous stellar deformation and tidal field; so
SM(Q,R) = ﬁs 02, (8) dE;,./dt must always be a perfect differential. By contrast,

the ratedW/dt that work is done need not be a perfect dif-

ferential.(ii) In a physical situatiorinot ourg where the tidal
This is the same expression as one obtains in Newtoniafield is changing while the stellar configuration is constant,
theory. It can be understood, in Newtonian language, as th first-order in the tidal perturbation no work is done on the
gravitational energy~(AM)?/R of an excess masAM star,dW/dt=0. These two facts are sufficient to imply that
~ Q/R? moved into the star’s polar region a little higher than

3zZhang does not give explicitly the numerical coefficient/10,
2The tidal field, having no radial nodes in its tidal force pattern, since the perfect time derivative term is not of interest for his prob-
will primarily excite the node-fred-mode; it will couple far more lem; it can be derived by filling in intermediate steps in Zhang's
weakly to the lower-frequency, longer-time-scgkenodeq 13—15. calculation.
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dw(g,¢&) 1 d . do energyW into and out of the star. These radial motions con-

—dt 2 &ij at A :SEW’ (120 serve the star's relativistic kinetic energy plus its potential
energyV(N,R,&) [which includes a correction for the flow

dE;, 1 d(g;z") 3d(£Q) of W; cf. Eq.(7)]. Correspondingly, the star’s equilibria are

(13)  the extrema oW (N,R,&)—or equivalently of its dimension-
less versiorv (n,r,e)—and these equilibria are stable if they
minimize v and unstable if they maximize it.

By differentiating Eq(18) with respect ta at fixedn and
e, we obtain, for the equilibrium configurations,

dt 10 dt 5 dt

In our thought experiment, where the tidal field is fixedCat
and the quadrupole moment grows from zerapthe total
work done on the star is

re= =+ V(1/3a)(—byng+c,e?)

0.7¢ c
, . . ) +———near criticality, wheren,< —182. (20

By inserting expression§l4) and (8) into Eq. (7) and Mo/R; b,

minimizing the resulting potential enerdy(N,R, 9,&) with ] )

respect toQ at fixed N,R,&, we deduce the equilibrium The configurations on the branch R>R,) are stable, and

1 .
W(Q.6)=~3 ;€1 =30¢. (14)

value of the quadrupole moment: those on the- branch R<R,) are unstable.
Notice that, in response to the tidal field, each stable equi-
3R° librium configuration increases its radius.t0), and corre-
Q= ﬁ & (15 spondingly, since the fundamental radial-mode eigenfunction

) ) E()Z) that describes the radial shape of its spherical deforma-
Correspondingly, the potential energy of the quadrupolation has no nodes, its central density goes down. Not surpris-

equilibrated configuration is ingly, this leads to a secular stabilization of the star: whereas
5 before the tidal field was turned on the maximum number of
9R . .
V(N,R,E)=M(N,R)— — £2. (16)  baryons that the star c_ould support without coIIap_smg was
4B N,, afterward the maximum baryon number has increased

Because the quadrupolar contributien(9R%/48)£? to by a fractional amount

this potential energy depends on the star’s radius, the tidal cy ;( £ 2

coupling influences the star’s radial, secular motions. To de-
duce that influence, we convert the potential energy to di-
mensionless units,

(21)

Ne max:b_ls

M, /RS

The tidally induced increase of equilibrium radi(@0)

V(N,R,E)— M, £ and increase of maximum baryon numi¢2t) are the same
v(n,r,e)= M , e=———, (17 in sign and order of magnitude as Lai has deduced previ-
° Mo/Rg ously using post-Newtonian argumehg.

. . : The inability of fully relativistic gravity to produce a
and combine with Eq<(16) and (2) to obtain secular instability can be traced to the robustly positive sign

v(n,r,e)=ar3+(bg+br)n—(co+cir)e2. (18  Of the coefficienc,, which in turn follows from the fact that
the star’'s deformation energy at fixed quadrupole moment,

