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Nonstationary Einstein-Maxwell fields interacting with a superconducting cosmic string

Reinaldo J. Gleisérand Manuel H. Tiglid
Facultad de Materiica, Astronorma y Fisica, Universidad Nacional de ‘@doba, Ciudad Universitaria 5000 Gdoba, Argentina
(Received 6 July 1998; published 19 November 1998

Nonstationary cylindrically symmetric exact solutions of the Einstein-Maxwell equations are derived as
single soliton perturbations of a Levi-Civitaetric, by an application of the Alekseev inverse scattering
method. We show that the metric derived by Witten, interpreted as describing the electrogravitational field of
a straight, stationary, conducting wire, may be recovered in the limit of a “wide” soliton. This leads to the
possibility of interpreting the solitonic solutions as representing a nonstationary electrogravitational field ex-
terior to, and interacting with, a thin, straight, superconducting cosmic string. We give a detailed discussion of
the restrictions that arise when appropriate energy and regularity conditions are imposed on the matter and
fields comprising the string, considered as the “source,” the most important being that this “source” must
necessarily have a nonvanishing minimum radius. We show that, as a consequence, it is not possible, except in
the stationary case, to assign uniquely a current to the source from knowledge of the electrogravitational fields
outside the source. A discussion of the asymptotic properties of the metrics and the physical meaning of their
curvature singularities, as well as that of some of the metric parameters, is also included.
[S0556-282(98)04722-5
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[. INTRODUCTION stationary current-carrying string, was given by Witten, to-
gether with a prescription for the interpretation of the string
The possibility that the Universe has undergone one, oas a source endowed with electric and magnetic curf&its
perhaps more, phase transitions through its evolution is an The superconducting currents found by Witten arise in the
intriguing conjecture with far-reaching consequences thatontext of an analysis of the solutions of the field equations,
has attracted much attention and research in several fields ahd they are not associated with topological constraints.
theoretical physics and astrophysics. An immediate result ofherefore, for particular models, stationary solutions con-
imposing the condition of causality on the phase transition igaining superconducting currents may exist only in a limited
the appearance of topological structures, some of which masange of parametefd], or even not at all. On the other hand,
be stable, precisely as a consequence of the geometriciélwe drop the condition of stationarity, it is clear that these
properties and nature of the fields involved. In particular, thecurrents may still be excited by the presence of electromag-
existence of vortexlike solutions among these stable struaetic fields, just as in the case of a normal superconductor.
tures, which, in an astrophysical context, may appear as eiFhe interplay between these induced superconducting cur-
ther closed loops or open structures, has given support to thents and the surrounding electromagnetic and gravitational
concept ofcosmic stringsas cosmological objects possibly fields may be quite complicated, because of the inherent non-
playing a fundamental role in the formation of structures inlinear nature of the equations that govern their evolution. In
the early Universe. particular, one may ask questions that concern the way the
This role was further enhanced by Witten's propositioncurrent rises and eventually falls when a pulse of electromag-
that cosmic strings might carry superconducting currghits  netic radiation is incident upon the string or when the non-
In this context, an interesting development has been the inconducting state is unstable and currents may be generated
troduction ofvortonsas stable closed loops of superconduct-spontaneously5]. It may then be of interest to find exact
ing strings(for a recent review see, e.¢§2]). solutions, even in the idealized case of cylindrical symmetry,
In the case of open strings, an extreme idealization is tavhere these questions are considered explicitly.
consider solutions with perfect cylindrical symmetry, and In this paper we describe a new family of exact cylindri-
even further, that the whole of the string internal structure iscally symmetric nonstationary solutions of the Einstein-
restricted to a straight line, which coincides with the axis ofMaxwell equations, derived as single soliton perturbations of
cylindrical symmetry of the system. This idealization be-a Levi-Civita metric [6], by an application of the Alekseev
comes useful in situations where one is interested in the einverse scattering methdd], and analyze to what extent
fect of strings on their surrounding medium, including theirthey may be interpreted as corresponding to the electrogravi-
associated gravitational and, for superconducting stringgational field exterior to a superconducting cosmic string.
electromagnetic fields. The theoretical framework in thisThe paper is organized as follows. In Sec. Il we derive the
case would be given by the Einstein-Maxwell equations. Persolution of Alekseev equations. In Sec. Ill we present ex-
haps the simplest solution of this type, corresponding to alicit expressions for the metric and electromagnetic poten-
tial. An analysis of the spacetimes described by our solutions
is given in Sec. IV, and complemented in several Appen-
*Electronic address: gleiser@fis.uncor.edu dixes. In Sec. V we show that we can recover the static
"Electronic address: tiglio@fis.uncor.edu axially symmetric electrovacuum metric as a singular limit
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of the solitonic solutions, leading to the idea that some of theand
general, time-dependent solutions can be interpreted, for

some interval of time, as describing a region of spacetime. ., 1

near the core of a superconducting cosmic string interacting' ™ 2i[(io+1)2—p?]

with Einstein-Maxwell fields. This possibility is analyzed in

detail in Sec. VI, where we discuss, without reference to a i(io+t)(A-1) —p*THA+1) O

particular model, certain restrictions on the metric param-
eters that arise when we consider the metric as describing the
spacetime in the region exterior to a cylindrically symmetric 0 0 0

source, and impose certain energy and regularity c_ondltlons The general solution of these equations, satisfying certain
on the stress-energy-momentum of the matter and fields con-

tained in the source. In particular, in the time-dependen onditions required by the method, may be written in the

case, and in contrast to what happens in the stationary case,
we find that it is not possible to assign a unique electric Ki Pyt ko® oy ky®oot ks Py O
current to our electrovacuum metrics, a result of obvious
e > . = + +

relevance to the physical interpretation of the solutions. The Vipto)=| kiPatkoPss ksPsptkabss 0
consequences of the results obtained in Sec. VI are further 0 0 1
discussed in Sec. VII, which contains also some final com- . : ;

