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Tidal stabilization of rigidly rotating, fully relativistic neutron stars

Kip S. Thorne
Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125

~Received 17 June 1997; published 23 November 1998!

It is shown analytically that an external tidal gravitational field increases the secular stability of a fully
general relativistic, rigidly rotating neutron star that is near marginal stability, protecting it against gravitational
collapse. This stabilization is shown to result from the simple fact that the energydM (Q,R) required to raise
a tide on such a star, divided by the square of the tide’s quadrupole momentQ, is a decreasing function of the
star’s radiusR, (d/dR)@dM (Q,R)/Q 2#,0 ~where, asR changes, the star’s structure is changed in accordance
with the star’s fundamental mode of radial oscillation!. If ( d/dR)@dM (Q,R)/Q 2# were positive, the tidal
coupling would destabilize the star. As an application, a rigidly rotating, marginally secularly stable neutron
star in an inspiraling binary system will be protected against secular collapse, and against dynamical collapse,
by tidal interaction with its companion. The ‘‘local-asymptotic-rest-frame’’ tools used in the analysis are
somewhat unusual and may be powerful in other studies of neutron stars and black holes interacting with an
external environment. As a by-product of the analysis, in an appendix the influence of tidal interactions on
mass-energy conservation is elucidated.@S0556-2821~98!05222-9#

PACS number~s!: 04.40.Dg, 04.30.Db, 97.60.Jd, 97.80.2d
-
T

er
e
a
gl
b

sp
ta
ol
th

ia

es
s
ize
em
t
de

st-
d
n
as
e

lly
em
t
s
se
-

th

etti
or-
eir

sta-
-

c,
a-

tate

al
lly
l

oys
that
ugh
ll

ct,

an
za-
ing
r-
an

ue
g
ital

an
on
tic
bil-
I. INTRODUCTION AND SUMMARY

Wilson, Mathews, and Maronetti@1# have carried out
fully relativistic numerical simulations of the radiation
reaction-induced inspiral of a binary neutron star system.
make their computations tractable, they employed sev
approximations of ill-understood accuracy. The stars in th
simulations were identical and were near the maximum
lowed mass for an isolated neutron star. Correspondin
when the stars were far apart in their orbit, each was sta
against gravitational collapse. Surprisingly, as the stars
raled inward, the simulations indicated that their gravi
tional interaction destabilized them, triggering them to c
lapse before their inspiral ended. The magnitude of
destabilization and mathematical arguments to explain it@1#
suggest that it should show up in the first post-Newton
approximation to general relativity.

Several researchers have argued that this surprising d
bilization is wrong: Lai@2# has shown that tidal interaction
between two nearly Newtonian stars will tend to stabil
them against gravitational collapse, not destabilize th
Lai’s stabilization effect is formally of Newtonian origin, bu
because of the compactness of neutron stars, its magnitu
of much higher post-Newtonian order. Wiseman@3# has elu-
cidated Lai’s conclusion by showing that at first po
Newtonian magnitude, the stars’ gravitational interactions
not alter their individual central densities, and Brady a
Hughes@4# have shown the same at first order in the m
ratio M2 /M1 when the two stars are fully relativistic and on
is much less massive than the other,M2!M1 . Baumgarte
et al. @5# have carried out numerical simulations of the fu
relativistic equilibrium states of a binary neutron star syst
in synchronous, circular orbit—simulations analogous
those of Wilson, Mathews, and Maronetti. Not only do the
simulations show no sign of interaction-induced collap
when combined with ‘‘turning-point’’ criteria for secular sta
bility, they actually reveal a stabilization of the stars.

On the basis of these analyses, it seems likely that
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destabilization seen by Wilson, Mathews, and Maron
does not occur in reality, but instead is an artifact of po
accuracy approximations or is due to some error in th
computations.

In this paper we present another analysis that reveals
bilization, not destabilization. Our justification for yet an
other paper on this subject is twofold:First, our analysis has
broader validity than previous ones—it is fully relativisti
not post-Newtonian, and unlike the two previous fully rel
tivistic analyses of stability@1,5#, it is fully analytic and not
based on numerical simulations; it permits the stars to ro
with arbitrary angular velocity~though with spins aligned
with the orbital angular momentum!, and it allows an arbi-
trary mass ratio.Second, our analysis employs an unusu
approach, which may be useful for other problems in fu
relativistic binary evolution: it is formulated in the loca
asymptotic rest frame of one of the two stars and empl
energy and angular momentum arguments that relate to
star alone and not to the binary system as a whole. Altho
this approach is unusual within general relativity, it is we
known in Newtonian and post-Newtonian theory. It, in fa
is a relativistic generalization of Lai’s@2# post-Newtonian
proof of stabilization.

This paper is organized as follows: In Sec. II we treat
idealized problem that illustrates our method: the stabili
tion of a non-spinning neutron star placed in a non-rotat
external tidal gravitational field. Then in Sec. III we gene
alize to a spinning star and rotating tidal field, and as
application we deduce thesecularstabilization of a spinning
neutron star in an inspiraling binary. In Sec. IV we arg
from this secular stabilization result that, if an inspiralin
binary’s neutron stars are secularly stable at large orb
radii, then they cannot bedynamicallydestabilized during
the inspiral, and we make some concluding remarks. In
appendix we elucidate the influence of tidal interactions
energy conservation, in the Newtonian limit. The relativis
version of this issue is a central aspect of the proof of sta
ity given in the body of the paper.
©1998 The American Physical Society31-1
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KIP S. THORNE PHYSICAL REVIEW D 58 124031
Throughout we use geometrized units in which the sp
of light and Newton’s gravitation constant are unity.