Heree is the external tidal field measured in units of the tidal M (Q,R)/ Q%= B/R®, is a decreasing function of radius. It
field produced by the critical configuration near its own sur-is very hard to imagine any neutron star for which this would

face, and fail to be true.
243p5
1 [Mg)"9R;  9M, . ROTATING STAR AND ROTATING TIDAL FIELD
Co= s _4,3 = 48R ~0.3,
o\ Rg ° We now turn attention to a rigidly rotating neutron star

interacting with a rotating external tidal field, such as those
which occur in binary neutron star systems. In our analysis,
the rotation is with respect to the star’s local asymptotic rest
(19) frame, which itself will generally rotate with respect to “in-
finity” due to dragging of inertial frames by the binary’s
where the factor of 5 comes from differentiatii®f. The total angular momentum.
dependence g8 on the star’s internal structure may give rise  For simplicity, we shall require that the star's spin axis
to a slight variation of8 with R, which may slightly change and the tidal field’s rotation axis coincide, as will be the case
the relationshipc;=5cq, hence the approximate equality in in a binary if the two stars’ spin axes are perpendicular to the
Eqg. (19). orbital plane. This requirement protects the tidal field and the
As the near critical star changes its radRislowly and  spin axis from processing.
secularly at fixed tidal field, its quadrupole moment con- The tidal stabilization analysis of Sec. Il can be general-
tinually equilibrates, with an accompanying tidal feeding ofized to such a rotating system with little change. We shall

R,
=M,
(o]

Mo

2[ d (9R5
RS

dR 148

) } 25C0"\‘ 15,
(o]
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sketch that generalization, beginning in Sec. Ill A with theorder to produce the equilibria’s known stability properties,
secular stability of the rotating star in the absence of the tidathey will still all be positive.

field, followed in Sec. Il B with the star-tide interaction and

tidal stabilization. B. Tidally deformed, rotating star

We now place each of our rigidly rotating, near-critical
stars—all with the same spin angular momentdmin a
rotating, external tidal gravitational field. We assume that the

Consider a family of rigidly rotating neutron stars that arestar and the tidal field rotate about the same axis as seen in
characterized by the equation of st&€p) and that all have the star’s local asymptotic rest frame; the star’s rotational
the same spin angular momentulvas measured by frame angular velocity isw=<27x1000/s, and if the rotating field
dragging in their local asymptotic rest frames. For such stards produced by a binary companion, its angular velocity is
becausd) is fixed once and for all, the equilibrium configu- that of the orbital motion{) <2 X 600/s[22]. In this case,
rations form a one-parameter family analogous to that fothe tidal field is exceedingly unlikely to excite the star's
static stars. We shall characterize those equilibria by theiformal modes significantly. This is becauSg significant
massesM, (as measured by Keplerian orbits in their local excitation requires resonant coupling; the circularly po-

asymptotic rest framgstheir number of baryons\,, and Iarizgd f- and p-modes have angular vglocitie§ of pattern
their equatorial radii R, (defined as their equatorial rotation 0= 27X 1500/s(unless the star is rotating close to

circumferences/2). centrifugal breakup which is too large to resonate with the

e . driving force except under the most extreme of circum-
These equilibria will have a mass-radius relatMp(R,) . :
with the same general shape as that for nonrotating Sta%ances, andiii) the low-frequencyg-modes, whichcan
: . o " X sonate, have only very weak coupling to the tidal field
(Fig. 1), but with a critical mas#M, and critical radiusk, y very bing

. T C 13-19. With this justification, we shall assume that the
that are larger due_ to centrifugal stabilization and centrifuga idal field does not resonantly excite the star's normal modes.
forces; cf., €.9., Figs. 1 and 2 of Ré21]. _ The rotating tidal field will, however, raise a nonresonant,

As for static stars, so also for these spinning stars, th?ot

itical f‘ tion(confi i ¢ ! - ating quadrupolar tide on the neutron star. If the star’s
criical configuration{configuration of maximum magss -\ aiarig) had zero viscosity, the tide would be perfectly

aéligned with the tidal field; i.e., the axes of the star’s rotating
" quadrupole momeni;, would be identical to those of the

tidal field &, . This standard Newtonian result must be true
also in general relativity since the relevant physics is nothing
But that of simple harmonic oscillators: Whenever an un-
damped oscillator is driven by an off-resonance sinusoidal
force, the oscillator’s displacement response is precisely in
phase with the force. As for an oscillator, so also for the star,
any small viscosity will cause a slight phase lag between

