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Nonstationary Einstein-Maxwell fields interacting with a superconducting cosmic string

Reinaldo J. Gleiser* and Manuel H. Tiglio†
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Nonstationary cylindrically symmetric exact solutions of the Einstein-Maxwell equations are derived as
single soliton perturbations of a Levi-Civita` metric, by an application of the Alekseev inverse scattering
method. We show that the metric derived by Witten, interpreted as describing the electrogravitational field of
a straight, stationary, conducting wire, may be recovered in the limit of a ‘‘wide’’ soliton. This leads to the
possibility of interpreting the solitonic solutions as representing a nonstationary electrogravitational field ex-
terior to, and interacting with, a thin, straight, superconducting cosmic string. We give a detailed discussion of
the restrictions that arise when appropriate energy and regularity conditions are imposed on the matter and
fields comprising the string, considered as the ‘‘source,’’ the most important being that this ‘‘source’’ must
necessarily have a nonvanishing minimum radius. We show that, as a consequence, it is not possible, except in
the stationary case, to assign uniquely a current to the source from knowledge of the electrogravitational fields
outside the source. A discussion of the asymptotic properties of the metrics and the physical meaning of their
curvature singularities, as well as that of some of the metric parameters, is also included.
@S0556-2821~98!04722-5#

PACS number~s!: 04.20.Jb, 11.27.1d, 98.80.Cq
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I. INTRODUCTION

The possibility that the Universe has undergone one
perhaps more, phase transitions through its evolution is
intriguing conjecture with far-reaching consequences t
has attracted much attention and research in several field
theoretical physics and astrophysics. An immediate resu
imposing the condition of causality on the phase transitio
the appearance of topological structures, some of which m
be stable, precisely as a consequence of the geome
properties and nature of the fields involved. In particular,
existence of vortexlike solutions among these stable st
tures, which, in an astrophysical context, may appear as
ther closed loops or open structures, has given support to
concept ofcosmic stringsas cosmological objects possib
playing a fundamental role in the formation of structures
the early Universe.

This role was further enhanced by Witten’s propositi
that cosmic strings might carry superconducting currents@1#.
In this context, an interesting development has been the
troduction ofvortonsas stable closed loops of supercondu
ing strings~for a recent review see, e.g.,@2#!.

In the case of open strings, an extreme idealization is
consider solutions with perfect cylindrical symmetry, a
even further, that the whole of the string internal structure
restricted to a straight line, which coincides with the axis
cylindrical symmetry of the system. This idealization b
comes useful in situations where one is interested in the
fect of strings on their surrounding medium, including th
associated gravitational and, for superconducting strin
electromagnetic fields. The theoretical framework in t
case would be given by the Einstein-Maxwell equations. P
haps the simplest solution of this type, corresponding t

*Electronic address: gleiser@fis.uncor.edu
†Electronic address: tiglio@fis.uncor.edu
0556-2821/98/58~12!/124028~11!/$15.00 58 1240
r
n
t
of

of
is
ay
cal
e
c-
i-

he

n-
-

to

s
f
-
f-

r
s,
s
r-
a

stationary current-carrying string, was given by Witten,
gether with a prescription for the interpretation of the stri
as a source endowed with electric and magnetic currents@3#.

The superconducting currents found by Witten arise in
context of an analysis of the solutions of the field equatio
and they are not associated with topological constrai
Therefore, for particular models, stationary solutions co
taining superconducting currents may exist only in a limit
range of parameters@4#, or even not at all. On the other han
if we drop the condition of stationarity, it is clear that the
currents may still be excited by the presence of electrom
netic fields, just as in the case of a normal superconduc
The interplay between these induced superconducting
rents and the surrounding electromagnetic and gravitatio
fields may be quite complicated, because of the inherent n
linear nature of the equations that govern their evolution.
particular, one may ask questions that concern the way
current rises and eventually falls when a pulse of electrom
netic radiation is incident upon the string or when the no
conducting state is unstable and currents may be gener
spontaneously@5#. It may then be of interest to find exac
solutions, even in the idealized case of cylindrical symme
where these questions are considered explicitly.

In this paper we describe a new family of exact cylind
cally symmetric nonstationary solutions of the Einste
Maxwell equations, derived as single soliton perturbations
a Levi-Cività metric @6#, by an application of the Aleksee
inverse scattering method@7#, and analyze to what exten
they may be interpreted as corresponding to the electrogr
tational field exterior to a superconducting cosmic strin
The paper is organized as follows. In Sec. II we derive
solution of Alekseev equations. In Sec. III we present e
plicit expressions for the metric and electromagnetic pot
tial. An analysis of the spacetimes described by our soluti
is given in Sec. IV, and complemented in several Appe
dixes. In Sec. V we show that we can recover the sta
axially symmetric electrovacuum metric as a singular lim
©1998 The American Physical Society28-1
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of the solitonic solutions, leading to the idea that some of
general, time-dependent solutions can be interpreted,
some interval of time, as describing a region of spacet
near the core of a superconducting cosmic string interac
with Einstein-Maxwell fields. This possibility is analyzed
detail in Sec. VI, where we discuss, without reference t
particular model, certain restrictions on the metric para
eters that arise when we consider the metric as describing
spacetime in the region exterior to a cylindrically symmet
source, and impose certain energy and regularity condit
on the stress-energy-momentum of the matter and fields
tained in the source. In particular, in the time-depend
case, and in contrast to what happens in the stationary c
we find that it is not possible to assign a unique elec
current to our electrovacuum metrics, a result of obvio
relevance to the physical interpretation of the solutions. T
consequences of the results obtained in Sec. VI are fur
discussed in Sec. VII, which contains also some final co
ments. We also include three appendixes. Appendix A gi
results for the asymptotic behavior at timelike infinity. Th
nature of the singularities and some possible physical
geometrical interpretations thereof are discussed in App
dix B. Finally, the vacuum and diagonal subfamilies of m
rics are described in Appendix C.