II. STATIC STAR AND STATIC TIDAL FIELD

A. Momentarily static, spherical star

Consider a family of nonrotating, spherical neutron st
characterized by a one-parameter equation of stateP
5P(r), whereP is pressure andr is density of total mass
energy. We shall refer to these stars asequilibrium configu-
rations and shall denote their masses~as measured by th
Keplerian orbits of distant planets! by Me , their total num-
ber of baryons by Ne , and their radii ~defined as
circumference/2p) by Re . The mass-radius relationMe(Re)
of these equilibrium configurations has the qualitative fo
shown in Fig. 1#, andNe(Re) has a similar shape; cf. Refs
@6, 7#.

As is well known, the equilibrium configuration of max
mum mass~solid circle in Fig. 1,critical configuration, mass
Mo and radiusRo) is secularly marginally stable: It pos
sesses a zero-frequency mode of expansion~or contraction!
that takes it horizontally in the figure to another equilibriu
configuration with the same mass. Equilibria on the larg
radius side of the critical configuration are secularly stab
those on the lower-radius side are secularly unstable@6,7#.

By secularis meant a mode of stellar deformation whic
is slow enough for pycnonuclear reactions~pressure-induced
nuclear reactions! to keep its matter always at the end po
of nuclear evolution; so the pressure and density chan
experienced by the stellar matter follow the same equatio
stateP(r) as characterizes the equilibrium configuration
self. The slowest of the pycnonuclear reactions are ‘‘mo
fied URCA reactions’’~essentiallyb and inverse-b decays!,
driven as the star deforms by the rising or falling Fer
energies of the star’s electrons, protons, and neutrons;
can require time scales of minutes or longer to equilibr
near and below nuclear densities, and so in principle
stellar deformations can be secular only on time sca
longer than this.~In practice, these slow reactions have on
a weak effect on the equation of state near and above nu
densities; so their slowness is often ignored for near crit
neutron stars.!

Faster~dynamical! motions, in which some of the pycno
nuclear reactions do not go to completion, will be charac

FIG. 1. The mass-radius curve for static, spherical equilibri
configurations~neutron stars! with some equation of stateP(r).
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ized by a stiffer equation of state~higher adiabatic index!
than secular motions and thus will be more stable. Co
spondingly, all equilibria on the large-Re branch, being secu
larly stable, must also be dynamically stable, as must be
critical configuration itself. For an ancient, further discussi
of these issues but in a different language, see Ref.@8#

In the next subsection we shall study the influence of
external tidal field on the secular stability of configuratio
that are nearly critical~nearly at the maximum of the mass
radius curve!. As an aid in that study, it will be useful to
consider momentarily static, spherical stars that are deform
slightly away from equilibrium. For a star containingN bary-
ons ~with N very nearly equal toNo), we obtain such a
non-equilibrium configuration as follows: Begin with th
equilibrium configuration that hasNe5N and radiusRe(Ne).
Expand it or contract it slightly to the desired new radiusR.
In this deformation, displace each fluid element by
amount proportional to the equilibrium configuration
fundamental-mode eigenfunctionjW (xW ) of secular vibration,
and then remove all kinetic energy of deformation. The
sulting deformed configuration will have a massM (N,R)
that differs slightly from the equilibrium massMe(Ne5N).

In practice, the mass of the deformed star can be co
puted using not the star’s true eigenfunction, but rather
eigenfunctionjWo(xW ) of the zero-frequency mode of the crit
cal configuration. This is because the mass is an extrem
with respect to deformations of the star@6#; the two eigen-
functionsjW and jWo differ by fractional amounts of ordern
[(N2No)/No , and so the masses of the configurations o
tained by deformations to radiusR via thejW motion and the
jWo motion will differ by a fractional amount of orde
n2—which is never of interest in this paper.

The configurations obtained by the above construction
characterized by two parameters (N,R), and their masses ar
functions of these parameters,M (N,R).

For ease of analysis, we shall now convert to dimensi
less variables:

m[
M2Mo

Mo
, n[

N2No

No
, r[

R2Ro

Ro
. ~1!

These variables characterize a configuration’s fractional
viations from the critical configuration.

Figure 2 shows the dimensionless mass-radius rela
m(n,r ) for configurations with fixed baryon numbern
~dashed curves!, along with the equilibrium configuration
~solid curve!. Because the equilibria on the positive-r branch
are stable against secular deformations~with eigenfunction
jW ), they lie at minima of the dashed curves; because thos
the negative-r branch are unstable, they lie at maxima of t
dashed curves.

