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Boosted static multipole particles as sources of impulsive gravitational waves
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It is shown that the known solutions for nonexpanding impulsive gravitational waves generated by null
particles of arbitrary multipole structure can be obtained by boosting the Weyl solutions describing static
sources with arbitrary multipole moments, at least in a Minkowski background. We also discuss the possibility
of boosting static sources in~anti–!de Sitter backgrounds, for which exact solutions are not known, to obtain
the known solutions for null multipole particles in these backgrounds.@S0556-2821~98!02624-1#
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I. INTRODUCTION

The purpose of this paper is to clarify the relationsh
between two classes of exact solutions of Einstein’s eq
tions describing different kinds of multipole particles. F
static sources, Weyl’s class of axially symmetric vacuu
solutions is well known@1#. The asymptotically flat solutions
of this class can be interpreted as external fields of axis
metric sources with arbitrary multipole structures~for a thor-
ough review and interpretation see@2# and references
therein!. For the case of null particles with a multipole stru
ture, exact solutions and the impulsive gravitational wa
generated by them have recently been obtained@3,4#. In
these solutions, the null particles and impulsive waves
taken to propagate in background spaces of constant cu
ture: namely Minkowski, de Sitter or anti–de Sitter spac
The question now arises as to what the relations are betw
these two types of solutions.

It may first be observed that, if the monopole solution
taken to be Schwarzschild, the relation in this case is cl
As shown by Aichelburg and Sexl@5#, the impulsive gravi-
tational (pp) wave generated by a single null monopole p
ticle can be obtained by boosting a Schwarzschild black h
to the speed of light while its mass is reduced to zero in
appropriate way. Using a similar method, Hotta and Tan
@6# have boosted the Schwarzschild–de Sitter solution to
tain the spherical gravitational wave generated by a pai
null monopole particles in a de Sitter background. They h
also described a similar solution in an anti–de Sitter ba
ground. Further details of the boosts and the geometry of
non-expanding wave surfaces formed in these cases
been given elsewhere@7#.

It is thus clear that null monopole solutions can be
garded as the limits of static monopole solutions booste
the speed of light. It would be natural to regard null mul
pole particles as the limit of static multipole particles boos
in a similar way. For the case of a Minkowski backgroun
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we will show that this is indeed the case. However, no
plicit exact solutions are known which describe sta
sources of any multipole structure in a background with
non-zero cosmological constant. Such relations in
~anti–!de Sitter background must thus remain unresolved

II. MULTIPOLE PARTICLES
IN A MINKOWSKI BACKGROUND

We first consider static axisymmetric solutions with ze
cosmological constant. Following Quevedo@2#, we use the
line element in Weyl coordinates,

ds25e2cdt22e22c@e2g~d%21dz2!1%2dw2#, ~1!

wherec and g are functions of% and z only. In this form,
exact asymptotically flat vacuum solutions describing the
ternal fields of sources with a multipole structure in
Minkowski background are given by

c5 (
m50

`
am

r m11 Pm~cosu!

g5 (
m,n50

`
~m11!~n11!

m1n12

aman

r m1n12 ~Pm11Pn112PmPn!.

~2!

In this expansionr 5A%21z2, cosu5z/r and Pm are the
Legendre polynomials with argument cosu. The sequence o
arbitrary constantsam determine themth multipole moments
of the source, at least in the Newtonian limit. However,
relativity, the definitions of multipole moments are mo
complicated~for a full discussion see@2#!. In particular, it
may be noted that the above ‘‘monopole’’ case in which
am’s vanish excepta0 is the Curzon-Chazy solution. As ha
been shown elsewhere@8# the source at the origin in this cas
has directional properties and thus a non-spherical struct
On the other hand, the Schwarzschild solution which is
unique asymptotically flat spherically symmetric exteri
field for a monopole has the potentialc for a rod when
written in Weyl coordinates.
©1998 The American Physical Society24-1
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We now consider boosting the solutions~2! to the limit in
which the speed of the source approaches that of light.
will be clear below, in this limit it is necessary to scale t
constantsam to zero in an appropriate way. In this casec
!1, and the functiong is of second order and may be n
glected. It may be noted that in this approximation we a
proach the Newtonian limit, and in this case the differen
between the Schwarzschild and Curzon-Chazy soluti
mentioned above also vanish. Working at this level of a
proximation, the expansion~2! describes the multipole mo
ments of a source atr 50 in a physically meaningful sense

Introducing standard Cartesian coordinatesx5% cosw,
y5% sinw, the line element~1! may be written in the ap-
proximate form

ds25dt22dx22dy22dz212c~dt21dx21dy21dz2!.
~3!

