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Path integral for the Hilbert-Palatini and Ashtekar gravity
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To write down a path integral for the Ashtekar gravity one must solve three fundamental problems. First, one
must understand the rules of complex contour functional integration with holomorphic action. Second, one
should find which gauges are compatible with reality conditions. Third, one should evaluate the Faddeev-
Popov determinant produced by these conditions. In the present paper we derive the BRST path integral for
Hilbert-Palatini gravity. We show that for a certain class of gauge conditions this path integral can be rewritten
in terms of the Ashtekar variables. Reality conditions define contours of integration. For our class of gauges all
ghost terms coincide with what one could write naively, just ignoring any Jacobian factors arising from the
reality conditions.@S0556-2821~98!06824-6#
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I. INTRODUCTION

The invention of complex canonical variables@1# opened
a new avenue for the nonperturbative treatment of quan
general relativity. In these new variables all constraints w
made polynomial at the expense of introducing reality c
ditions. Afterwards, many gravitational theories were ref
mulated in a similar way, including even 11-dimensional s
pergavity@2#. Quite spectacular success was achieved in l
quantum gravity@3#. In view of the recent progress in non
perturbative methods it seems especially important to
velop a path integral formulation of Ashtekar gravity whic
could serve as a bridge between perturbative and nonpe
bative results.

The constraint structure of Ashtekar gravity has be
studied in some detail~for reviews, see@4# and @5#!. The
Becchi-Rowet-Stora-Tyutin~BRST! charge was constructe
@6#. An earlier attempt to study the path integral in Ashtek
variables was given by Torre@7#. However, in this paper
subtleties coming from integration over complex variab
were ignored. It is known that any restriction imposed
integration variables may lead to Faddeev-Popov ghosts@8#.
It is unclear what kind of ghost action is induced by t
reality conditions.

It is obvious that the path integral for Ashtekar grav
will have a somewhat unusual form. In the case of comp
scalar fields the action is real and one integrates over
whole complex plane. In the case of Ashtekar gravity
action is holomorphic. Thus one may expect some sor
contour integration. The position of the contour must be
fined by using the reality conditions. However, it is n
known yet which gauges are compatible with these con
tions.

Our strategy is rather simple. We derive the path integ
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for Hilbert-Palatini gravity and then rewrite it in terms of th
Ashtekar variables. By itself, the first part of our work do
not have great novelty. The Hamiltonian structure of Hilbe
Palatini gravity has been analyzed in a number of pap
@9–11,4,5#. Given this analysis construction of the path int
gral is quite straightforward. However, the transition to t
Ashtekar variables requires a complex canonical transfor
tion which is not well defined in the path integral. We wou
also like to avoid any gauge fixing at intermediate steps
fore the path integral is written down. Thus we are forced
choose a basis in the Hilbert-Palatini action different fro
the ones used earlier and redo calculations of the const
algebra, BRST charge, etc. A price to pay for the relativ
easy transition to the Ashtekar variables in the path integ
is an ugly form of the Hamiltonian constraint of the Hilber
Palatini action. It leads to lengthy calculations at interme
ate steps, which are reported here in some detail to make
paper self-contained.

As our main result, we transformed the Hilbert-Palat
path integral to the Ashtekar variables. This can be do
successfully for a restricted class of gauges only. One is
allowed to impose gauge conditions on the connection v
ables. Therefore, path integral quantization of Ashtekar gr
ity in an arbitrary gauge remains an open problem.

The paper is organized as follows. In the next sect
some preliminary information on the self-dual Hilber
Palatini action is collected. We introduce variables whi
will be convenient for the construction of the path integr
rederive the Ashtekar action, and give some useful eq
tions. In Sec. III we reconsider the constraint structure
Hilbert-Palatini gravity in terms of our variables. Section I
is devoted to the BRST quantization of Hilbert-Palatini gra
ity. In Sec. V we establish a relation between first and sec
class constraints of the Hilbert-Palatini action and the rea
conditions and vanishing of the imaginary part of the As
tekar action. In Sec. VI we rewrite the path integral in term
of the Ashtekar variables. This represents our main res
Readers who do not want to go into the technicalities of
BRST quantization will find a simple derivation of the Fa
deev path integral for Ashtekar gravity in Sec. VII. In the la

rg
s:
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section some perspectives are briefly discussed. Tech
details are collected in the Appendixes.

II. SELF-DUAL HILBERT-PALATINI ACTION

Let Vgd5dvgd1vg
a∧vad; v ande are connection and

tetrad one-forms, respectively. The signature of the metri
~2,1,1,1!. The Levi-Cività tensor is defined by the equa
tion e012351. Define the star operator as!vab

51/2eab
gdvgd. Define

Aab5
1

2
~vab2 i !vab!,

Fab5dAab1Aa
g∧Agd5

1

2
~Vab2 i !Vab!. ~1!

These fields satisfy!A5 iA, !F5 iF. Let us start with the
self-dual Hilbert-Palatini action expressed in terms of se
dual connection only@11–14#:

SSD5E eabgdea∧eb∧Fgd. ~2!

Let us split coordinatesxm into ‘‘time’’ t and ‘‘space’’xi and
introduce the notation

e05Ndt1xaEi
adxi , ea5Ei

adxi1Ei
aNidt,

Ai
a5eabcAbci , A0

a5eabcAbc0 ,

Fi j
a 5eabcFi j ,bc , ~3!

wherea,b,c51,2,3 are flat SO~3! indices.Ea
i will denote the

inverse ofEi
a . We also need weighted fields:

Ẽa
i 5AhEa

i , N> 5~Ah!21N, ~4!

Ah5detEi
a . After long but elementary calculations we ca

represent Eq.~2! in the following form:

SSD52E dt d3x~Pa
i ] tAi

a1A0
aGa1NiHi1N>H!,

Pa
i 5 i ~Ẽa

i 2 i ea
bcẼb

i xc!,

Ga5¹ i Pa
i 5] i Pa

i 2eabcAi
bPci,

Hi522iẼa
kFik

a 2e i jk Ẽa
j Ẽb

ke lmnE> l
dxdFmn

ab ,

H52Ẽa
i Ẽb

kFik
ab , ~5!
12402
cal

is

-

E> i
a5h21/2Ei

a . By a suitable redefinition of Lagrange mult
pliers xa can be removed from the action:

N D
i 5Ni1

Ẽa
i xa~NjE> j

bxb2N> !

12x2 , N> 5
N> 2NiE> i

axa

12x2 . ~6!

The action~5! now reads

SSD5SA52E dt d3x~Pa
i ] tAi

a1A0
aGa1ND

iHi1N> H !,

Hi522Pa
kFik

a ,

H522Pa
i Pb

kFik
ab . ~7!