; ' . . ) thk; (i=1,...,4)arbit I tants, and
ments. We also include three appendixes. Appendix A g|ve¥vI (i ) arbitrary complex constants, an
results for the asymptotic behavior at timelike infinity. The pA/2/ sinhAInA) coshAInA)
nature of the singularities and some possible physical and Do(w)=i \ + )
geometrical interpretations thereof are discussed in Appen- V2
dix B. Finally, the vacuum and diagonal subfamilies of met-

x| —(A=D)p 2"t —i(io+t)(A+1) O |,

o o_

rics are described in Appendix C. B ) = Pm/ coshiAInA) N sinh(A In A))
23! \/E \ o, o '
Il. ALEKSEEV EQUATIONS FOR THE SEED METRIC
—A2/ ai

The family of exact solutions of the Einstein-Maxwell Dan( @)= P /smk(A InA) _ costta InA)),
equations considered in this paper was obtained by an appli- V2 \ o+ -
cation of Alekseev's inverse scattering method to a suitable
“seed” metric. A complete description of this method can _p‘Nz/ cosiAInA) sinh(AlInA)
be found in[7] and a review on solitonic solutions {18]. Day(w)=—i 2 o - o ,
The spacetime external to a stationary superconducting string
can be approximated by that of conducting wire and this inyhere
turn reduces to the Levi-Civitspacetime when the current is "
set to zergsee the discussion in Sec.)VWith these facts in N e N e _[o-Tto4
mind we chose the Levi-Civitapacetime as seed, written in 7+~ Vi@ tt+p, o =Jio+t=p, A= o —o,
the form

If we restrict to single soliton transformations, we may
d32=Cp(Az‘l)’Z(dtz—dpz)—p1+Adx§—p1‘Adx§, (1)  choosew real without loss of generality, as in this case the
imaginary part ofo may be absorbed in a redefinition of the

whereC and A are constants. Once the seed is chosen, th@rgin of t. We also choose>0, and for the multivalued
Alekseev method requires that we find & 3 complex ma-  functions that arise in the new metric, we choose the branch

trix ¥, which is a solution of the equation cut along the negative real axis in the corresponding complex
plane. Given these conventions, we define the real quantities
AV >0 and¢ b
3, ¥=A7U ¥, v ¢ by
oL to_=\2pctle 42, (2

where (u,v=p,t), U;, andU, are 3x3 complex matrices,
determined by the seed metric, ad, some functions of

andp. For the particular form of Eq2) (see[7] for detalils, IIl. METRIC AND THE ELECTROMAGNETIC
we obtain POTENTIAL
OnceV¥(p,t,w) is found, the remaining steps in the con-
1 struction of the metric are purely algebraic, and may be
V= traightforwardly handled usi ter algebra. If
2i[ (i w+1)2— p?] straightforwardly handled using computer algebra. If we

write the final metric in the form
—ip(A—1) (io+t)(A+1)p% 0

x| (io+t)(A=21)p 2 ip(A+1) 0w
0 0 0 the coefficients are given by

ds?=f(dt?— dp?) + gyt X5+ 9330 x5+ 2050 X0 X3,
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C/
f=—

. p(Az—l)/20_|D|2,

1+A

s
020= |D|2{(\/_ \/;

L, AT L, oA+02 og
+5sirf¢ + + +
|: ( 0_(A+l)/2 |_o 0_(A+1)/2 |_0 |_0

2 2
[sin(¢+ )| sin(¢p+6)— Lﬂ) +q—21
0

2
X
LO

A2

2w 2q . o . .
+ —/osing cosé+ ——[siN(¢+ 8) +asin(¢p—5)]
Lo Lo

1
Oo3=— |’Z)|T\/;{ LO{UT/Z[SII'(d)— S)+osin(¢d+ )]

q

sin(¢p— 5)(sm(¢> 5)+

qz
4LO
L (A—1)/2 L FA-D2 o 2
0 o : 0 N q +q

+sir? + + —|+=|,
¢|:(O.(A—1)/2 |_0 0_A—1)/2 LO LO Lg ]

where

LO O,A/Z
+1 O-le'f‘ \/_+

20_2

S=Ap+68y, H=(1-0)%+ &, D=| Jo—- — ! S|n5—icos¢> sing,
(1- )2 2 2L,

: :

and &,,q, Ly, andC’ are arbitrary real constants, which are positive, excepsgowhich can also take negative real values.
The complex potential for the self-dual electromagnetic tensor is given by
At 1
Lo + sA+DA] P

¢+ 6+ ml2

wy2 (A=1)/2gi 404+ 250+ m)/4|
Dy=—— 5

D P

S( b+ 6+ 77/2) ( oAbl g
o j—

+
2 Lo A1/

—¢+o—ml2\[ oAV 1
co - +
2 Lo  oA-1m4

A1)/ 1
Lo +0(A—1)/4 '

)+isin

D, )

qp( A=1)/2gi (464+250— m)/4

—¢p+65—7l2
2

We notice thatq provides the scale for the electromag- ence. Solutions witlh and— A are locally isometric, as long
netic tensor 4 defines dual rotations of the electromagneticas Ly# 0. This can be seen performing the interchanges
field, andL, may be considered as the “polarization param-Ly« 1/Lg, Xp<X3, and Sg« — &.
eter” for the vacuum gravitational field. In the next section we study some general limits of the

The electromagnetic field vanishes for any value\oif metrics, for different ranges of the parameters, and the be-
g=0, and the solutions correspond to a vacuum. In theskavior near the “axis” p=0, at “spacelike infinity” p
cases the metrics reduce to those obtained as a solitonic per-oc, on the future “null cones,” and for largét|. Some
turbation of the Kasner metric, using the Belinski-Zakharovdetailed expressions are given in the Appendixes. In Sec. V
inverse scattering method and two complex p¢&8]. This  we consider the static limits of the metric. These will be
can be checked by simply noticing that the functiengnd  important in the discussion of its physical interpretation
¢ as defined in Eq(2) coincide with the ones defined [8], given in the following sections. Readers interested only in
and that by substituting=0 in our solution one obtains the the physical interpretation of the metrics and their relation to
metric in the same explicit form as that given in that refer-superconducting cosmic strings may skip the next section.
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IV. ANALYSIS OF THE SPACETIME

