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Born-regulated gravity in four dimensions
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~Received 17 July 1998; published 18 November 1998!

Previous work involving Born-regulated gravity theories in two dimensions is extended to four dimensions.
The action we consider hastwo dimensionful parameters. Black hole solutions are studied for typical values of
these parameters. For masses above a critical value determined in terms of these parameters, the event horizon
persists. For masses below this critical value, the event horizon disappears, leaving a ‘‘bare mass,’’ though of
course no singularity.@S0556-2821~98!07324-X#

PACS number~s!: 04.70.Bw, 04.20.Cv
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I. INTRODUCTION

Recent developments in the theory of strings and bra
have renewed interest in Born-Infeld Lagrangians@1# and
their non-Abelian generalization@2–6#. In the 1930s, Born
proposed a modified electromagnetic Lagrangian which
moves the point-charge singularity that mars classical e
trodynamics. If the Lagrangian is a nonpolynomial functi
of FmnFmn with a branch point, then this branch point ca
impose an upper bound on field strengths, above which
Lagrangian will become imaginary. Specifically Born co
sidered the theory@7#

L5L2FA12
FmnFmn

2L2 21G , ~1!

which requiresE2<L2.
Similar theories can be constructed for gravity, replac

the Maxwell field tensor with the Riemann curvature tens
It is widely expected that quantum effects remove the sin
larities of classical general relativity, cutting off curvatures
the string scale. By integrating out all non-gravitational d
grees of freedom in the full Lagrangian for the universe, o
can obtain an effective Lagrangian for gravity which will b
nonpolynomial in curvature components. This effective L
grangian might be of the Born variety, and it is this possib
ity which we wish to explore in this paper.

Lagrangians of this type in two dimensions were cons
ered by Feigenbaum, Freund, and Pigli in Ref.@8#, where the
four-dimensional case was briefly alluded to. Deser and G
bons have considered the four-dimensional gravitational a
logue of the Born-Infeld Lagrangian@9#. For reasons of sim-
plicity, we will consider here black holes smoothed by
ordinary Born Lagrangian analogous to Eq.~1!.

In Sec. II, we introduce the specific Born-regulated gra
tational Lagrangian which we investigate here. Remarka
on account of the two dimensionful parameters in this L
grangian, we find two regimes. In one regime, an event
rizon is present, as in the Einstein-Hilbert case, even tho
there is no singularity to ‘‘protect.’’ In the other regime
there is no singularityandno event horizon. One has a ‘‘bar
mass,’’ the regularized version of a naked singularity.
Secs. III and IV we present an example of both kinds
0556-2821/98/58~12!/124023~6!/$15.00 58 1240
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solutions. Then, in Sec. V, we will explore the regions
parameter space where each of these two types of black
solutions occurs.

II. LAGRANGIAN IN FOUR DIMENSIONS

In Ref. @8#, Born-regulated gravity theories in two dimen
sions were considered. The action

A5E d2xA2gR@ ln R1b ln~a2R!# ~2!

has Witten black hole solutions@10–12# in the limit as b
→0 but imposes the boundR,a on the scalar curvature fo
bÞ0. As a result, forbÞ0, instead of becoming singular th
space-time goes asymptotically into a de Sitter space w
R5a. Note that in two dimensions the scalar curvature is
sole independent curvature component.

In generalizing the notion of Born-regulated gravity the
ries to four dimensions, we must recognize that we now h
20 independent curvature components to play with an
scalar invariants which can be formed from the Riema
tensor and which can appear in a Lagrangian:
RmnrsRmnrs, RmnRmn, andR. We also have empirical dat
to contend with in four dimensions; so preferably a gravi
tional Lagrangian should reduce to the Einstein-Hilbert L
grangian in the weak-field limit.

A candidate action to consider is

A5E d4xA2g

3@R1b~A12k1S2k2RmnRmn2k3R221!#, ~3!

whereSb
a[RamnrRbmnr andS is the trace of this tensor. Fo

the Schwarzschild black-hole solution,Rmn50. Assuming
that Rmn;0 for black hole solutions to the field equation
obtained by varying this action, we simplify the action b
settingk25k350 andk15k to obtain the action

A5E d4xA2g@R1b~A12kS21!#, ~4!

which imposes the boundS<1/k on the square of the Rie
mann tensor forbÞ0.

The action~4! yields the field equations
©1998 The American Physical Society23-1
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Rb
a2

1

2
db

a@R1b~V21!#2
kbSb

a

V
22kb¹m¹nS Rbm

an

V D 50,

~5!

where

V5A12kS. ~6!