These dashed curves, when expressed as a power s
have the following form:

m5ar31~b01b1r !n, ~2!

where higher-order terms are of no importance in this pap
and wherea, b0 , andb1 are all positive. This form is dic-
1-2



t

-
t

m
e
-

t

s
ll
d
i
i-

n

o

ss

iti

e
ts

cal
no
ns

ex-
he
sor,

for-

ar’s

ter
rm

the

nce
as

al
as-
ose
-
-

al
un-
-
u-
tion

fo
en

a-
ia

TIDAL STABILIZATION OF RIGIDLY ROTATIN G . . . PHYSICAL REVIEW D 58 124031
tated by the demand that forn50 the dashed curve be flat a
r 50, that for n,0 the positive-r branch have a minimum
~stable equilibrium! and the negative-r branch have a maxi
mum ~unstable!, and that forn.0 there be no equilibria a
all ~no extrema of the dashed curves!.

The equilibrium configurations are located at the extre
of these mass-radius curves, i.e. at locations wh
(]m/]r )n50, which yields the following equilibrium rela
tions:

ne5
23a

b1
r e

2 , me5
23ab0

b1
r e

222are
3 ,

me5b0ne72
~b1/3!3/2

a1/2
~2ne!

3/2, ~3!

where the upper sign is for the right branch~stable stars,
lower mass at fixedne) and the lower sign, for the lef
branch~unstable stars, higher mass at fixedne).

The coefficientsa, b0 , andb1 are determined as follow
in terms of the equilibrium configurations: As is we
known—cf. Eq.~28! of Ref. @6#—the mass-energy require
to create one baryon and inject it into an arbitrary location
an equilibrium configuration, in local thermodynamic equ
librium with the matter there, is dMe /dNe

5mBA122Me /Re, wheremB is the rest mass of one baryo
at the star’s surface (1/56 the mass of an56Fe nucleus if the
star’s matter has been ‘‘catalyzed to the end point of therm
nuclear evolution’’@6#!. Evaluating this ‘‘injection energy’’
for the critical configuration, switching to dimensionle
variables, and comparing with (dme /dne)o5b0 @Eq. ~3!#,
we see that

b05~mBNo /Mo!A122Mo /Ro;0.8. ~4a!

Performing the same calculation slightly away from the cr
cal configuration, we obtain

b15
mBNo /Ro

A122Mo /Ro

;0.6. ~4b!

FIG. 2. Solid curve: the dimensionless mass-radius relation
the equilibrium configurations of Fig. 1. Dashed curves: the dim
sionless mass-radius relationsm(n,r ) for configurations of fixed
baryon numbern that are obtained from an equilibrium configur
tion via deformation along the fundamental eigenfunction of rad
secular motion.
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The remaining coefficient,a, is determined by the curvatur
(d2Me /dRe

2)o of the equilibrium mass-radius relation at i
critical point @cf. Eq. ~3!#:

a5
Ro

6~122Mo /Ro! S 2d2Me

dRe
2 D

o

;1. ~4c!

In Eqs. ~4! and later equations in this paper, the numeri
values have been inferred, with uncertainties typically
worse than a factor of 2, from the equilibrium configuratio
for plausible equations of state@7#.

B. Static, tidally deformed star

We now place a near-critical neutron star in a static,
ternal tidal gravitational field, which we characterize by t
space-time-space-time components of its Riemann ten
Rj 0k0[Ejk @9#. This tidal field will deform the star, i.e. will
gravitationally ‘‘polarize’’ it, giving it a gravitational mass
quadrupole momentIjk . The tidal fieldEjk , quadrupole mo-
mentIjk , and total stellar massM ~including the deforma-
tion energy and the energy of interaction between the de
mation and the tidal field! all show up as coefficients in a
power series expansion of the spacetime metric in the st
local asymptotic rest frame@10#.1 For example, in harmonic
~deDonder! coordinates that are attached to the star’s cen
of mass, the time-time metric component has the fo
@9,10,12#

g0052112
M
r

22
M 2

r 2 12
M 3

r 3 13
I jknjnk

r 3 1 . . .

2E jknjnkr 21 . . . , ~5!

where the first ellipsis denotes higher-order terms in 1/r and
the second ellipsis denotes higher-order terms inr . Here, and
only here,r is the coordinate radius computed as though
spatial coordinatesxj were precisely Cartesian@elsewhere in
this paperr[(R2Ro)/Ro is the star’s dimensionless radius#,
and nj[xj /r is the ‘‘unit radial vector.’’ The local
asymptotic rest frame, where the expansion~5! is valid, is
the region from the neutron star’s surface out to a dista
where the external tidal field can no longer be regarded
uniform.

For simplicity, and in accordance with the case of a tid
field produced by a distant binary companion, we shall
sume that the tidal field is axisymmetric, and we shall cho
our ~nearly Cartesian! harmonic coordinates so that its sym
metry axis is along thex3 direction. Then the induced quad

1Reference@10# is the principal conceptual and mathematic
foundation for this paper’s analysis. The physical concepts that
derlie Ref.@10# and this paper, including the validity of the equiva
lence principle for ‘‘extended’’ self-gravitating bodies such as ne
tron stars, date back to Wheeler’s discussion of equations of mo
in Sec. 20.6 of Misner, Thorne, and Wheeler~MTW! @11# and to
references therein.
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KIP S. THORNE PHYSICAL REVIEW D 58 124031
rupole moment also possesses this symmetry, and the c
ponents of the tidal field and quadrupole moment take
form

Exx5Eyy52
1

2
Ezz[E, Ixx5Iyy52

1

2
Izz[2Q. ~6!

Here the signs are chosen such thatE andQ are both posi-
tive.