terial foll th i f sta h Axcitation and response: the orientation of the star’s tidal
{ng erlatho owsll.be.samet eI?ua '?n Ot sé.)(a;%)has ¢ ?rac— deformation and its quadrupole moment will lag that of the
erizes the equilibrium stellar structur€i e motions 41 field by an angle

must also be slow enough for viscosity to produce enough

A. Rotating star without a tidal field

takes it horizontally in Fig. 1 to another equilibrium configu
ration with the same madd, and angular momentudy the
equilibrium configurations on the larger-radius side of criti-
cal are secularly stable, while those on the smaller-radiu
side are secularly unstable.
In these rotating stars, the motions of interestseular

in two sensesl(i) As for static stars, the motions must be
slow enough for pycnonuclear reactions to go to completion

coupling between adjacent mass elements to keep the star (Q—w)

rigidly rotating. This second condition is especially severe; p=—"F, (22)

so in practice the secular stabilization that we shall prove is (0— )7,

of interest primarily because of its implications for dynami-

cal stability (Sec. V). wherer, is the viscous damping time for the star’s quadru-

As for static stars, we construct from our one-parametepolar excitations. For realistic viscosities, this is an exceed-
rigidly rotating family of equilibria a two-parameter family ingly small lag angld13-15; so the quadrupole moment is
of configurations that are expanded and contracted awayery nearly oriented along the tidal field.
from equilibrium. Our construction procedure is precisely This agreement of orientations prevents the tidal field
the same as in the static case, with the slow, fundamentdfom torquing the star; so the star’s spin angular momentum
secular mode of deformation governing the expansions and is conserved.
contractions. The resulting deformed configurations will ob- This conservation off and alignment of tidal field and
viously have mass-radius curved,(N,R) at fixed N (and  quadrupole moment enable us to carry over the static-star
forever fixedJ), with the same general shapes as in the stati@nalysis of tidal stabilizatiogSec. Il B to the rotating case,
case: the dashed curves of Fig. 2. Moreover, when expressedsentially without change. The tidal field and quadrupole
in dimensionless variabled), the m(n,r) relation near the moment can be characterized by scalars in the manner of Eq.
critical point for our rotating family will have the same (6); raising the tide requires an energ (Q,R) given by
mathematical formm=ar3+ (by+b;r)n, as for the static Eq. (8); the tide extracts from the tidal field an amount of
case. The coefficients, by, andb; will be affected by the energy W(Q,£) computable by integrating the Landau-
rotation and thus will not take on their static forifdg, but in  Lifshitz pseudotensor over a closed 2-surface in the star's
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local asymptotic rest frame in the manner of ), and that  namical stability, the tidally deformed star must also remain
integration must give expressig@i4) aside from a multipli- dynamically stable.
cative factor that is close to unity. This multiplicative factor  This conclusion is not at all obvious from the equations of
(call it 1+ ), which we have not computed, will arise from the post-Newtonian approximation as they are usually writ-
the synchronous rotation of the tide and star with velogity ten: in a reference frame that is asymptotically inertial at
at the star’s surface. It cannot differ from unity by more thaninfinity. One can identify in those equations terms that ap-
Y~ »?R?<0.01(there is no linear terny~ wR because such pear able to produce tidal instability at first post-Newtonian
a term would reverse sign when the star reverses direction afrder [1]. This fact illustrates the superficially misleading
rotation) As in the static case, the quadrupole moment ad<haracter of the post-Newtonian equations: Apparently magi-
justs itself so as to minimize the potential energy functioncal cancellation§3] enforce the strong equivalence principle,
V(N,R,Q,&) of Eq. (7); the resultingQ is expression15  which is fundamentally at the heart of tidal stabilization.
aside from the multiplicative factor #O(w?r?), and the By contrast, the mathematical tools used in this paper,
star's radius changes slowly and secularly in a manner goweing based on the local asymptotic rest frame of the star
erned by the potential energy functiotin,r,e)=ar3+ (b whose stability interests us, are closely linked to the strong
+b;r)n—(co+cyr)e? [Eq. (18)]. The only difference is in  €quivalence principle and lead rather directly to the tidal sta-
the numerical values of the coefficierasbg, by, co, and bilization. These tools are not widely used in relativistic as-
cy. trophysics. They are worth trying whenever one is interested
As in the static case, the key to tidal stabilization is thein the behavior of a semi-isolated portion of a larger relativ-
sign of ¢;, and as there, as long as the star's deformatioStic system—e.g., a neutron star or black hole interacting
energy at fixed quadrupole momentsM(Q,R)/Q2?  With other bodieg10]. o
= (BIR®) X[1+O(w?R?)], is a decreasing function of ra-  AS this paper was being completed, | learned of a similar,
dius R, the tidal field secularly stabilizes the star, increased0cal-asymptotic-rest-frame analysis by Flanaggp4],
its radius, and decreases its central density. It is exceedinghynich, however, focuses on equations of motion rather than
difficult to imagine a star for whickwhenw=2mx600/s as €nergy considerations.
it must be in an inspiraling binaf22]) this would not be the
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because the radiation reaction drives the binary through the
regime of relativistic gravity far too quickly for viscosity to APPENDIX
keep the rotation rigid in pulsational motions. The relevant
issue in this case is dynamical stability.