First we boost this solution in a direction orthogonal to t
axis of symmetry which, without loss of generality, may
chosen as thex direction:

t5
t̃ 1v x̃

A12v2
, x5

x̃1v t̃

A12v2
.

In the limit asv→1 this yields

ds25dt̃ 22dx̃22dy22dz214~dt̃ 1dx̃!2 lim
v→1

c

12v2 .

To evaluate this limit, we use the identity~employed else-
where@6,7#!

lim
v→1

1

A12v2
g~x!5d~ t̃ 1 x̃!E

2`

`

g~x!dx ~4!

which is valid in the distributional sense. It is thus necess
to rescale the parametersam to zero in the same way for eac
m, such that 4am /A12v25cm wherecm are a new set of
constants which characterize the multipole moments of
boosted source. The result is an impulsivepp-wave metric
given by

ds25dt̃ 22dx̃22dy22dz21H~y,z!d~ t̃ 1 x̃!~dt̃ 1dx̃!2

~5!

where

H5(
m

Hm

5(
m

cmE
2`

` 1

~r21x2!~m11!/2 PmS z

Ar21x2D dx ~6!

wherer25y21z2.
We observe that, for the simplest casec0Þ0, cm50 for

m>1 which corresponds to the boosted Curzon-Chazy s
tion, the integral diverges. However, the divergence can
removed by first making the transformation
12402
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t̃ 2 x̃→ t̃ 2 x̃1c0 lim
v→1

log~ x̃1v t̃ 2A~ x̃1v t̃ !2112v2!

which gives

H05c0E
2`

`

@~r21x2!21/22~11x2!21/2#dx

522c0log r.

This may be seen to be identical to the Aichelburg-Sexl
lution @5# which was originally obtained by boosting th
Schwarzschild solution and represents the impulsive grav
tional wave generated by a single null~monopole! particle.

For the higher multipole components each term may
considered separately. For arbitrarym>1, we require to
evaluate

Hm5cmE
2`

`

~r21x2!2~m11!/2Pm@z~r21x2!21/2#dx.

Using the standard expression for the expansion of Legen
polynomials we obtain

Hm5cm(
k50

N
~21!k~2m22k!!

2mk! ~m2k!! ~m22k!!
zm22k

3E
2`

`

~r21x2!k2m21/2dx

whereN5(m21)/2 if m is odd andN5m/2 if m is even.
Then, using

E
2`

`

~r21x2!2p21/2dx5
22p

p

~p! !2

~2p!!

1

r2p for p51,2,3 . . .

and putting cosf5z/r we get

Hm~r,f!5
cm

rm (
k50

N
~21!k~m2k21!!

22k2mk! ~m22k!!
~cosf!m22k.

Finally, using the identity

cosmf5 (
k50

N
~21!km~m2k21!!

22k2m11k! ~m22k!!
~cosf!m22k

we obtain that

Hm~r,f!5
2cm

m

cosmf

rm . ~7!

This simple term can now be seen to be themth multipole
component of the exact vacuum solution describing an
pulsive gravitational wave with a single source of arbitra
multipole structure as described in@3#.

For the sake of completeness, we now consider boos
the metric~3! with the initial static source~2! in the direction
of the axis of symmetry, namely in the originalz direction.
Using similar steps to those above, we obtain
4-2
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ds25dt̃ 22dx22dy22dz̃21G~x,y!d~ t̃ 1 z̃!~dt̃ 1dz̃!2,
~8!

with

G5(
m

Gm

5(
m

cmE
2`

` 1

~r21z2!~m11!/2 PmS z

Ar21z2D dz

where nowr25x21y2. For the simplest case,c0Þ0, cm
50 for m>1, this is identical to the previous case (G0
5H0) which yields the Aichelburg-Sexl solution@5#. It is
also obvious thatGm50 for any odd value ofm. However,
it can also be shown thatGm50 for anym>1. This can be
observed by substitutingj5z/Ar21z2 so that

Gm5
cm

rm E
21

1

~12j2!m/221Pm~j!dj

5
pcm

rm

@G~m/2!#2

G~m11/2!G~m/211!G~12m/2!G~0!
50,

which vanishes sinceG(n) diverges at n50,21,22,
23, . . . . This is exactly in accordance with intuition sin
the higher multipoles can be considered in the Newton
limit as mass distributions~of zero total mass! along thez
axis. With a Lorentz contraction in thez direction the effects
of these distributions will vanish, leaving only the monopo
term G0 .

