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Boosted static multipole particles as sources of impulsive gravitational waves
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It is shown that the known solutions for nonexpanding impulsive gravitational waves generated by null
particles of arbitrary multipole structure can be obtained by boosting the Weyl solutions describing static
sources with arbitrary multipole moments, at least in a Minkowski background. We also discuss the possibility
of boosting static sources ianti-de Sitter backgrounds, for which exact solutions are not known, to obtain
the known solutions for null multipole particles in these backgrouf88556-282198)02624-1
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[. INTRODUCTION we will show that this is indeed the case. However, no ex-
plicit exact solutions are known which describe static
The purpose of this paper is to clarify the relationshipsources of any multipole structure in a background with a
between two classes of exact solutions of Einstein’s equalon-zero cosmological constant. Such relations in a
tions describing different kinds of multipole particles. For (anti-)de Sitter background must thus remain unresolved.
static sources, Weyl's class of axially symmetric vacuum
solutions is well knowri1]. The asymptotically flat solutions Il. MULTIPOLE PARTICLES
of this class can be interpreted as external fields of axisym- IN A MINKOWSKI BACKGROUND
metric sources with arbitrary multipole structufésr a thor-
ough review and interpretation s€@] and references
therein. For the case of null particles with a multipole struc-
ture, exact solutions and the impulsive gravitational wave
generated by them have recently been obtaif&d]. In 2 2D —2yr 2 2 2 24 2
these solutions, the null particles and impulsive waves are ds®=e*Vdt—e”*[e*7(de* + dz") + 0°de”], @
taken to propagate in background spaces of constant CUNV@here ¢ and y are functions ofe andz only. In this form,

ture: namely Minkowski, de Sitter or anti—de Sitter spacesgyact asymptotically flat vacuum solutions describing the ex-
The question now arises as to what the relations are betwegByna| fields of sources with a multipole structure in a

these two types of solutions. . Minkowski background are given by
It may first be observed that, if the monopole solution is
taken to be Schwarzschild, the relation in this case is clear. = 4
As shown by Aichelburg and Sekb], the impulsive gravi- = >, —=t1 Py(c0s 6)
tational (pp) wave generated by a single null monopole par-  ™=0 r
ticle can be obtained by boosting a Schwarzschild black hole "
to the speed of light while its mass is reduced to zero in an (m+1)(n+1) apa,
appropriate way. Using a similar method, Hotta and Tanaka ~ 4%, ~ m+n+2 prene2 (PmeaPoea PmPn)-
[6] have boosted the Schwarzschild—de Sitter solution to ob- 2
tain the spherical gravitational wave generated by a pair of
null monopole particles in a de Sitter background. They havén this expansionr = \o?+7?, cosf#=zr and P,, are the
also described a similar solution in an anti—de Sitter backtegendre polynomials with argument c@sThe sequence of
ground. Further details of the boosts and the geometry of tharbitrary constants,,, determine then™ multipole moments
non-expanding wave surfaces formed in these cases hae# the source, at least in the Newtonian limit. However, in
been given elsewheld]. relativity, the definitions of multipole moments are more
It is thus clear that null monopole solutions can be re-complicated(for a full discussion se§2]). In particular, it
garded as the limits of static monopole solutions boosted tenay be noted that the above “monopole” case in which all
the speed of light. It would be natural to regard null multi- a,’'s vanish excep#y, is the Curzon-Chazy solution. As has
pole particles as the limit of static multipole particles boostedbeen shown elsewhef8] the source at the origin in this case
in a similar way. For the case of a Minkowski background, has directional properties and thus a non-spherical structure.
On the other hand, the Schwarzschild solution which is the
unigue asymptotically flat spherically symmetric exterior
*Email address: Podolsky@mbox.troja.mff.cuni.cz field for a monopole has the potentigd for a rod when
"Email address: J.B.Griffiths@Lboro.ac.uk written in Weyl coordinates.

