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Born-regulated gravity in four dimensions
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Previous work involving Born-regulated gravity theories in two dimensions is extended to four dimensions.
The action we consider h&wo dimensionful parameters. Black hole solutions are studied for typical values of
these parameters. For masses above a critical value determined in terms of these parameters, the event horizon
persists. For masses below this critical value, the event horizon disappears, leaving a “bare mass,” though of
course no singularity.S0556-282(98)07324-X

PACS numbeps): 04.70.Bw, 04.20.Cv

[. INTRODUCTION solutions. Then, in Sec. V, we will explore the regions in
parameter space where each of these two types of black hole
Recent developments in the theory of strings and branesolutions occurs.

have renewed interest in Born-Infeld Lagrangidd$ and
their non-Abelian generalizatiof2—6]. In the 1930s, Born II. LAGRANGIAN IN FOUR DIMENSIONS
proposed a modified electromagnetic Lagrangian which re- ) o )
moves the point-charge singularity that mars classical elec- !n Ref.[8], Born-regulated gravity theories in two dimen-
trodynamics. If the Lagrangian is a nonpolynomial functionSions were considered. The action
of F,,F#” with a branch point, then this branch point can
impose an upper bound on field strengths, above which the A:f d?x\J—gR[In R+ B In(a—R)] 2)
Lagrangian will become imaginary. Specifically Born con-

sidered the theory7] has Witten black hole solutiond0-19 in the limit as g

—0 but imposes the bouri@<a on the scalar curvature for
Yoo B#0. As a result, fog# 0, instead of becoming singular the
F.F ) ngeriens : .
L=A2 1— ——1], 1) space-time goes asymptotically into a de Sitter space with
2A R=a. Note that in two dimensions the scalar curvature is the
sole independent curvature component.

In generalizing the notion of Born-regulated gravity theo-

i 1 2 A2 . . . .
which requiresE"<A*. ries to four dimensions, we must recognize that we now have

Similar theories can be constructed for gravity, replacing,q independent curvature components to play with and 3

the Maxwell field tensor with the Riemann curvature tensor'scalar invariants which can be formed from the Riemann

Itis widely expected that quantum effects remove the singUggngar and which can appear in a Lagrangian: i.e.
Iar|t|es.of classical ggneral rglatlvny, cutting off curvatures at opoRA7P7, R, RM, andR. We also have empirical data
the string scale. By integrating out all non-gravitational de-y " ‘(hiend with in four dimensions; so preferably a gravita-
grees of freedom in the full Lagrangian for the universe, ongjq 4| | agrangian should reduce to the Einstein-Hilbert La-
can obtain an effective Lagrangian for gravity which will be o g .
L d . grangian in the weak-field limit.

nonpolynomial in curvature components. This effective La- A candidate action to consider is
grangian might be of the Born variety, and it is this possibil-
ity which we wish to explore in this paper.

Lagrangians of this type in two dimensions were consid- A=f d4x\/—_g
ered by Feigenbaum, Freund, and Pigli in R8f, where the
four-dimensional case was briefly alluded to. Deser and Gib- X[R+B(V1-k;S—k;R, R*" —ksR?—1)], (3)
bons have considered the four-dimensional gravitational ana-
logue of the Born-Infeld Lagrangid®]. For reasons of sim- whereS;=R**""R,,,,, andS s the trace of this tensor. For
plicity, we will consider here black holes smoothed by anthe Schwarzschild black-hole solutioR,,,=0. Assuming
ordinary Born Lagrangian analogous to Edj). thatR,,~0 for black hole solutions to the field equations

In Sec. Il, we introduce the specific Born-regulated gravi-obtained by varying this action, we simplify the action by
tational Lagrangian which we investigate here. Remarkablysettingk,=k;=0 andk; =k to obtain the action
on account of the two dimensionful parameters in this La-
grangian, we find two regimes. In one regime, an event ho-
rizon is present, as in the Einstein-Hilbert case, even though A:f d*xV=g[R+B(VI-kS-1)], 4
there is no singularity to “protect.” In the other regime,
there is no singularitandno event horizon. One has a “bare which imposes the boun8<1/k on the square of the Rie-
mass,” the regularized version of a naked singularity. Inmann tensor fop3#0.
Secs. Il and IV we present an example of both kinds of The action(4) yields the field equations
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L 1 kBS; RS _ —8K*M®B [36r—67M k3B2Mm3
Ri— 5 0[R+B(V-1)]- —ZKBV”VV(T -0, (N=—"5 IV | (13
5
Clearly, in the limit of smallk and 3, deviations from the
where Schwarzschild solution are negligible for2M.
We may note that the?M3g/r® dependence of the pref-
TNAT actors ing(r) and n(r) is easily understood. For the unper-
V=1y1-kS (6) #(r) and 5(r) ly und d. For th