II. ALEKSEEV EQUATIONS FOR THE SEED METRIC

The family of exact solutions of the Einstein-Maxwe
equations considered in this paper was obtained by an a
cation of Alekseev’s inverse scattering method to a suita
‘‘seed’’ metric. A complete description of this method ca
be found in@7# and a review on solitonic solutions in@8#.
The spacetime external to a stationary superconducting s
can be approximated by that of conducting wire and this
turn reduces to the Levi-Civita` spacetime when the current
set to zero~see the discussion in Sec. VI!. With these facts in
mind we chose the Levi-Civita` spacetime as seed, written
the form

ds25Cr~D221!/2~dt22dr2!2r11Ddx2
22r12Ddx3

2 , ~1!

whereC and D are constants. Once the seed is chosen,
Alekseev method requires that we find a 333 complex ma-
trix C, which is a solution of the equation

]mC5Lm
n UnC,

where (m,n5r,t), Ut , andUr are 333 complex matrices,
determined by the seed metric, andLm

n some functions oft
andr. For the particular form of Eq.~1! ~see@7# for details!,
we obtain

]rC5
1

2i @~ iv1t !22r2#

3S 2 ir~D21! ~ iv1t !~D11!rD 0

~ iv1t !~D21!r2D ir~D11! 0

0 0 0
D C
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] tC5
1

2i @~ iv1t !22r2#

3S i ~ iv1t !~D21! 2rD11~D11! 0

2~D21!r2D11 2 i ~ iv1t !~D11! 0

0 0 0
D C.

The general solution of these equations, satisfying cer
conditions required by the method, may be written in t
form

C~r,t,v!5S k1F221k2F23 k3F221k4F23 0

k1F321k2F33 k3F321k4F33 0

0 0 1
D ,

with ki ( i 51, . . . ,4) arbitrary complex constants, and

F22~v!5 i
rD/2

A2
S sinh~D ln L!

s1
1

cosh~D ln L!

s2
D ,

F23~v!5
rD/2

A2
S cosh~D ln L!

s1
1

sinh~D ln L!

s2
D ,

F32~v!5
r2D/2

A2
S sinh~D ln L!

s1
2

cosh~D ln L!

s2
D ,

F33~v!52 i
r2D/2

A2
S cosh~D ln L!

s1
2

sinh~D ln L!

s2
D ,

where

s15Aiv1t1r, s25Aiv1t2r, L5S s21s1

s22s1
D 1/2

.

If we restrict to single soliton transformations, we ma
choosev real without loss of generality, as in this case t
imaginary part ofv may be absorbed in a redefinition of th
origin of t. We also choosev.0, and for the multivalued
functions that arise in the new metric, we choose the bra
cut along the negative real axis in the corresponding comp
plane. Given these conventions, we define the real quant
s.0 andf by

s11s25A2rs1/4eif/2. ~2!

III. METRIC AND THE ELECTROMAGNETIC
POTENTIAL

OnceC(r,t,v) is found, the remaining steps in the co
struction of the metric are purely algebraic, and may
straightforwardly handled using computer algebra. If w
write the final metric in the form

ds25 f ~dt22dr2!1g22dx2
21g33dx3

212g23dx2dx3 ,

the coefficients are given by
8-2
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f 5
C8

H r~D221!/2suDu2,

g2252
r11D

uDu2 H S As2
1

As
D 2F sin~f1d!S sin~f1d!2

q

L0
D1

q2

4L0
2G

1sin2fF S L0

s~D11!/2
1

s~D11!/2

L0
D S L0

s~D11!/2
1

s~D11!/2

L0
1

2q

L0
D 1

q2

L0
2G J ,

g2352
2v

uDu2As
H L0F 1

sD/2
@sin~f2d!1s sin~f1d!#G1

2q

L0
As sinf cosd1

sD/2

L0
@sin~f1d!1s sin~f2d!#

1
q

2L0
~12s!S L0

sD/2
2

sD/2

L0
D J ,

g3352
r12D

uDu2 H S As2
1

As
D 2F sin~f2d!S sin~f2d!1

q

L0
D1

q2

4L0
2G

1sin2fF S L0

s~D21!/2
1

s~D21!/2

L0
D S L0

s~D21!/2
1

s~D21!/2

L0
1

2q

L0
D 1

q2

L0
2G J ,

where

d5Df1d0 , H5~12s!21
16v2s2

~12s!2r2
, D5S As2

1

As
D S sind2

q

2L0
cosf D1 i F L0

sD/2
1

sD/2

L0
1

q

2L0
S As1

1

As
D Gsinf,

andd0,q, L0 , andC8 are arbitrary real constants, which are positive, except ford0 , which can also take negative real value
The complex potential for the self-dual electromagnetic tensor is given by

F25
vA2q

D r~D21!/2ei ~4ud12d01p!/4FcosS f1d1p/2

2 D S 2
s~D11!/4

L0
1

1

s~D11!/4D 1 i sinS f1d1p/2

2 D S s~D11!/4

L0
1

1

s~D11!/4D G ,

F35
vA2q

D r~2D21!/2ei ~4ud12d02p!/4FcosS 2f1d2p/2

2 D S 2
s~D21!/4

L0
1

1

s~D21!/4D
2 i sinS 2f1d2p/2

2 D S s~D21!/4

L0
1

1

s~D21!/4D G .
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We notice thatq provides the scale for the electroma
netic tensor,ud defines dual rotations of the electromagne
field, andL0 may be considered as the ‘‘polarization para
eter’’ for the vacuum gravitational field.