In the next few paragraphs, culminating with Eq.~15!, we
shall compute the magnitudeQ of the quadrupole momen
that is induced by a given tidal fieldE. We do so by the
following thought experiment: Begin with a near critica
spherical configuration of massM , baryon numberN, and
radiusR, and turn on the tidal fieldE without letting the star
deform. Then allow the star to deform of its own accord,
response to the fixed tidal fieldE. The deformation will de-
velop on the time scale of the star’sf -mode quadrupolar
oscillations,2 ;0.3 msec, which is far faster than the sta
radial motions; thus, its angle-averaged radiusR will remain
essentially unchanged during the deformation. As the de
mation proceeds, i.e. asQ grows, the tidal field does work
W(Q,E) on the star; i.e., it increases the star’s total ma
energy ~excluding quadrupole-tidal interaction energy! by
that amount. Some portiondM (Q,R) of the work W goes
into producing the stellar deformation~pushing mass up in
the polar regions and down in the equatorial regions!; the
rest goes into the kinetic energy of quadrupolar vibratio
Suppose that we extract the kinetic energy; then the star
settle down into the deformed configuration that has relea
the most kinetic energy, i.e. the configuration that minimiz
the potential energy function

V~N,R,Q,E![M ~N,R!1dM ~Q,R!2W~Q,E!. ~7!

The quadrupolar deformation energydM (Q,R) can be
deduced in cgs units by dimensional arguments. It obviou
must be quadratic inQ, proportional to Newton’s gravitation
constantG and independent of the speed of lightc, which
means it must have the formdM5bGQ 2/R5 whereR is the
configuration’s radius~the only length scale available othe
than those, of orderR, that characterize the star’s intern
structure!. Here b is a dimensionless coefficient of orde
unity that depends on dimensionless aspects of the s
internal structure. In geometrized units (G5c51), this
mass-energy of deformation is

dM ~Q,R!5
b

R5
Q 2. ~8!

This is the same expression as one obtains in Newto
theory. It can be understood, in Newtonian language, as
gravitational energy;(DM )2/R of an excess massDM
;Q/R2 moved into the star’s polar region a little higher th

2The tidal field, having no radial nodes in its tidal force patte
will primarily excite the node-freef -mode; it will couple far more
weakly to the lower-frequency, longer-time-scaleg-modes@13–15#.
12403
m-
e

r-

-

.
ill
ed
s

ly

r’s

n
he

radius R, and a corresponding mass deficit2DM in the
star’s equatorial region a little lower than radiusR. As an
example, for a uniform-density Newtonian star@16#, b53.

The workW(Q,E), which the fixed tidal fieldE does on
the star as its quadrupole moment grows from zero to
valueQ, can be deduced by examining the flow of ener
through the star’s local asymptotic rest frame. That ene
flow can be described by the Landau-Lifshitz pseudoten
@17# for the metric~5! with E fixed andQ time varying. By
integrating the pseudotensor over a sphereS in the star’s
local asymptotic rest frame, we obtain the rate of change
the star’s total mass-energy@the quantityM appearing in the
metric ~5!#:

dM
dt

52E
S
~2g!tLL

j 0 njd
2A; ~9!

cf. Secs. 20.2 and 20.3 of Ref.@11#. This dM/dt consists of
two parts: the rate (d/dt)W(Q,E) that work is done by the
external field on the star and the rate of changedEint /dt of
the interaction energy of the external field and the ste
deformation:

dM
dt

5
dW~Q,E!

dt
1

dEint

dt
. ~10!

This split of dM/dt into two parts is elucidated in the Ap
pendix and will be analyzed at greater length in a subsequ
paper @18#. The integral~9! has been evaluated by Zhan
@19# using techniques described in Ref.@10# and foundations
laid in @20#. The result, in a general situation where bothE
andQ may be changing, is3

dM
dt

5
dW~Q,E!

dt
1

dEint

dt

52
1

2
Ei j

d

dt
I i j 2

1

10

d

dt
~Ei jI i j !

53E
dQ
dt

1
3

5

d~EQ!

dt
. ~11!

The following argument tells us how much of this mas
energy change goes into work and how much into interac
energy:~i! The interaction energyEint can depend only on
the instantaneous stellar deformation and tidal field;
dEint /dt must always be a perfect differential. By contra
the ratedW/dt that work is done need not be a perfect d
ferential.~ii ! In a physical situation~not ours! where the tidal
field is changing while the stellar configuration is consta
to first-order in the tidal perturbation no work is done on t
star,dW/dt50. These two facts are sufficient to imply tha

,

3Zhang does not give explicitly the numerical coefficient21/10,
since the perfect time derivative term is not of interest for his pr
lem; it can be derived by filling in intermediate steps in Zhang
calculation.
1-4
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dW~Q,E!
dt

52
1

2
Ei j

d

dt
I i j 53E

dQ
dt

, ~12!

dEint

dt
52

1

10

d~Ei jI i j !

dt
5

3

5

d~EQ!

dt
. ~13!