As is well known(e.g., Ref.[23]), secular stability im-

plies dynamical stqbility. This is so fc_)r two reasons, Fi_rst, We consider a nonroting Newtonian star that is spherical,
pycnonuclear reactions go to completion in secular motion$<ije from a quadrupolar deformation and quadrupole mo-

butt'not n dyrt:amlc?I 'mog%ns, an?t as a ret.sult tfhetstecgrllaﬁwentzjk that are aligned with an external tidal fielgj
motions are characterized by a softer equation of state aﬂ(be,jk. Here @, is the external Newtonian potential, and

the qunamlcfal motions _ar_u_j thus_ are less stable. Second, d%}k andZ;, are symmetric and trace free. We denotepbp,
namical motions of an initially rigidly rotating star produce

. . i . ) and IT the (Newtonian mass densit ressure, velocit
differential rotation, and the viscous coupling that converts. ( 0 Y, P ' y

that differential rotation into the rigid rotation of a secular and specific internal energy of the stellar fiuid, and by
motion will necessarily extract energy from the rotation. This O=P +P (A1)
means that, beginning with the same equilibrium configura- o e

tion, the dynamical motion must lead to a configuration Ofyhe Newtonian gravitational field and its split into the star's
greater potential energy than the secular motion, which in got_field d - and the external field...

turn means that the equilibrium configuration is more stable |, Newtonian theory, the total e;ergy density and energy

?gainst the dynamical motion than against the secular MGy, of the stellar fluid plus gravitational field can be written
ion.

as
Consider a rigidly rotating neutron star in the final, rela-
tivistic phase of binary inspiral. Such a star must have lived 1
for millions of years to reach this inspiral phase; so it must ®°°=p(§v2+H+<D
be secularly stable as well as dynamically stable before the
tidal field of its companion begins to affect it significantly.
The growing tidal field, as we have seen, must increase the  oj (1, p
, A PO T 0Y%=pv!| zv°+I1+ -+
star's secular stability. Since secular stability implies dy-

In this appendix, we elucidate the energetics of
quadrupole-tidal coupling, Eq€9)—(14), by working out its
details in the Newtonian limit without rotation.

1
Lt U (A2)

1
o

41 (A3)

N
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where we make no distinction between covariant and contraerior form of the star’s self-fieldA6), and the usual volume
variant spatial indices because our coordinates are assumedegral for the quadrupole moment[ij:fv p(X'x!
to be Cartesian. It is straightforward to verify that the energy 1 r251)d®x

3 .

nservation law .
conservation & The law of local energy conservati¢A4) guarantees that

0% +0%,=0 (A4)  the rate of change of the total ener¢k7) is the surface
' ' integral of the energy flux over the boundafy of the ball
is satisfied by virtue of mass conservatipg_ng(pvj),j:O, 2
the first law of thermodynamicgdll/dt+pv’ ;=0, the flu- dE
|(_j’s Euler .equatlonpdu'/dterfb,jJrp'j=0, and N_e\_/vton’s _:_f ®%nir2dq. (A11)
field equation® j;=4mp. Hered/dt=d/dt+v'd/ox! is the dt v
fluid’s comoving time derivative.
[Note that Eqs(A2) and (A3) entail a specific choice of Here d() is solid angle. By combining EqgA1l), (A3),
how to localize the system’s gravitational energy. OtherAl), (A5), (A6) and(A9), we find that
choices are possible: one can add@f’ the divergence of

7=a®® ; (where« is an arbitrary constaptand add to d_E: Eﬁ.J iq)oﬁbo-njrzdﬂ

0% minus the time derivative ofy; without affecting the dt  dt  Jpdm o0

law of energy conservatio4) or any of the system’s phys- d d

ics. This nonuniqueness of localization of gravitational en- +— =T &= 5 &= Tix. (A12)
ergy also occurs in general relativity; cf. Chap. 20 of MTW dt | 10777 2 7 dt ™!