III. MULTIPOLE PARTICLES IN „ANTI –…de SITTER
BACKGROUNDS

In the case of a monopole boosted in the de Sitter
anti–de Sitter backgrounds, exact solutions have alre
been described in@6# and @7#. These have been obtained b
boosting the Schwarzschild–~anti–!de Sitter solution using
Lorentz transformations in the five-dimensional represen
tions of the ~anti–!de Sitter space-times. By a differen
method, exact solutions describing impulsive gravitatio
waves in the de Sitter and anti–de Sitter backgrounds w
sources having an arbitrary multipole structure have b
given in @4#. It would be of interest to see if these solutio
could also be obtained by similarly boosting static multipo
sources. Unfortunately, no explicit static solutions are kno
in space-times with a non-vanishing cosmological const
However, we wish to make some comments on the kind
solution that could be boosted to give the known exact so
tions for null multipole particles.

Of course, it is not possible to use an inverse proces
‘‘slowing down’’ a null particle to obtain a solution for a
static particle. We can therefore only speculate on the fo
of the solution describing a static multipole source in
~anti–!de Sitter background. Nevertheless, there are so
clues at least to the linear approximation of the form of su
a solution and we will discuss these below.

It seems natural to consider the initial metric to be a p
12402
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turbation of ~anti–!de Sitter space which reduces to th
known form for the monopole case. We therefore assum
line element in the form

ds25S 12e
r 2

a2Ddt22S 12e
r 2

a2D 21

dr 2

2r 2~dq21sin2qdw2!2cFdt21S 12e
r 2

a2D 22

dr 2G ,
~9!

wherea253/uLu for a cosmological constantL, e51 for a
de Sitter background (L.0), e521 for an anti–de Sitter
background (L,0), andc is a function which is indepen
dent of the coordinatew so that the metric~9! is axially
symmetric. Note that, asL→0, the line element~9! reduces
to a perturbation of Minkowski space-time similar to Eq.~3!.
For c52M /r it represents a monopole perturbation cor
sponding to the Schwarzschild–~anti–!de Sitter solution
which was boosted to the ultrarelativistic limit in@6# and@7#
to yield exact solutions for impulsive gravitational wav
with null monopole sources.

When the perturbation functionc vanishes, the metric~9!
reduces to the line element of the~anti–!de Sitter space-time
in static coordinates. It is convenient to express these
Sitter or anti–de Sitter backgrounds as a four-dimensio
hyperboloid

Z0
22Z1

22Z2
22Z3

22eZ4
252ea2

embedded in a five-dimensional Minkowski space-time

ds0
25dZ0

22dZ1
22dZ2

22dZ3
22edZ4

2

where the parametrization is given by

Z15r sin q cosw, Z35r sin q sin w, Z25r cosq

and, fore51,

Z05Aa22r 2 sinh~ t/a!, Z456Aa22r 2 cosh~ t/a!

or, for e521,

Z05Aa21r 2 sin~ t/a!, Z45Aa21r 2 cos~ t/a!.

Writing Eq. ~9! as ds25ds0
21ds1

2, we may express the
perturbation as

ds1
252a2cF S Z4dZ02Z0dZ4

Z4
22eZ0

2 D 2

1
a2

r 2 S Z0dZ02eZ4dZ4

Z4
22eZ0

2 D 2G ,
wherer 5AZ0

21e(a22Z4
2).

Performing a boost in theZ1 direction,

Z05
Z̃01vZ̃1

A12v2
, Z15

Z̃11vZ̃0

A12v2
,

the background is invariant. However, when boosting
source termc as above, we must rescale its multiplicativ
4-3
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constants as 4am /A12v25cm . Then, using the identity~4!,
it can be shown that ds1

2 takes the form

ds1
252a2H~Z2 ,Z4!d~ Z̃01Z̃1!~dZ̃01dZ̃1!2, ~10!

where

H~Z2 ,Z4!5E
2`

` e~a22Z4
2!Z4

21~a21Z4
2!x2

~Z4
22ex2!2

c

r 2 dx

~11!

and we must make the substitutions

cosq5Z2 /r , r 5Ax21e~a22Z4
2!,

cos@h#2~ t/a!5Z4
2/~Z4

22ex2!

in the expression forc/r 2, where cos(t/a) is used for the case
L,0 and cosh(t/a) for L.0 in the last expression. At thi
point, we may observe that the structure of the metric p
turbation~10! is exactly that required to give the exact nu
multipole solutions obtained in@4#. These solutions include
impulsive gravitational waves located on the null hypers
faces given byZ2

21Z3
21eZ4

25ea2, which at any time is a
two-sphere in a de Sitter universe or a 2-dimensional hyp
boloid in an anti–de Sitter universe as described in@7#. An
appropriate parametrization of this wave surface is given

Z25aAe~12z2! cosf,

Z35aAe~12z2! sin f,

Z45az,

whereuzu<1 whene51 anduzu>1 whene521. In terms
of these parameters, it was shown in@4# that a general family
of vacuum solutions can be expressed in the form

H~z,f!5(
m

cmHm~z,f!