In our thought experiment, where the tidal field is fixed aE
and the quadrupole moment grows from zero toQ, the total
work done on the star is

W~Q,E!52
1

2
Ii jE i j 53QE. ~14!

By inserting expressions~14! and ~8! into Eq. ~7! and
minimizing the resulting potential energyV(N,R,Q,E) with
respect toQ at fixed N,R,E, we deduce the equilibrium
value of the quadrupole moment:

Q5
3R5

2b
E. ~15!

Correspondingly, the potential energy of the quadrupo
equilibrated configuration is

V~N,R,E!5M ~N,R!2
9R5

4b
E 2. ~16!

Because the quadrupolar contribution2(9R5/4b)E 2 to
this potential energy depends on the star’s radius, the t
coupling influences the star’s radial, secular motions. To
duce that influence, we convert the potential energy to
mensionless units,

v~n,r ,«![
V~N,R,E!2Mo

Mo
, «[

E
Mo /Ro

3
, ~17!

and combine with Eqs.~16! and ~2! to obtain

v~n,r ,«!5ar31~b01b1r !n2~c01c1r !«2. ~18!

Here« is the external tidal field measured in units of the tid
field produced by the critical configuration near its own s
face, and

c05
1

Mo
S Mo

Ro
3 D 2

9Ro
5

4b
5

9Mo

4bRo
;0.3,

c15
Ro

Mo
S Mo

Ro
3 D 2F d

dR S 9R5

4b D G
o

.5c0;1.5,

~19!

where the factor of 5 comes from differentiatingR5. The
dependence ofb on the star’s internal structure may give ri
to a slight variation ofb with R, which may slightly change
the relationshipc155c0 , hence the approximate equality
Eq. ~19!.

As the near critical star changes its radiusR slowly and
secularly at fixed tidal fieldE, its quadrupole moment con
tinually equilibrates, with an accompanying tidal feeding
12403
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energyW into and out of the star. These radial motions co
serve the star’s relativistic kinetic energy plus its poten
energyV(N,R,E) @which includes a correction for the flow
of W; cf. Eq. ~7!#. Correspondingly, the star’s equilibria ar
the extrema ofV(N,R,E)—or equivalently of its dimension-
less versionv(n,r ,«)—and these equilibria are stable if the
minimize v and unstable if they maximize it.

By differentiating Eq.~18! with respect tor at fixedn and
«, we obtain, for the equilibrium configurations,

r e56A~1/3a!~2b1ne1c1«2!

;6
0.7E

Mo /Ro
3 near criticality, wherene!

c1

b1
«2. ~20!

The configurations on the1 branch (R.Ro) are stable, and
those on the2 branch (R,Ro) are unstable.

Notice that, in response to the tidal field, each stable eq
librium configuration increases its radius (r e.0), and corre-
spondingly, since the fundamental radial-mode eigenfunc
jW (xW ) that describes the radial shape of its spherical defor
tion has no nodes, its central density goes down. Not surp
ingly, this leads to a secular stabilization of the star: wher
before the tidal field was turned on the maximum number
baryons that the star could support without collapsing w
No , afterward the maximum baryon number has increa
by a fractional amount

ne max5
c1

b1
«2;2.5S E

Mo /Ro
3D 2

. ~21!

The tidally induced increase of equilibrium radius~20!
and increase of maximum baryon number~21! are the same
in sign and order of magnitude as Lai has deduced pr
ously using post-Newtonian arguments@2#.

The inability of fully relativistic gravity to produce a
secular instability can be traced to the robustly positive s
of the coefficientc1 , which in turn follows from the fact that
the star’s deformation energy at fixed quadrupole mome
dM (Q,R)/Q 25b/R5, is a decreasing function of radius.
is very hard to imagine any neutron star for which this wou
fail to be true.

III. ROTATING STAR AND ROTATING TIDAL FIELD

We now turn attention to a rigidly rotating neutron st
interacting with a rotating external tidal field, such as tho
which occur in binary neutron star systems. In our analy
the rotation is with respect to the star’s local asymptotic r
frame, which itself will generally rotate with respect to ‘‘in
finity’’ due to dragging of inertial frames by the binary’
total angular momentum.

For simplicity, we shall require that the star’s spin ax
and the tidal field’s rotation axis coincide, as will be the ca
in a binary if the two stars’ spin axes are perpendicular to
orbital plane. This requirement protects the tidal field and
spin axis from processing.

The tidal stabilization analysis of Sec. II can be gener
ized to such a rotating system with little change. We sh
1-5
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KIP S. THORNE PHYSICAL REVIEW D 58 124031
sketch that generalization, beginning in Sec. III A with t
secular stability of the rotating star in the absence of the t
field, followed in Sec. III B with the star-tide interaction an
tidal stabilization.

A. Rotating star without a tidal field

Consider a family of rigidly rotating neutron stars that a
characterized by the equation of stateP(r) and that all have
the same spin angular momentumJ as measured by fram
dragging in their local asymptotic rest frames. For such st
becauseJ is fixed once and for all, the equilibrium configu
rations form a one-parameter family analogous to that
static stars. We shall characterize those equilibria by th
massesMe ~as measured by Keplerian orbits in their loc
asymptotic rest frames!, their number of baryonsNe , and
their equatorial radii Re ~defined as their equatoria
circumferences/2p).