All x dependence is hidden in the canonical variables.
arrived at the Ashtekar action~7! ~later denoted asSA!. The
absence ofx in SA leads to a first class primary constrai
px50, where px is the canonical momentum forx. This
constraint generates shifts ofx by an arbitrary function and
originates from the Lorentz boosts.

One must bear in mind that not all the components
RePa

i are independent. To restore the correct form ofPa
i one

needs a condition ImPa
(i RePa

j)50 or, equivalently,

Im~Pa
i Pa

j !50. ~8!

Equation~8! is known as the first metric reality condition
Being supplemented by the second metric reality conditio

] tIm~Pa
i Pa

j !50 ~9!

on an initial hypersurface, it ensures the real evolution of
metric @15–17#. As usual, the triad fieldẼ should be nonde-
generate.

Define the smeared constraints

G~n!5E d3x naGa , HA~N> !5E d3x N> H,

D~NW !5E d3x Ni~Hi12Ai
aGa!. ~10!

They obey the following algebra:

$G~n!,G~m!%C52G~n3m!,

$D~NW !,D~MW !%C522D~@NW ,MW # !,

$D~NW !,G~n!%C522G~Ni] in!,

$HA~N> !,G~n!%C50,

$D~NW !,HA~N> !%C522HA~LNW N> !,

$HA~N> !,HA~M> !%C52D~KW !22G~2K jAj !, ~11!
9-2
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where

~n3m!a5eabcnbmc, LNW N> 5Ni] iN> 2N> ] iN
i ,

@NW ,MW # i5Nk]kM
i2Mk]kNi , ~12!

K j5~N> ] iM> 2M> ] iN> !Pa
i Pa

j . ~13!

We introduced the subscriptC to distinguish the Poisson
brackets$•,•%C of the complex Ashtekar theory from thos
of the real Hilbert-Palatini action.

III. HAMILTONIAN FORM
OF THE HILBERT-PALATINI ACTION

Let us start with the Hilbert-Palatini action

S5
1

2 E eabgdea∧eb∧Vgd. ~14!

Recall that the Ashtekar action is obtained from the Hilbe
Palatini one by adding a pure imaginary ter

2 i 1
2*eabgdea∧eb∧!Vgd. Therefore,

S5Re SA52E dtd3x~Ẽa
i ] tv i

0a1Za
i ] tj i

a1nG
a ReGa

1nL
aIm Ga1ND

iRe Hi1N> Re H !, ~15!

where

nG
a 5Re A0

a , nL
a52Im A0

a , ~16!
12402
-

Za
i 5ea

bcẼb
i xc , ~17!

j i
a5 1

2 ea
bcv i

bc . ~18!

In order to simplify the constraint algebra we repla
ReHi by the modified vector constraint. To this end we sh
the Lagrange multipliers:

nG
a 5N G

a 12N D
i j i

a , nL
a5N L

a12N D
i v i

0a . ~19!

We see thatẼa
i plays the role of the momentum forj i

a

whereasZa
i is the momentum conjugate tov i

0a . HereZa
i has

three independent components only. To have time der
tives of true dynamical variables we replace

v i
0a5h i

a1eabcj i
bxc . ~20!

Then the kinetic term readsẼa
i ] th i

a2(eabcj i
bẼc

i )] txa . By a
suitable change of variables we can bring this term to
standard formp] tq. Let us introduce a basis in the space
333 matrices:

~r A! i
a5E> i

b~bA!b
a , ~ga! i

b5 1
2 eabcE> i

c , ~21!

wherebA are six symmetric 333 matrices. Define

j i
a5r i

a1~gb! i
avb, r i

a5~r A! i
alA. ~22!

v andl will be treated as new canonical variables.
We arrive at the following expression for the Hilber

Palatini action:
1

2
S5E dt d3x~Ẽa

i ] th i
a1xa] tv

a1N G
a Fa

G1N L
aFa

L1N D
i F i

D1N> FH!,

Fa
G5] i~ea

bcẼb
i xc!2eab

ch i
bẼc

i 2eab
cvzbxc ,

Fa
L5] i Ẽa

i 1eabch i
becg fẼg

i x f2~dab2xaxb!vb,

F i
D522@Ẽa

j ] ih j
a2] j~Ẽa

j h i
a!2va] ixa#,

FH5eabcẼb
i Ẽc

j ~dad2xaxd!ed
g fh i

gh j
f12Ẽa

i Ẽb
j xb~] ih j

a2] jh i
a!2~12x2!@2] i~Ẽa

i va!2h21va] i~hẼa
i !#

1vaxb~Ẽa
i ] ix

b1Ẽb
i ] ixa!1Ẽa

j vb~xah j
b2xbh j

a!2vaxa~Ẽb
j h j

cxbxc2x2Ẽb
j h j

b!2
1

2
~12x2!vavb~dab2xaxb!

12eabcẼb
i Ẽc

j @~12x2!] i r j
a1r j

dxd] ixa2~12x2!xar j
dh i

d1~dag2xaxg!h i
gr j

dxd#

2~12x2!eabcẼb
i Ẽc

j ~dad2xaxd!ed
g fr i

gr j
f . ~23!
9-3
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We see thatlA has no conjugate momentum, and thus
nondynamical. We observe also thatlA is contained inFH

only.
Let us analyze constraints of the theory along the lines

the usual Dirac procedure@18#. Since all steps are complete
standard, we omit irrelevant technical details~cf. @11,4#!.
First we note thatẼa

i and xa are conjugate momenta toh i
a

and va, respectively. By analyzing the consistency con
tions we get the following set of constraints:

pa
~n!50, pA

~l!50, Fa50, N>
]FH

]lA
50, ~24!

wherep(q) denotes the momentum conjugate to the varia
q, ~n! are all Lagrange multipliers, and Fa

5(Fa
G ,Fa

L ,F i
D ,FH). Introduce

Fa85Fa2
1

2
pA

lAAB
21H Fa ,

]FH

]lB
J , ~25!

where AAB52 1
2 (]2FH/]lA]lB). Then Fa8 and pa

(n) are
first class constraints.
s

f

-

e

The remaining constraintspA
(l) andN> (]FH/]lA) are sec-

ond class constraints with a nontrivial matrix of commu
tors. This matrix is nondegenerate and can be used to
struct Dirac’s brackets. To avoid using such an object o
should solve the second class constraints explicitly.

The constraintspA
(l)50 are solved trivially giving us back

Fa as first class constraints. SinceFH is quadratic inl, it
can be represented as

FH5F0
H12BAlA2lAAABlB . ~26!