turbed Schwarzschild solution, the lowest order nonvanish-
ing terms in the field equation®) derive from thegk2S?
term in the expansion of the Born-regulating square root of
the Lagrangiari4), and to lowest order in f/these terms go
FﬂkzM“/rlz. By contrast, the inclusion op(r) and 7(r)

the solution of Eqs(9), (10) leads to nonvanishing Ricci
nsor and scalar curvature terms in the field equations which
go asMg/r3 and M #/r® to lowest order in ¥. Conse-
quently, in order for all these terms to cancel, we must have
ll. BLACK HOLE SOLUTIONS FOR SMALL k AND g the prefactors seen in Eq4.2), (13).

We wish to consider solutions which behave as black TO analyze these solutions near and within the event ho-

holes at large distances and satisfy a spherically symmetrigzon r~2M, we must transform to Kruskal-like coordi-
ansatz for the metric; nates, exchanging andt for the light-cone coordinates

andv. The spherically symmetric ansatz analogous to Eq.
(7) for Kruskal-like coordinates is

Two parameterg andk appear in the actiod). Here 8
has dimension (lengthY, and the dimension ok is
(length)*. There will thus bewo scales in the problem, not
unlike string theory. This, as we shall see in Sec. IV, will
have as an important consequence the existence of a critic
mass below which the regulated analogue to the black holg]
solution sheds its event horizon. €

2

ds?=—f2(r)dt?+ hz(rr) +r[de?+sir?(0)de?]. (7)
ds?=—exd 2p(w)]dudy + r?(w)[d 6%+ sir?(8)d¢?],
Inserting this ansatz into E@5), we obtain three nontrivial (14
equations corresponding to the variation of the action with ) .
respect tag,, g, , andg,, (the equations corresponding to Wherew=uv and the functiong andr are functions ofw
gss andg,, being identical. However, since there are only alone. Herer(w) is precisely the coordinate in the

two unknown functions in the ansati(r) andh(r), these Schwarzschild-like ansatz of EG). . _
three equations are not independent. Inserting this ansatz into Ed5), we again obtain three

In the Schwarzschild solution for a black hole of ma&s separate but presumably not independent equations corre-
sponding to the variation of E@4) with respect ta,,, Ju, »

2M and gy,. In order to integrate these differential equations,
fs(r)=hs(r)=/1— - (8)  continuing from our solution of Eq$9), (10), we must know
r andp and their first derivatives at some point.
Consequently, in the limit of smak and g, for r—« we The event horizon iru-v coordinates is the surfaoce
write =0. In the regionw<0 which corresponds to the region

outside the event horizon, we can make the coordinate trans-

2M formation
f(n)=\1-——[1+(n)] (9)

—t
-~ =W oy a5
2M and
h(n)= /1= == [1+7(n], (10
t
where 5() = ¢(*)=0. Let V=N —w(r)ex;{ m) - (16)
2
A= k"B (11) Herew(r) is the inverse of the function(w) in Eq. (14).
(2M)®" The corresponding transformation of the metric then gives
This dimensionless parameter characterizes perturbations of [—winyexd o(W(r
the Schwarzschild solution. Solving Ed$) for ¢ and  to f(r)= ) 4&,)( (1)] (17)

lowest order in\, we find

and

—8k®M?3B [8r—11M k3g2m3
¢(r): r9 ( r—2M ) ( r11 ) (12)
_ —2y—w(r)exd —p(w(r))]

w'(r)

h(r) (18)

and
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FIG. 1. The curvature invariaf8= Raﬁng"ﬁV‘s as a function of the Kruskal-coordinate combinaties uv for the ordinary Schwarzs-
child solution(solid curve and for the Born regulated theofgtashed curveto orderw*® with k=1 andB=10°, both for an object of mass
100.