We first consider static axisymmetric solutions with zero
cosmological constant. Following Quevef®|, we use the

4|ne element in Weyl coordinates,
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We now consider boosting the solutiof® to the limit in T o T~ ; - P2 2
. . I—X—t—X+ | | +uvt— +ut)°+1-—-
which the speed of the source approaches that of light. As X X+Co lim log(X-+v (X+vt) v9)

will be clear below, in this limit it is necessary to scale the
constantsa,, to zero in an appropriate way. In this cage which gives
<1, and the functiony is of second order and may be ne-
lected. It may be noted that in this approximation we ap- _ * 2., 2\—112 2\ =1
groach the Ne)\//vtonian limit, and in thispcpase the differencgs Ho—cofiw[(p X7 (L)~ el
between the Schwarzschild and Curzon-Chazy solutions
mentioned above also vanish. Working at this level of ap- = —2¢log p.
proximation, the expansiof2) describes the multipole mo-
ments of a source at=0 in a physically meaningful sense. This may be seen to be identical to the Aichelburg-Sex| so-

v—1

Introducing standard Cartesian coordinatesg cose,  lution [5] which was originally obtained by boosting the
y=p sing, the line elementl) may be written in the ap- Schwarzschild solution and represents the impulsive gravita-
proximate form tional wave generated by a single n(ihonopolg particle.

For the higher multipole components each term may be
ds?=dt?— dx?— dy?— dz?+ 2(dt?+ dx?+ dy?+ dz?). considered separately. For arbitramy=1, we require to

(3)  evaluate

First we boost this solution in a direction orthogonal to the o
axis of symmetry which, without loss of generality, may be Hm:Cmf (p2+x2)~(M+2p I'7(p2+x2)~12]dx.
chosen as the direction: o

Using the standard expression for the expansion of Legendre

t= L+uX . x= Xtot polynomials we obtain
1—v? 1—v? )
o o (—1)%(2m—2k)! m—2k
In the limit asv—1 this yields Hm—kaZ0 2MK1 (m—K)!(m—2K)! z
~ ~ . w o0
ds?= dt2— dx?— dy?— dz?+ 4(dt + dx)? llinl 1,2 Xj (p2+X2)k7m71/2dX

To evaluate this limit, we use the identitgmployed else-

whereN=(m—1)/2 if m is odd andN=m/2 if m is even.
where[6,7])

Then, using
[ o (X) 5(T+~)fx (x)d ) " 22y P12y 220 (p1)2 1
m X)= X X X A _ _
M2 9 fﬁw(p +x%) X= " oy pP (O P=123..

which is valid in the distributional sense. It is thus necessarnand putting cosp=z/p we get

to rescale the parameteasg, to zero in the same way for each

m, such that 4,,/\1—v?=c,, wherec,, are a new set of Cm (—1)%(m—k—1)! m— 2k
constants which characterize the multipole moments of the Hm(p.#)= P g‘o 271 (m—2K)! (cos )™ .
boosted source. The result is an impulsjyp-wave metric

N

given by Finally, using the identity
ds?=dt?— dx?— dy?— dz?+ H(y,z) 8(t +%)(dt + dx)? % (— D*m(m—k—1)! -
(5) Cosm¢_k=0 22k7m+lk!(m_2k)! (COS¢)
where )
we obtain that
H=> H 2¢,, COSMé
mo Hin(p, )= <17 — 7 ()
S ¢ ” 1 p z dx ©) This simple term can now be seen to be th& multipole
m M (pPhx®) MM 202 component of the exact vacuum solution describing an im-
pulsive gravitational wave with a single source of arbitrary
wherep?=y?+ 72, multipole structure as described [i].
We observe that, for the simplest cagg~0, ¢,=0 for For the sake of completeness, we now consider boosting

m=1 which corresponds to the boosted Curzon-Chazy soluthe metric(3) with the initial static sourc€2) in the direction
tion, the integral diverges. However, the divergence can bef the axis of symmetry, namely in the originaldirection.
removed by first making the transformation Using similar steps to those above, we obtain
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ds?=dt?—dx?—dy?— dz®+ G(x,y) 8(t +2)(dt + dz)?,
(8

with

o 1

z
E o P
= mj_x (p2+22)(m+1)/2 m( \/;2+—Zz

where nowp?=x2+y2. For the simplest case&#0, ¢y,

=0 for m=1, this is identical to the previous cas&{

=Hg) which yields the Aichelburg-Sexl solutiofb]. It is

also obvious tha6G,,=0 for any odd value ofn. However,
it can also be shown th&,,=0 for anym=1. This can be
observed by substituting= z//p?>+ z? so that

dz

=C_m ! _ e2ymi2—1
Gn= - L“ €)™ 1P,(£)dg
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turbation of (anti-)de Sitter space which reduces to the

known form for the monopole case. We therefore assume a

line element in the form

2

r r2 -1
dSZZ(l—Eg dtz—(l— ;) dr?

