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To write down a path integral for the Ashtekar gravity one must solve three fundamental problems. First, one
must understand the rules of complex contour functional integration with holomorphic action. Second, one
should find which gauges are compatible with reality conditions. Third, one should evaluate the Faddeev-
Popov determinant produced by these conditions. In the present paper we derive the BRST path integral for
Hilbert-Palatini gravity. We show that for a certain class of gauge conditions this path integral can be rewritten
in terms of the Ashtekar variables. Reality conditions define contours of integration. For our class of gauges all
ghost terms coincide with what one could write naively, just ignoring any Jacobian factors arising from the
reality conditions[S0556-282(98)06824-4

PACS numbd(s): 04.60.Ds, 04.20.Fy

I. INTRODUCTION for Hilbert-Palatini gravity and then rewrite it in terms of the
Ashtekar variables. By itself, the first part of our work does

The invention of complex canonical variablgld opened not have great novelty. The Hamiltonian structure of Hilbert-
a new avenue for the nonperturbative treatment of quanturRalatini gravity has been analyzed in a number of papers
general relativity. In these new variables all constraints wer¢9-11,4,5. Given this analysis construction of the path inte-
made polynomial at the expense of introducing reality con-gral is quite straightforward. However, the transition to the
ditions. Afterwards, many gravitational theories were refor-Ashtekar variables requires a complex canonical transforma-
mulated in a similar way, including even 11-dimensional su-tion which is not well defined in the path integral. We would
pergavity[2]. Quite spectacular success was achieved in loopiso like to avoid any gauge fixing at intermediate steps be-
quantum gravity{3]. In view of the recent progress in non- fore the path integral is written down. Thus we are forced to
perturbative methods it seems especially important to deehoose a basis in the Hilbert-Palatini action different from
velop a path integral formulation of Ashtekar gravity which the ones used earlier and redo calculations of the constraint
could serve as a bridge between perturbative and nonpertuglgebra, BRST charge, etc. A price to pay for the relatively
bative results. easy transition to the Ashtekar variables in the path integral

The constraint structure of Ashtekar gravity has beeris an ugly form of the Hamiltonian constraint of the Hilbert-
studied in some detailfor reviews, sed4] and[5]). The Palatini action. It leads to lengthy calculations at intermedi-
Becchi-Rowet-Stora-TyutifBRST) charge was constructed ate steps, which are reported here in some detail to make the
[6]. An earlier attempt to study the path integral in Ashtekarpaper self-contained.
variables was given by TorrE7]. However, in this paper As our main result, we transformed the Hilbert-Palatini
subtleties coming from integration over complex variablespath integral to the Ashtekar variables. This can be done
were ignored. It is known that any restriction imposed onsuccessfully for a restricted class of gauges only. One is not
integration variables may lead to Faddeev-Popov gH®&ts allowed to impose gauge conditions on the connection vari-
It is unclear what kind of ghost action is induced by theables. Therefore, path integral quantization of Ashtekar grav-
reality conditions. ity in an arbitrary gauge remains an open problem.

It is obvious that the path integral for Ashtekar gravity The paper is organized as follows. In the next section
will have a somewhat unusual form. In the case of complexsome preliminary information on the self-dual Hilbert-
scalar fields the action is real and one integrates over thPalatini action is collected. We introduce variables which
whole complex plane. In the case of Ashtekar gravity thewill be convenient for the construction of the path integral,
action is holomorphic. Thus one may expect some sort ofederive the Ashtekar action, and give some useful equa-
contour integration. The position of the contour must be detions. In Sec. Il we reconsider the constraint structure of
fined by using the reality conditions. However, it is not Hilbert-Palatini gravity in terms of our variables. Section IV
known yet which gauges are compatible with these condiis devoted to the BRST quantization of Hilbert-Palatini grav-
tions. ity. In Sec. V we establish a relation between first and second

Our strategy is rather simple. We derive the path integratlass constraints of the Hilbert-Palatini action and the reality

conditions and vanishing of the imaginary part of the Ash-
tekar action. In Sec. VI we rewrite the path integral in terms
*Email address: alexand@snoopy.phys.spbu.ru of the Ashtekar variables. This represents our main result.
On leave from Department of Theoretical Physics, St. PetersburReaders who do not want to go into the technicalities of the
University, 198904 St. Petersburg, Russia. Email addressBRST quantization will find a simple derivation of the Fad-
Dmitri.Vassilevich@itp.uni-leipzig.de deev path integral for Ashtekar gravity in Sec. VII. In the last
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section some perspectives are briefly discussed. Technicgl?:h—ﬂZEia_ By a suitable redefinition of Lagrange multi-

details are collected in the Appendixes. pliers x* can be removed from the action:
Il. SELF-DUAL HILBERT-PALATINI ACTION N+ EiaXa(NjE]bXb_N) 3 N— NiEiaXa ©
Let 0”’=dw”’+ w,*0w*’; » ande are connection and D 1—x° v 1—x*

tetrad one-forms, respectively. The signature of the metric is i
(—,+,+,+). The Levi-Civitatensor is defined by the equa-  1he action(5) now reads
tion eg=1. Define the star operator askw®?