The remaining second class constraints give the equatio

05
dFH

dlA 52~2AABlB1BA!, ~27!

which can be solved forl, resulting in expressions for non
dynamical componentsr i

a in terms of other canonical vari
ables. Here we give final results only; some intermedi
steps are reported in Appendix A:
r i
a5

1

2~12x2!
~2Xade

dbcẼb
kẼc

j Xg fE> i
g]kE> j

f1XagE> i
gedbcẼb

kẼc
j Xd f]kE> j

f2edbcẼb
kẼc

j XdgE> i
gXa f]kE> j

f

2xaedbcẼb
j XcgE> i

g] ixd1edbcxb] ixc2eabcxbẼc
j E> i

d] jxd1eabcxbh i
c1edbcẼa

j E> i
dxbh j

c!, ~28!

whereXab5(dab2xaxb). The Hamiltonian constraint reads

FH5F0
H1BAAAB

21BB

52
1

2
~12x2!vavbXab2~12x2!@2] i~Ẽa

i va!2h21va] i~hẼa
i !#1vaxb~Ẽa

i ] ixb1Ẽb
i ] ixa!

1@Ẽa
i vb~xah i

b2xbh i
a!2vaxa~Ẽb

i xbh i
cxc2x2Ẽb

i h i
b!#

1
1

2
$2eabcẼb

i Ẽc
j Xade

dpqẼp
kẼq

l Xg f] iE> j
g]kE> l

f1eabcẼb
i Ẽc

j Xag] iE> j
gedpqẼp

kẼq
l Xd f]kE> l

f

2eabcẼb
i Ẽc

j Xag]kE> l
gedpqẼp

kẼq
l Xd f] iE> j

f%

1$2eabcẼb
i Ẽc

j xaedpqẼp
k]kxdXqg] iE> j

g1eabcẼb
i Ẽc

j ] iE> j
aedpqẼp

k]kE> l
fxq2eabcẼb

i Ẽc
j eadpẼp

k]kxd] iE> j
gxg%

2
x2

2~12x2!
eabcẼb

i ] ixaXcqe
dpqẼp

j ] jxd1eabcẼa
kẼb

i Ẽc
j edpqxdhk

p] iE> j
q2eabcẼb

i ] i Ẽc
j eapqxph j

q

1
1

12x2 eabcẼb
i ] ixaecpqxph j

qẼd
j xd

1H 2Ẽa
i Ẽb

j xb~] ih j
a2] jh i

a!1eabcẼb
i Ẽc

j eapqh i
ph j

q1
1

2
eabcxaẼb

i h j
cedpqxdẼp

j h i
q2

1

2
eabcxah i

becpqxph j
qẼg

i Ẽg
j

2
1

2~12x2!
eabcxah i

becpqxph j
qẼg

i xgẼf
j x f J . ~29!

124029-4
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We finish up this section with some useful commutato
Introduce the smeared first class constraints

G~n!5E d3x naFa
G , L~m!5E d3x mbFb

L ,

D~NW !5E d3x NiF i
D , H~N> !5E d3x N> FH.

~30!

Here all the constraints are taken from Eqs.~23!, except for
the Hamiltonian constraintFH which is now given by Eq.
~29!. Herej i

a is expressed in terms of canonical variables
means of Eqs.~22! and ~28!.

The transformations of the connection fields are

$G~n!,j j
d%5edabnaj j

b1] jn
d,

$G~n!,h j
d1edpqj j

pxq%5edabna~h j
b1ebpqj j

pxq!,

$L~m!,j j
d%52edabma~h j

b1ebpqj j
pxq!,

$L~m!,h j
d1edpqj j

pxq%5edabmaj j
b1] jm

d,

$D~NW !,j j
d%52~Ni] ij j

d1j i
d] jN

i !,

$D~NW !,h j
d1edpqj j

pxq%52@Ni] i~h j
d1edpqj j

pxq!

1~h i
d1edpqj i

pxq!] jN
i #. ~31!

The Poisson brackets between the constraints are straigh
ward to evaluate. One obtains

$G~n!,G~m!%52G~n3m!,

$L~n!,L~m!%5G~n3m!,

$G~n!,L~m!%52L~n3m!,

$D~NW !,D~MW !%522D~@NW ,MW # !,

$D~NW !,G~n!%522G~Ni] in!,

$D~NW !,L~m!%522L~Ni] im!,

$H~N> !,G~n!%50,

$H~N> !,L~m!%50,

$D~NW !,H~N> !%522H~LNW N> !,

$H~N> !,H~M> !%52D~KW !22G~2K jj j !

22L@2K j~h j1j j3x!#, ~32!

where

K j@N> ,M> #5~N> ] iM> 2M> ] iN> !Ki j ,

Ki j 52„Ẽa
i Ẽa

j ~12x2!1Ẽa
i xaẼb

j xb…. ~33!
12402
.

y
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Other notation is taken from Eq.~12!. HereKi is in fact the
same as in Eq.~13! but written in different variables.

FH will be called the Hamiltonian constraint.FD gener-
ates diffeomorphisms of the three-surface and will be ca
the diffeomorphism constraint.FG and FL generate the
SO(3,R) rotations and the Lorentz boosts, respectively. Th
will be called the Gauss law constraint and the Lorentz c
straint, respectively.

There is a set of remarkable relations between the Pois
brackets of Hilbert-Palatini gravity and that of Ashtek
gravity:

$G~n!,Pa
j %C5$G~n!,Pa

j %5$ iL ~n!,Pa
j %,

$G~n!,Aj
a%C5$G~n!,Aj

a%5$ iL ~n!,Aj
a%,

$D~NW !,Pa
j %C5$D~NW !,Pa

j %, $D~NW !,Aj
a%C5$D~NW !,Aj

a%,

$HA~N!,Pa
j %C5$H~N!,Pa

j %. ~34!

Note that last relation holds forPa
j only.

In a different context the relation between Hilbert-Palat
and Ashtekar brackets was considered recently by Kha
movsky @19#.

IV. BRST QUANTIZATION
OF HILBERT-PALATINI GRAVITY

In this section we construct the BRST path integral@20#
for Hilbert-Palatini gravity. Here we follow the review in
@21#. Consider a dynamical system with phase space v
ables (qs,ps), HamiltonianH0 , and constraintsFa . Let na

be the Lagrange multipliers associated with the constra
Fa , and pa be the canonically conjugate momenta. T
extended phase space is defined by introducing extra g
and antighost fields (ba,c̄a ,ca,b̄a), obeying the following
nonvanishing antibrackets:

$ba,c̄b%152db
a , $ca,b̄b%152db

a .

ca,c̄a are real, whereasba,b̄a are imaginary.
It is convenient to define an additional structure on t

extended phase space, that of ‘‘ghost number.’’ This is d
by attributing the following ghost number to the canonic
variables:ca,ba have ghost number 1,c̄a ,b̄a have ghost
number21. All other variables have ghost number 0.

