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Regular central structures in topologically nontrivial anti—de Sitter spacetimes
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We investigate regular central structures in multiply connected, anti—de Sitter spacetimes with spherical,
planar and hyperbolic geometries. We obtain an exact solution for the pressure in terms of the radius when the
density is constant. We find that, apart from the usual simply connected spherically symmetric star with a
well-behaved metric at =0, the only solutions with non-singular pressure and density have a wormhole
topology. However these wormhole solutions must be composed of matter which violates the weak energy
condition. Admitting this type of matter, we obtain a structure which is maintained via a balance between its
cohesive tension and its repulsive negative matter density. If the tension is insufficiently large, this structure
can collapse to a black hole of negative m§§€556-282(98)03724-2

PACS numbd(ps): 04.20.Gz, 04.70.Bw

I. INTRODUCTION toroidal topology, and the central structure is a torus inside it
with both holes aligned.

Multiply connected spacetimes are attracting an increas- We find that a necessary condition for regular perfect
ing amount of attention among gravitational physicists andluid solutions forg>0 is that a wormhole be present inside
cosmologists. Although the idea that our universe could behe star. However this condition is not sufficient. A constant
topologically non-trivial has been around for quite some timepositive matter density throughout the star necessarily im-
[1], the possibility of setting observational constraints on thispjies an infinite pressure somewhere in its interior, excluding
topology by performing a careful search for particular corre-gch objects as regular solutions.
lations in the cosmic microwave background is a recent de- Thg sjtuation is considerably different if we consider mat-
velopmen{2]. In a topologically non-trivial universe, a cen- o \hich violates the weak energy condition. It has been
tral structure with an edge at a constant radius will also b%hown that negative concentrations of stress-energy can col-

topologically non-trivial. It is with the formation of these | : .
. A . .lapse to black holes of negative mass provided the cosmo-
objects that we are concerned in this work. Further interest i P 9 P

topological structures has been spurred by the realization th I<%g|ca| constant is sufficiently large in magnituf®. We

domain walls in the early universe can give rise to pair-%nd that it is possible to construct topologicatormholg

production of black holes with event horizons whose topol_stars with constant negative matter density and finite nega-

ogy is non-trivial[4]. Such objects have been referred to asiVe Pressure throughout. The negative pressure is a tension

topological black hole$TBHs). WhiCh a}cts to hold together the negative density, which is
We demonstrated that a dust cloud in a multiply con-9gravitationally self-repulsive. _ .
nected, anti—de Sitter spacetime could collapse to a TBH ina Section Il discusses the three spacetimes of interest, as
process that is analogous to the usual Oppenheimer-Snyd@ell as their topologies. The spherically symmetric case has
collapse in an earlier papd3]. The solutions obtained much in common with earlier studies, but we drop the de-
matched a static exterior spacetime to a dynamic collapsingnand that the metric be well-behaved at the origin. Section
cloud. The question of whether corresponding static solutll introduces the interior metrics and their Einstein equa-
tions exist was left unresolved. tions. In Sec. IV, the structure of the solutions for a variable
In this paper, we investigate the existence of regular permatter density is found using perturbative techniques. Sec-
fect fluid solutions in multiply-connected, anti—de Sitter tion V produces a solution for the pressure within wormholes
spacetime. The spatial sections of such spacetimes have tbeéconstant density as a function of radius. It is shown in Sec.
topology RXHy where Hy is a two-dimensional compact VI that this pressure must necessarily become infinite some-
space of genug. Such a space may be described by a metrigyhere within a wormhole with constant positive density. The

which is either flat or spherically or hyperbolically symmet- question of wormholes with negative matter density is ad-
ric. The spherically symmetric case is simply connected an@ressed in Sec. VII.

has genug=0. The flat and hyperbolic cases are made com-
pact via appropriate identifications in those two dimensions.
Perfect fluid solutions in such spacetimes are centrally lo-
cated, separated from the exterior spacetime at a constant
radius. In theg=0 case they correspond to a ball of fluid  The universe described by the static solution presented
surrounded by a cosmological vacuum spacetime; ingthe here is an asymptotically anti—-de Sitter spacetime with a
#0 case the analogous objects may be referred to as topaeontrivial topology. The exterior metric in this universe,
logical stars. For instance, whap=1 the universe has a adapted fron{6]

Il. FLUID TOPOLOGY
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A. Whenb= -1, the (#,¢) sector is a space with constant
negative curvature, also known as a hyperbolic plane, a dis-
cussion of which is available in Balasz and Voi@$. Geo-
desics are intersections between the hyperbolic plane and
planes through the origin. A compact surface is formed from
the hyperbolic plane by identifying opposite sides of a suit-
able polygon whose edges are geodesics. The polygon must
have a minimum of eight sides, and the number of sides must
be a multiple of four to avoid conical singularities. An iden-
tified polygon with 4 sides is of genug. The genus deter-
mines the topology of the compact space. The surface genus
g=2 has two “holes,” and so is a double-holed doughnut or
a pacifier. The surface with=3 has three “holes” and has
a pretzel shape, and so on, as shown in Fig. 1. This type of
identification of hyperbolic surfaces is described in more de-
tail in [3].