— afl o i ; ;
1/2€", 507", Define Sep=Sa=2 f dt oPx(PLa A+ AZG,+ Np'Hi+AH),

1
AP=S (0" =ixwP), H=—2PkF3,
L H=—2P.PkFaP, @)
Pﬁ:dAdﬁ+AavDA7§:§ QP =ixQP). @ Al x dependence is hidden in the canonical variables. We

arrived at the Ashtekar actiaf?) (later denoted aS,). The
These fields satisfg A=iA, *F=iF. Let us start with the absence ofy in S, leads to a first class primary constraint
self-dual Hilbert-Palatini action expressed in terms of self-p, =0, wherep, is the canonical momentum fop. This
dual connection only11-14: constraint generates shifts gfby an arbitrary function and
originates from the Lorentz boosts.
One must bear in mind that not all the components of
Ssozf eaﬁwe“DeBDP‘s. 2) ReP, are independent. To restore the correct fornPhone
needs a condition IrR{ ReP)=0 or, equivalently,

Let us split coordinate®* into “time” t and “space”x' and

introduce the notation Im(P5P%)=0. 8
A . . Equation(8) is known as the first metric reality condition.
e®=Ndt+ y,E?dx, e?=Edx +EN'dt, Being supplemented by the second metric reality condition
i piy—
Aia: EabCAbCi! ASZ EabcAbCO’ &tlm( Papa) 0 (9)

on an initial hypersurface, it ensures the real evolution of the

Fé= EabCJ:ij bes (3)  metric[15-17. As usual, the triad fiel& should be nonde-
. ' generate.
wherea,b,c=1,2,3 are flat S() indices.E, will denote the Define the smeared constraints

inverse ofEY. We also need weighted fields:
Q(n)=f d3x n3g,, HA(N)=J d®x NH,
Ei=vhE,, N=(Vh)'N, 4)

Jh=detE?. After long but elementary calculations we can D(N):f d3x N'(H;+ 2A%G,). (10
represent Eq(2) in the following form:

They obey the following algebra:

SSD:ZJ AU Px(Pad A+ A3+ N'H; +NH), {G(n), G(m)}e=—G(nxm),
Pl (B i e,bEl o) {D(N), D(M)}c=—2D(N,M]),
a— a a bXc/s
- , {D(N),G(n)}c=—2G6(N'g;n),
Ga=ViPL=0,P,— €ap AP,
{HAN),G(n)}c=0,
Hy=—2iE5Ff— e EAESe ™ E xoF oy

mn?

{D(N),HAN) }c= — 2HA(LJN),

H=2EEF (5) [HANN), HAM)}c=2D(K)— 20(2KIA), (1)
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where Zia: Eabc’éib)(c, (17)
(nXm)3=¢e2PnPme,  LIN=N'g;N—Na;N', .
&= 2€%c0". (18)
[N,M]'=NKo,M'—MK3,N; , (12) In order to simplify the constraint algebra we replace
ReH; by the modified vector constraint. To this end we shift
Ki=(No,M— MﬁiN)PiaPL- (13) the Lagrange multipliers:
We introduced the subscrigf to distinguish the Poisson nd=N2+ ZNigfia, nd= N2+ ZNtiioa. (19
brackets{-,-}c of the complex Ashtekar theory from those
of the real Hilbert-Palatini action. We see thaE,, plays the role of the momentum fg#

whereasZ!, is the momentum conjugate tf®. HereZ! has
three independent components only. To have time deriva-
tives of true dynamical variables we replace

IIl. HAMILTONIAN FORM
OF THE HILBERT-PALATINI ACTION

Let us start with the Hilbert-Palatini action
=7+ e . (20
1
S=3 f €apys 0RP0OT. (14 Then the kinetic term reads. 9, »®— (¢2°°"EL) d, x4 . By a
suitable change of variables we can bring this term to the
Recall that the Ashtekar action is obtained from the Hilbert-standard fornpg,q. Let us introduce a basis in the space of
Palatini one by adding a pure imaginary term3X3 matrices:

— i3 €4p,5€*0eP0x Q7. Therefore,

(TAF=EP(BaE,  (va)i=3eancES, (2D
S=ReS,= Zf dtd*x(ELg,w?®+Z. 4,62+ ndRe G, where 3, are six symmetric % 3 matrices. Define

where o and\ will be treated as new canonical variables.

a . a . We arrive at the following expression for the Hilbert-
ng=ReAj, ni=-Im Ag, (16)  Palatini action:

1 - .
§S=f dt d®x(EL 9, 72+ xadi0?+ NEDE+ NEDL+ N O+ NOH),

5= (€ EpXc) — €ar’ 7 Ec— €ap’@?Xc,
®p= G EL+ eapcn €S Eyxr— (Sap— Xaxp) @,
P =—2[ELa 77— 0, (ELnd) — 09 xal,
OH= P BLEN Sag— XaXa) € g7 7] + 2ELELX (91 7] = 3 70) = (1= x)[201(B0®) —h 10?3 (hEy) ]
+ 0} (ELgix°+ Ehdixa) + ELo®(xan) — xo7?) — @®xa(BEb 7 X xc— X°EL 7)) — % (1= x?) 0*0°( Sap— XaXb)

=i =i d d_d d
+ 2 ELEL (1 XD airf+1xadixa= (1= X xal { nf + (8ag— xaxg) 77 { xal

— (1 x?) e ELEL(Sag— Xaxa) €% O] (23)
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We see thah , has no conjugate momentum, and thus is  The remaining constraingst™ andA{a®"/d\,) are sec-
nondynamical. We observe also that is contained inP™  ond class constraints with a nontrivial matrix of commuta-
only. tors. This matrix is nondegenerate and can be used to con-

Let us analyze constraints of the theory along the lines ogtruct Dirac’s brackets. To avoid using such an object one
the usual Dirac proceduf@8]. Since all steps are completely should solve the second class constraints explicitly.
standard, we omit irrelevant technical detafts. [11,4]). The constraintp$) =0 are solved trivially giving us back
First we note thafE[.j1 and y, are conjugate momenta tg* @, as first class constraints. Sinde" is quadratic inx, it
and ?, respectively. By analyzing the consistency condi-can be represented as
tions we get the following set of constraints:

5<DH CDHZCD5|+26A)\A_)\AAAB)\B. (26)
pV=0, pW'=0, @,=0, N——=0 (29
A The remaining second class constraints give the equations
wherep® denotes the momentum conjugate to the variable

g, (n) are all Lagrange multipliers, and®,

—(HC L B @H SpH
(P7 . P, ,P;,P"). Introduce 0= et —2(— Asghpt Ba), 27)
H
’r_ AN g1
P=Po— 2 pAAAB(q)a' W\B]’ (29 which can be solved fox, resulting in expressions for non-

dynamical components’ in terms of other canonical vari-
where Apg=—3(0?°®"/NpdNg). Then @/, and pg‘) are  ables. Here we give final results only; some intermediate
first class constraints. steps are reported in Appendix A:

1 ) ) )

= | f = f = f

ria:—z( 129 (= Xad€ ™ ERELXGEPIE] + XagEP €?* EFELX 41 E| — €™ EFELXagE I XardkE;
- — 4 - 4

— Xa€dbcEbXcgEPdixat €9°%xpd; X — €2PXpELE] dixdt € 7f + ePELE] Xo75), (28

whereX ,,=(8ap— XaXb). The Hamiltonian constraint reads

O=d+ BrA 3B

1 _ . - _
== (1= x?) 02X ap— (1= x?)[26;(ELo?) —h 10?3, (hEY) ]+ 0®xu(ELdixo+ Ebdixa)
+[ELo®(xan? = xo7?) — 0®Xa(EbX° 78 xc— X2 Eb )]
1 — o ~ ~ o~
+51{- P B E X g PESELX 1A EIHE] + €2PELELX 50 EF e PESE X1 dkE|

o eabC'Eib'EJ;:XagakglgedPQ’EEEL‘de&i Ejf}

=i =k =i ] =k o f =i _adpEk
+{— P ELELxae"P B ydxaXagd ES + €PELELG EePIESIE| xq— € ELELePE §axadi Ef X g}
2
X

. . i o
BT D EabCE'bc?i)(aXCqupqE{)&de-I— EabCEaE'bEf:edqud nho; E?— eabCE'bﬂi ELe?P%, 7]?

1 _ .
T € Eyydi Xa€®P N p 7 Elixd

. . 1 . 1 .
o o _ _ X .
+1 2BEbxo (47} — 9 7) + P EELeapqnl 7+ 5 € XaEp 7 e PNgEL 71— 5 € xam e P EGE]

1 o
— b b aEi ., =i
200 € Xam € xomBoxgEixe - (29)
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We finish up this section with some useful commutators Other notation is taken from E@12). HereK' is in fact the

Introduce the smeared first class constraints same as in Eq13) but written in different variables.
@ will be called the Hamiltonian constrain® gener-
G(n)= | B nt®®, L(m :f d3x mPapL ates diffeomorphisms of the three-surface and will be called
() f X a (m) X b the diffeomorphism constraintb® and ®“ generate the
SO(3R) rotations and the Lorentz boosts, respectively. They
D(,\]):j d3x NipP H(N):f d3x NoH will be called the Gauss law constraint and the Lorentz con-
b ~ - straint, respectively.
(30) There is a set of remarkable relations between the Poisson
Here all the constraints are taken from E€23), except for S:Z\i:ie-ts of Hilbert-Palatini gravity and that of Ashtekar
the Hamiltonian constrain®" which is now given by Eq. Y:
(29). Here&? is expressed in terms of canonical variables by {G(n),PLlc={G(n),PL}={iL(n),P},
means of Eqs(22) and (28).
The transformations of the connection fields are {g(n),Af}C={G(n),Aja}={iL(n),Af‘},

dy _ _dabnagb nd R . - ) - -
(G, i} =g+ on, {D(N),PLlc={D(N),PL}, {D(N),A%}c={D(N)AZ,

{G(m), ]+ e xg} = n?(n] + €% x), {HA(N),PLlc={H(N),PL}. (34)

dy_ _ dabyac b bpagp ) :
{L(M), &} = = € m (77 + €737 xq), Note that last relation holds fd?!, only.
In a different context the relation between Hilbert-Palatini

d dpgep _ dabyagb md
{L(m)’”l + e Xaf = €7%m & +am’, and Ashtekar brackets was considered recently by Khatsy-

- . . movsky[19].
{D(N), &} =2(N'g; &'+ £'a,N"),
Sy do _dpasp. 1 i d _dpgep IV. BRST QUANTIZATION
{D(N), 7j + €P} xqt =2[N'di (775 + €"P%] xq) OF HILBERT-PALATINI GRAVITY
+(p+ eIy aN']. (3D) In this section we construct the BRST path inted0]

) ) , for Hilbert-Palatini gravity. Here we follow the review in
The Poisson brackets between the constraints are stra|ghtfc[r21]_ Consider a dynamical system with phase space vari-

ward to evaluate. One obtains ables ¢°,ps), HamiltonianH,, and constraints,,. Let n®
__ be the Lagrange multipliers associated with the constraints
G(n),G =—-G(nXm), X )
{G(n),G(m)} (nxm) ®,, and 7, be the canonically conjugate momenta. The
{L(n),L(M)}=G(nxm), extended phase space is defined by introducing extra ghost
and antighost fieldsh“,c,,c*b,), obeying the following
{G(n),L(m)}=—L(nxXm), nonvanishing antibrackets:
{D(N),D(M)}=—2D([N,M]), {b*Cayr=—05, {c*bgt.=-35.
{D(N),G(n)}=—2G(N'an), c“,c, are real, whereas®,b,, are imaginary.

It is convenient to define an additional structure on the
extended phase space, that of “ghost number.” This is done

N = — i .
{D(N),L(m)} 2L(N'Gim), by attributing the following ghost number to the canonical

{H(N),G(n)}=0, variables:c*,b* have ghost number I5,,b, have ghost
number—1. All other variables have ghost number 0.
{H(N),L(m)}=0, On this space one can construct a BRST genef@tand
a BRST-invariant Hamiltoniaid. They are determined by
{D(N),H(l}l)}c —2H(LRN), the following conditions.