On this space one can construct a BRST generatorV and
a BRST-invariant HamiltonianH. They are determined by
the following conditions.

~a! V is real and odd;~b! V has ghost number 1;~c!
V52 ibapa1caFa1 ‘‘higher ghost terms;’’~d! $V,V%1

50.
~a! H is real and even;~b! H has ghost number 0;~c! H

coincides withH0 up to higher ghost terms;~d! $H,V%50.
If H0 weakly vanishes~as in our case!, one can takeH

50 since the formalism supports an arbitrariness in the d
nition of observables:H0;H01kaFa .

The BRST generator is fully defined by structure fun
tions of the constraint algebra:
9-5
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V52 ibapa1 (
n>0

can11
¯ca1Ua1¯an11

~n!b1¯bnb̄bn
¯b̄b1

.

The structure functions for Hilbert-Palatini gravity a
constructed in Appendix B. As a result, we obtain

V52 ibapa1caFa1 1
2 cacbCab

g b̄g1cacbcgUabg
~2!dlb̄db̄l ,

~35!

whereU (2) is taken from Eq.~B8!. Note that for Yang-Mills
theory the term withU (2) is absent in the BRST charge. Th
is also the case of Ashtekar gravity@6#.

The quantization is based on the generating functional
the Green functions which is represented in the form

Z@ j ,J,l#5E Dm ei *dt~Le f f1 j sq
s1Jsps1lana!, ~36!

where

Le f f5q̇sps1ṅapa1 ċab̄a1ḃac̄a2He f f ,

He f f5H2$c,V%1 . ~37!

Here c is an odd and imaginary function which has gho
number21 and plays the role of a gauge-fixing functio
whereasDm is the usual measure~product over time of the
Liouville measure of the extended phase space!.

Let us choose

c52b̄ana1 i c̄aS 1

g
f a~q,p!1

1

g
ga~n! D . ~38!

By substituting Eqs.~35! and~38! into Eqs.~37! and putting
H50 one obtains

He f f52naFa2 i b̄aba1canbCab
g b̄g23cacbngUabg

~2!dlb̄db̄l

1
1

g H ~ f a1ga!pa2 c̄a

]ga

]nb bb2 i c̄a$ f a,Fb%cb

2 i c̄a$ f a,Cbg
d %cbcgb̄d2 i c̄a$ f a,Ubgd

~2!jh%cbcgcdb̄jb̄hJ .

~39!

Let us make the change of variables with unit Jacobia

pa→gpa , c̄a→g c̄a .

Then letg→0. In this limit integration overpa , ba, andb̄a
is easily performed, giving

Z@ j ,J,l#5E Dq Dp Dn Dc Dc̄ d~ f a1ga!

3ei *dt~Le f f8 1 j sq
s1Jsps1lana!, ~40!

where
12402
r

t

:

Le f f8 5q̇sps1naFa

2 i c̄bS ]gb

]na ] t2
]gb

]ng Cal
g nl1$Fa , f b% D ca

2 c̄jc̄hS ]gh

]nd $ f j,Cab
d %13

]gj

]nd

]gh

]nl Uabg
~2!dlngD cacb

2 i c̄ac̄jc̄h

]gj

]nl

]gh

]ns $ f a,Ubgd
~2!ls%cbcgcd ~41!

andqs5(h i
a ,va), ps5(Ẽa

i ,xa).
This completes the construction of the path integral

Hilbert-Palatini gravity. One can see that the depende
of the structure constants on the canonical variables lead
the appearance of multighost interaction terms in Eq.~41!.
By an appropriate choice of gauge-fixing functions one c
eliminate these terms. All nonvanishing components ofU (2)

have upper indices corresponding to the Gauss or Lore
constraints. Therefore, if the functionsga do not depend on
the Lagrange multipliersNG andNL , all terms withU (2)

disappear. If, furthermore, the functionsf a do not depend on
the canonical coordinatesqs, the Poisson brackets$ f j,Cab

d %
vanish and the remaining higher ghost terms disappear a
In such a case, the general structure of the path integra
identical to that of rank-1 Yang-Mills theory. For short, the
gauges will be called the Yang-Mills~YM ! gauges. They
play an important role in the path integral quantization
Ashtekar gravity.

V. CONSTRAINTS VERSUS REALITY CONDITIONS

In this section we establish the relation between soluti
of the constraints in the real Hilbert-Palatini formulation a
the reality conditions~8! and~9! of Ashtekar gravity. Let us
recall expressions for the complex canonical variablesP and
A in terms of the real canonical variables:

Pa
i 5 i ~Ẽa

i 2 i ea
bcẼb

i xc!,

Aj
a5j j

a2 i ~h j
a1eabcj j

bxc!,

j j
a5r j

a2 1
2 eabcvbE> j

c , ~42!

r j
a is given by Eq.~28!.

Here it will be demonstrated that the reality conditions~8!
and ~9! are satisfied by Eqs.~42! provided the canonica
variables of the real theory satisfy the Gauss law and
Lorentz constraint. Moreover, we shall prove that the As
tekar action is real under the same conditions. The last st
ment is not completely trivial even though the real Hilbe
Palatini action is related to the complex Ashtekar action b
canonical transformation. The point is that this transform
tion is not canonical on the whole phase space@4#. Thus for
our basis in the phase space reality of the Ashtekar ac
must be checked independently.
9-6
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The first reality condition~8! is satisfied trivially. Let us
rewrite Eq.~9! in a more explicit form. The time evolution
Pa

l Pa
j is given by the Poisson brackets of the total comp

Hamiltonian~7! andPa
l Pa

j :

] l~Pa
l Pa

j !5 H E dt d3x~A0
aGa1ND

iHi1N> H !,Pa
l Pa

j J
C

522@2Pa
l Pa

j ] iND
i2Pa

kPa
l ]kND

j

2Pa
kPa

j ]kND
l1ND

i] i~Pa
l Pa

j !#

12~¹kPa
k!~ND

j Pa
l 1ND

l Pa
j !

22N> eabcPa
i ~Pc

j ¹ i Pb
l 1Pc

l ¹ i Pb
j !. ~43!

The first line of Eq.~43! is real for realND
i due to the first

reality condition~8!. The second line disappears due to t
Gauss law constraint. Therefore, to ensure real metric ev
tion one must require

Im@eabcPa
i ~Pc

j ¹ i Pb
l 1Pc

l ¹ i Pb
j !#50. ~44!

The condition~44! can be presented as Im$Pa
l Pa

j ,H%C50. It is
clear that this condition is invariant undercomplexSO~3!
transformations. These transformations can be used to
x50. One can easily demonstrate that for the fields~42! the
condition ~44! is satisfied.

Now let us prove that under the same conditions

Im Hi5Im~Hi12Ai
aGa!50. ~45!