In this section we analyze the behavior of the metric nea
the symmetry axis, at spatial, timelike, and null infinity, as-
sumingq+ 2L, sind,. As can be seen in Appendix B, if this
condition is not satisfied, the behavior can be quite different

At spatial infinity, i.e., fixedt and p— o, the metrics ap-
proach the seed for all values Af Namely,

C'(1+q+L3)?
4

—lerAng—pliAng.

ds? p(Az—l)/z(dtz_dpz)

The metrics also approach the seed in the asymptotic light

cone, for all values ofA. Specifically, definingi=p+t and
v=p—t, for fixedv andu—« we obtain

C,(U/Z)(A27l)/2

ds?
8Lg[vz+ w2+v(U2+ wz)llz]{

2(q—2Lsind,)?

X[vz+ w?+v(v?+ wz)llz]
+0?[(L3+1+9)2—(q—2Losindy)?]}dudv

u1+A 1-A
NTSPRT

u

2

2
3

)
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cisely those in which there is boost invariance along zhe
pirection at spatial infinity. We proceed to discuss these two
cases.

When A=1 and q#2Lysind,, our solutions coincide
with those obtained ifi10]. Although this is not immediate
from the expressions for the metric and electromagnetic
fields, it follows essentially by construction, since in that
reference Minkowski spacetime was used as seed ).

One can also see that the conditig 2L 4Sind, is £2+1 in

the notation off10]. We will not give the explicit relations
between the constants and functions used in this paper and
the ones used ifiL0], but just summarize some results. Per-
forming the change of variables

0=X,, z=—4w(q—2LySiNdy) X+ X3 (6)
(which is valid as long ag# 2L ¢sindy), the metric tends to

the seedflat spacetimgat spatial and timelike infinity. At
future null infinity the metric also tends to flat spacetime, and
there is an outgoing flux ofC energy [this flux can be
straightforwardly calculated from Edq3) with A=1]. The
metric can be chosen as regular or quasiregular near the axis,
with a deficit angle that is constant in time. At spacelike
infinity the deficit angle is<2# (indeed, it cannot exceed
this value if the spatial sections are to be noncompact and the
intrinsic metric geodesically complete, as is discussed in Ap-
pendix B. Thus, this solution represents a nonsupermassive
gauge cosmic string interacting with Einstein-Maxwell

which can be rewritten as the seed metric by a simple changéelds, with the property that the deficit angle at the axis is

of variable onv.

Contrary to the previous limits, at timelike infinity, i.e., f
fixed p and t—o, the behavior depends strongly on the O

value ofA. Details are given in Appendix A. It is found that
the metrics approach the background only forx®<1,
while a singular behavior results for other valuesAof

constant in time, and thus, when the interaction cedaes
uture timelike infinity) the string has the same mass per unit
f length as it had before the interactigmast timelike infin-
ity).

To check that the axis can be made either regular or qua-
siregular whem\ = 3, it suffices to substitute this value in Eq.

Regarding the behavior of the metric near the symmetryt4)- Then one obtains

axis, i.e., forp=0, we also find a qualitative dependence on

2
A. It can be seen that fak>2 we have d32=—2C'w216(t2+w2)( —dt2+dp2—p2 0 zdxg)
2 LO 4 ’(1)
C' p A DRGA-1g; P
dg?~ =P ? dt—dp?) 1
2 2
Lo — a2 0%
R 4(t°+ w°)
p
—opt TG ——dx5, (4 which proves the previous assertion. The deficit angle is
given by
with 552 (1 Ly
=27 1-——|,
4(w*+1%) o ? 2C" %
o~ ————, Sifg~——,
p? t’+ w? and the same feature we have already mentioned fol is

present: the deficit angle is independent of time.

and interestingly, as we shall see later, if one does not ap- Returning to the general casarbitrary A), we have al-

proximateo and ¢ by their values neap=0, i.e., Eqs(5),
then Eg.(4) is an exact vacuum diagonal metrior all

ready indicated that at future timelike infinity the metric ap-
proaches the seed iff9A<1. In these cases, however, as

spacetime In other words, whem\ >2 the metric near the we will show in Sec. VI, the seed that is approached by the

axis behaves as in the vacuum, diagofsalitonic) case.

metric corresponds to a source that violates the strong energy

Concerning the regularity or quasiregularity of the sym-condition, and thus these cases require an unphysical source

metry axis, these conditions can be attained onl#1 or

and are probably of no physical interest. Finally, for-1

A=3. It is interesting to note that these two cases are prethe norm of one of the Killing vector diverges whéen:x,
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although we notice that this singularity is not reached bya “source” satisfying some physically acceptable condi-
observers with constamt, ¢», andz, since their proper time tions. This analysis is carried out in the following section.
approaches infinity wheti— .