Two parametersb andk appear in the action~4!. Hereb
has dimension (length)22, and the dimension ofk is
(length)4. There will thus betwo scales in the problem, no
unlike string theory. This, as we shall see in Sec. IV, w
have as an important consequence the existence of a cr
mass below which the regulated analogue to the black h
solution sheds its event horizon.

III. BLACK HOLE SOLUTIONS FOR SMALL k AND b

We wish to consider solutions which behave as bla
holes at large distances and satisfy a spherically symm
ansatz for the metric:

ds252 f 2~r !dt21
dr2

h2~r !
1r 2@du21sin2~u!dw2#. ~7!

Inserting this ansatz into Eq.~5!, we obtain three nontrivia
equations corresponding to the variation of the action w
respect togtt , grr , andguu ~the equations corresponding
guu andgww being identical!. However, since there are onl
two unknown functions in the ansatz,f (r ) and h(r ), these
three equations are not independent.

In the Schwarzschild solution for a black hole of massM ,

f s~r !5hs~r !5A12
2M

r
. ~8!

Consequently, in the limit of smallk and b, for r→` we
write

f ~r !5A12
2M

r
@11f~r !# ~9!

and

h~r !5A12
2M

r
@11h~r !#, ~10!

whereh(`)5f(`)50. Let

l5
k2b

~2M !6 . ~11!

This dimensionless parameter characterizes perturbation
the Schwarzschild solution. Solving Eqs.~5! for f andh to
lowest order inl, we find

f~r !5
28k2M3b

r 9 S 8r 211M

r 22M D1OS k3b2M3

r 11 D ~12!

and
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h~r !5
28k2M3b

r 9 S 36r 267M

r 22M D1OS k3b2M3

r 11 D . ~13!

Clearly, in the limit of smallk and b, deviations from the
Schwarzschild solution are negligible forr @2M .

We may note that thek2M3b/r 9 dependence of the pref
actors inf(r ) andh(r ) is easily understood. For the unpe
turbed Schwarzschild solution, the lowest order nonvani
ing terms in the field equations~5! derive from thebk2S2

term in the expansion of the Born-regulating square root
the Lagrangian~4!, and to lowest order in 1/r these terms go
asbk2M4/r 12. By contrast, the inclusion off(r ) andh(r )
in the solution of Eqs.~9!, ~10! leads to nonvanishing Ricc
tensor and scalar curvature terms in the field equations w
go as Mf/r 3 and Mh/r 3 to lowest order in 1/r . Conse-
quently, in order for all these terms to cancel, we must h
the prefactors seen in Eqs.~12!, ~13!.

To analyze these solutions near and within the event
rizon r'2M , we must transform to Kruskal-like coordi
nates, exchangingr and t for the light-cone coordinatesu
and v. The spherically symmetric ansatz analogous to
~7! for Kruskal-like coordinates is

ds252exp@2r~w!#dudv1r 2~w!@du21sin2~u!dw2#,
~14!

wherew5uv and the functionsr and r are functions ofw
alone. Here r (w) is precisely the coordinater in the
Schwarzschild-like ansatz of Eq.~7!.

Inserting this ansatz into Eq.~5!, we again obtain three
separate but presumably not independent equations c
sponding to the variation of Eq.~4! with respect toguu , guv ,
and guu . In order to integrate these differential equation
continuing from our solution of Eqs.~9!, ~10!, we must know
r andr and their first derivatives at some point.

The event horizon inu-v coordinates is the surfacew
50. In the regionw,0 which corresponds to the regio
outside the event horizon, we can make the coordinate tr
formation

u52A2w~r !expS 2t

4M D ~15!

and

v5A2w~r !expS t

4M D . ~16!

Here w(r ) is the inverse of the functionr (w) in Eq. ~14!.
The corresponding transformation of the metric then give

f ~r !5
A2w~r !exp@r„w~r !…#

4M
~17!

and

h~r !5
22A2w~r !exp@2r„w~r !…#

w8~r !
. ~18!
3-2
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FIG. 1. The curvature invariantS5RabgdRabgd as a function of the Kruskal-coordinate combinationw5uv for the ordinary Schwarzs-
child solution~solid curve! and for the Born regulated theory~dashed curve! to orderw40 with k51 andb5109, both for an object of mass
100.
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We see from this identification that the event horizon
Schwarzschild-like coordinates isr 5r s , where

f ~r s!5h~r s!50. ~19!

Solving Eq.~19! for r s , we find to first order inl that r s
52M (115l).

As always, at the event horizon, there is a coordinate
gularity in r -t coordinates, but the Riemann tensor rema
finite. Using the coordinate transformation of Eqs.~15! and
~16!, we can relate the components of the Riemann tenso
the two coordinate systems:

Ruv
uv5Rtr

tr , ~20!