The electromagnetic field vanishes for any value ofD if
q50, and the solutions correspond to a vacuum. In th
cases the metrics reduce to those obtained as a solitonic
turbation of the Kasner metric, using the Belinski-Zakhar
inverse scattering method and two complex poles@8,9#. This
can be checked by simply noticing that the functionss and
f as defined in Eq.~2! coincide with the ones defined in@9#,
and that by substitutingq50 in our solution one obtains th
metric in the same explicit form as that given in that ref
12402
-

e
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ence. Solutions withD and2D are locally isometric, as long
as L0Þ0. This can be seen performing the interchang
L0↔1/L0, x2↔x3, andd0↔2d0.

In the next section we study some general limits of t
metrics, for different ranges of the parameters, and the
havior near the ‘‘axis’’ r50, at ‘‘spacelike infinity’’ r
→`, on the future ‘‘null cones,’’ and for largeutu. Some
detailed expressions are given in the Appendixes. In Sec
we consider the static limits of the metric. These will b
important in the discussion of its physical interpretati
given in the following sections. Readers interested only
the physical interpretation of the metrics and their relation
superconducting cosmic strings may skip the next sectio
8-3
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IV. ANALYSIS OF THE SPACETIME

In this section we analyze the behavior of the metric n
the symmetry axis, at spatial, timelike, and null infinity, a
sumingqÞ2L0 sind0. As can be seen in Appendix B, if thi
condition is not satisfied, the behavior can be quite differe

At spatial infinity, i.e., fixedt andr→`, the metrics ap-
proach the seed for all values ofD. Namely,

ds2'
C8~11q1L0

2!2

4
r~D221!/2~dt22dr2!

2r11Ddx2
22r12Ddx3

2 .

The metrics also approach the seed in the asymptotic l
cone, for all values ofD. Specifically, definingu5r1t and
v5r2t, for fixed v andu→` we obtain

ds2'
C8~u/2!~D221!/2

8L0
2@v21v21v~v21v2!1/2#

$2~q22L0sind0!2

3@v21v21v~v21v2!1/2#

1v2@~L0
2111q!22~q22L0sind0!2#%dudv

2S u

2D 11D

dx2
22S u

2D 12D

dx3
2 , ~3!

which can be rewritten as the seed metric by a simple cha
of variable onv.

Contrary to the previous limits, at timelike infinity, i.e
fixed r and t→`, the behavior depends strongly on th
value ofD. Details are given in Appendix A. It is found tha
the metrics approach the background only for 0,D,1,
while a singular behavior results for other values ofD.

Regarding the behavior of the metric near the symme
axis, i.e., forr.0, we also find a qualitative dependence
D. It can be seen that forD.2 we have

ds2'
C8r~D221!/2sD21sin2f

L0
2 ~dt22dr2!

2srD11dx2
22

r12D

s
dx3

2 , ~4!

with

s'
4~v21t2!

r2
, sin2f'

v2

t21v2
, ~5!

and interestingly, as we shall see later, if one does not
proximates andf by their values nearr50, i.e., Eqs.~5!,
then Eq. ~4! is an exact vacuum diagonal metricfor all
spacetime. In other words, whenD.2 the metric near the
axis behaves as in the vacuum, diagonal~solitonic! case.

Concerning the regularity or quasiregularity of the sy
metry axis, these conditions can be attained only ifD51 or
D53. It is interesting to note that these two cases are p
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cisely those in which there is boost invariance along thz
direction at spatial infinity. We proceed to discuss these t
cases.

When D51 and qÞ2L0sind0, our solutions coincide
with those obtained in@10#. Although this is not immediate
from the expressions for the metric and electromagn
fields, it follows essentially by construction, since in th
reference Minkowski spacetime was used as seed (D51).
One can also see that the conditionqÞ2L0sind0 is j2Þ1 in
the notation of@10#. We will not give the explicit relations
between the constants and functions used in this paper
the ones used in@10#, but just summarize some results. Pe
forming the change of variables

u5x2 , z524v~q22L0sind0!21x21x3 ~6!

~which is valid as long asqÞ2L0sind0), the metric tends to
the seed~flat spacetime! at spatial and timelike infinity. At
future null infinity the metric also tends to flat spacetime, a
there is an outgoing flux ofC energy @this flux can be
straightforwardly calculated from Eq.~3! with D51#. The
metric can be chosen as regular or quasiregular near the
with a deficit angle that is constant in time. At spaceli
infinity the deficit angle is,2p ~indeed, it cannot exceed
this value if the spatial sections are to be noncompact and
intrinsic metric geodesically complete, as is discussed in A
pendix B!. Thus, this solution represents a nonsupermas
gauge cosmic string interacting with Einstein-Maxwe
fields, with the property that the deficit angle at the axis
constant in time, and thus, when the interaction ceases~at
future timelike infinity! the string has the same mass per u
of length as it had before the interaction~past timelike infin-
ity!.

To check that the axis can be made either regular or q
siregular whenD53, it suffices to substitute this value in Eq
~4!. Then one obtains

ds25
1

L0
2

C8v216~ t21v2!S 2dt21dr22r2
L0

2

4C8v2
dx2

2D
2

1

4~ t21v2!
dx3

2 ,

which proves the previous assertion. The deficit angle
given by

df52pS 12
L0

2C81/2v
D ,

and the same feature we have already mentioned forD51 is
present: the deficit angle is independent of time.

Returning to the general case~arbitrary D), we have al-
ready indicated that at future timelike infinity the metric a
proaches the seed iff 0<D,1. In these cases, however, a
we will show in Sec. VI, the seed that is approached by
metric corresponds to a source that violates the strong en
condition, and thus these cases require an unphysical so
and are probably of no physical interest. Finally, forD.1
the norm of one of the Killing vector diverges whent→`,
8-4
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NONSTATIONARY EINSTEIN-MAXWELL FIELDS . . . PHYSICAL REVIEW D58 124028
although we notice that this singularity is not reached
observers with constantr, f, andz, since their proper time
approaches infinity whent→`.