We remark that, on account of Eq&\1)—(A4) of Appen- VI. RELATION BETWEEN THE EXTERIOR METRIC
dix A, some of the asymptotic expressions at future timelike AND THE INTERNAL STRUCTURE
infinity are not valid whenmg=2Lsind,, and neither is the OE CYLINDRICAL SOURCES

change of variables in th&#=1 case that led to a quasiregu- . ] ] ) .
lar axis[Eq. (6)]. This point is considered separately in Ap- AS we saw in Sec. IV, in general, the metrics obtained in
pendix B. As we shall see, the analysis of these cases wifl€ Sec. lll are singular fop—0. This singularity corre-

help in understanding the nature of the singularities that deSPonds to the fact that certain curvature scalars are un-
velop at late times. bounded as we approagh=0. This implies that the metrics

cannot be extended to include the symmetry axisO. On
the other hand, it is legitimate to ask if these metrics may be
considered as the electrogravitational field external to some
From general properties of the inverse scattering methodsource, and to require that the source be regular, with a well-
we know that we essentially recover the background metriglefined axis of symmetry. Discussions of this type of prob-
in the limit @— 0. In our case this is a static vacuum metric. lem, for different types of cylindrically symmetric sources,
On the other hand, if we consider the soliton metric, webut restricted to vacuum exterior metrics, can be found, e.g.,
notice thatt appears only in expressions of the form=t.  in [11] and in the analysis of superconducting gauge strings
This implies that we may expect the metric to be approxi-in [12]. Here we consider again the problem, reviewing some
mate|y stationar)(in the sense that it depends on|y Weak|y well-known results and addlng others which are of interest
ont) in the region |>|t|, and this may hold either because for the present analysis. .
|t| is small 0r|w| is |arge, or both. Moreovery may be Electrovacuum metrics with “full Cyllnder Symmetry”
related to the “width” of the soliton, so that large corre-  [13], exterior to an infinite stationary cylinder, have been
sponds to a wide, and therefore slowly varying, soliton. Thisobtained by several authofd3-15. An interesting ap-
suggests that we analyze the linait>, and as we show Proach using the Rainich conditions can be founfBh The
below, it turns out that it is indeed possible to recover thedeneral form of these metrics can be given as
static electrovacuum solution, E¢7), as a singular limit )
when w— o, ds’=Cp 4" Vr2(dt*~dp?) — p' AT %d ¢
One way to obtain the static electrovacuum solution is to —plAr-292 @)
first take the limit L,—0. Then we definej by q '

=2%w"71/j?, and perform the following change of coordi- where T'=(1+ 2", and the topology is defined by

V. STATIONARY LIMIT

nates: choosing the coordinates as the usual cylindrical ones, i.e.,
teR, p>0,zeR, andp<[0,27]. A, C, andj are three
: 1 2 X3 arbitrary constants, related to the existence of three indepen-
X3— —20]X3= X3,  Xp— 4241 —4) X2 owil dent curvature scalaf8]. For the discussion that follows it

is convenient to write this metric in the form
Then, forw—o [and C’(2w)?*~?/j*—C" with C” finite]

. . S5 \2
one explicitly obtains _ (AP )220 412 402y 1+AT2[ 4 2
ds’=p I'“(dt°—dp°)—p "°T4| 1 o d¢
4 2—
ds?~C"p A" VRr2(dt2— dp?) — p AT 2d 2 —pt=Ar—2g2, ®)
_plfArfdeZ

with 0<6<27r.
+ time-dependent terms of ordes %, We consider first the vacuum case, i.p50. Then the
metric reduces to that of Levi-CiviteSolutions that differ
whereT'=(1+j%/p®~1). Thus, the metric approaches Eq. only in the sign ofA are locally isometric. There is boost
(7) in the limit w— oo, invariance along the direction if A=1 or A=3. If A#1,

A simple interpretation of this result is that, at least for athere are curvature scalars that diverge ges 0 and forp
certain range of parameters and for sufficiently lasgein ~ —. For A>0, the singularity fopp—0 may be reached by
the regionp<|w|, |t|<|w], i.e., close to the symmetry axis causal geodesics with a finite affine parameter, while this is
and neart=0, the metric describes approximately a super-not possible fopp—o. For A=1 the metric is(locally) flat
conducting string with a slowly varying current. On this ac- and regular except for a conical singularity on the symmetry
count, it would be natural to interpret the full metric as de-axis if §# 0. Particles and photons are repelled by the singu-
scribing the spacetime outside a superconducting strindarity if A<<1.
interacting with a time-dependent electromagnetic field and, In the electrovacuum cas¢+0), whenA # —1 we also
therefore, carrying a time-dependent current. A closer analyfind diverging curvature scalars wher-0 andp—o and,
sis shows, however, that there are some subtle issues thast as in the vacuum case, the singularity 0 (p
arise when we require that this exterior metric be matched te-~) is reachabldunreachableby causal geodesics with a
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finite affine pqrametg_r. There is a certain relationship be- ds?=e2(r" ¥ (dt2—dp?) — edZ— a2e 2Ydp?, (9)
tween these singularities and the presence of an electric cur-

rent (proportional toj) confined to the symmetry axisee where the ranges for the coordinates are the same as for Eq.
[3]). WhenA=—1 the metric can be made regular every- (7). The axis is regular if, fop~0,

where(including the symmetry axjisand describes a space-

time filled with a magnetic field, the Melvin magnetic uni- ds?~(dt?—dp?)—dz®— p?d¢?. (10)
verse(the coordinateg and ¢ must be interchanged for this

solution) [16]. None of these solutions is boost invariant ~From Einstein’s equations for the metric, £§), we ob-
along thez axis. If 1<A<3, particles and photons are re- tain the following relations:

pelled (see[14]) for
a'==T, (a(y=9))' =T, (aly=2¢)") =1s,

L(3=AVA (11
P T3
where
On physical grounds, we expect the singularity on the
symmetry axis to be largely related to the extreme idealiza- T:87TG(§—t+§—p) T ZBWG(?}—t_ E})
tion of a “source” (be it matter or electric current, or both . t P 2 t2 )

being confined to a cylinder of vanishing thickness. It is then

of interest to inquire what the conditions are that ari;e when Ti= SWG(NT}—E'i),

we want to match the metric corresponding to a cylinder of

matter of finite radiusk, with an exterior vacuum or elec- . - ~ T

trovacuum metric, in such a way that the metric is regular¥/t! 7| the energy-momentum tensof,|=|g|"*T!, T

inside the cylinder. The purpose of this exercise is twofold:=7+7 %+ T4+T,, and primes indicate derivatives with

first, to relate the parameters characterizing the external metespect top.