The fluid cloud in these identified spacetimes is located in
a central position, analogous to the central sphere in a spheri-
cally symmetric spacetime. The boundary between the fluid

FIG. 1. Examples of higher genus two-surfaces. The dotted line@nd the exterior universe is an identified flat or hyperbolic
represent the identifications of edges. A. The togus 1, is arep-  plane. The universe outside the fluid maintains the same to-
resentation of a square or rectangle in flat space identified in twgology of the cloud boundary itself. The fluid forms a paci-
dimensions. B. The pseudospheges; 2, is the simplest appropriate fier within a pacifier with the holes lined up, or the banana
hyperbolic two-surface, an octagon, after identification. C. This cream in our doughnut, if you will. The situation is analo-
=3 surface is a slightly more complicated possibility. gous for higher genus topologies. Beyond the cloud, the ra-

dial coordinate may range to infinity.

A 2M
o= - rern- 2
3G R

2
dT Ill. CALCULATIONS OF THE EINSTEIN EQUATIONS

5 The standard metric of an arbitrary, static spacetime with
n dR spherical, toroidal or hyperbolic symmetry was used in con-

— (AI3)R?>+b— 2M/R junction with the Einstein equations to generate interior so-
lutions. The metric is given by:

+R?[d#?+s(b, 8)*°dp?]s(b, 6)

= 2 24 .2 2 2.4 42
sin6) if b=+1, ds?=—F(r,b)dt?+ H(r,b)dr?+r2(d6?+s(b, §)?d¢?), "

=11 if b=0, (1) i i ) ) .
with s(b, 6) as given in Eq(1) above. Heretf is the time
sinh(9) if b=-1, coordinatey is the radial coordinate, anéland ¢ are coor-
dinates on a two-surface of constant positive, zero or nega-
whereT andR are the time and radial coordinatéd. rep-  tive curvature, where has a range of 0 to2 The matching
resents the mass of the star ahds the cosmological con- of the metrics is analogous to that i8], and is carried out
stant(where A>0 corresponds to the de Sitter cas¢ as-  under the conditions that the metrics and the extrinsic curva-
sumes values between 0 and.2 tures match smoothly across the boundary.
Whenb=+1, the universe takes on the familiar spheri- The cosmological constant will be absorbed into defini-
cally symmetric form, and the & ¢) sector has constant tions of the density and pressure, so that
positive curvature. The cosmological constant may assume
either sign, but we will only examine behavior resulting from [A] |A|
negative values in the models explored here. Wherd, the pP=pm~ g5 P=Pmtg_o5. S
space is flat, withA less than zero. In order to produce the

central star to be examined, a space with two sides identifie{gi/herep andP,, are the density and pressure due to matter
m m 1

espectively. Since thd <0 case is of interest here, the ab-
solute value ofA is used for the remainder of this paper.
Sinstein equations are therefore simply

is considered. The outer edge of the star will be an identifie
flat plane of constant “radius,R. Identification requires the
edges of this plane to be geodesics, which are in this ca
straight lines. The sum of the angles must be fielding a
parallelogram, or in the simplest case, a square or rectangle

with opposite sides identified, creating a toroidal topology, Gup=—87GT,, “)
as in Fig. 1A). The exterior universe will maintain this to-
pology with two compact and one infinite spatial dimensions. T, =Py, +(pt+Puyu, 6)
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TABLE I. A summary of smalr behavior for stars with variable,,. In every case, the relevant nonzero
constantA, B, C, or D must be positive, restricting the possible valueggfand|A|. For more detail on the
solution types, see Fig. 2i) For A=0, B#0, whenr,,=0 a spherically symmetricb(=+1) star in an
anti—de Sitter spacetime may form, with the Ricci scalar vanishing at the cénkdfor the infinite hour-
glass, onlyp=0 is allowed.

A#0 A=0,B#0 A=B=0,C#0 A=B=C=0,D#0
r,=0 cusp no solutidn no solution infinite hourglads
Ricci scalar 2b(3 cr) 43 N/A! N/A —6D
rm#0 finite throat finite throat infinite trumpet infinite trumpet
Ricci scalar 2b/r?, 2b/r2 2b/r?, 2b/r2,
with the fluid four-velocity given byu®=F ~Y2(a/4t)*. |A| L,
This means that the components of the Einstein tensor are C="G 'm 8Tpmlm=ATpnl . 13
G F H 1(1/H b)) 8mpF (6) [A| 8 16 4
0=~ Flgz, — 2 —b)j=—omp , )
Horor D=£—§7Tpm—§wpmrm—§ﬂ'pr’nrﬁ1. 14
Gu= —H(mﬂL r7(1/H—b)> =—8mPH (7 Small r behavior is tabulated in Table I. A finite throat
refers to the situation in which the radial coordinate reaches
r a minimal value at some finite distance from the outer edge
Gop=— W(2[:' FH—2H'F?+2rF"FH of the fluid, and then expands again into another universe. In
the genusg=0 case a series of spheres of smaller and
—rF'2H—rF'H'F) smaller proper radii are encountered, as an observer travels
into the star. Eventually, a sphere of minimum size is en-
Gas countered, beyond which the spheres begin to grow once
= —877Pr2=sin|ﬁF 9 (8 more. In the genug>0 case, the situation is the same, ex-