From Eqs.~11! and ~34! one can see that$G,G%C;G and
$FD,G%;G. Hence the surfaceG50 is invariant under com-
12402
x

u-

ut

plex SO~3! transformations and real diffeomorphisms. Sin
$G,Hi12Ai

aGa%C;G and $FD,Im(Hi12Ai
aGa)%;Im(Hi

12Ai
aGa), these transformations map solutions of Eq.~45! to

themselves inside the surfaceG50. One can use SO~3! trans-
formations and diffeomorphisms to impose the conditionx

50 everywhere, and]kẼa
j 50 at a certain point. At this poin

one must only check the cancellation of the second der
tives of Ẽ. This is straightforward to do by using Eqs.~42!,
~28! and the explicit form~23! of the constraintG5FG

1 iFL.
To prove that ImH50 one can use the Lorentz boosts

put x50. This makes the calculations quite elementary ev
without further gauge fixing.

By straightforward calculations one can demonstrate t
the imaginary part of the kinetic termPa

j ] tAj
a is a total de-

rivative and thus can be discarded in quantization. This
done in Appendix C.

As was advertised at the beginning of this section,
demonstrated that the complex canonical variables satisfy
reality conditions on the surface of Eqs.~42!, the second
class constraint~27!, and the two first class constraintsFG

and FL. Note that the reality conditions admit more sol
tions. For example, one can interchange the real and im
nary parts ofPa

j .

VI. PATH INTEGRAL QUANTIZATION
OF ASHTEKAR GRAVITY

In this section we derive a path integral for Ashtekar gra
ity from the one for Hilbert-Palatini gravity.

Consider the functional~40! in a YM gauge:
this

these
g
Ashtekar
Z@ j ,J#5E Dh i
a_DẼa

i Dva_Dxa_DNG_DNL_DND
i _DN> _Dca_Dc̄a d~ f a1ga!expS i E dt~Le f f8 1 j a

i h i
a1Ji

aẼa
i ! D . ~46!

We drop the sources for the Lagrange multipliers,x andv. A discussion of the source terms is postponed to the end of
section.

Since the gauge-fixing functionga does not depend on the Gauss and Lorentz Lagrange multipliers, integration over
Lagrange multipliers givesd functions of the corresponding constraints,d(Fa

G)d(Fa
L). This means that in fact we are workin

on the surface of these constraints. In the previous section it is shown that on this surface the imaginary part of the
action vanishes. Thus one can write

Le f f8 5LA~P,A!2 i c̄bS ]gb

]na ] t2
]gb

]ng Cal
g nl1$Fa , f b% D ca. ~47!

We assume that complex canonical variables are expressed in terms of real canonical variables by means of Eqs.~42!.
One can integrate overva by using the delta function of the Lorentz constraintFL. This is equivalent in effect to the

substitution

va~Ẽ,h,x!ªS dab1
xaxb

12x2D ] i Ẽb
i 1Ẽa

i h i
bxb2

xa

12x2 ~Ẽb
i h i

b2Ẽb
i xbh i

cxc!. ~48!

The path integral measure is multiplied by

D15det21~dab2xaxb!5)
x,t

1

12x2 . ~49!
9-7
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Now we are ready to change the integration variables in Eq.~46!:

Ẽa
i→Pa

i 5 iẼa
i 1eabcẼb

i xc , h i
a→Ai

a5j i
a2 i ~h i

a1eabcj i
bxc!. ~50!

This gives rise to a determinant

D25det21~1id j
i da

b1d j
i eabcxc!det21F 1

2~12x2!
@22d i

jeabcxc1eapqẼq
j ~dpb2xpxb!E> i

dxd2xaedpqE> i
dẼq

j ~dpb2xpxb!#

2 i S d i
jdb

a1
1

2~12x2!
@2d i

j~db
ax22xaxb!1~12x2!Ẽa

j xbE> i
cxc2~dab2xaxb!E> i

cxcẼd
j xd# D G5)

x,t
S 2

1

12x2D . ~51!
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Note that if all the gauge-fixing functionsf depend on the
real fieldsx andẼ throughP only, the ghost action become
degenerate@see Eqs.~34!#. This is a manifestation of the fac
that the Lorentz constraint is ‘‘superfluous’’ in complex As
tekar gravity. Therefore, we must fix the correspond
gauge freedom by means of a condition onx:

xa5x~0!
a ~Ẽ!, ~52!

wherex (0) is a given function.
Before integrating overx let us rewrite Eq.~52! in a dif-

ferent form. By inverting the first equation in Eqs.~42!, one
obtains

Ẽa
i 5S eabcxc

12x22 i
dab2xaxb

12x2 D Pb
i 5pa

b~x!Pb
i . ~53!

As a result of Eq.~52!, one can replacex by x (0)(Ẽ). The
right hand side of Eq.~53! becomesẼ dependent. This de
pendence, however, can be removed at least locally
means of a formal power series expansion. As a result,
obtain

Ẽa
i 5p̄a

b~P!Pb
i , ~54!

wherep̄ is a function ofP but not ofP* , which depends on
the choice of gauge-fixing functionx (0). For the present
analysis the explicit form ofp̄ is of no importance. Note tha
the simple relationẼ5Im P would not work, because it de
pends both onP and its complex conjugate.

One can replace Eq.~52! by the condition

x5x~0!~ p̄P!5x̄~P!. ~55!

The two conditions~52! and ~55! are equivalent since the
select the same surfaces in phase space. However, the
terms and Jacobian factors appearing due to the delta f
tions of the gauge conditions are different for Eqs.~52! and
~55!. In the final result these differences compensate e
other, as one can easily show using a geometric interpr
tion of the Faddeev-Popov determinant.

Let us integrate overx with the help of the delta function
d„x2x̄(P)…. Since we already changed variables toP andA,
no Jacobian factor appears.
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Integration overP andA should be understood as a co
tour integration in complex space. One integrates along
lines defined by the reality conditions and Eqs.~52! and~48!.
As usual, there are real parameters which label points of
contours in the complex planes. These areẼ andh. Since the
fieldsv andx are already excluded, we do not integrate ov
the position of the contours.

Consider the ghost action. Integration overc̄ andc gives
the following functional determinant:

detS ]gb

]na ] t2
]gb

]ng Cal
g nl1$Fa , f b% D . ~56!