(@ € is real and oddjb) Q) has ghost number 1)
{H(N),H(M)}=2D(K)—2G(2Kjgj) (:2;—|b m,+c®,+ “higher ghost terms;”(d) {Q,Q},
—2L[2KJ(77]-+§]-><X)], (32 (@ H is real and even(b) H has ghost number Qr) H
coincides withH, up to higher ghost termgd) {H,Q}=0.
where If Hy weakly vanishegas in our casg one can takeH
j _ i =0 since the formalism supports an arbitrariness in the defi-
KIIN,M]=(NJiM —MaN)KY, nition of observablestHy~Hy+k*®,, .
. =iz 2L =i = The BRST generator is fully defined by structure func-
KY=—(E4E4(1—x) + EaxaEbxv)- (33)  tions of the constraint algebra:
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Q=—ib%m,+ >, con+1..cay WAL hp L

=0 apan g Pa VB

The structure functions for Hilbert-Palatini gravity are
constructed in Appendix B. As a result, we obtain

Q=—ibm,+c*®,+ 5 c*cPCY b, +cocPc U bsb,
(35
whereU®) s taken from Eq(B8). Note that for Yang-Mills

theory the term withU(?) is absent in the BRST charge. This
is also the case of Ashtekar grav(i§].

PHYSICAL REVIEW D 58 124029

etr=0°pstnd,,

__(agf 9P

—icsl > (?t——(m,/ Cln+{d, P |c”
___[99” ag¢ ag”

_ £ o 99" B j@a B
cgc”(pn {f 'C“5}+San5 o~ Yasy n?|c%c
______ dg9f 99"

—iCaCiCy 5 X e {f*,UP)5}chere? (41)

andg®=(7%,0%), ps=(EL.xa)-

The quantization is based on the generating functional for This completes the construction of the path integral for

the Green functions which is represented in the form
Z[] ,J,)\] _ f Dpu eifdt(Leff+jsqS+JSps+ xan“)' (36)

where

Leti=§°pst N7+ %D, + DT, —Hegs,

Heri=H—{4,Q}, . (37)

Here ¢ is an odd and imaginary function which has ghost

number—1 and plays the role of a gauge-fixing function,
whereasD,, is the usual measurg@roduct over time of the
Liouville measure of the extended phase space

Let us choose

b,ne+ic,

W

L fe(qp)+ = g° 38
5 (a,p) yg(n)- (39

By substituting Eqs(35) and(38) into Eqgs.(37) and putting
H=0 one obtains
Hetr=—n“®,—ib,b"+c*nfCY b, —3ccPn U)o b b,

a

J
(F+ g7, T, % bA— T, {1 ® 4P

1
+_
Y

—iC,{f,C tePerbs—ic, {fe,UZ5 cPerelbb, .
(39
Let us make the change of variables with unit Jacobian:
Co—YCq-

Ta™YTq,

Then lety— 0. In this limit integration ovetr,, b¢, andga
is easily performed, giving

Z[j,J,)\]=J Dq Dp Dn Dc Dc 8(f«“+g“)
Xeifdt(Lé”+qu5+Jsps+)\an“), (40)

where

Hilbert-Palatini gravity. One can see that the dependence
of the structure constants on the canonical variables leads to
the appearance of multighost interaction terms in &d).

By an appropriate choice of gauge-fixing functions one can
eliminate these terms. All nonvanishing component& &

have upper indices corresponding to the Gauss or Lorentz
constraints. Therefore, if the functiog$ do not depend on

the Lagrange multipliers\V and AV, all terms withU(®
disappear. If, furthermore, the functiof$ do not depend on

the canonical coordinategp’, the Poisson bracke{éf‘f,Cﬁﬁ}
vanish and the remaining higher ghost terms disappear also.
In such a case, the general structure of the path integral is
identical to that of rank-1 Yang-Mills theory. For short, these
gauges will be called the Yang-MillsYM) gauges. They
play an important role in the path integral quantization of
Ashtekar gravity.

V. CONSTRAINTS VERSUS REALITY CONDITIONS

In this section we establish the relation between solutions
of the constraints in the real Hilbert-Palatini formulation and
the reality condition$8) and(9) of Ashtekar gravity. Let us
recall expressions for the complex canonical variaBlesd
A in terms of the real canonical variables:

PL=i(Eq—ie"Ebxo),
A= =i (7] + % xo),

N

g?: I (42)

GabcwbE}: '
r{ is given by Eq.(28).

Here it will be demonstrated that the reality conditig8s
and (9) are satisfied by Eqs42) provided the canonical
variables of the real theory satisfy the Gauss law and the
Lorentz constraint. Moreover, we shall prove that the Ash-
tekar action is real under the same conditions. The last state-
ment is not completely trivial even though the real Hilbert-
Palatini action is related to the complex Ashtekar action by a
canonical transformation. The point is that this transforma-
tion is not canonical on the whole phase spptie Thus for
our basis in the phase space reality of the Ashtekar action
must be checked independently.

124029-6
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The first reality condition8) is satisfied trivially. Let us
rewrlte Eq.(9) in a more explicit form. The time evolution

PHYSICAL REVIEW D 58 124029

plex SQ3) transformations and real diffeomorphisms. Since
{GH{+2A%G,lc~G and {®P,Im(H+2A%G.)}~Im(H,

PLP. is given by the Poisson brackets of the total complex+2A,aga) these transformations map solutions of Etf) to

Hamlltoman(?) and PPl :
a.(P'aP;):U dt d®x(A3G,+Np'Hi+AH),PLPL
C

= —2[2P.Pa Ny — PXPLO N
~PSPLAND' + Np' 3 (PLPL)]
+2(V PX) (N PL+ AP
—2Ne®PL(PLV,PL+PLV;P)). (43)

The first line of Eq.(43) is real for real\' due to the first
reality condition(8). The second line disappears due to the

Gauss law constraint. Therefore, to ensure real metric evolu-

tion one must require

Im[ €2°°P(PLV,PL + PLV;PL)]=0. (44)
The condition(44) can be presented as {RyP. ,H}c=0. It is
clear that this condition is invariant undeomplexSQ(3)
transformations. These transformations can be used to p
x=0. One can easily demonstrate that for the fi¢ky the
condition (44) is satisfied.