These equilibria will have a mass-radius relationMe(Re)
with the same general shape as that for nonrotating s
~Fig. 1!, but with a critical massMo and critical radiusRo
that are larger due to centrifugal stabilization and centrifu
forces; cf., e.g., Figs. 1 and 2 of Ref.@21#.

As for static stars, so also for these spinning stars,
critical configuration~configuration of maximum mass! is
marginally stable to a secular expansion or contraction
takes it horizontally in Fig. 1 to another equilibrium config
ration with the same massMo and angular momentumJ; the
equilibrium configurations on the larger-radius side of cr
cal are secularly stable, while those on the smaller-rad
side are secularly unstable.

In these rotating stars, the motions of interest aresecular
in two senses:~i! As for static stars, the motions must b
slow enough for pycnonuclear reactions to go to completi
so that each element of expanding and contracting ste
material follows the same equation of stateP(r) as charac-
terizes the equilibrium stellar structure.~ii ! The motions
must also be slow enough for viscosity to produce eno
coupling between adjacent mass elements to keep the
rigidly rotating. This second condition is especially seve
so in practice the secular stabilization that we shall prov
of interest primarily because of its implications for dynam
cal stability ~Sec. IV!.

As for static stars, we construct from our one-parame
rigidly rotating family of equilibria a two-parameter famil
of configurations that are expanded and contracted a
from equilibrium. Our construction procedure is precise
the same as in the static case, with the slow, fundame
secular mode of deformation governing the expansions
contractions. The resulting deformed configurations will o
viously have mass-radius curves,M (N,R) at fixed N ~and
forever fixedJ), with the same general shapes as in the st
case: the dashed curves of Fig. 2. Moreover, when expre
in dimensionless variables~1!, the m(n,r ) relation near the
critical point for our rotating family will have the sam
mathematical form,m5ar31(b01b1r )n, as for the static
case. The coefficientsa, b0 , andb1 will be affected by the
rotation and thus will not take on their static forms~4!, but in
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order to produce the equilibria’s known stability propertie
they will still all be positive.

B. Tidally deformed, rotating star

We now place each of our rigidly rotating, near-critic
stars—all with the same spin angular momentumJ—in a
rotating, external tidal gravitational field. We assume that
star and the tidal field rotate about the same axis as see
the star’s local asymptotic rest frame; the star’s rotatio
angular velocity isv&2p31000/s, and if the rotating field
is produced by a binary companion, its angular velocity
that of the orbital motion,V&2p3600/s@22#. In this case,
the tidal field is exceedingly unlikely to excite the star
normal modes significantly. This is because~i! significant
excitation requires resonant coupling;~ii ! the circularly po-
larized f - and p-modes have angular velocities of patte
rotations*2p31500/s~unless the star is rotating close
centrifugal breakup!, which is too large to resonate with th
driving force except under the most extreme of circu
stances; and~iii ! the low-frequencyg-modes, whichcan
resonate, have only very weak coupling to the tidal fie
@13–15#. With this justification, we shall assume that th
tidal field does not resonantly excite the star’s normal mod

The rotating tidal field will, however, raise a nonresona
rotating quadrupolar tide on the neutron star. If the sta
material had zero viscosity, the tide would be perfec
aligned with the tidal field; i.e., the axes of the star’s rotati
quadrupole momentIjk would be identical to those of the
tidal field Ejk . This standard Newtonian result must be tr
also in general relativity since the relevant physics is noth
but that of simple harmonic oscillators: Whenever an u
damped oscillator is driven by an off-resonance sinuso
force, the oscillator’s displacement response is precisely
phase with the force. As for an oscillator, so also for the s
any small viscosity will cause a slight phase lag betwe
excitation and response: the orientation of the star’s ti
deformation and its quadrupole moment will lag that of t
tidal field by an angle

f.
~V2v!

~s2v!2t*
, ~22!

wheret* is the viscous damping time for the star’s quadr
polar excitations. For realistic viscosities, this is an exce
ingly small lag angle@13–15#; so the quadrupole moment i
very nearly oriented along the tidal field.

This agreement of orientations prevents the tidal fi
from torquing the star; so the star’s spin angular moment
J is conserved.

This conservation ofJ and alignment of tidal field and
quadrupole moment enable us to carry over the static-
analysis of tidal stabilization~Sec. II B! to the rotating case
essentially without change. The tidal field and quadrup
moment can be characterized by scalars in the manner of
~6!; raising the tide requires an energydM (Q,R) given by
Eq. ~8!; the tide extracts from the tidal field an amount
energy W(Q,E) computable by integrating the Landau
Lifshitz pseudotensor over a closed 2-surface in the st
1-6
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local asymptotic rest frame in the manner of Eq.~9!, and that
integration must give expression~14! aside from a multipli-
cative factor that is close to unity. This multiplicative fact
~call it 11g), which we have not computed, will arise from
the synchronous rotation of the tide and star with velocityvr
at the star’s surface. It cannot differ from unity by more th
g;v2R2&0.01~there is no linear termg;vR because such
a term would reverse sign when the star reverses directio
rotation.! As in the static case, the quadrupole moment
justs itself so as to minimize the potential energy funct
V(N,R,Q,E) of Eq. ~7!; the resultingQ is expression~15!
aside from the multiplicative factor 11O(v2r 2), and the
star’s radius changes slowly and secularly in a manner g
erned by the potential energy functionv(n,r ,«)5ar31(b0
1b1r )n2(c01c1r )«2 @Eq. ~18!#. The only difference is in
the numerical values of the coefficientsa, b0 , b1 , c0 , and
c1 .