ric to the type of matter contained in the cylinder and, sec- If we impose the Darmois matching conditions, i.e., con-

ond, to show that, as might be expected, the cases whetiuity of the first and second fundamental forms on the join-

particles and photons are repelled by the cylinder corresponithg surface ap="TR,, then we must require that, y, andy

to matter violating some energy condition. be continuous with continuous first derivatives. Integrating
We assume that the interior metric is diagonal, static, axi€qgs.(11) in the plane defined by the coordinafgs ¢}, in a

ally symmetric, and everywhere regul@n particular, on the disk of radiusR,, and using Eqs(7) and (10), we find the

symmetry axig In this case, using “standard coordinates” following conditions for matching the interior metric with

[13], it may written in the form Eq. (8) at p=TRy:
|
27T RO
f f T,dpd =5, (12
0 0
27 (Ro _(277—5)(A—1)[(A+1)R3—1+(A—3)j2]
J, ], mavas- 4RY ) ’ w
27 (R (27— 8)(A—1D[(A+3)R5 1+ (A-3)j?]
T = .
|7 rdpas T 14

Given the interior metric, these equations may be used teaking the limitR,— in Eq. (14) one obtains that at large
obtain A, j, and é. Let us analyze first the vacuum case. distances from the core the spacetime approaches flat space-
Consider Eq(13). If the strong energy conditiofSEQ is  time with a deficit angle, which is obtained by taking the
satisfied, the left-hand side of this equation should be nongame Jimit on the left-hand side of E¢L2) [17].
negative. On the other hand, the right-hand side is negative \ye have a similar situation for the electrovacuum case.
definite forA<1, and the SEC must be violated at some setrne SEC must be violated if
(of finite measurginside the cylinder. Similarly, from Eq.

(14) we notice that for a flat exterior metricAE1), the (3=
tension along the symmetry axis must equal the linear mass- 1<A<3 and Ro<[12(m
energy density. For &(1) gauge string coupled to gravity

(in the nonsupermassive, stationary, and infinitely long)casewhich is the condition for “repulsion” of test particles. This
the conditionZz=0 holds at each point of the spacetime; someans that the radius of the source cannot be made arbi-

1-A
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trarily small. This, as we shall show below, has important 1
implications for the interpretation of the physical nature of LjT:E(j fgzdtd¢+f ]:Izdpdd)— JS ]:Izdpdqs).
the source in terms of electric currents. Foifél)x4(1) 5 % !
superconducting gauge string the fields far away from the (19
core are purely magnetic and thus the spacetime approach@fe torm on the left-hand side of EQ.9) is the total current
Eq. (8) with A>1. FLirthermore, in the cases of interesy, ( 7 in the z direction, integrated in time from to t+ 7 (see
—1)<1 and thusp*""*~1 even on cosmological scales. [3]). Therefore, taking the derivative of E€L9) with respect
This means that the spacetime is approximately flat &nd to r, and evaluating it at=0, we have
approximately measures the angle of light bending by the
string[12,1§, as in the nonconducting case. 1 2, +

Now consider the Maxwell equations for the self-dual IZE fo Fodp-rde+ L hF1dpdd|. (20
electromagnetic field tensor: !

When the fields are stationary the second integral on the
right-hand side of Eq(20) is zero. In this case, since the first

In general, the complex current four-vecidris a linear integral is taken. in the vacuum region, its valug is i.ndepen-
combination of electric and magnetic parts. This means thal€nt Of the radiusk, as long as we compute it with the

dFT=4xjt. (15

in a local Lorentz framé15) may be written in the form exterior metric. This justifies the procedure given [BI,
where the limitp— 0 is given as part of the prescription for
V- (E+iB)=4m(petipm), what amounts to a definition &. In more detail, consider

the stationary exterior solution. Then the nonvanishing com-
O E+IB) +iVX(E+iB) =—4m(feti]m) (16)  Ponents of the self-dual electromagnetic tensor are given by

wherei is the imaginary unit, all the other quantities are real, Fl—(A-1)jei%s, Fl-= (A-1). i(0g+ ml2)
and we must have 02 175 M1 pAT2 : '
V-(Jetifm=—dpetipm 17 Assuming that this tensor ieverywherestationary, i.e.,

) - N ) . that 9,F1,=0 also in the interior region, the total current
as an integrability condition. In these equatignsand j. may be given a3]

represent, respectively, the electric charge density and cur-

rent density, whilep,, and fm are the corresponding mag- I il' 2”]__T | nd 21

netic counterparts. In the case where everywhere we have - 4777le0 o ~ 02p=R 2 (22)
re: afmv Pe=APm, and we find

with & some real constant, the magnetic partj bfmay be (A—1) .

eliminated by a redefinitiof‘dual rotation™) of the fieldsé I=— je'fa. (22)

andB. However, if 7' appears in the context of gauge field

theories, we may envisage situations wh¢fecontains a We notice that, choosing the rotation anglg=0, the