Let us separate indices corresponding to the Lorentz boo
$Fa%5$Fa

L ;Fm%, $ f a%5$xa2x̄a(P); f m(x,P)%, $ga%
5$0;gm%. Greek indices from the middle of the alphab
correspond to the Gauss law, diffeomorphism, and Ham
tonian constraints. The matrix elements in Eq.~56! contain
the following brackets:

$Fm , f n~x,P!%5$Fm ,P%
d f n

dP
1

dFm

dv

d f n

dx
,

$Fm ,x2x̄~P!%5
dFm

dv
2$Fm ,P%

dx̄

dP
, ~57!

where summation indices are suppressed. Let us multiply
lines corresponding toxa2x̄a by 2d f n/dxa and add them
to the f n lines. This produces the matrix elements

]gn

]nm ] t2
]gn

]nr Cms
r ns1$Fm ,P%S d f n

dP
1

d f n

dx

dx̄

dPD
5

]gn

]nm ] t2
]gn

]nr Cms
r ns1$Fm

@C# , f n
„x̄~P!,P…%C .

~58!

Fm
@C# is the Ashtekar constraint corresponding toFm ,

ReFm
@C#5Fm . In the last line we used that$Fm ,P%

5$Fm
@C# ,P%C due to Eqs.~34!. Equation~58! means that one

can replacex by x̄ in the gauge-fixing functionsf n.
Consider the two columns in Eq.~56! corresponding to

the Gauss law and Lorentz constraints. As a result of E
~34! $FG, f (P)%5 i $FL, f (P)%. Therefore, by multiplying
9-8
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the column withFG by 2 i and adding it to the column with
FG one obtains zeros everywhere, except for the lines c
responding to the gauge conditionsxa2x̄a(P). As a result,
one can represent the determinant~56! as a product of two
determinants:

D3detS ]gn

]nm ] t2
]gn

]nr Cms
r ns1$Fm

@C# , f n
„x̄~P!,P…%CD ,

~59!

where

D35det$Fa
L2 iFa

G ,xb%

5det@~dab2xaxb!1 i eabcxc#

5)
x,t

~12x2!2. ~60!

From expressions~49!, ~51!, and~60! one can see that a
D’s cancel each other up to an overall minus sign which
be absorbed in the reversed orientation of the contour of
A integration. The path integral is now rewritten in terms
the Ashtekar variables:

Z@ j̄ ,J̄#5E
R
DAi

a_DPa
i DN D

i DN> _DA0
a Dcm Dc̄m

3d~ f m1gm!expS i E dt~Le f f8 1 j̄ a
i Ai

a1 J̄i
aPa

i ! D ,

~61!

where

Le f f8 5LA2 i c̄nS ]gn

]nm ] t2
]gn

]nr Cms
r ns

1$Fm
@C# , f n

„x̄~P!,P…%CD cm. ~62!

The subscriptR means contour integration in complex spac
along lines defined by the reality conditions. Integration o
NL ~which is essentially an imaginary part ofA0! has already
been performed to produce a delta function of the Lore
constraint. This delta function, in turn, has been used to
tegrate overv. Thus in Eq.~61! we integrate over the rea
part of A0 . This integral givesd(FG)5d(G). The equation
G50 can be considered as a complex equation beca
Im G50 is supplied by the reality conditions. The same
true for the gauge conditionsf m1gm50. A fascinating prop-
erty of these complex delta functions is possibility to in
grate over complex variables without an explicit transition
real coordinates on a contour.

By comparing Eqs.~11! and ~32!, one can see thatCms
r

are just structure constants of Ashtekar gravity.~Note that
this property does not hold in the variables used by H
neaux@9#.! Therefore, the ghost term in Eq.~61! produces
the ordinary Faddeev-Popov determinant for Ashtekar gr
ity. The path integral~61! coincides with what one would
write naively, just ignoring any Jacobian factors which m
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arise from the reality conditions and fixing the Lorentz gau
freedom. Some remarks are in order. First of all, the res
~61! is valid for a certain class of gauges only. We are n
allowed to impose a gauge condition onA0

a . This restriction
is needed~i! to cancel contributions to the path integral
the second order structure functions~which are zero for Ash-
tekar gravity @6#! and ~ii ! to ensure delta functions of th
complex Gauss law constraint. While~i! seems to depend o
a particular choice of basic variables and constraints beca
rank of and algebra is not an invariant, the second point~ii !
looks more fundamental. The complex Gauss law constr
is needed to prove the vanishing of the imaginary part of
Ashtekar action. We are not allowed to impose gauge con
tions on the connection variables. The ultimate reason
this is that the last line of Eqs.~34! is not true if we replace
P by A. This restriction will receive a natural explanation
the next section in the framework of the Faddeev path in
gral. In all other respects the gauge conditionsf a1ga are
arbitrary. For a given set of admissible YM gauges one c
first expressxa from three of them and then denote the r
maining gauge conditions byf m1gm. The path integral for
Ashtekar gravity was previously considered by the pres
authors and Grigentch in the one-loop approximation ove
de Sitter background@22# and for the Bianchi IX finite di-
mensional model@23#. In these simple cases the reality co
ditions do not lead to any Jacobian factors if one uses ga
conditions of the YM type. We observed also that one ru
into trouble if gauge conditions are imposed on the conn
tion variables.

Using this or that gauge condition is just a matter of co
venience. In principle, it is enough to formulate the pa
integral in just one gauge. All physical results are to
gauge independent. However, extension of our results
arbitrary gauge conditions still poses an interesting prob
from both technical and aesthetic points of view.

Note that we excluded sources forx, v, and Lagrange
multipliers. Sources forx and v are not needed because
the present formulation these fields are absent. Moreovex
andv can be considered as composite fields. Sources foN>
andND can be easily restored without any modification
our procedure. Therefore, we have enough sources to
scribe any Green functions of the four-metrics and thr
dimensional connections. If, however, we introduce a sou
for A0

a , it penetrates into the delta functions of the Gauss l
and Lorentz constraints and destroys the reality of the A
tekar action. Green functions ofA0 are not defined in our
approach. At the last step we introduced sourcesJ̄ and j̄ for
P and A. This makes the exponential in Eq.~61! complex.
Thus, strictly speaking, the path integral is not well define
even though all finite order Green functions do exist. If o
wishes to be on the safe side, one can easily return to
original sourcesJ and j for Ẽ andh.

VII. FADDEEV PATH INTEGRAL

In this section we give a more simple derivation of t
Faddeev path integral@24# for Ashtekar gravity, which does
not rely upon the heavy machinery of the BRST quanti
9-9
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tion. This also seems to be a proper place to discuss the
form of the reality conditions. For a dynamical system w
canonical variablesqs,ps , first class constraintsFa , and
weakly vanishing Hamiltonian, such as Hilbert-Palatini gra
ity, the Faddeev path integral reads

Z5E Dq_Dp Dn Fd~ f a!expS i E dt~ q̇sps1naFa! D ,

~63!

where f a are gauge fixing-functions of the dynamical va
ables.F is the Faddeev-Popov determinant,F5det$Fa ,fb%.
We do not show the source terms explicitly. The express
~63! can be obtained from the path integral~40! by choosing
ga50 and integrating over the ghost fieldsc and c̄. Of
course, the starting point of the original derivation@24# of the
Faddeev path integral was not the BRST approach.