Now let us prove that under the same conditions

Im H;=Im(H; + 2A%G,) =0. (45)

From Egs.(11) and (34) one can see th&G,G}c~G and
{®P,G}~G. Hence the surfacé=0 is invariant under com-

themselves inside the surfage= 0. One can use S0) trans-
formations and diffeomorphisms to impose the condition

=0 everywhere, and,E.=0 at a certain point. At this point
one must only check the cancellation of the second deriva-

tives of E. This is straightforward to do by using Eqg2),
(28 Land the explicit form(23) of the constraintG=®®
+id-,

To prove that ImMH=0 one can use the Lorentz boosts to
put y=0. This makes the calculations quite elementary even
without further gauge fixing.

By straightforward calculations one can demonstrate that
the imaginary part of the kinetic terf9,A? is a total de-
rivative and thus can be discarded in quantization. This is
done in Appendix C.

As was advertised at the beginning of this section, we
demonstrated that the complex canonical variables satisfy the
reality conditions on the surface of Eqgl2), the second
class constrain€27), and the two first class constrainis®
and ®-. Note that the reality conditions admit more solu-
tions. For example, one can interchange the real and imagi-
oary parts ofP) .

VI. PATH INTEGRAL QUANTIZATION
OF ASHTEKAR GRAVITY

In this section we derive a path integral for Ashtekar grav-
ity from the one for Hilbert-Palatini gravity.
Consider the functiong40) in a YM gauge:

Z[j,J]=f D7? DEL Dw? Dy, DNg DN, DNy, DN Dc D, 5(fa+ga)exp(if dt(Ll+jLn2+3%EL) |, (46)

We drop the sources for the Lagrange multipliegsand . A d
section.

Since the gauge-fixing functiog® does not depend on the
Lagrange multipliers give8 functions of the corresponding co
on the surface of these constraints. In the previous section
action vanishes. Thus one can write

agP
on®

eff= LA(P7A)_iC_,B( O~

We assume that complex canonical variables are expresse

iscussion of the source terms is postponed to the end of this

Gauss and Lorentz Lagrange multipliers, integration over these

nstraingédS) 5(PL). This means that in fact we are working

it is shown that on this surface the imaginary part of the Ashtekar

B
",

o7 Yy +{d, P c

(47)

d in terms of real canonical variables by meaé2pf Egs.

One can integrate oven® by using the delta function of the Lorentz constradnt. This is equivalent in effect to the

substitution

= XaXb Xa = =i
0B, 7.x)1=| Sapt T2 )a Ep+ELmixo— 1_3)(2 (Bbm—Ebxomixo)- (48)
The path integral measure is multiplied by
1 1
Ay =det (S~ xaxo)=1] 1. (49)
Xt X
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Now we are ready to change the integration variables in(&g):
E—-PL=iElt e Blxe, ni—AT=E-i(n0+ P80 (50

This gives rise to a determinant

) . 1 . o ~
Ap=det (11803 + 5™ Xo)det 1| g — 5 [~ 28] €™ xot P By Spn— xpXo) B Xa~ Xa& P ETEq( Spn = Xpxb) ]

. 1 . - . 1
—i 5=5‘g+2(1—_)(2)[25f(5§X2_XaXb)+(1_X2)Efa)(bgiXc_(‘sab_XaXb)EchEJdXd]>}:lx_’! (_1—)(2)' (51)

Note that if all the gauge-fixing functiorfsdepend on the Integration overP and A should be understood as a con-

real fieldsy andE throughP only, the ghost action becomes tour integration in complex space. One integrates along the
degeneratésee Eqs(34)]. This is a manifestation of the fact lines defined by the reality conditions and E(f&2) and(48).

that the Lorentz constraint is “superfluous” in complex Ash- As usual, there are real parameters which label points of the
tekar gravity. Therefore, we must fix the correspondingcontours in the complex planes. These&rand 7. Since the

gauge freedom by means of a condition yan fields w and y are already excluded, we do not integrate over
the position of the contours.
x*=X(0)(E), (52 Consider the ghost action. Integration oeeandc gives

the following functional determinant:
where x (o) is a given function.

. . . . . B B
Before integrating ovey let us rewrite Eq(52) in a dif- (91 B 01 y 2 B
ferent form. By inverting the first equation in Eqg2), one de an“ % an” Carm +{®a, 17 . (56)
obtains

Let us separate indices corresponding to the Lorentz boosts:
Bi eachC_i Jab™ XaXb Pl = ()P (53 {‘ba}:{‘DL?q’u}’ _ {_fa}:{Xa_Ya(P)_?f”(X’P)}, 19}

a {12 1—x2 b= TalX) - ={0;g9*}. Greek indices from the middle of the alphabet
correspond to the Gauss law, diffeomorphism, and Hamil-
tonian constraints. The matrix elements in Eg§6) contain
the following brackets:

As a result of Eq(52), one can replacg by X(O)(E)- The
right hand side of Eq(53) becomesE dependent. This de-

pendence, however, can be removed at least locally by S5t b SfY

means of a formal power series expansion. As a result, we {®,.f"(x,P)}={P,,P} §+ 5 £ 50

obtain @ ox
= i _ o ox
E.=ma(P)P}, (54) {®x—XP}=5 {0, P55, (5

where is a function ofP but not of P*, which depends on
the choice of gauge-fixing function(®). For the present
analysis the explicit form ofr is of no importance. Note that

the simple relatiorE=Im P would not work, because it de-

where summation indices are suppressed. Let us multiply the
lines corresponding tq?—x? by — 6f"/6x®* and add them
to thef” lines. This produces the matrix elements

pends both orP and its complex conjugate. 79" ag” " Sfv  6f7 5y
One can replace E52) by the condition i O 505 Clon”H1®, P 55 + 5y oP
X=X(0)(7P)=x(P). (55 J9” 99" ” )
= i & o5 Cln H LT ((P) P)lc.

The two conditiong52) and (55) are equivalent since they
select the same surfaces in phase space. However, the ghost (58
terms and Jacobian factors appearing due to the delta func-[c] ) . )
tions of the gauge conditions are different for Es2) and P.~ 1S the Ashtekar constraint corresponding @, ,
(55). In the final result these differences compensate eacReq’%C]th- In the last line we used tha{®,,P}
other, as one can easily show using a geometric interpreta={<D#C] ,P}c due to Eqs(34). Equation(58) means that one
tion of the Faddeev-Popov determinant. can replacey by y in the gauge-fixing function$”.