Ruu
uu5Rvu

vu5
1

2
~Rtu

tu1Rru
ru!, ~21!

and

v
u

Rvu
uu5

u

v
Ruu

vu5
1

2
~Rru

ru2Rtu
tu!. ~22!

We expandr (w) andr(w) aroundw50:

r ~w!5r sS 11 (
n51

`

cnwnD ~23!

and

r~w!52
1

2
ln~A!1 (

n51

`

anwn. ~24!
12402
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The scale ofw is arbitrary; so we can setc15exp(21),
which for the Schwarzschild solution would place the curv
ture singularity atw51. Using Eqs.~20!–~22!, we compare
at the event horizon the Riemann tensor components in
solution of Eqs.~9!–~13!, written in Schwarzschild-like co-
ordinates, with the series expansion of Eqs.~23!, ~24!, writ-
ten in Kruskal-like coordinates. In this manner, we obta
values forA, a1 , andc2 . This is the remaining information
necessary to integrate Eq.~5!.

As an example of a numerical solution, we choosek51,
M5100, andb5109 to obtain a small value of the pertur
bation parameterl5.000015625 from Eq.~11!. In Fig. 1,S
is plotted as a function ofw for the Schwarzschild solution
and the perturbed solution calculated toO(w40). We see that
asw→1, where the Schwarzschild solution is singular,S for
the perturbed solution is less thanS for the Schwarzschild
solution. However, to 40th order inw, S remains much less
than the upper bound ofS<1 at w51. In order to see the
upper bound come into effect, we would need to calcul
the solution to a very high order with such small values ok
andb. In the next section, we will consider a solution wi
much larger values of these parameters, where the curva
bound will become evident.

IV. BLACK HOLE SOLUTIONS FOR LARGE b

For sufficiently large values ofb, we can ignore the scala
curvature term of Eq.~4! and the field equations reduce to

1

2
db

a~V21!1
kSb

a

V
12k¹m¹nS Rbm

an

V D 50. ~25!
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FIG. 2. The curvature invariantS5RabgdRabgd as a function ofq51/r for the ordinary Schwarzschild solution~solid curve! and for the
Born regulated theory~dashed curve! with k5100, both for an object of unit mass.
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Again, we wish to find solutions of these field equations t
act like a black hole solution of massM asr→`. In order to
expand around infinity, we introduce the variableq51/r .
Replacingr with q in Eq. ~7! we have the equivalent ansa

ds252 f 2~q!dt21
dq2

q4h2~q!
1

d2u1sin2~u!dw2

q2 . ~26!

We expandf (q) andh(q) aroundq50:

f ~q!511 (
n51

`

bnqn ~27!

and

h~q!511 (
n51

`

dnqn. ~28!

We requiref andh to satisfy the same boundary conditio
as the Schwarzschild solution; so we setb15d152M .
Then, if we solve recursively for the higher order coef
cients, we obtain

f ~q!5A122Mq1
256kM3q7

336
1O~q8! ~29!

and

h~q!5A122Mq1
128kM3q7

48
1O~q8!. ~30!

Thus in the infiniteb limit, this metric is indistinguishable
from the Schwarzschild metric far from the black hole.
12402
t In Fig. 2, we plotS versusr for our solution here with
M51 andk5100 along with the Schwarzschild solution fo
M51. Here the curvature boundS<.01 is quite evident. As
q;.29, S approaches .01. Numerical integration pastq
5.29 becomes exceedingly difficult but is fortunately unne
essary. Indeed, asq→`, one can infer from the action prin
ciple that the solution goes asymptotically into a solution
constantS. With V as defined in Eq.~6!, the field equations
~25! can be rewritten as

1

2
V5~12V!da

b5kV4@Sa
b12¹m¹nRam

bn #

1k2V2@~¹mRam
bn !~¹nS!1~¹nRam

bn !~¹mS!

1Ram
bn ~¹m¹nS!#1

3

2
k3Ram

bn ~¹mS!~¹nS!.

~31!

If S is constant at 1/k, thenV50, and clearly the field equa
tion is satisfied. So if we haveS→1/k on the surfaceq
5q0 , it follows thatS51/k for q.q0 .

Note that one glaring absence from the solution withM
51 andk5100 that we have described here is a coordin
singularity. In fact there can be no coordinate singularity
finite q. The curvature components inq-t coordinates are

Rtq
tq52

q2h

f
~q2h f8!8, ~32!

Rtu
tu5q3h2

„ln~ f !…8, ~33!
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BORN-REGULATED GRAVITY IN FOUR DIMENSIONS PHYSICAL REVIEW D58 124023
Rqu
qu5q3hh8, ~34!

and

Ruw
uw5q2~12h2!. ~35!