To make the presentation as simple as possible, we
Lorentz boosts by the condition

x50. ~64!

Now we integrate overNL
a , x, andv. Again, integration over

v is equivalent to the following substitution:

vaª] j Ẽa
j . ~65!

If the remaining gauge-fixing conditionsf m are functions of
Ẽ only, the Poisson brackets$ f m,FL

a% vanish on the surface
~64!. Hence the Faddeev-Popov determinant takes the fo

F5det$ f m~Ẽ!,Fn%5det$ f m~2 iP !,Fn
@C#%C . ~66!

The gauge~64! means that we are using reality conditio
in the triad form

Re Pa
i 50, Re~] tPa

i !50, ~67!

instead of the metric reality conditions~8! and ~9!.
The change of variables (Ẽ,h)→(P,A) gives a unit Jaco-

bian factor. Our proof of the vanishing of the imaginary p
of the Ashtekar action is still valid. Hence we arrive at t
path integral for Ashtekar gravity in the Faddeev form:

Z5E
R
DP DA DN> DN D DA0 Fd„f m~2 iP !…exp~ iSA!,

~68!

where the subscriptR means now that the contour of integr
tion is defined by the reality conditions~67!. Of course, most
of the comments of the previous section apply here also

VIII. DISCUSSION

The main result of the present paper is the path inte
~61! for Ashtekar gravity, which is a kind of contour integra
As a by-product, we also constructed the BRST quantiza
of Hilbert-Palatini gravity. The main features of our a
proach were discussed in detail in Sec. VI. Here we specu
on perspectives of this approach.

The path integral~61! is obtained with certain restriction
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on possible gauge conditions. In principle, one can transfo
Eq. ~61! to any other gauge by means of the Faddeev-Po
trick @8#. However, this trick is not so easy to implement
the present context due to the reality conditions and q
unusual rules of the functional integration. Perhaps rest
tions on the gauge conditions may be weakened or e
lifted altogether. Anyhow, one should formulate the crite
of admissibility of gauge conditions for Ashtekar gravity
terms of the Ashtekar variables without referring to Hilbe
Palatini gravity. This definitely will not be easy to do. I
general, a function ofP is complex valued. Therefore, a con
dition f 50 implies two real gauge-fixing conditions Ref
50 and Imf50 even if reality conditions are taken into a
count. Even the requirement that a given set of gauge co
tions remove the correct number of degrees of freedom lo
quite nontrivial. One may hope to overcome these difficult
by using the generalized Wick rotation@25#.

In principle, one may include the Barbero connection@26#
in our scheme. One may even keep the parameterb @26#
~corresponding tog of the later works! arbitrary. One must
be very careful, however, with possible complex factors
the path integral measure. The criteria of admissibility
gauge conditions must be reconsidered after transforma
to new variables. Given the growing interest@3# in the Bar-
bero connection this can be an interesting topic to conside
future work.

We must admit that for the degenerate triad our analysi
incomplete. This reflects a well-known problem of Ashtek
gravity which exists already at the classical level.

An intriguing feature of Eq.~61! is that it is a contour
integral. The contour of integration can be deformed as fa
the reality conditions allow.~This corresponds to an arb
trariness of gauge fixing in the Hilbert-Palatini action.! One
may hope that certain deformations are possible even bey
these limits. If this is really so, some interesting properties
quantum gravity can manifest themselves.

ACKNOWLEDGMENTS

This work was supported by the Russian Foundation
Fundamental Research, grant 97-01-01186, Alexander
Humboldt Foundation~D.V.!, and GRACENAS through
grant 97-0-14.1-61~D.V.! and a Young Investigator Program
~S.A.!.

APPENDIX A

Let us solve the second class constraint~27!. The matrix
AAB is defined by ther 2 terms in the Hamiltonian constrain
FH. We have

lAAABlB5r b
cAbb8

cc8 r b8
c8 , ~A1!

wherer b
c5r j

cẼb
j . We can identify nondynamical componen

of the connectionlA with the symmetric matricesr a
b . The

operator

Abb8
cc85~12x2!eabb8edcc8Xad , Xad5dad2xaxd

~A2!
9-10
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acts on the space of symmetric 333 matrices. One can rep
resent it in the following form:

Abb8
cc85~12x2!2~XbcXb8c82Xbc8Xcb8!, ~A3!

where Xbc is inverse ofXbc . The inverse of Eq.~A3! is
easily found to be

~A21!bb8
cc85~12x2!22~ 1

2 XbcXb8c82Xbc8Xcb8!. ~A4!

The linear part of the Hamiltonian constraint reads

BAlA5eabcẼb
i @Ẽc

j r d
a~] iE> j

d!~12x2!1r c
dxd] ixa

2~12x2!xar c
dh i

d1Xagh i
gr c

dxd#5Ba
br b

a . ~A5!

Note that Eq.~A5! does not contain derivatives ofr a
b . Hence

the second class constraint~27! can be solved forr a
b :

r d
c5 1

2 @~A21!db
ca1~A21!da

cb#Ba
b . ~A6!

Substitution of Eqs.~A4! and ~A5! into Eq. ~A6! gives ex-
pression~28!. The Hamiltonian constraint takes the for
FH5F0

H1Ba
b(A21)bd

acBc
d , which is written explicitly in Eq.

~29!.

APPENDIX B

In this appendix we define structure functionsU (n) of
Hilbert-Palatini gravity. Forn50 andn51 they are

Ua
~0!5Fa , Uab

~1!g52 1
2 Cab

g , ~B1!

with Cab
g defined by the algebra~32! through the relation

$Fa ,Fb%5Cab
g Fg . Higher order structure functions are d

fined through repeated Poisson brackets of the constrain

2Uabg
~2!jhFh5Dabg

~1!j 5 1
2 ~$Fa ,Cbg

j %2Cbg
d Cad

j !@abg# ,
~B2!

where@a1¯an# means antisymmetrization ina1¯an with
the weight 1/n!. In actual calculations it is convenient t
replace antisymmetrization by multiplication by anticomm
ing ghosts. The indicesa,b, . . . denote constraints at differ
ent coordinate points. Therefore, antisymmetrization o
coinciding indices does not necessarily give zero.

If fewer than two indices amonga, b, andg correspond
to the Hamiltonian constraint, the structure functionsC in
Eq. ~B2! become field-independent structure constants,
the second order structure functionsUabg

(2)jh vanish by virtue
of ordinary Bianchi identities. Hence, one must calcul
only the structure functions with a pair of indices, say,b and
g, corresponding to the Hamiltonian constraint. From n
on, an index representing the Hamiltonian constraint will
denoted by 0,FH[F0 . We putg5b50.