—r2(d9?+sifdde?) — | dt>+

r2 -2
1—6;) drz},
9

wherea?=3/|A| for a cosmological constant, e=1 for a
de Sitter backgroundA>0), e=—1 for an anti—de Sitter
background A <0), andy is a function which is indepen-
dent of the coordinatepr so that the metriq9) is axially
symmetric. Note that, a& — 0, the line elemen(9) reduces
to a perturbation of Minkowski space-time similar to E8).
For ¢=2M/r it represents a monopole perturbation corre-
sponding to the Schwarzschiltenti-de Sitter solution
which was boosted to the ultrarelativistic limit 6] and[7]

to yield exact solutions for impulsive gravitational waves
Cp,y [T(m/2)]2 with null monopole sources.
~ oM T(m+ 12T (mi2+ 1)T(1—m/2)T(0) =0, When the perturbation functiog vanishes, the metri(9)
reduces to the line element of tkenti-)de Sitter space-time
which vanishes sincel'(n) diverges atn=0,—1,—2, in static coordinates. It is convenient to express these de
—3,... . This is exactly in accordance with intuition since Sitter or anti—de Sitter backgrounds as a four-dimensional
the higher multipoles can be considered in the Newtoniaflyperboloid
limit as mass distributiongof zero total massalong thez 7272 72_72_ 72— _ a2
axis. With a Lorentz contraction in thedirection the effects 0 VT ey T Ly el T T ed
of these distributions will vanish, leaving only the monopole
term Gy.

embedded in a five-dimensional Minkowski space-time

d502 = dZQ2 - lez— dez_ d232_ 6dZ42
Ill. MULTIPOLE PARTICLES IN  (ANTI —)de SITTER

BACKGROUNDS where the parametrization is given by

In the case of a monopole boosted in the de Sitter or Z,=r sin ¥ cose,
anti—de Sitter backgrounds, exact solutions have already
been described if6] and[7]. These have been obtained by and, fore=1,
boosting the Schwarzschildanti-)de Sitter solution using
Lorentz transformations in the five-dimensional representa- Zo= Va?—r? sinft/a),
tions of the (anti-)de Sitter space-times. By a different
method, exact solutions describing impulsive gravitationaP'. for e=—1,
waves in the de Sitter and anti—de Sitter backgrounds with .
sources having an arbitrary multipole structure have been ~ Zo=Va“+r<sint/a), Z,=va’+r” codt/a).
given in[4]. It would be of interest to see if these squUonsWriting Eq. (9) as d?—ds2+ds,2, we may express the
erturbation as

Zz=r sind¥ sing, Z,=r cosY

Zy== JaZ—r2 cosht/a)

could also be obtained by similarly boosting static multipole
sources. Unfortunately, no explicit static solutions are knowrP
in space-times with a non-vanishing cosmological constant.
However, we wish to make some comments on the kind ofdsiz —a%y
solution that could be boosted to give the known exact solu-

tions for null multipole particles. e BT S S 1

Of course, it is not possible to use an inverse process O\f/hererz _ZO te(a _.24 ). L

“slowing down” a null particle to obtain a solution for a ~ Performing a boost in thé, direction,
static particle. We can therefore only speculate on the form

Z,0Z9—Z,dZ,)\?

T 5 2__72
Z4 - GZO

ZOdZO - €Z4d24) 2:|

T 7 2__72
Z GZO

a2
I'_Z 4_

of the solution describing a static multipole source in an b _Zotvay 7 _Z1tvZo
. . 0~ ’ 1~ '
(anti-)de Sitter background. Nevertheless, there are some V1—v Vv1-v

clues at least to the linear approximation of the form of such
a solution and we will discuss these below. the background is invariant. However, when boosting the
It seems natural to consider the initial metric to be a persource termy as above, we must rescale its multiplicative
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constants asa,/\1—v2=c,. Then, using the identity4),

Z°+cos6  Y(r,9,t)
it can be shown thats takes the form

o (Z2—cos8)> r? 9,

H(z ¢)=ae(1-22)]%?