Let us integrate ovey with the help of the delta function Consider the two columns in E@56) corresponding to
8(x—x(P)). Since we already changed variableftandA, the Gauss law and Lorentz constraints. As a result of Egs.
no Jacobian factor appears. (34) {®C,f(P)}=i{dL,f(P)}. Therefore, by multiplying
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the column with®® by —i and adding it to the column with arise from the reality conditions and fixing the Lorentz gauge
®C one obtains zeros everywhere, except for the lines corfreedom. Some remarks are in order. First of all, the result
responding to the gauge conditiog8— x*(P). As a result, (61) is valid for a certain class of gauges only. We are not
one can represent the determin&®) as a product of two allowed to impose a gauge condition 8§. This restriction
determinants: is needed(i) to cancel contributions to the path integral of
the second order structure functiomehich are zero for Ash-
o o [c] ¢v tekar gravity[6]) and (ii) to ensure delta functions of the
Clioh +{(D“ (P, Pke], complex Gauss law constraint. Whilg seems to depend on
(59 a particular choice of basic variables and constraints because
rank of and algebra is not an invariant, the second p@iht
where looks more fundamental. The complex Gauss law constraint
A =del{<1>'-—i<1)G by is needed to prove the vanishing of the _imaginary part of thg
3 a a X Ashtekar action. We are not allowed to impose gauge condi-
=def(S8ap— xaxb) +i€2°xc] tions on the connection variables. The ultimate reason for
this is that the last line of Eq$34) is not true if we replace
“TT (1-x2)2 (60) P by A. This restriction will receive a natural explanation in
Xt X the next section in the framework of the Faddeev path inte-
gral. In all other respects the gauge conditidiis-g“ are
From expression&49), (51), and(60) one can see that all arbitrary. For a given set of admissible YM gauges one can
A’s cancel each other up to an overall minus sign which carfirst expressy? from three of them and then denote the re-
be absorbed in the reversed orientation of the contour of thenaining gauge conditions bf#+g*. The path integral for
A integration. The path integral is now rewritten in terms of Ashtekar gravity was previously considered by the present
the Ashtekar variables: authors and Grigentch in the one-loop approximation over a
de Sitter backgrounfi22] and for the Bianchi IX finite di-
mensional mod€]23]. In these simple cases the reality con-
ditions do not lead to any Jacobian factors if one uses gauge
conditions of the YM type. We observed also that one runs
% 5(f“+g“)ex4|f (L + LA TEPLY | ![:1(;{(; Ug:::éelzeg.gauge conditions are imposed on the connec
Using this or that gauge condition is just a matter of con-
(61 ! S I
venience. In principle, it is enough to formulate the path
where integral in just one gauge. All physical results are to be
gauge independent. However, extension of our results for
, __[a9” ag” i arbitrary gauge conditions still poses an interesting problem
Lerr= LA—'CV(W h o Claon’ from both technical and aesthetic points of view.
Note that we excluded sources fgr w, and Lagrange
Y multipliers. Sources foly and w are not needed because in
Hq)ELC] f (Y(P)'P)}C)C”' (62 the present formulation these fields are absent. Moregyer,
and w can be considered as composite fields. Sourceslfor
The subscripR means contour integration in complex spacesand N can be easily restored without any modification in
along lines defined by the reality conditions. Integration overour procedure. Therefore, we have enough sources to de-
N (which is essentially an imaginary part&f) has already scribe any Green functions of the four-metrics and three-
been performed to produce a delta function of the Lorentalimensional connections. If, however, we introduce a source
constraint. This delta function, in turn, has been used to infor A3, it penetrates into the delta functions of the Gauss law
tegrate overw. Thus in Eq.(61) we integrate over the real and Lorentz constraints and destroys the reality of the Ash-
part of Ay. This integral givess(®®)= §(G). The equation tekar action. Green functions &, are not defined in our

G=0 can be considered as a complex equation becausgproach. At the last step we introduced souttesd]j for

Im G=0 is supplied by the reality conditions. The same isp and A. This makes the exponential in Et61) complex.

true for the gauge conditiorf¢'+ g#=0. A fascinating prop-  Thus, strictly speaking, the path integral is not well defined,
erty of these complex delta functions is possibility to inte-even though all finite order Green functions do exist. If one
grate over CompleX variables without an eXpIiCit transition toWiSheS to be on the safe side, one can eas“y return to the

real coordinates on a contour. . . ~
) original sources) andj for E and 7.
By comparing Eqgs(11) and(32), one can see thal,, 9 J K

are just structure constants of Ashtekar gravityote that
this property does not hold in the variables used by Hen-
neaux[9].) Therefore, the ghost term in E¢61) produces
the ordinary Faddeev-Popov determinant for Ashtekar grav- In this section we give a more simple derivation of the
ity. The path integral61) coincides with what one would Faddeev path integrP4] for Ashtekar gravity, which does
write naively, just ignoring any Jacobian factors which maynot rely upon the heavy machinery of the BRST quantiza-

ag9” dg9”
A3de((9n—u 0r— W

2[j.3]= f DAY DP}, DA, DA'DAZ De D,

VIl. FADDEEV PATH INTEGRAL

124029-9



S. Yu. ALEXANDROV AND D. V. VASSILEVICH PHYSICAL REVIEW D 58 124029

tion. This also seems to be a proper place to discuss the triamh possible gauge conditions. In principle, one can transform
form of the reality conditions. For a dynamical system with Eq. (61) to any other gauge by means of the Faddeev-Popov
canonical variables)® pg, first class constraint®,, and trick [8]. However, this trick is not so easy to implement in

weakly vanishing Hamiltonian, such as Hilbert-Palatini grav-the present context due to the reality conditions and quite

ity, the Faddeev path integral reads unusual rules of the functional integration. Perhaps restric-
tions on the gauge conditions may be weakened or even