We remark that, on account of Eqs.~A1!–~A4! of Appen-
dix A, some of the asymptotic expressions at future timel
infinity are not valid whenq52L0sind0, and neither is the
change of variables in theD51 case that led to a quasireg
lar axis @Eq. ~6!#. This point is considered separately in A
pendix B. As we shall see, the analysis of these cases
help in understanding the nature of the singularities that
velop at late times.

V. STATIONARY LIMIT

From general properties of the inverse scattering meth
we know that we essentially recover the background me
in the limit v→0. In our case this is a static vacuum metr
On the other hand, if we consider the soliton metric,
notice thatt appears only in expressions of the formiv6t.
This implies that we may expect the metric to be appro
mately stationary~in the sense that it depends only weak
on t) in the regionuvu@utu, and this may hold either becaus
utu is small or uvu is large, or both. Moreover,v may be
related to the ‘‘width’’ of the soliton, so that largev corre-
sponds to a wide, and therefore slowly varying, soliton. T
suggests that we analyze the limitv→`, and as we show
below, it turns out that it is indeed possible to recover
static electrovacuum solution, Eq.~7!, as a singular limit
whenv→`.

One way to obtain the static electrovacuum solution is
first take the limit L0→0. Then we define j by q
52DvD21/ j 2, and perform the following change of coord
nates:

x3→22v jx22x3 , x2→
1

4 j 211
S 24 j 2x21

x3

2w j D .

Then, forv→` @and C8(2v)2D22/ j 4→C9 with C9 finite#
one explicitly obtains

ds2'C9r~D221!/2G2~dt22dr2!2r11DG2df2

2r12DG22dz2

1time-dependent terms of orderv21,

where G5(11 j 2/rD21). Thus, the metric approaches E
~7! in the limit v→`.

A simple interpretation of this result is that, at least for
certain range of parameters and for sufficiently largev, in
the regionr!uvu, utu!uvu, i.e., close to the symmetry axi
and neart50, the metric describes approximately a sup
conducting string with a slowly varying current. On this a
count, it would be natural to interpret the full metric as d
scribing the spacetime outside a superconducting str
interacting with a time-dependent electromagnetic field a
therefore, carrying a time-dependent current. A closer an
sis shows, however, that there are some subtle issues
arise when we require that this exterior metric be matche
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a ‘‘source’’ satisfying some physically acceptable con
tions. This analysis is carried out in the following section

VI. RELATION BETWEEN THE EXTERIOR METRIC
AND THE INTERNAL STRUCTURE

OF CYLINDRICAL SOURCES

As we saw in Sec. IV, in general, the metrics obtained
the Sec. III are singular forr→0. This singularity corre-
sponds to the fact that certain curvature scalars are
bounded as we approachr50. This implies that the metrics
cannot be extended to include the symmetry axisr50. On
the other hand, it is legitimate to ask if these metrics may
considered as the electrogravitational field external to so
source, and to require that the source be regular, with a w
defined axis of symmetry. Discussions of this type of pro
lem, for different types of cylindrically symmetric source
but restricted to vacuum exterior metrics, can be found, e
in @11# and in the analysis of superconducting gauge stri
in @12#. Here we consider again the problem, reviewing so
well-known results and adding others which are of inter
for the present analysis.

Electrovacuum metrics with ‘‘full cylinder symmetry’
@13#, exterior to an infinite stationary cylinder, have be
obtained by several authors@13–15#. An interesting ap-
proach using the Rainich conditions can be found in@3#. The
general form of these metrics can be given as

ds25Cr~D221!/2G2~dt22dr2!2r11DG2df2

2r12DG22dz2, ~7!

where G5(11 j 2/rD21), and the topology is defined b
choosing the coordinates as the usual cylindrical ones,
tPR, r.0, zPR, and fP@0,2p#. D, C, and j are three
arbitrary constants, related to the existence of three indep
dent curvature scalars@3#. For the discussion that follows i
is convenient to write this metric in the form

ds25r~D221!/2G2~dt22dr2!2r11DG2S 12
d

2p D 2

df2

2r12DG22dz2, ~8!

with 0<d,2p.
We consider first the vacuum case, i.e.,j 50. Then the

metric reduces to that of Levi-Civita`. Solutions that differ
only in the sign ofD are locally isometric. There is boos
invariance along thez direction if D51 or D53. If DÞ1,
there are curvature scalars that diverge forr→0 and forr
→`. For D.0, the singularity forr→0 may be reached by
causal geodesics with a finite affine parameter, while thi
not possible forr→`. For D51 the metric is~locally! flat
and regular except for a conical singularity on the symme
axis if dÞ0. Particles and photons are repelled by the sin
larity if D,1.

In the electrovacuum case (j Þ0), whenDÞ21 we also
find diverging curvature scalars whenr→0 andr→` and,
just as in the vacuum case, the singularity forr→0 (r
→`) is reachable~unreachable! by causal geodesics with
8-5
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finite affine parameter. There is a certain relationship
tween these singularities and the presence of an electric
rent ~proportional toj ) confined to the symmetry axis~see
@3#!. When D521 the metric can be made regular ever
where~including the symmetry axis! and describes a space
time filled with a magnetic field, the Melvin magnetic un
verse~the coordinatesz andf must be interchanged for thi
solution! @16#. None of these solutions is boost invaria
along thez axis. If 1,D,3, particles and photons are re
pelled ~see@14#! for

r,F j 2S 32D

11D D G12D

.