[11]. We shall discuss its consequences bejow. The first term is the rate of change of the external field en
Th t | field i I d I d f ey X . L
e externa 1°1C 1 PUIe’y quadriipolar anc source e rgy, inside the ball, due to the evolution of the tidal field

throughout the star and the star’s local asymptotic rest fram .
¢ ymp jk- The second term is the rate of change of the star’s

1 o self-energy due its own field energy flowing into or out of

q’eZE Eix'xl,  ®gj=0, (A5)  the ballV as its quadrupole moment decreases or increases;
in the limit as the ball's radius becomes arbitrarily large, this

| term goes to zero. The third term is the rate of change of the

interaction energy; cf. Eq(A10). By comparing with Eq.

(A7), we see that the last term must drive changes in the

star’s self-energy:

and its tidal field&;; evolves with time. The star’'s externa
self-field is purely monopolar and quadrupolar and its
source, of course, is the star's mass distribution

: dE 1 ) 1 d
b =——-= outside star, ®,;i=4mwp. (A6 0_ 240 _
0 >3 0jj=4mp. (AB) I _Lv 1= Do @o V20— 5 & = T (A13)

Herer=/§;x'x] is the radius and/=x//r is the unit radial n other words, the last term is the rate at which the external
vector. The star's mashl is constant in time, but its quad- tidal field does work on the star:

rupole moment;; evolves.
Now consider the total enerdy inside a ballV centered dW(Q,&) 1 d i
on the star and larger than the star. This energy consists of Tdt 2 &ij dt 1" (A14)
three parts, the star’s self-enerBy, the external field’s en-
ergyE., and the energ¥,,; of interaction between the star's  This work rate is in perfect agreement with the fully rela-
quadrupolar deformation and the external tidal field: tivistic work rate(12) derived in the text using the Landau-
Lifshitz pseudotensor to localize the gravitational energy and

_ 0043, _ using deDondetharmoni¢ gauge.
E_L® d*x=Eo* Bt Eint, (A7) This is not so for the rate of change of the interaction
energy. The Newtonian analysis gives
1 1 -
_ 2 3 . 7]
E,= HP(EU +I+®, |+ 5= D, Do |d %, (AB) dEin _3.d&;7Y) (AL5)
dt / 10 dt
ewton
E= f iq)e,jq)e,jdsxa (A9)  [Eq.(A10) abovd; by contrast, the relativistic analysis gives
v 8w this same expression but with a coefficient/10 rather than
+3/10; see Eq(13). This disagreement does not arise from
B 1 dox— 3 any fundamental difference between Newtonian theory and
Ein= N pPet E(DOJ(DEJ =70 &iiZij - general relativity. Rather, it arises because the localization of

(A10) gravitational energy is non-unique, both in Newtonian theory

and in general relativityfsee the paragraph preceding Eq.

Here the value oE;,; follows from the form and sourceless- (A5)], andE;, is that portion of the system’s total gravita-
ness(A5) of the external field, the source equation and ex-tional interaction energy which resides in the vicinity of the
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particular neutron star on which we are focusing. For a biwork W done by the tidal field on the star of interest. Simi-
nary system, our two analyses distribute the gravitational enlarly, if, in our general relativitistic analysis, we were to
ergy differently between the stars’ vicinities and the interstel-change our energy localization by switching from the
lar region, and they thereby give rise to different values ofLandau-Lifshitz pseudotensor to some other pseudotensor, or
Ei.t- If, in the Newtonian analysis, we were to change ourby performing a gauge change on the gravitational field, we
localization of the gravitational energy via the transformationthereby would alteE;,; but leaveW unchanged.

described in the paragraph preceding E45), we would This localization dependence EBf,; and uniqueness o

alter E;,;, while leaving unchanged the uniquely definedwill be analyzed in detail in a subsequent pajgks].
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