5(
m

cmQ1
m~z!cos@m~f2fm!#, ~12!

wherecm andfm are real constants representing the arbitr
amplitude and phase of each multipole component
Q1

m(z) are the associated Legendre functions of the sec
kind.

Our purpose now is to try to relate the given multipo
termHm(z,f) of the known exact solution~12! to a possible
perturbation termcm in Eq. ~9!. Such a relation is given by
the integral~11!, but this of course is a non-unique inver
problem.

In order to evaluate the integral~11! and express it in
terms of the parametersz andf, it is convenient to make the
substitution fromx to u such thatx5aAe(12z2) cotu, after
which it takes the form
12402
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-
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d
d

H~z,f!5a@e~12z2!#3/2E
0

p z21cos2u

~z22cos2u!2

c~r ,q,t !

r 2 du,

~13!

in which the coordinatesr ,q,t must be expressed using th
relations

r 5
aAe~12z2!

sin u
, cosq5sin u cosf,

cos@h#2
t

a
5

z2sin2u

z22cos2u
. ~14!

First we observe that puttingc05a0 /r gives exactly the
monopole case

a2H05
1

4 E
0

p z21cos2u

~z22cos2u!2 sin3u du5
z

2
logU11z

12zU21

as described in@6# and @7#. Second, we observe that th
correct dependence ofHm on f required by Eq.~12! can be
obtained if we assume thatcm is a polynomial of orderm in
cosq:

cm~r ,q,t !5 (
n50

m

xn
~m!~r ,t !cosnq

for some suitable functionsxn
(m)(r ,t). However, it can

be shown that the most natural assumption~2!, namely
cm5amr 2m21Pm(cosq), doesnot yield the required result
for m>1. Instead, for example, the function

c152ea1

a2r 2

Aa22er 2 S r 2cos@h#2~ t/a!13a2sin@h#2~ t/a!

r 4cos@h#4~ t/a!2a4sin@h#4~ t/a! D
3cos@h#~ t/a!cosq ~15!

does give the correct null dipole term

H15Q1
1~z!cosf

52eAe~12z2!S 1

2
logU11z

12zU2 z

z221D cosf

as given in @4#. This illustrates the fact that an explic
t-dependence may be necessary in the linear approxima
of the source term in the static background coordinate s
tem. This is unexpected, but may be necessary to main
the multipole structure in the everywhere curved~anti–!de
Sitter background. However, expression~15! may not be a
unique linear perturbation term for the non-null dipole.
also diverges in the limit asL→0.

IV. CONCLUSIONS

For the situation in which the cosmological constant va
ishes, we have demonstrated the following results:
4-4
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~1! Boosting the asymptotically flat Weyl solutions is an a
propriate~but not unique! way of finding exact solutions
for null multipole particles.

~2! The solutions obtained in this way are exactly the imp
sive pp-wave solutions described elsewhere@3#.

~3! Boosting the asymptotically flat Weyl solutions in th
direction of the axis of symmetry simply yields th
Aichelburg-Sexl solution@5# for a null monopole par-
ticle.

For the case of a non-zero cosmological constant, no
act solutions for static multipole sources are known. Ho
ever, solutions for null multipole particles have been o
tained @4#. These describe nonexpanding impulsi
gravitational waves with null point sources. For the mon
pole case, the solutions for null particles were obtained
boosting the Schwarzschild–~anti–!de Sitter solution@6,7#.
The following points have here been demonstrated:
lt,

12402
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~1! A simple generalization of the Weyl solutions whic
describes the field of a static multipole source in an
ymptotically ~anti–!de Sitter space-time cannot be o
tained.

~2! The structure of the known solutions describing nu
multipole particles in an~anti–!de Sitter universe can b
obtained by boosting an appropriate~approximate! mul-
tipole solution. However, precise forms of the wave a
plitudes are difficult to find.

~3! An exact solution which represents a non-null multipo
source in an asymptotically~anti–!de Sitter space-time
may have to be non-static.
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