On physical grounds, we expect the singularity on
symmetry axis to be largely related to the extreme ideal
tion of a ‘‘source’’ ~be it matter or electric current, or both!,
being confined to a cylinder of vanishing thickness. It is th
of interest to inquire what the conditions are that arise wh
we want to match the metric corresponding to a cylinder
matter of finite radiusR0 with an exterior vacuum or elec
trovacuum metric, in such a way that the metric is regu
inside the cylinder. The purpose of this exercise is twofo
first, to relate the parameters characterizing the external m
ric to the type of matter contained in the cylinder and, s
ond, to show that, as might be expected, the cases w
particles and photons are repelled by the cylinder corresp
to matter violating some energy condition.

We assume that the interior metric is diagonal, static, a
ally symmetric, and everywhere regular~in particular, on the
symmetry axis!. In this case, using ‘‘standard coordinates
@13#, it may written in the form
d
e

o
ti
se
.

as
y
se
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ds25e2~g2c!~dt22dr2!2e2cdz22a2e22cdf2, ~9!

where the ranges for the coordinates are the same as fo
~7!. The axis is regular if, forr'0,

ds2'~dt22dr2!2dz22r2df2. ~10!

From Einstein’s equations for the metric, Eq.~9!, we ob-
tain the following relations:

a952T1 , „a~g2c!8…85T2 , „a~g22c!8…85T3 ,
~11!

where

T158pG~ T̃ t
t1T̃ r

r!, T258pGS T̃ t
t2

1

2
T̃D ,

T358pG~ T̃ t
t2T̃ z

z!,

with T i
j the energy-momentum tensor,T̃ i

j[ugu1/2T i
j , T̃

[T̃ t
t1T̃ r

r1T̃ f
f1T̃ z

z , and primes indicate derivatives wit
respect tor.

If we impose the Darmois matching conditions, i.e., co
tinuity of the first and second fundamental forms on the jo
ing surface atr5R0 , then we must require thata, g, andc
be continuous with continuous first derivatives. Integrati
Eqs.~11! in the plane defined by the coordinates$r,f%, in a
disk of radiusR0 , and using Eqs.~7! and ~10!, we find the
following conditions for matching the interior metric wit
Eq. ~8! at r5R0 :
E
0

2pE
0

R0
T1drdf5d, ~12!

E
0

2pE
0

R0
T2drdf5

~2p2d!~D21!@~D11!R 0
D211~D23! j 2#

4~R 0
D211 j 2!

, ~13!

E
0

2pE
0

R0
T3drdf5

~2p2d!~D21!@~D13!R 0
D211~D23! j 2#

4~R 0
D211 j 2!

. ~14!
ace-
e

se.

s
arbi-
Given the interior metric, these equations may be use
obtain D, j, and d. Let us analyze first the vacuum cas
Consider Eq.~13!. If the strong energy condition~SEC! is
satisfied, the left-hand side of this equation should be n
negative. On the other hand, the right-hand side is nega
definite forD,1, and the SEC must be violated at some
~of finite measure! inside the cylinder. Similarly, from Eq
~14! we notice that for a flat exterior metric (D51), the
tension along the symmetry axis must equal the linear m
energy density. For aU(1) gauge string coupled to gravit
~in the nonsupermassive, stationary, and infinitely long ca!,
the conditionT350 holds at each point of the spacetime;
to
.

n-
ve
t

s-

taking the limitR0→` in Eq. ~14! one obtains that at large
distances from the core the spacetime approaches flat sp
time with a deficit angle, which is obtained by taking th
same limit on the left-hand side of Eq.~12! @17#.

We have a similar situation for the electrovacuum ca
The SEC must be violated if

1,D,3 and R0,F j 2S 32D

11D D G12D

,

which is the condition for ‘‘repulsion’’ of test particles. Thi
means that the radius of the source cannot be made
8-6
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trarily small. This, as we shall show below, has importa
implications for the interpretation of the physical nature
the source in terms of electric currents. For aU(1)3U(1̃)
superconducting gauge string the fields far away from
core are purely magnetic and thus the spacetime approa
Eq. ~8! with D.1. Furthermore, in the cases of interest, (D

21)!1 and thusrD221'1 even on cosmological scale
This means that the spacetime is approximately flat and
approximately measures the angle of light bending by
string @12,18#, as in the nonconducting case.

Now consider the Maxwell equations for the self-du
electromagnetic field tensor:

dF †54p j †. ~15!

In general, the complex current four-vectorj † is a linear
combination of electric and magnetic parts. This means
in a local Lorentz frame~15! may be written in the form

¹W •~EW1 iBW !54p~re1 irm!,

] t~EW1 iBW !1 i¹W 3~EW1 iBW !524p~ jWe1 i jWm!, ~16!

wherei is the imaginary unit, all the other quantities are re
and we must have

¹W •~ jWe1 i jWm!52] t~re1 irm! ~17!

as an integrability condition. In these equationsre and jWe
represent, respectively, the electric charge density and
rent density, whilerm and jWm are the corresponding mag
netic counterparts. In the case where everywhere we ha

jWe5a jWm , re5arm ,

with a some real constant, the magnetic part ofj † may be
eliminated by a redefinition~‘‘dual rotation’’! of the fieldsEW
andBW . However, ifF † appears in the context of gauge fie
theories, we may envisage situations wherej † contains a
nontrivial magnetic part. Since in our particular problem w
are only considering the vacuum region, wherej †50, the
question that naturally arises is to what extent we can ob
in this case information on the nature of the sourcej † by
considering only the fields in that region. To answer t
question we notice that if we apply Stoke’s theorem to
three-dimensional hypersurfaceS with boundaryS, we have

E
S

j †5
1

4pES
F †. ~18!