Since S54(Rtq
tq)218(Rtu

tu)218(Rqu
qu)214(Ruw

uw)2, we have
the constraint

Ruw
uw<

1

2Ak
. ~36!

For q>.29 andk5100, it follows from Eq.~35! and the
constraint~36! that .6368<h<1.2627. Sinceh andRtu

tu must
be finite, it also follows, from Eq.~33!, that (d/dq)@ ln(f )#
must be finite, and so ln(f ) and f must remain finite for finite
q.

Since f and h must remain finite for finiteq, it follows
that there can be no coordinate singularity and therefore
event horizon for finiteq. The solution we have here de
scribes what is not really a black hole but a ‘‘bare mass.’
is important to note that this isnot a ‘‘naked singularity.’’
Although it is ‘‘bare’’ or ‘‘naked’’ in the sense that it is no
hidden behind an event horizon, it is not a ‘‘naked singul
ity’’ because there is no singularity.

V. SHEDDING THE EVENT HORIZON

The absence of an event horizon is not a universal pr
erty of all solutions to Eq.~5! which behave as black hole
for large r . If there is an event horizon, we must haveh
50 at this horizon. Then Eqs.~35! and ~36! imply that the
reciprocal Schwarzschild radiusqs satisfiesqs

2<1/2Ak. For
smallb, qs;1/2M ; so it follows that the dimensionless rat
k/M4 will determine whether there can be an event horiz
For k/M4@1, the event horizon must disappear. Fork/M4

!1, there should still be an event horizon as in Sec.
Since we used the original, unsimplified field equation~5! in
Sec. III, it is important here to recognize that the argumen
the end of Sec. IV depends on the metric ansatz~26! and the
curvature boundS<1/k but not on the details of the Bor
Lagrangian. As such, this argument applies equally well
small b, the case considered here, as for largeb, the case
covered in Sec. IV. For a given value of the parametek
appearing in the Lagrangian, the event horizon will disapp
as the mass falls below some critical mass of orderk1/4 ~or
k1/4/G if we include Newton’s gravitational constant expli
itly !.

For very small~yet nonzero! b, what makes this mecha
nism feasible is the presence of two dimensionless par
eters in the problem,M2b and k/M4, corresponding to the
two dimensionful parametersk andb in the action. We can
choosebM2 to be arbitrarily small. However, if we als
choosek/M4@1, then at the place where one would naive
expect an event horizon to appear,kS→1. As a result, even
though each individual term in the series expansion
bA12kS in the action~4! may be very small, the terms d
not diminish in magnitude. Consequently, their infinite su
will still dominate over the Einstein-Hilbert term, giving ris
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to a very different solution from ordinary Schwarzschild. B
sides being nonsingular, this solution lacks an event horiz

The precise value of the critical mass will depend on
value ofb. The surface ink-b-M space where the transitio
between having and not having an event horizon occ
should evidently take the form

k

M4 5s~M2b!, ~37!

wheres is an unknown function. For general values ofM2b,
the precise form ofs(M2b) will have to be determined nu
merically in the manner of the last section. In this way, w
have found an upper bound ons for large b of s(M2b)
,1.

One can infer the limiting value ofs(M2b) asb→0. For
very small values ofb, solutions of Eq.~5! with massM
should behave exactly like the Schwarzschild solution w
massM up until the point wherekS→1, at which pointS
will flatten out and asymptotically approach the value 1k.
For the Schwarzschild solution,S53/4M4 at the event hori-
zon. So if 3/4M4,1/k, there should still be an event horizo
since the solution will not begin to deviate from Schwarz
child until we are inside the black hole. If 3/4M4.1/k, the
solution will deviate from Schwarzschild before an eve
horizon can occur, and so there can be no event horiz
Thus we conclude that

lim
b→0

s~M2b!5
4

3
. ~38!

Evidently s(M2b) decreases withb and so the critical
mass, below which the event horizon disappears, incre
with b, as one would intuitively expect since it would b
very surprising if the effects of Born regulation should b
come less apparent as we increaseb.

VI. CONCLUSION

In this paper, we have investigated a Born-regula
theory of gravity in four dimensions. We have found th
solutions to this theory exist which behave asymptotically
black holes of massM but become spaces of constantS
5RabgdRabgd at small radii. These spaces of constantS are
analogous to the de Sitter spaces which we found in@8# and
which Brandenberger found in@13,14#.

For large values ofk/M4 in the Born-regulated Lagrang
ian, there is no event horizon in these solutions, and we h
a ‘‘bare mass’’ instead of a black hole. If we assume thatk is
valued at the Planck scale, then the event horizon will
absent only for black hole masses below the Planck sca
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