. = = = (13

ds?=—a?H(Z,,Z4) 8(Zo+Z1)(dZo+dZ1)%, (10
in which the coordinates, #,t must be expressed using the
where relations
= e(@?—Z3)Z5+ (a%+Z5)x? ¢ aVe(1-2%) _
H(Zz.Z4)—f_m (22— ex)2 r—z Y I cosd=sin 6 cos ¢,

11

o 2t 2%sir’ 6 14

and we must make the substitutions codh]*> = 2 o2p- (14

r=\x?+e(a’-23),

cog h1%(t/a)=2Z3/(Z5— ex?)

cos§=2,/r, First we observe that puttingo=a,/r gives exactly the

monopole case

2 1 fﬂ Z°+cos0 B 0do—
ato=7 |, (z°—cos6)? st

1+z
in the expression fog/r?, where cod(a) is used for the case '09 1—721~ 1
A <0 and cosh(a) for A>0 in the last expression. At this
point, we may observe that the structure of the metric per-
turbation(10) is exactly that required to give the exact null
multipole solutions obtained i¥]. These solutions include
impulsive graV|tat|onaI waves Iocated on the null hypersur
faces given byszL Z3+ eZ4 ea?, which at any time is a
two-sphere in a de Sitter universe or a 2-dimensional hyper-
boloid in an anti—de Sitter universe as describedi7ih An

appropriate parametrization of this wave surface is given by

Z,=a\e(1—27°) cos ¢,
Zz=ave(1—27°) sin ¢,

Z,=az,
4 a?r?
1 =2€a,

as described irf6] and [7]. Second, we observe that the

correct dependence 6f,,, on ¢ required by Eq(12) can be

obtained if we assume thagm;11 is a polynomial of ordem in
osv:

m
I’ﬂt=2

(r,t)cos'd

for some suitable functiong{™(r,t). However, it can
be shown that the most natural assumpti@)), namely
Ym=amf ~ ™ 1P (cosd), doesnot yield the required result
for m=1. Instead, for example, the function

( r2cog h]?(t/a) + 3asin h]?(t/a)
2

2 ricog h]*(t/a)—a’siM h]*(t/a)

a~—er

X cogh](t/a)cosd

where|z|<1 whene=1 and|z|=1 whene=—1. In terms
of these parameters, it was showrj4i that a general family

of vacuum solutions can be expressed in the form (19

does give the correct null dipole term
H(z,¢)=2 coHm(Z ¢)
m H,=Qi(z)cos ¢

- TP

1+z

(12 -~
1-z

=2, cnQT(2)co§m(¢= b)), log

z
—ﬁ Cos ¢

wherec,, and ¢, are real constants representing the arbitraryyg given in[4]. This illustrates the fact that an explicit
amplitude and phase of each multipole component ang.gependence may be necessary in the linear approximation
Q7'(2) are the associated Legendre functions of the secongf the source term in the static background coordinate sys-
kind. tem. This is unexpected, but may be necessary to maintain
Our purpose now is to try to relate the given multipole the multipole structure in the everywhere curve@hti-de
termH,,(z, ¢) of the known exact solutiofl2) to a possible  Sitter background. However, expressitis) may not be a

perturbation termyy, in Eq. (9). Such a relation is given by unique linear perturbation term for the non-null dipole. It
the integral(11), but this of course is a non-unique inverse also diverges in the limit ad — 0.

problem.

In order to evaluate the integréll) and express it in

terms of the parametersand ¢, it is convenient to make the

substitution fromx to @ such tha=a./e(1—z?) cot 6, after
which it takes the form

IV. CONCLUSIONS

For the situation in which the cosmological constant van-
ishes, we have demonstrated the following results:
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(1) Boosting the asymptotically flat Weyl solutions is an ap-(1) A simple generalization of the Weyl solutions which

propriate(but not unique way of finding exact solutions describes the field of a static multipole source in an as-

for null multipole particles. ymptotically (anti-)de Sitter space-time cannot be ob-
(2) The solutions obtained in this way are exactly the impul-  tained.

sive pp-wave solutions described elsewhésg. (2) The structure of the known solutions describing null

(3) Boosting the asymptotically flat Weyl solutions in the multipole particles in arfanti-)de Sitter universe can be
direction of the axis of symmetry simply yields the obtained by boosting an approprigggpproximate mul-
Aichelburg-Sex| solutior{5] for a null monopole par- tipole solution. However, precise forms of the wave am-
ticle. plitudes are difficult to find.

(3) An exact solution which represents a non-null multipole

For the case of a non-zero cosmological constant, no ex-  soyrce in an asymptoticallfanti-de Sitter space-time
act solutions for static multipole sources are known. How- may have to be non-static.

ever, solutions for null multipole particles have been ob-
tained [4]. These describe nonexpanding impulsive
gravitational waves with null point sources. For the mono-
pole case, the solutions for null particles were obtained by This work was supported by the Royal Society and, in
boosting the Schwarzschildanti-)de Sitter solution6,7].  part, by grant GACR-202/96/0206 of the Czech Republic
The following points have here been demonstrated: and grant GAUK-230/96 of Charles University.
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