As in the static case, the key to tidal stabilization is t
sign of c1 , and as there, as long as the star’s deforma
energy at fixed quadrupole moment,dM (Q,R)/Q2

5(b/R5)3@11O(v2R2)#, is a decreasing function of ra
dius R, the tidal field secularly stabilizes the star, increa
its radius, and decreases its central density. It is exceedi
difficult to imagine a star for which~whenv&2p3600/s as
it must be in an inspiraling binary@22#! this would not be the
case.

IV. CONCLUSIONS

In this paper we have proved that tidal fields tend to s
bilize a star against secular gravitational collapse. Howe
for spinning stars in binaries, secular stability is irreleva
because the radiation reaction drives the binary through
regime of relativistic gravity far too quickly for viscosity t
keep the rotation rigid in pulsational motions. The releva
issue in this case is dynamical stability.

As is well known~e.g., Ref.@23#!, secular stability im-
plies dynamical stability. This is so for two reasons. Fir
pycnonuclear reactions go to completion in secular moti
but not in dynamical motions, and as a result the sec
motions are characterized by a softer equation of state
the dynamical motions and thus are less stable. Second
namical motions of an initially rigidly rotating star produc
differential rotation, and the viscous coupling that conve
that differential rotation into the rigid rotation of a secul
motion will necessarily extract energy from the rotation. Th
means that, beginning with the same equilibrium configu
tion, the dynamical motion must lead to a configuration
greater potential energyV than the secular motion, which i
turn means that the equilibrium configuration is more sta
against the dynamical motion than against the secular
tion.

Consider a rigidly rotating neutron star in the final, re
tivistic phase of binary inspiral. Such a star must have liv
for millions of years to reach this inspiral phase; so it m
be secularly stable as well as dynamically stable before
tidal field of its companion begins to affect it significantl
The growing tidal field, as we have seen, must increase
star’s secular stability. Since secular stability implies d
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namical stability, the tidally deformed star must also rem
dynamically stable.

This conclusion is not at all obvious from the equations
the post-Newtonian approximation as they are usually w
ten: in a reference frame that is asymptotically inertial
infinity. One can identify in those equations terms that a
pear able to produce tidal instability at first post-Newtoni
order @1#. This fact illustrates the superficially misleadin
character of the post-Newtonian equations: Apparently ma
cal cancellations@3# enforce the strong equivalence principl
which is fundamentally at the heart of tidal stabilization.

By contrast, the mathematical tools used in this pap
being based on the local asymptotic rest frame of the
whose stability interests us, are closely linked to the stro
equivalence principle and lead rather directly to the tidal s
bilization. These tools are not widely used in relativistic a
trophysics. They are worth trying whenever one is interes
in the behavior of a semi-isolated portion of a larger relat
istic system—e.g., a neutron star or black hole interact
with other bodies@10#.

As this paper was being completed, I learned of a simi
local-asymptotic-rest-frame analysis by Flanagan@24#,
which, however, focuses on equations of motion rather t
energy considerations.
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APPENDIX

In this appendix, we elucidate the energetics
quadrupole-tidal coupling, Eqs.~9!–~14!, by working out its
details in the Newtonian limit without rotation.

We consider a nonroting Newtonian star that is spheric
aside from a quadrupolar deformation and quadrupole m
ment Ijk that are aligned with an external tidal fieldEjk
5Fe,jk . Here Fe is the external Newtonian potential, an
Ejk andIjk are symmetric and trace free. We denote byr, p,
v and P the ~Newtonian! mass density, pressure, veloci
and specific internal energy of the stellar fluid, and by

F5Fo1Fe ~A1!

the Newtonian gravitational field and its split into the sta
self-field Fo and the external fieldFe.

In Newtonian theory, the total energy density and ene
flux of the stellar fluid plus gravitational field can be writte
as

Q005rS 1

2
v21P1F D1

1

8p
F , jF , j , ~A2!

Q0 j5rv j S 1

2
v21P1

p

r
1F D2

1

4p
F ,tF , j , ~A3!
1-7



tr
m

rg

f
e

-
n

W

re
m

l
its

-

ts

s

-
x

t

en-
ld
r’s

of
ses;
is
the

the

nal

a-
-
nd

on

s

m
and
n of
ry

q.
-
e

KIP S. THORNE PHYSICAL REVIEW D 58 124031
where we make no distinction between covariant and con
variant spatial indices because our coordinates are assu
to be Cartesian. It is straightforward to verify that the ene
conservation law

Q00
,t1Q0 j

, j50 ~A4!

is satisfied by virtue of mass conservationr ,t1(rv j ) , j50,
the first law of thermodynamics,rdP/dt1pv j

, j50, the flu-
id’s Euler equationrdv j /dt1rF , j1p, j50, and Newton’s
field equationF , j j 54pr. Hered/dt5]/]t1v j]/]xj is the
fluid’s comoving time derivative.