Restricting the treatment to cylindrical symmetry, and
suming that there is regular ‘‘source region’’ for 0<r
,R0 , with R0 some fixed ‘‘radius,’’ where the currentj † is
also regular, we chooseS as a three-cylinder on a constanz
surface, with arbitrary radiusR>R0 and boundary given by
S5S1øS2øS3 , whereS1 andS2 are disks of radiusR, for
constantz, taken, respectively, at timest andt1t, andS3 is
a cylindrical two-surface, at the same constantz, with radius
R, and ‘‘height’’ t. Then, from Eq.~18!, we have
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S

j †5
1

4pS E
S3

F 02
† dtdf1E

S2

F 12
† drdf2E

S1

F 12
† drdf D .

~19!

The term on the left-hand side of Eq.~19! is the total current
I in the z direction, integrated in time fromt to t1t ~see
@3#!. Therefore, taking the derivative of Eq.~19! with respect
to t, and evaluating it att50, we have

I5
1

4pS E
0

2p

F 02
† ur5Rdf1E

S1

] tF 12
† drdf D . ~20!

When the fields are stationary the second integral on
right-hand side of Eq.~20! is zero. In this case, since the fir
integral is taken in the vacuum region, its value is indep
dent of the radiusR, as long as we compute it with th
exterior metric. This justifies the procedure given in@3#,
where the limitr→0 is given as part of the prescription fo
what amounts to a definition ofI. In more detail, consider
the stationary exterior solution. Then the nonvanishing co
ponents of the self-dual electromagnetic tensor are given

F 02
† 5~D21! jeiud, F 13

† 5
~D21!

rDG2
jei ~ud1p/2!.

Assuming that this tensor iseverywherestationary, i.e.,
that ] tF 12

† 50 also in the interior region, the total curren
may be given as@3#

I5
1

4p
lim
R→0

E
0

2p

F 02
† ur5Rdf, ~21!

and we find

I5
~D21!

2
jeiud. ~22!

We notice that, choosing the rotation angleud50, the
resulting current is purely electric. This is the choice giv
in, e.g.,@3,14#. The same procedure cannot be applied in
general case, where the metric is not stationary, because
first integral on the right-hand side of Eq.~20! is not inde-
pendent ofR. We might think of using Eq.~21! to define the
currentI, but here the problem is that, as we have shown,
any given set of external parameters, the source region
not have an arbitrarily small radius if certain physical restr
tions hold for the matter and fields inside the source. W
may argue, on the other hand, that although we cannot
Eq. ~20! to computeI, because of the lack of information t
compute the integral involving] tF 12

† , this equation certainly
allows for the possibility thatI is nonvanishing. In particu-
lar, as we showed above, the metrics we describe in
paper contain as a limit the stationary case, where Eq.~20!
holds. So it is reasonable to look at the right-hand side of
~21!, for different finiteR, as a measure or indication of th
total current flowing in the string, keeping in mind that
definite answer will depend on the detailed model of t
source.
8-7
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An interesting fact that arises when we follow this proc
dure is that the resulting ‘‘total current’’ is complex, an
cannot be made real by a ‘‘duality rotation.’’ At first sigh
this might be interpreted as an indication that the sou
must necessarily include ‘‘magnetic currents.’’ We rema
however, that since we are considering only the vacuum
gion, there is also a different interpretation that does
require magnetic currents. Restricting for simplicity
Minkowski spacetime, the reasoning is as follows: supp
we have a solution of Eq.~16!, with rm50 and nonvanishing
electric and magnetic currents. Then, we may define a
field BW 8(xW ,t) by

BW 8~xW ,t !5BW ~xW ,t !1E
t0

t

jWm~xW ,t8!dt8,

where t0 is in principle arbitrary. The fieldsB8W (xW ,t) and
BW (xW ,t) are then identical outside the spatial support ofj m ,
i.e., for anyxW1 such thatj m(xW1 ,t)50 for all t. Then we have

¹W •BW 8~xW ,t !5¹W •BW ~xW ,t !1E
t0

t

¹W • jWm~xW ,t8!dt8,

and from Eqs.~16! and~17!, if rm50, in terms ofEW andBW 8,
we have

¹W •BW 850, ¹W •EW54pre ,

¹W 3EW1] tBW 850, ¹W 3BW 82] tEW54p jWe8 , ~23!

where jWe8 is an ‘‘effective’’ electric current, given by

jWe85 jWe1E
t0

t

¹W 3 jWm~xW ,t8!dt8,

and we have the conservation equation

¹W • jWe852
]re

]t
.

Thus, if rm50, the electromagnetic field outside th
sources may be considered as part of the solution of ei
Eq. ~16!, with both electric and magnetic currents, or of E
~23!, with purely electrical currents. Therefore, as remark
above, it is not possible to infer the presence and type
current in the ‘‘source’’ from an analysis of the electroma
netic fields outside this source.

VII. FINAL COMMENTS

The exact cylindrically symmetric electrovacuum soluti
found by Witten@3# has been considered as representing
electrogravitational field outside a superconducting cos
string @14#. This is in agreement with several computatio
to obtain the metric outside the string@12,18#. All these
analyses correspond to stationary situations. In this pape
described the construction of solitonic perturbations of
Levi-Cività metric, leading to exact solutions of the Einstei
Maxwell equations, with the appropriate symmetry to
12402
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considered as candidates for the metric exterior to a su
conducting cosmic string, in the presence of nonstation
electromagnetic fields.