_ o . .S « lifted altogether. Anyhow, one should formulate the criteria

z j DqDp Dn Fof )exp( If dua’pstn q)“))’ of admissibility of gauge conditions for Ashtekar gravity in

(63)  terms of the Ashtekar variables without referring to Hilbert-

here f fixing-functi f the d ical vari Palatini gravity. This definitely will not be easy to do. In
wherel™ are gauge tixing-tunctions of the dynamica varl- general, a function o is complex valued. Therefore, a con-

ables.F is the Faddeev-Popov determinaRts-def{®,, ,f#}. . 0 imnli iy o
We do not show the source terms explicitly. The expressiorﬁjltlon f=0 implies two real gauge-fixing conditions Re

: ; : =0 and Imf=0 even if reality conditions are taken into ac-
(63) can be obtained from the path integ(4D) by choosing . : .
g°=0 and integrating over the ghost fielgsand . Of count. Even the requirement that a given set of gauge condi

the start int of the original derivati@] of th tions remove the correct number of degrees of freedom looks
(I;c;ltjdrdseeév sa?hairrll'[r;:%?a?l Irv]vaos n;:[ ?r:lgllgaRS'?rgvpi)roacﬂ € quite nontrivial. One may hope to overcome these difficulties
! . . by using the generalized Wick rotati¢&5].
L To tmzke tthebprtehsentat:jo_P as simple as possible, we fix In principle, one may include the Barbero connec{i?]
orentz boosts by the condition in our scheme. One may even keep the paramgtgz6]
x=0. (64) (corresponding toy of the later works arbitrary. One must
be very careful, however, with possible complex factors in

Now we integrate oveN?, x, andw. Again, integration over the path integral measure. The criteria of admissibility of

w is equivalent to the following substitution: gauge conditions must be reconsidered after transformation
to new variables. Given the growing inter¢8i in the Bar-
wyi= ajEia_ (65) bero connection this can be an interesting topic to consider in
future work.
If the remaining gauge-fixing conditiorf$* are functions of We must admit that for the degenerate triad our analysis is

E only, the Poisson brackef$*, &2} vanish on the surface incomplete. This reflects a well-known problem of Ashtekar

(64). Hence the Faddeev-Popov determinant takes the forn@ravity which exists already at the classical level.
An intriguing feature of Eq(61) is that it is a contour

F=de{f*E),®,}=deff*(—iP),®}.. (66) integral. The contour of integration can be deformed as far as
the reality conditions allow(This corresponds to an arbi-
The gaugd64) means that we are using reality conditions trariness of gauge fixing in the Hilbert-Palatini actio@ne

in the triad form may hope that certain deformations are possible even beyond
i i these limits. If this is really so, some interesting properties of
ReP,=0, Red;P,)=0, (67)  quantum gravity can manifest themselves.

instead of the metric reality conditiori8) and (9).

The change of variable€(7)— (P,A) gives a unit Jaco-
bian factor. Our proof of the vanishing of the imaginary part This work was supported by the Russian Foundation for
of the Ashtekar action is still valid. Hence we arrive at the Fundamental Research, grant 97-01-01186, Alexander von
path integral for Ashtekar gravity in the Faddeev form: Humboldt Foundation(D.V.), and GRACENAS through

grant 97-0-14.1-61D.V.) and a Young Investigator Program

Z=j DP DA DN DN'p DAy FS(FA(—iP))expiS,), (S.A).
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(68 APPENDIX A

where the subscrig® means now that the contour of integra-  Let us solve the second class constraii). The matrix
tion is defined by the reality conditiori67). Of course, most A, is defined by the? terms in the Hamiltonian constraint
of the comments of the previous section apply here also. ®". We have

VIil. DISCUSSION NAANBNB= A C) (A1)

The main result of the present paper is the path integral ~ . . .
(61) for Ashtekar gravity, which is a kind of contour integral. wherer; = erE{).. We can identify nondynamical cognponents
As a by-product, we also constructed the BRST quantizatio® the connection\ o with the symmetric matrices,. The
of Hilbert-Palatini gravity. The main features of our ap- OPerator
proach were discussed in detail in Sec. VI. Here we speculate , ) )
on perspectives of this approach. App =(1=x?) e %Xy, Xag= Sag— XaXd

The path integra{6l) is obtained with certain restrictions (A2)
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acts on the space of symmetriex3 matrices. One can rep- From Eqgs.(32) it is clear that canonical momenta enter
resent it in the following form: the first order structure function§€ through the vector
K![n,m]=(ngim—a;nm)K", whereK' is defined in Egs.

Aggiz(l_XZ)Z(xbcxb'C' — xbe’xeb’y, (A3)  (33). Latern andmwill be replaced by ghost fields. Thus an

order is essentiah always precedes). The tensoK has the

where X°¢ is inverse ofX,.. The inverse of Eq(A3) is  following Poisson brackets with the constraints:
easily found to be G i Lo 0 00
{®F K} ={®} Ki}=0, {c%®, KI[c%c%]}=0,
A™DE = (1) 2} XoXprer— XpoXep). (A4 ' ' i
( )bb (1= x%) (3 XpXpre be' Xebr) (A4) {Ck(I)E,K”}=2(2K”(9kck+ck(9kK”—&kCJK'k—é’kC'KkJ),
The linear part of the Hamiltonian constraint reads (B3)

where contraction with anticommuting ghostss used for
antisymmetrization in corresponding indices.

am (1 . .
— (1= x®xar 47" + Xagn¥r dval=Bor2. (A5) Let us calculatec D(O)g,co(x)Lco(x ). Consider various
cases fora. If @, =P = (PC, D ) and @ .=dy(= oM or

Note that Eq(A5) does not contain derivatives of. Hence ~ ®;=®P, this quant|ty vanishes due to 50@3) For ®,

BaA= B ELr§(aED (1- x*) + 1 ixadiXa

the second class constrai(®7) can be solved for®: =, one obtains
=3 (A HE+H(A ), (A6)  CPDiorc®()c’(x')=§ Ki[co(x),Co(x")]
Substitution of Eqs(A4) and (A5) into Eq. (A6) gives ex- X (={cP®p Al + 1L AJCP+d;c)
pression(28). The Hamiltonian constraint takes the form X S(x,x") (B4)
=0+ B2(AH2BY, which is written explicitly in Eq. R
(29). As a part of our summation convention we assume integra-
tion over all continuous coordinates here and in the equations
APPENDIX B below. The expressiofB4) is zero due to Eqs(31). This

implies thatU§5¢7=0.