We see from this identification that the event horizon inThe scale ofw is arbitrary; so we can set;=exp(-1),

Schwarzschild-like coordinates is=rg, where which for the Schwarzschild solution would place the curva-
ture singularity atv=1. Using Eqs(20)—(22), we compare
f(rg)=h(rs)=0. (19 at the event horizon the Riemann tensor components in the

solution of Egs.(9)—(13), written in Schwarzschild-like co-
ordinates, with the series expansion of E@S), (24), writ-
ten in Kruskal-like coordinates. In this manner, we obtain
values forA, a;, andc,. This is the remaining information
hecessary to integrate E).
As an example of a numerical solution, we choésel,
. X =100, andB=10° to obtain a small value of the pertur-
the two coordinate systems: bation parametex =.000015625 from Eq(11). In Fig. 1,S
RYW — RIf (20) is plotted as a function ofv for the Schwarzschild solution
o T and the perturbed solution calculateda¢w?®). We see that
1 asw— 1, where the Schwarzschild solution is singuBfpr
RUf= Rgzzz(R{ng RIY), (21)  the perturbed solution is less th&nfor the Schwarzschild
solution. However, to 40th order i, S remains much less
than the upper bound &<1 atw=1. In order to see the

Solving Eq.(19) for rg, we find to first order in\ thatrg
=2M(1+5)).

As always, at the event horizon, there is a coordinate sin
gularity inr-t coordinates, but the Riemann tensor remain
finite. Using the coordinate transformation of E¢s5) and
(16), we can relate the components of the Riemann tensor iR/I

and .
upper bound come into effect, we would need to calculate
v u 1 the solution to a very high order with such small valuek of
GRSZZERZ% E(RIZ— Rif). (220 andp. In the next section, we will consider a solution with
much larger values of these parameters, where the curvature
We expand (w) and p(w) aroundw=0: bound will become evident.
Fw)=rgl 1+ E c W”) (23) IV. BLACK HOLE SOLUTIONS FOR LARGE g
—Is n
=t For sufficiently large values g8, we can ignore the scalar
and curvature term of Eq(4) and the field equations reduce to

av

1 ” 1 kSY
- n Ty 14 B SBe) _
p(W) 2|n(A)+n§:)l aw". (24) 5 O5(V-1)+ +2kva( v =0 (25)
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FIG. 2. The curvature invariaig= RQM,;R"BV‘s as a function ofj= 1/r for the ordinary Schwarzschild solutigsolid curvg and for the
Born regulated theorydashed curyewith k=100, both for an object of unit mass.

Again, we wish to find solutions of these field equations that

act like a black hole solution of mas4$ asr—oc. In order to
expand around infinity, we introduce the varialgje- 1/r.
Replacingr with g in Eq. (7) we have the equivalent ansatz

4= f3q)dit q4(:1§](2q) . d26+ si(;li( 0)d<p2' o6
We expandf(q) andh(q) aroundg=0:
f(Q)=1+n§l bnq" (27)
and
h(q)=1+n§1 d,g". (29

We requiref andh to satisfy the same boundary conditions
as the Schwarzschild solution; so we det=d;=—M.
Then, if we solve recursively for the higher order coeffi-
cients, we obtain

M3q

7

f(q)=v1—-2M +256( +0(q® 29
()= a9+ —335 (a°) (29
and
12&M3q’
h(q)= 1—2Mq+4—8+0(q8). (30

Thus in the infiniteB limit, this metric is indistinguishable
from the Schwarzschild metric far from the black hole.

In Fig. 2, we plotS versusr for our solution here with

M =1 andk=100 along with the Schwarzschild solution for
M= 1. Here the curvature bours .01 is quite evident. As
g~.29, S approaches .01. Numerical integration past
=.29 becomes exceedingly difficult but is fortunately unnec-
essary. Indeed, ag—, one can infer from the action prin-
ciple that the solution goes asymptotically into a solution of
constantS. With V as defined in Eq(6), the field equations
(25) can be rewritten as

1
Ev5(1—V) Sh=kVASL+2VHY RE ]
+K2V2[(VAREY)(V,9) +(V ,REY) (V~S)

+REY

. (VES)(V,9).

3
~ L3pBY
(V4V,9)]+ S KRE

(31)

If Sis constant at X, thenV=0, and clearly the field equa-
tion is satisfied. So if we hav&—1/k on the surfaceq
=(, it follows thatS=1/k for g>qq.