There are a number of issues that arise in trying to m
this interpretation concrete. First, we have to deal with
fact that the metrics contain curvature singularities on
symmetry axis, where the ‘‘string’’ would be located.
simple way of handling this problem is to assume that
metric describes the spacetime outside a certain ‘‘radiu
R0 . It is then possible to impose some constraints on
parameters by requiring that the ‘‘source’’~string! for r
,R0 satisfy, e.g., some appropriate energy conditions.
our case this restricts the solutions to the set withD>1, in
agreement with previous calculations, but furthermore
also provides aminimal radiusfor the source. This leads to
the second important issue, namely, that, since the me
describe nonstationary electrovacuum spacetimes and
need to exclude a tube of finite radius, there is no unique w
of computing the current in the source or even to ascerta
a current is at all present. There is a further complication t
stems from the fact that we actually solve Einstein-Maxw
equations for a self-dual field, and since the potentials
clude an arbitrary ‘‘duality rotation,’’ the ‘‘sources’’ migh
include magnetic currents.

The presence of magnetic currents is a well-known f
ture of gauge theories; so this presents no difficulty. Ho
ever, the point we tried to make is that it is not really po
sible to decide, just from the external vacuum field, what s
of currents, if any, are present in the source. To make con
with previously accepted superconducting string spacetim
we noticed that for ‘‘wide’’ solitons there is range of time
where the metric changes slowly with time, and, moreove
is possible to choose the parameters so that it approache
stationary solution with nonvanishing current.

ACKNOWLEDGMENTS

This work was supported in part by funds of the Unive
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APPENDIX A: ASYMPTOTIC BEHAVIOR
AT TIMELIKE INFINITY

At timelike infinity, i.e., fixedr, x1, andx2, and t→`,
the behavior of the metric depends on the value ofD. One
obtains

f

r~D221!/2
'5

C8v24D21r222Dt2D24

L0
2

if 2 ,D,

C8@16v21r2~2L0sind02q!2#

4r2L0
2

if 2 5D,

C8~2L0sind02q!2

4L0
2

if 0<D,2,

~A1!
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2
g22

r11D
'

¦

4t2

r2
if 2 ,D,

64v2t2

r2@16v21r2~2L0sind02q!2#
if 2 5D,

S 4t2

r2 D D21
16v2

r2~2L0sind02q!2
if 1 ,D,2,

@16v21r2~2L0sind02q!2#

r2~2L0sind02q!2
if 1 5D,

1 if 0<D,1,
~A2!

2
g33

r12D
'

¦

r2

4t2
if 3 ,D,

r2@16v21r2~2L0sind02q!2#

64v2t2
if 3 5D,

S r2

4t2D D22
r2~2L0sind02q!2

16v2
if 2 ,D,3,

r2~2L0sind02q!2

@16v21r2~2L0sind02q!2#
if 2 5D,

1 if 0<D,2,
~A3!

g23'

¦

S r2

4t2D ~D23!/2
r2~2L0sind02q!

4v
if 2 ,D

8trv~2L0sind02q!

@16v21r2~2L0sind02q!2#
if 2 5D,

S 4t2

r2 D ~D21!/2
4v

2L0sind02q
if 0 ,D,2,

2
2rv~L0

221!

t~2L0sind02q!
if 0 5D.

~A4!

APPENDIX B: THE NATURE OF THE SINGULARITIES

We analyze here the cases whereq52L0sind0. The con-
dition thatq be a non-negative constant imposes, in turn, t
L0>0 andd0P@0,p#. Consider first the electrovacuum cas
i.e., L0.0 and d0P(0,p). The behavior of the solution
near null or spatial infinity is the same as whenq
Þ2L0sind0. We, therefore, present the behavior at timeli
infinity that is obtained imposing from the beginning th
conditionq52L0sind0 ~this is necessary, because the lim
t→` andq→2L0sind0 do not commute!. The results are
12402
t
,

f

r~D221!/2
'

¦

C8D44Dr222Dt2D24

L0
2sind0

2
if 1 ,D,

4C8D4~112L0sind01L0
2!

L0
2t2sin2d0

if 1 5D,

C84D4~11D2tan22d0!

t2
if 0 ,D,1,

4C8D4

t2
if 0 5D,

~B1!

2
g22

r11D
'5 s'

4t2

r2
if 0 ,D,

L0
2cos2d011

L0
2sin2d0

if 0 5D,

~B2!

2
g33

r12D
'

¦

r2

s
'

r4

4t2
if 2 ,D

r2~11L0
2cos2d0!

4t2
if 2 5D,

r4~D21!2

4t2tan2d0

if 1 ,D,2,

r2~112L0sind01L0
2!

4t2
if 1 5D,

r4~D21!2

4t2tan2d0

if 0 ,D,1,

L0
21cos2d0

sin2d0

if 0 5D,

~B3!

g23'5
~D21!2D22tD22r32Dcosd0

L0sind0
2

if 0 ,D,

2
r cosd0~11L0

2!

L0sind0
2

if 0 5D .

~B4!

The behavior on the axis is the same as forqÞ2L0sind0,
except forD51, in which case the analysis of Sec. IV is
not valid since the variables given by Eqs.~6! cannot
be defined and thus one cannot fix the topology as in
that case. This family of solutions (D51 andq52L0sind0)
was analyzed in @19#. More details of what
follows can be found there. Imposing the condition
q52L0sind0 right from the beginning, it is found that, near
the axis,
8-9
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ds2'
C8v2~112L0sind01L0

2!

L0
2~ t21v2!

~2dt21dr2!

2
4~ t21v2!

112L0sind01L0
2

dx2
2

2
t2~112L0sind01L0

2!

4~ t21v2!
dx3

2 .

By inspection of the previous equation, one notes that
axis can be made quasiregular~or regular! choosingx35f
andx25z, with the usual ranges for these coordinates. N
ertheless, at spatial infinity the roles of the Killing vecto
are reversed@see Eqs.~B2!–~B3!#. On the other hand, on
can fix the ‘‘appropriate’’ topology at spatial infinity, bu
then the spacetime does not admit an axis, although
locally regular. Notice also that, opposite to the caseD51
andq52L0sind0, here singularities do develop at late tim
@see Eq.~A2!#.