nontrivial magnetic part. Since in our particular problem weresulting current is purely electric. This is the choice given
are only considering the vacuum region, whéfe=0, the in, e.g.,[3,14]. The same procedure cannot be applied in the
guestion that naturally arises is to what extent we can obtaigeneral case, where the metric is not stationary, because the
in this case information on the nature of the soujéeby first integral on the right-hand side of E(O0) is not inde-
considering only the fields in that region. To answer thispendent ofR. We might think of using Eq(21) to define the
guestion we notice that if we apply Stoke's theorem to acurrentZ, but here the problem is that, as we have shown, for
three-dimensional hypersurfagewith boundaryS, we have any given set of external parameters, the source region can-
not have an arbitrarily small radius if certain physical restric-
f .T_if Ft (18 tions hold for the matter and fields inside the source. We
EJ TAw)g may argue, on the other hand, that although we cannot use
Eq. (20) to computeZ, because of the lack of information to
Restricting the treatment to cylindrical symmetry, and ascompute the integral involving, 1, this equation certainly
suming that there is regular “source region” for<®)  allows for the possibility thaf is nonvanishing. In particu-
<Rg, with R some fixed “radius,” where the curreit is  lar, as we showed above, the metrics we describe in this
also regular, we choosg as a three-cylinder on a constant paper contain as a limit the stationary case, where(EQ).
surface, with arbitrary radiuR="R, and boundary given by holds. So it is reasonable to look at the right-hand side of Eq.
S=S,US,US;, whereS; andS, are disks of radiu®k, for (21, for different finite R, as a measure or indication of the
constantz, taken, respectively, at timeésandt+ 7, andS; is  total current flowing in the string, keeping in mind that a
a cylindrical two-surface, at the same constanwith radius  definite answer will depend on the detailed model of the
R, and “height” 7. Then, from Eq.(18), we have source.
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An interesting fact that arises when we follow this proce-considered as candidates for the metric exterior to a super-
dure is that the resulting “total current” is complex, and conducting cosmic string, in the presence of nonstationary
cannot be made real by a “duality rotation.” At first sight electromagnetic fields.
this might be interpreted as an indication that the source There are a number of issues that arise in trying to make
must necessarily include “magnetic currents.” We remark,this interpretation concrete. First, we have to deal with the
however, that since we are considering only the vacuum refact that the metrics contain curvature singularities on the
gion, there is also a different interpretation that does nosymmetry axis, where the ‘“string” would be located. A
require magnetic currents. Restricting for simplicity to simple way of handling this problem is to assume that the
Minkowski spacetime, the reasoning is as follows: supposenetric describes the spacetime outside a certain “radius”
we have a solution of Eq16), with p,,=0 and nonvanishing R,. It is then possible to impose some constraints on the
electric and magnetic currents. Then, we may define a newarameters by requiring that the “sourcdtring for p
field gr(;,t) by <R, satisfy, e.g., some appropriate energy conditions. In
our case this restricts the solutions to the set with 1, in
agreement with previous calculations, but furthermore, it
also provides aninimal radiusfor the source. This leads to
the second important issue, namely, that, since the metrics
wheret, is in principle arbitrary. The fieldd3’ (x,t) and  describe nonstationary electrovacuum spacetimes and we
B(X,t) are then identical outside the spatial supporf af need to explude atube of.flnlte radius, there is no unique way
, - - of computing the current in the source or even to ascertain if
I.e., for anyx, such thag ,(x,,t)=0 for allt. Then we have 5 ¢ rrent is at all present. There is a further complication that

stems from the fact that we actually solve Einstein-Maxwell

> > > o> t—> >
B'(X,I)ZB(X,I)-FJ im(x,t")dt’,
to

t
V*.gr(;,t)zv*.g(;,tHj V- jm(xtHdt’, equations for a self-dual field, and since the potentials in-
to clude an arbitrary “duality rotation,” the “sources” might
i . o S include magnetic currents.

and from Eqs(16) and(17), if p,=0, in terms of€ andB’, The presence of magnetic currents is a well-known fea-
we have ture of gauge theories; so this presents no difficulty. How-

> . ever, the point we tried to make is that it is not really pos-

V-B'=0, V-E=4mp,, sible to decide, just from the external vacuum field, what sort
I o . o " - of currents, if any, are present in the source. To make contact
VXE+aB' =0, VXB'—aE=4m]g, (23)  with previously accepted superconducting string spacetimes,

R we noticed that for “wide” solitons there is range of times
wherej is an “effective” electric current, given by where the metric changes slowly with time, and, moreover, it

. is possible to choose the parameters so that it approaches the
jé:je+ft VX (X, t)dt, stationary solution with nonvanishing current.
0
and we have the conservation equation ACKNOWLEDGMENTS
L Ipe _ This vyork was supported in part by funds of the Univer-
Vije=— = sity of Cadoba, and grants from CONICET and CONICOR
(Argenting. M.H.T. acknowledges CONICOR for financial
support.

Thus, if p,,=0, the electromagnetic field outside the
sources may be considered as part of the solution of either
Eq. (16), with both electric and magnetic currents, or of Eq. APPENDIX A: ASYMPTOTIC BEHAVIOR
(23), with purely electrical currents. Therefore, as remarked AT TIMELIKE INFINITY
above, it is not possible to infer the presence and type of
current in the “source” from an analysis of the electromag-
netic fields outside this source.

At timelike infinity, i.e., fixedp, x*, andx?, andt—oe,
the behavior of the metric depends on the valué\ofOne