@Note that Eqs.~A2! and ~A3! entail a specific choice o
how to localize the system’s gravitational energy. Oth
choices are possible: one can add toQ00 the divergence of
h j[aFF , j ~where a is an arbitrary constant! and add to
Q0 j minus the time derivative ofh j without affecting the
law of energy conservation~A4! or any of the system’s phys
ics. This nonuniqueness of localization of gravitational e
ergy also occurs in general relativity; cf. Chap. 20 of MT
@11#. We shall discuss its consequences below.#

The external field is purely quadrupolar and source f
throughout the star and the star’s local asymptotic rest fra

Fe5
1

2
E i j x

ixj , Fe,j j 50, ~A5!

and its tidal fieldEi j evolves with time. The star’s externa
self-field is purely monopolar and quadrupolar and
source, of course, is the star’s mass distribution

Fo52
M

r
2

3

2

I i j n
inj

r 3
outside star, Fo,j j 54pr. ~A6!

Herer[Ad i j x
ixj is the radius andnj[xj /r is the unit radial

vector. The star’s massM is constant in time, but its quad
rupole momentIi j evolves.

Now consider the total energyE inside a ballV centered
on the star and larger than the star. This energy consis
three parts, the star’s self-energyEo , the external field’s en-
ergyEe, and the energyEint of interaction between the star’
quadrupolar deformation and the external tidal field:

E[E
V
Q00d3x5Eo1Ee1Eint , ~A7!

Eo5E
V
FrS 1

2
v21P1FoD1

1

8p
Fo,jFo,j Gd3x, ~A8!

Ee5E
V

1

8p
Fe,jFe,jd

3x, ~A9!

Eint5E
V
S rFe1

1

4p
Fo,jFe,j Dd3x5

3

10
Ei jIi j .

~A10!

Here the value ofEint follows from the form and sourceless
ness~A5! of the external field, the source equation and e
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terior form of the star’s self-field~A6!, and the usual volume
integral for the quadrupole momentIi j 5*

V
r(xixj

2 1
3 r 2d i j )d3x.
The law of local energy conservation~A4! guarantees tha

the rate of change of the total energy~A7! is the surface
integral of the energy flux over the boundary]V of the ball
V :

dE

dt
52E

]V
Q0 jnj r 2dV. ~A11!

Here dV is solid angle. By combining Eqs.~A11!, ~A3!,
~A1!, ~A5!, ~A6! and ~A9!, we find that

dE

dt
5

dEe

dt
1E

]V

1

4p
Fo,tFo,jn

j r 2dV

1
d

dt S 3

10
IjkEjkD2

1

2
Ejk

d

dt
Ijk . ~A12!

The first term is the rate of change of the external field
ergy, inside the ball, due to the evolution of the tidal fie
Ejk . The second term is the rate of change of the sta
self-energy due its own field energy flowing into or out
the ballV as its quadrupole moment decreases or increa
in the limit as the ball’s radius becomes arbitrarily large, th
term goes to zero. The third term is the rate of change of
interaction energy; cf. Eq.~A10!. By comparing with Eq.
~A7!, we see that the last term must drive changes in
star’s self-energy:

dEo

dt
5E

]V

1

4p
Fo,tFo,jn

j r 2dV2
1

2
Ei j

d

dt
Ii j . ~A13!

In other words, the last term is the rate at which the exter
tidal field does work on the star:

dW~Q,E!
dt

52
1

2
Ei j

d

dt
I i j . ~A14!

This work rate is in perfect agreement with the fully rel
tivistic work rate~12! derived in the text using the Landau
Lifshitz pseudotensor to localize the gravitational energy a
using deDonder~harmonic! gauge.

This is not so for the rate of change of the interacti
energy. The Newtonian analysis gives

S dEint

dt D
Newton

5
3

10

d~Ei jI i j !

dt
~A15!

@Eq. ~A10! above#; by contrast, the relativistic analysis give
this same expression but with a coefficient21/10 rather than
13/10; see Eq.~13!. This disagreement does not arise fro
any fundamental difference between Newtonian theory
general relativity. Rather, it arises because the localizatio
gravitational energy is non-unique, both in Newtonian theo
and in general relativity@see the paragraph preceding E
~A5!#, andEint is that portion of the system’s total gravita
tional interaction energy which resides in the vicinity of th
1-8
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particular neutron star on which we are focusing. For a
nary system, our two analyses distribute the gravitational
ergy differently between the stars’ vicinities and the inters
lar region, and they thereby give rise to different values
Eint . If, in the Newtonian analysis, we were to change o
localization of the gravitational energy via the transformat
described in the paragraph preceding Eq.~A5!, we would
alter Eint , while leaving unchanged the uniquely defin
ys

ro

er

12403
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work W done by the tidal field on the star of interest. Sim
larly, if, in our general relativitistic analysis, we were t
change our energy localization by switching from t
Landau-Lifshitz pseudotensor to some other pseudotenso
by performing a gauge change on the gravitational field,
thereby would alterEint but leaveW unchanged.

This localization dependence ofEint and uniqueness ofW
will be analyzed in detail in a subsequent paper@18#.
,
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