Moreover, from Eq. ~B2! one notes that whenq
52L0sind0 the spacetime becomes singular ast→` for all
D.0, and that the singularity can be reached by observ
with constantr, f, and z in finite proper time if 0,D
,3/2 ~in the general case, this did not happen for any va
of D). An idea of what is going on can be obtained analyz
the D51 case, since there a density of energy per unit
length can be defined. We now proceed to do so.

If D51 andqÞ2L0sind0, the deficit angle at spatial in
finity is ,2p and, in particular, it follows that theC energy
is finite. We may consider the induced metric and its extr
sic curvature on a surface of constantt, say,t50. Then, the
whole spacetime can be thought as the evolution of th
initial data, and as we have summarized, no singulari
develop. Moreover, it has been shown that under certain g
eral conditions no singularities will develop in electr
vacuum gravity from initial data with deficit angle,2p
@20#. When q→2L0sind0 this angle approaches 2p and
~thus! the C energy diverges. In principle, the property th
theC energy diverges is not necessarily pathological. Inde
this quantity is not the generator of time translations at s
tial infinity ~except for the weak field limit! and it does not
represent the total gravitational mass@21#. When symmetry
reduces a spacetime with translational symmetry, the t
Hamiltonian is proportional to the deficit angle at spat
infinity @21#, which remains finite when this angle ap
proaches the value of 2p. Thus, it cannot be said that whe
D51 andq→2L0sind0 the energy diverges, but rather that
approaches its maximum value. Specifically, in the Ham
tonian formulation the constraints for the initial data ha
solution iff the deficit angle is,2p @21# and, moreover,
whether or not a Hamiltonian formulation is imposed, if sp
tial geodesical completeness is satisfied, then the de
angle must be<2p @22#. Thus, whenq→2L0sind0 the total
mass approaches its limiting value.

Similar properties are known for the aU(1) stationary
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gauge string coupled to gravity. When its total mass per u
of length is raised and the string becomes supermass
there is a curvature singularity at a finite distance of the c
~singularities at a finite distance from the core are a
present in global strings@23#!. The behavior of the metric
near the singularity is as in Levi-Civita` spacetime withD
53 andr'0 @24#. The Levi-Civitàwith D53 character of
the singularity is not so surprising: at large distances fr
the core the metric must approach a vacuum one with bo
invariance along thez direction, and this corresponds to
Levi-Cività spacetime with eitherD51 or D53. The former
corresponds to a nonsupermassive gauge cosmic string
the latter to supermassive ones. The interesting feature is
this singularity is located at a finite distance from the co
the spacetime could have approached a Levi-Civita` one with
D53 andr'` and it would still be boost invariant, but a
was mentioned at the beginning of Sec. IV, the singula
would not be reachable by test particles or photons in fin
affine parameter.

In summary, that the spacetime turns singular at late tim
for D51 asq→2L0sind0 is related to the fact that in this
limit the total mass approaches its maximum value. But th
it is even more natural that singularities also develop wh
the metric is singular at spatial infinity, as forD.1. In any
case, one expects that systems with translational symm
will approximate others without symmetry only locally, an
as mentioned in Sec. VI, we are mostly interested on the c
D.1 andD'1, in the region of spacetime near the axis a
for not large times.

Finally, note that some of the asymptotic expressions
not valid if L0sind050. In Appendix C we will carry out
these calculations again, imposing from the beginning
condition L050. Although the features of these solution
are, basically, the ones that we have found up to this po
we present explicitly these family of solutions because
want to show what we have already remarked in Sec. IV
the general case, the behavior near the axis forD.2 is the
same as for these vacuum families.

APPENDIX C: THE VACUUM AND DIAGONAL
SUBFAMILY

Within the subfamilyq52L0sind0 we further restrict the
solution toL050. Then we obtain metrics that constitute th
diagonal cases of the vacuum subfamily:

ds25
C8

H r~D221!/2sD11sin2f~dt22dr2!2r11Dsdf2

2
r12D

s
dz2, ~C1!

where

H5~s21!21
16s2v2

r2~s21!2
.

8-10
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We are now able to see, from the previous expressions,
the behavior near the axis forD.2 andqÞ2L0sind0 @see
Eq. ~4!# is exactly the one given by Eq.~C1!.

Note that it is no longer possible to make the changeL0
→1/L0 ; so the metrics with6D are not locally isometric. In
fact, we will see that there are differences in the solutio
with D561. As in all the previous cases, at spatial infin
the metric approaches the seedfor all D; so we can just
insertq505L0 in the corresponding expressions of Sec.
to obtain the explicit asymptotic behavior in these region

At timelike infinity the norm of one of the Killing vectors
divergesfor all D:

ds2'C8v24D22r~D21!~D23!/2t2D24~dt22dr2!

24rD21t2dx2
22

r32D

4t2
dx3

2 ,

and the metric near the axis is
tt.

. D

12402
at

s

ds2'C8v24D21r~D21!~D23!/2~ t21v2!D22~dt22dr2!

24rD21~ t21v2!dx2
22

r32D

4~ t21v2!
dx3

2 . ~C2!

It can be chosen regular or quasiregular iffD51,3. We do
not repeat the analysis because it is the same as wheq
52L0sind0 andL0Þ0; i.e., near the axis the solution is lo
cally regular, but at spacelike infinity the roles of the Killin
vectors are reversed. On the other hand, whenD521, the
axis is singular, and it can be explicitly seen that there
curvature scalars that diverge as this axis is approached@19#,
although at spatial infinity the metric becomes flat.

With regard to the singularities fort→`, when D>1,
observers with constantr, f, andz have infinite proper time
when t→`, but there are timelike curves that reach the s
gularity with finite proper time.
t A
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