obtains
VII. FINAL COMMENTS
( C' w248 —1p2-28p20-4

The exact cylindrically symmetric electrovacuum solution > if 2<A,
found by Witten[3] has been considered as representing the Lo
electrogravitational field outside a superconducting cosmic / 2, 2 e 2
string [14]. This is in agreement with several computations 2f %< CT160™+ p7(2LoSindo— 9)7] if 2=A,
to obtain the metric outside the strifd2,1§. All these  p'4 P72 4p%L3
analyses correspond to stationary situations. In this paper we C' (2L osind,— )
described the construction of solitonic perturbations of the 0SN%— 9 if 0<A<2,
Levi-Civita metric, leading to exact solutions of the Einstein- | aL3
Maxwell equations, with the appropriate symmetry to be (A1)
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4t2 C/D44Ap2—2At2A—4
— if 2<A, — if 1<A,
p Lgsindy
64w?t? t ol AC'D*(1+2L¢sindo+L3) © 1o
. | = y I = 1
p?[ 16w+ p?(2Losindy— q)?] f L2tsirts,
J22 A- T
Bberad NG 160 : p A2 | craDY(1+ A%tan 25,)
p — if 1<A<2, if 0<<A<1,
p? p?(2Lgsindy—q)? t2
[16w?%+ p?(2Lgsindo—q)?] . 4C'D*
, if 1=A, if 0=A,
p?(2Lgsindo—Qq)? t?
1 if 0sA<1, (B1)
(A2)
(a2
0'%—2 if 0<A,
[ 2 J22 p
P i — ~ B2
pre if 3<A, pttA | LicoSsy+1 (52
, L2sir?s, To=4,
p?[16w>+ p?(2LosinGo—q)?] ’
if 3=A,
64w°t? (2 4
O33 2\ A2 5 : 2 PP
_ ~ _ —~ if 2<A
P N A G L o4
4t2 1602 2 2
p2(1+L§coss,)
p2(2Lsindy—Qq)? © o I if 2=A,
| =4,
[16w2+ p2(2Losindy—q)?]
, p*(A—1)?
1 if 0sA<?2, DR if 1<A<2,
(A3) gz | 4 tarfsy
pt™ | p2A(1+2Lgsind+L2) LA
— 2 B '
p?\ OV 2 2L gsingy—q) %
—2 T if 2<A pA(A_l)Z
4t P if 0<A<1,
8tpw(2Losindy—q) _ Attaro
| [1602+ p?(2Lgsins,— )] S0TC0S%
023~ 42| (-7 he \ Sirtd, ’
= " it 0<A< (B3)
( pZ) 2Lgsindy—q T 0<A<2,
~ 2pw(L3—1) . (A—1)2%"2t2"2p3 Acoss, .
t(2LoSindo—q) ' () Losind? ! ,
J23~ 2
CcoSHy(1+Lg)
Sin
APPENDIX B: THE NATURE OF THE SINGULARITIES ° ° (B4)
We analyze here the cases where2Lsind,. The con- The behavior on the axis is the same asdar2L ,sind,

dition thatq be a non-negative constant imposes, in turn, tha&xcept forA=1, in which case the analysis of Sec. IV is
Lo=0 andé, e[0,7]. Consider first the electrovacuum case, not valid since the variables given by Eq) cannot
i.e,, Lo>0 and &ye (0,7). The behavior of the solutions pe defined and thus one cannot fix the topology as in
near null or spatial infinity is the same as when that case. This family of solutions\=1 andg= 2L,sindy)
#2Losingy. We, therefore, present the behavior at timelikewas analyzed in [19]. More details of what
infinity that is obtained imposing from the beginning the follows can be found there. Imposing the condition
conditiong= 2L ¢siné, (this is necessary, because the limits q= 2L ysin&, right from the beginning, it is found that, near
t—o andg—2Lysind, do not commute The results are the axis,

124028-9



REINALDO J. GLEISER AND MANUEL H. TIGLIO PHYSICAL REVIEW D58 124028

C’w2(1+2Losin50+L(2)) gauge strir)g cqupled to gravity. When its total mass per u_nit
ds’~ 5 (—dt?+dp?) of length is raised and the string becomes supermassive,
L5(t*+ w?) there is a curvature singularity at a finite distance of the core
(singularities at a finite distance from the core are also
A(12+ w?) ) present in global stringk23]). The behavior of the metric
- : >dX5 near the singularity is as in Levi-Civitapacetime withA
1+2L¢sindo+ Lo =3 andp~0 [24]. The Levi-Civitawith A=3 character of
the singularity is not so surprising: at large distances from
t2(1+ 2L osindo+L3) 5 the core the metric must approach a vacuum one with boost
- 22+ o2 X3- invariance along the direction, and this corresponds to a
(t"+ %) Levi-Civita spacetime with eithek =1 or A= 3. The former

corresponds to a nonsupermassive gauge cosmic string and

the latter to supermassive ones. The interesting feature is that
By inspection of the previous equation, one notes that thehis singularity is located at a finite distance from the core:
axis can be made quasiregul@r regulaj choosingxs=¢  the spacetime could have approached a Levi-Civita with
andx,=z, with the usual ranges for these coordinates. NevA =3 andp~c« and it would still be boost invariant, but as
ertheless, at spatial infinity the roles of the Killing vectorswas mentioned at the beginning of Sec. IV, the singularity
are reversedsee Eqs(B2)—(B3)]. On the other hand, one would not be reachable by test particles or photons in finite
can fix the “appropriate” topology at spatial infinity, but affine parameter.
then the spacetime does not admit an axis, although it is In summary, that the spacetime turns singular at late times
locally regular. Notice also that, opposite to the casel  for A=1 asq—2Lsing, is related to the fact that in this
andq=2Lysindy, here singularities do develop at late times limit the total mass approaches its maximum value. But then

[see Eq(A2)]. it is even more natural that singularities also develop when
Moreover, from Eq. (B2) one notes that whem the metric is singular at spatial infinity, as far>1. In any
=2Lsind, the spacetime becomes singulartase for all case, one expects that systems with translational symmetry

A>0, and that the singularity can be reached by observerill approximate others without symmetry only locally, and
with constantp, ¢, and z in finite proper time if 6<A as mentioned in Sec. VI, we are mostly interested on the case
< 3/2 (in the general case, this did not happen for any valueA\>1 andA~1, in the region of spacetime near the axis and
of A). An idea of what is going on can be obtained analyzingfor not large times.
the A=1 case, since there a density of energy per unit of Finally, note that some of the asymptotic expressions are
length can be defined. We now proceed to do so. not valid if Lysingy=0. In Appendix C we will carry out
If A=1 andq#2Lsind,, the deficit angle at spatial in- these calculations again, imposing from the beginning the
finity is <2 and, in particular, it follows that th€ energy  condition Lo=0. Although the features of these solutions
is finite. We may consider the induced metric and its extrin-are, basically, the ones that we have found up to this point,
sic curvature on a surface of constansay,t=0. Then, the we present explicitly these family of solutions because we
whole spacetime can be thought as the evolution of theswant to show what we have already remarked in Sec. IV; in
initial data, and as we have summarized, no singularitiethe general case, the behavior near the axisAfor2 is the
develop. Moreover, it has been shown that under certain gersame as for these vacuum families.
eral conditions no singularities will develop in electro-
vacuum gravity from initial data with deficit angle2
[20]. When q—2Lgsind, this angle approaches#2 and
(thus the C energy diverges. In principle, the property that
the C energy diverges is not necessarily pathological. Indeed, Within the subfamilyq=2Lysing, we further restrict the
this quantity is not the generator of time translations at spasolution toL,=0. Then we obtain metrics that constitute the
tial infinity (except for the weak field limitand it does not diagonal cases of the vacuum subfamily:
represent the total gravitational mggd]. When symmetry
reduces a spacetime with translational symmetry, the total
Hamiltonian is proportional to the deficit angle at spatial C' 2 )
infinity [21], which remains finite when this angle ap- dSZ:ﬁP(A DEgA T Isintg(dt?—dp®) — p* A od p?
proaches the value of72 Thus, it cannot be said that when
A=1 andg—2Lysing, the energy diverges, but rather that it P 2
approaches its maximum value. Specifically, in the Hamil- dz’,
tonian formulation the constraints for the initial data have
solution iff the deficit angle is<2# [21] and, moreover,
whether or not a Hamiltonian formulation is imposed, if spa-where
tial geodesical completeness is satisfied, then the deficit
angle must be< 27 [22]. Thus, whem— 2L ¢siné, the total
mass approaches its limiting value. H=(0—1)%+ _
Similar properties are known for the i#(1) stationary p?(o—1)>2