Note that one glaring absence from the solution with
=1 andk=100 that we have described here is a coordinate
singularity. In fact there can be no coordinate singularity for
finite . The curvature components @it coordinates are

2
h
- gty

Rig= ;

(32

RIY=q%h?(In(f ))’, (33)
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Rggz q°hh’, (34)  toavery different solution from ordinary Schwarzschild. Be-
sides being nonsingular, this solution lacks an event horizon.
and The precise value of the critical mass will depend on the
) ) 5 value of 8. The surface irk- 3-M space where the transition
Rpe=0g°(1—h?). (35  petween having and not having an event horizon occurs

should evidently take the form
Since S=4(Ri))?+8(Ri7)*+8(RIf)*+4(R}9)?, we have y
the constraint k )

W:U(M B), (37)

1
[
Rog= 20k’ (36) whereg is an unknown function. For general values\df 3,
the precise form ofr(M23) will have to be determined nu-

For g=.29 andk=100, it follows from Eq.(35) and the merically in the manner of the last section. In this way, we
constraint(36) that .6368<h<1.2627. Sincé andR'? must ~have found an upper bound anfor large 8 of o(M?B)
be finite, it also follows, from Eq(33), that @/dg)[In(f)] <1

must be finite, and so lfij andf must remain finite for finite One can infer the limiting value af(M?B) asg—0. For
q very small values of3, solutions of Eq.(5) with massM

that there can be no coordinate singularity and therefore nB12ssM up until the point wher&S—1, at which pointS
event horizon for finiteq. The solution we have here de- Will flatten out and asymptotically approach the valuk. 1/
scribes what is not really a black hole but a “bare mass.” ItFor the Schwarzschild solutioi=3/4M“ at the event hori-
is important to note that this isot a “naked singularity_” zon. So if 3/M4< 1/k, there should still be an event horizon
Although it is “bare” or “naked” in the sense that it is not Since the solution will not begin to deviate from Schwarzs-
hidden behind an event horizon, it is not a “naked singular-child until we are inside the black hole. If 3> 1k, the
ity” because there is no singularity. solution will deviate from Schwarzschild before an event
horizon can occur, and so there can be no event horizon.
V. SHEDDING THE EVENT HORIZON Thus we conclude that

The absence of an event horizon is not a universal prop-
erty of all solutions to Eq(5) which behave as black holes
for larger. If there is an event horizon, we must hake
=0 at this horizon. Then Eq$35) and (36) imply that the Evidently o(M?B) decreases wittB and so the critical
reciprocal Schwarzschild radiwg, satisfiesqgs 1/2Jk. For  mass, below which the event horizon disappears, increases
small 8, s~ 1/2M; so it follows that the dimensionless ratio with 3, as one would intuitively expect since it would be
k/M# will determine whether there can be an event horizonvery surprising if the effects of Born regulation should be-
For k/M#>1, the event horizon must disappear. kéM*  come less apparent as we incregse
<1, there should still be an event horizon as in Sec. lll.
Since we used the original, unsimplified field equatibnin VI. CONCLUSION
Sec. lll, it is important here to recognize that the argument at

the end of Sec. IV depends on the metric an¢a and the theory of gravity in four dimensions. We have found that

curvature bounds<1/k but not on the details of the Born . . . : .
) . : solutions to this theory exist which behave asymptotically as
Lagrangian. As such, this argument applies equally well for

small B, the case considered here, as for lagjehe case black holes of mass/ but become spaces of constat

= aByd i
covered in Sec. IV. For a given value of the paraméter RapyoR at small radii. These spaces of constéirdre

appearing in the Lagrangian, the event horizon will disapper:fﬁ?malogous to the de Sitter spaces which we four@]rand

" which Brandenberger found ii3,14.
as the mass falls below some critical mass of oidét (or 4
14~ : ) o . For large values ok/M* in the Born-regulated Lagrang-
k*“/G if we include Newton’s gravitational constant explic- . d . X :
itly ) ian, there is no event horizon in these solutions, and we have

For very small(yet nonzerd 8, what makes this mecha- a “bare mass” instead of a black hole. If we assume m.‘
. : . . . valued at the Planck scale, then the event horizon will be
nism feasible is the presence of two dimensionless param-

eters in the problemM28 andk/M*, corresponding to the absent only for black hole masses below the Planck scale.
two dimensionful parametets and g8 in the action. We can
chooseBM? to be arbitrarily small. However, if we also
choosek/M*>1, then at the place where one would naively We would like to thank Peter Freund and Mircea Pigli for
expect an event horizon to appekB— 1. As a result, even their prior collaboration and advice on this topic. We would
though each individual term in the series expansion oflso like to thank the members of the thesis committee, Su-
BV1—kSin the action(4) may be very small, the terms do san Coppersmith, David Kutasov, Gene Mazenko, and Frank
not diminish in magnitude. Consequently, their infinite sumMerritt, for some helpful insight. This work was supported in
will still dominate over the Einstein-Hilbert term, giving rise part by NSF Grant No. PHY-9123780-A3.

4
lim o(M?B)= 3 (39
B—0

In this paper, we have investigated a Born-regulated
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