. . . . n)
In this appendix we define structure functiob§™ of Let us put(b q)D We are to evaluate

Hilbert-Palatini gravity. Fon=0 andn=1 they are

in(Dé ’ " — i &
UP=,, UL=-1cl, @)  CPiorc’(X)ex)= c({®i.Chp}— CooCly
—2C#,C5, )c0(x")c(x").
with C7; defined by the algebréd2) through the relation 1070”4 (
®,, P, =C?,®_ . Higher order structure functions are de- (BS)
B af >y

fined through repeated Poisson brackets of the constraints First we observe that the only nonvanishing funct@mith

. . 0 . . . . . .
2U (2).5;7(1) —pt ® ,C ¢l ¢t , zero upper index i€y;. This immediately gives a vanishing
Uasy wsy=7 (e Copd=ChyCllay) g2  ©f Eq.(BS5) for £=0. Other components of EGB5) vanish
due to Egs(31) and(B3).
where[ ;- a,] means antisymmetrization i, - a,, with For a=0 we have
the weight 1h!. In actual calculations it is convenient to 1o o 0 L o i 0 o o
replace antisymmetrization by multiplication by anticommut-€%(X) Dy orC%(X")2(X") = — 3 €%(X)Cpo Cjgnc®(x")c(X")

ing ghosts. The indices,B, . . . denote constraints at differ- 04 04 O] , .
ent coordinate points. Therefore, antisymmetrization over =8c"d;c°d;cKY &(x,x") 6(x",x")
coinciding indices does not necessarily give zero. =0,

If fewer than two indices among, B, andy correspond
to the Hamiltonian constraint, the structure functidbsn 0 Di 0 O(x")=1 ¢ 0 0/
Eq. (B2) become field-independent structure constants, and (X)Dgy orC (XN (X") = 7 C(X){®P0,C ot ¢°(X) (")
the second order structure functiod§?)*” vanish by virtue -0,
of ordinary Bianchi identities. Hence, one must calculate
only the structure functions with a pair of indices, sgyand co(x)Dg%,),g,,co(x’)co(x”)
v, corresponding to the Hamiltonian constraint. From now

on, an index representing the Hamiltonian constraint will be — _ofa0 H IOy Y RO/ "\ TAP
denoted by 0P"=d,. We puty=B=0. =~ 2{C 00 P00, KAL), cX") JAoky

It is convenient to introduce a connection field of the Lor- (B6)
entz group S@,1: AP=(&, '+ €9¥xy), p=1,...,6. where the first line is zero due to the contraction of a sym-
Heref[Jq will denote structure constants of the correspondingmetric tensor with an antisymmetric one. In the second line
Lie algebra. we used second equation of E@B3).
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To calculate the remaining components@f') the fol- As before, only the functions withk=8=y=0 could be
lowing brackets are needed: nonzero. By straightforward calculations one can demon-
_ o strate that they vanish as well. There are no nonzero third or

{0, KI[c?,c01&} = 2¢%;c0d,cO (ELEs — EEL) P higher order structure functions in Hilbert-Palatini gravity.

+ (ELE§—EfE) & Pxr 0y,

{c%o,KI[c%,c%1( 7]+ €% xo)} APPENDIXE
=2¢%9;c%, % — €29y (ELEK—EXEL) @ P In this appendix we prove that the imaginary part of the
kinetic term of the Ashtekar actiof7) vanishes for the fields
— 2%y (ELEs — ESEy) €9"x; Dy . (B7) (42 provided the real canonical variables satisfy the second
o . class constraint&27) and the Gauss and Lorentz constraints.
By introducing a 3<6 matrix field E,=(Ej,,€ancEpXc), Consider the kinetic term

p=1,...,6, one camepresent the nonvanishing second or-
der structure functions in an elegant form

Im A29,PL=1{[ Sap(1— x?) + XaXul&P— € xp 7} A EL

— (2" PPEL+ xatPEL — EEbxb) diXa .

c2(x)Ugaarc®(x)c(x")

=—8c%3,c09c ELEKS(x,x") 8(X" ,X"). B8
109\ cPELEKS(x,X") 8(x' X") (B8) 1
Third order structure functions are defined as
3Ufk§§/§*¢k=(—{ufg§’7,¢5}— § {C.5.Cl5 where expressiongt2) were substituted. By making use of
the constraints one can rewrite EGC1) in the following
2 2 .
+3 Ch Um0t ety 5. (B9 form;

A e e e
Im APoPL=— 3 G EL[ P BEEL(Sg1— xgxr) EPE] — EFe® EREL(Sgr— xax1) IkE| + P EEEL ag— Xaxg) EPHKE]
— €29, EL( Spg— XbXg) EP — ENe®PELd xaxc+ 2xoEL € ELI; xb]
e . . _
— 3 dixal €PERELXAE ]+ )P BRELX4IE] + €2 %9 Ebxc T 22" B xc]

= 3 o P EEEL(Sgg— XaXo) JKE] — 3 HEIOL e EREL Sug— Xaxg) 1+ 3 a(Ebxn) €%dixc

o i i
— 5 €%xc0i(Eoxp) = 5 i e EFEL Sag— xaxg) KkEST— 3 dl e EFEL(Sag— xaxg) dEf]
+ 5 d(eELxpdixe) — 3 di(€PEbxpdixe)-

Thus the imaginary part of the kinetic term is a total derivative and can be neglected.
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