APPENDIX C: THE VACUUM AND DIAGONAL
SUBFAMILY

(CY
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We are now able to see, from the previous expressions, that ds?~C’ @242 1pA " DA=3/2(12 4 (,2)4-2(d{?—dp?)

the behavior near the axis f&x>2 and g+ 2Lysing, [see

Eqg. (4)] is exactly the one given by E4C1). A 12 od p3 4
Note that it is no longer possible to make the chahge —4p” (T w)dX;— PN

—1/L,; so the metrics with- A are not locally isometric. In @

fact, we will see that there are differences in the solutions

with A= =*1. As in all the previous cases, at spatial infinity . .
the metric approaches the seft all A; so we can just It can be chosen regular or quasiregularAfE1,3. We do

insertq=0=L, in the corresponding expressions of Sec. [v "0t repeat the analysis because it is the same as when

to obtain the explicit asymptotic behavior in these region. = 2LoSind andLo#0; i.e., near the axis the solution is lo-
At timelike infinity the norm of one of the Killing vectors cally regular, but at spacelike infinity the roles of the Killing

dx3. (C2)

divergesfor all A: vectors are reversed. On the other hand, when—1, the
axis is singular, and it can be explicitly seen that there are
ds?~C' w42 72pA~DA=3/228=442— dp?) curvature scalars that diverge as this axis is approafct@id
aa although at spatial infinity the metric becomes flat.
A—1,2 p 2 With regard to the singularities far—«~, whenA=1,
—4p° T todxo———-dxg, ' o .
4t observers with constapt ¢, andz have infinite proper time
whent—o, but there are timelike curves that reach the sin-
and the metric near the axis is gularity with finite proper time.
[1] E. Witten, Nucl. PhysB249, 557 (1985. [14] M. Demianski, Phys. Rev. 38, 698(1988.
[2] B. Carter, Int. J. Theor. Phy86, 2451(1997). [15] W. B. Bonnor, Proc. Phys. Soc. Londé®7, 225(1953; M.
[3] L. Witten, in Gravitation edited by L. Witten(Wiley, New Misra and L. Radhakrishna, Proc. Natl. Inst. Sci. India, Part A
York, 1962. 28, 632(1962; B. K. Harrison, Phys. Rev138 B488(1965.

[4] C. T. Hill, H. M. Hodges, and M. S. Turner, Phys. Rev.3D, [16] M. A. Melvin, Phys. Lett.8, 65 (1964).
263(1988; P. Amsterdamski and P. Laguna-Castillud. 37, [17] D. Garfinkle, Phys. Rev. [32, 1323(1985.
877(1988; A. Babul, T. Piran, and D. N. Spergel, Phys. Lett. [18] A. Babul, T. Piran, and D. N. Spergel, Phys. Lett289, 477

B 202 307(1988. (1988.

[5] P. Peter, Phys. Rev. BO, 5052(1994). [19] A. D. Dagotto, R. J. Gleiser, and C. O. Nicasio, Phys. Rev. D

[6] T. Levi-Civita, Rend. Acc. Lince28, 3 (1919. 43, 1162(199).

[7] G. A. Alekseev, Sov. Phys. JET¥2, 301(1980; Proc. Stek-  [20] B. K. Berger, P. T. Chrugel, and V. Moncrief, Ann. Phys.
lov Inst. Math3, 215(1987). (N.Y.) 237, 322(1995.

[8] E. Verdaguer, Phys. Re@29 1 (1993. [21] A. Ashtekar and M. Varadarajan, Phys. Rev. 3D, 4944

[9] B. J. Carr and E. Verdaguer, Phys. Rev2B) 2995(1983. (1994.

[10] A. D. Dagotto, R. J. Gleiser, and C. O. Nicasio, Phys. Rev. D[22] S. M. Carroll, E. Farhi, A. H. Guth, and K. D. Olum, Phys.
42, 424 (1990. Rev. D50, 6190(1994.

[11] J. Colding, N. K. Nielsen, and Y. Verbin, Phys. Rev.5B, [23] G. W. Gibbons, M. E. Ortiz, and F. R. Ruiz, Phys. Rev3®)
3371(1997; V. P. Frolov, W. Israel, and W. G. Unrulid. 1546(1989; D. Harari and P. Sikivieibid. 37, 3438(1988;
39, 1084(1989. R. Gregory, Phys. Lett. R15 663(1988; A. G. Cohen and

[12] I. Moss and S. Poletti, Phys. Lett. 29 34 (1987). D. B. Kaplan,ibid. 215 67 (1988.

[13] K. S. Thorne, Phys. Rew38 B251(1965. [24] P. Laguna and D. Garfinkle, Phys. Rev.4D, 1011(1989.

124028-11