It is convenient to introduce a connection field of the Lo
entz group SO~3,1!: Ai

p5(j i
a ,h i

x1exg fj i
gx f), p51, . . . ,6.

Here f pq
r will denote structure constants of the correspond

Lie algebra.
12402
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e
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From Eqs.~32! it is clear that canonical momenta ent
the first order structure functionsC through the vector
K j@n,m#5(n] im2] inm)Ki j , whereKi j is defined in Eqs.
~33!. Latern andm will be replaced by ghost fields. Thus a
order is essential.n always precedesm. The tensorK has the
following Poisson brackets with the constraints:

$Fa
G ,Ki j %5$Fa

L ,Ki j %50, $c0F0 ,K j@c0,c0#%50,

$ckFk
D ,Ki j %52~2Ki j ]kc

k1ck]kK
i j 2]kc

jKik2]kc
iKk j!,

~B3!

where contraction with anticommuting ghostsc is used for
antisymmetrization in corresponding indices.

Let us calculatecaDa008
(1)j c0(x)c0(x8). Consider various

cases fora. If Fa5Fp5(FG,FL) and Fj5F0(5FH) or
Fj5FD, this quantity vanishes due to Eqs.~B3!. For Fj

5Fq one obtains

cpDp008
~1!qc0~x!c0~x8!5 2

3 K j@c0~x!,c0~x8!#

3~2$cpFp ,Aj
q%1 f rp

q Aj
rcp1] j c

q!

3d~x,x8!. ~B4!

As a part of our summation convention we assume integ
tion over all continuous coordinates here and in the equat
below. The expression~B4! is zero due to Eqs.~31!. This
implies thatU00p

(2)jh50.
Let us putFa5F i

D . We are to evaluate

ciDi0809
~1!j c0~x8!c0~x9!5 1

6 ci~$F i ,C0809
j %2C0809

b Cib
j

22Ci08
b C09b

j
!c0~x8!c0~x9!.

~B5!

First we observe that the only nonvanishing functionC with
zero upper index isC0i

0 . This immediately gives a vanishin
of Eq. ~B5! for j50. Other components of Eq.~B5! vanish
due to Eqs.~31! and ~B3!.

For a50 we have

c0~x!D00809
~1!0 c0~x8!c0~x9!52 1

2 c0~x!C008
i Ci09

0 c0~x8!c0~x9!

58c0] ic
0] j c

0Ki j d~x,x8!d~x8,x9!

50,

c0~x!D00809
~1!i c0~x8!c0~x9!5 1

2 c0~x!$F0 ,C00
i %c0~x8!c0~x9!

50,

c0~x!D00809
~1!p c0~x8!c0~x9!

522$c0~x!FH~x!,K j@c0~x8!,c0~x9!#A0
p%,

~B6!

where the first line is zero due to the contraction of a sy
metric tensor with an antisymmetric one. In the second l
we used second equation of Eqs.~B3!.
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To calculate the remaining components ofD (1) the fol-
lowing brackets are needed:

$c0F0 ,K j@c0,c0#j j
a%52c0] ic

0]kc
0@~Ẽa

i Ẽb
k2Ẽa

kẼb
i !Fb

G

1~Ẽa
i Ẽg

k2Ẽa
kẼg

i !eg f bx fFb
L#,

$c0F0 ,K j@c0,c0#~h j
a1eabcj j

bxc!%

52c0] ic
0]kc

0@2eadexd~Ẽe
i Ẽb

k2Ẽe
kẼb

i !Fb
G

2eadexd~Ẽe
i Ẽg

k2Ẽe
kẼg

i !eg f bx fFb
L#. ~B7!

By introducing a 336 matrix field Ẽp
i 5(Ẽa

i ,eabcẼb
i xc),

p51, . . . ,6, one canrepresent the nonvanishing second
der structure functions in an elegant form

c0~x!U00809
~2!pqc0~x8!c0~x9!

528c0] ic
0]kc

0Ẽp
i Ẽq

kd~x,x8!d~x8,x9!. ~B8!

Third order structure functions are defined as

3Uabgd
~3!jhlFl5~2$Uabg

~2!jh ,Fd%2 1
8 $Cab

j ,Cgd
h %

1 3
2 Cab

l Ugdl
~2!jh12Uabg

~2!jlCdl
h !@abgd#

@jh# . ~B9!
g/

i-

12402
-

As before, only the functions witha5b5g50 could be
nonzero. By straightforward calculations one can dem
strate that they vanish as well. There are no nonzero thir
higher order structure functions in Hilbert-Palatini gravity

APPENDIX C

In this appendix we prove that the imaginary part of t
kinetic term of the Ashtekar action~7! vanishes for the fields
~42! provided the real canonical variables satisfy the sec
class constraints~27! and the Gauss and Lorentz constrain

Consider the kinetic term

Im Ai
a] tPa

i 5$@dab~12x2!1xaxb#j i
b2eabcxbh i

c%] tẼa
i

2~eabch i
bẼc

i 1xaj i
bẼb

i 2j i
aẼb

i xb!] txa ,

~C1!

where expressions~42! were substituted. By making use o
the constraints one can rewrite Eq.~C1! in the following
form;
Im Ai
a] tPa

i 52 1
2 ] tẼa

i @eabcẼb
kẼc

j ~dg f2xgx f !E> i
g]kE> j

f2E> i
aedbcẼb

kẼc
j ~dd f2xdx f !]kE> j

f1edbcẼb
kẼc

j ~ddg2xdxg!E> i
g]kE> j

a

2eabc] j Ẽc
j ~dbg2xbxg!E> i

g2E> i
aedbcE> b

j ] jxdxc12xgE> i
geabcẼc

j ] jxb#

2 1
2 ] txa@eabcẼb

kẼc
j xg]kE> j

g1edbcẼb
kẼc

j xd]kE> j
a1eabc] jE> b

j xc12eabcẼb
j ] jxc#

5 1
2 ] t@edbcẼb

kẼc
j ~ddg2xdxg!#]kE> j

g2 1
2 ] tE> j

g]k@edbcẼb
kẼc

j ~ddg2xdxg!#1 1
2 ] t~Ẽa

i xb!eabc] ixc

2 1
2 eabc] txc] i~Ẽa

i xb!5 1
2 ] t@edbcẼb

kẼc
j ~ddg2xdxg!]kE> j

g#2 1
2 ]k@edbcẼb

kẼc
j ~ddg2xdxg!] tE> j

g#

1 1
2 ] t~eabcẼa

i xb] ixc!2 1
2 ] i~eabcẼa

i xb] txc!.

Thus the imaginary part of the kinetic term is a total derivative and can be neglected.
od.
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