cept that the spheres are replaced with pacifigesZ) or

tori (g=1). Hence, the spacetime within the fluid has a
wormhole structure, and may be matched at each end of the
wormhole(wherer =R) to an exterior spacetime whose met-
ric is given by Eq.(2).

where the primed variables refer to the derivatid&jr.

IV. VARIABLE DENSITY SOLUTIONS

Equation(6) produces the following solution fdf (r): From Table I, it is readily apparent that the interesting
cases, the finite throats, are those for which the behavior of
r the metric at smallr is independent op’. We will next
H= (JA|/3G) r3+br+c— ' 8mpr? ©  examine the constant density case in more detail to see if the

solutions are indeed regular.

wherec is a constant of undetermined sign, anglis the
minimum value of the radius. In order to examine behavior V. CONSTANT DENSITY STARS AND THE BUCHDAHL
of the metric, expand about the minimum radius with the IDENTITY

infinitesimal,r =r,+ €, and use a Taylor series approxima-

tion for the integral. The spatial metric then becomes Equation(6) leads to a solution for the functian, if the

density is taken as constant,

B (rm+e)de? 12
IS = AT Bercarpar . T (mt9%d0% (10 H=

-1
Bri+b+ %) (15)

where d? is the appropriate angular spatial section. The
behavior at smalt will depend on the parameter, B, C  in which a an arbitrary constant and
andD, as well as the value of,,. The parameters are given

by 8 8 N [A] 16
A= _——r3+bry+c, (12) _ _
3G Here, p is the net density. For now, we assume the matter

density is positive or zeradd must always be greater than
zero, to preserve the signature of the metric.
If we let F=e?®, then Eq.(7) will be

_IAl, 2
B—Erm+b—8’ﬂpmrm, (12
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d®  87Pr’-pri-a 1 167 (Bri3+b+a) 4P+ 1 g 5 dr—0
dr  2r(Britbrta) (17) T T8mP-33 rz (87Pri=pgri=a) jdr=
(19
The final Einstein tensor equatio(8), along with Eq.(15)
leads to a solution for the change in pressure as a functiognd the integrating factor
of r:
dP dod (8wP—3B)(87Pri—pri—a) r g2 4
TP— 7Pr°—pr’—a _
_ - M= 3 — (20
dr (P+p) dr 167 (Br+br+a) pritbrral 8mP=34
(18)

applied. By integrating from the outer edge of the star, where
In order to solve this equation, note that it can be put inthe pressure isA |/87G to an arbitrary radius within the star,
the form we find that

Pm 3B
P= +—.
V(Br2+b+alr)/(BR?+b+ alR)— 4mp\(Br2+b+ alr) [R(FdT/(SF?+ b+ alF)%?) 8T

(21)

The condition thaH be real for all radii, forces the pressure  We will not demande=0. Theb= +1 case has already
to be real everywhere. been examined for nonzekg in which regular stars witlg
The Buchdahl identity is normally found by demanding =0 may form, by Hiscock. Consider now the higher-genus
the central pressure be finite in a simply connected spaceases. Wheg=0, b=0 and the parametg is forced to be
time, whereg=0. Furthermoreq is assumed to vanish, al- positive. Wherng=2, b= —1, implying 8>1/R?. The equa-
lowing the metric to be well-behaved e+ 0. In this case it tion for the pressure becomes, for any genus,
is straightforward to explicitly carry out the integral in Eqg.
(21) to obtain

VBri+b—KyBR?+b
3KVBR?+b—+/Br2+b

P=p : (26)

K\1— (8/3) mpR?— \/1— (8/3) mpr?

V1— (8/3) wpr?—3K\1— (8/3) mpR?

P=p

provided a=0. The analogous Buchdahl identity, found by
demanding that the pressure is a definite positive, is then

_ P(R)+tp Aapn, 22
3P(R)tp 4mpm+|AIG 1/a<K ,[;Rzisgl 27
r
The pressure should be positive definite, meaning
for all r.
1 _ 1-(8/3) mpR When R=r, the left hand equality demands thak|/G
3=K \/—1_ (@3)mpr 2 <1. (23 <8mpy, but maintaining a metric with the correct signature

throughout requirefA |/G>8p,,. This contradiction rules
The right hand inequality constraié most strongly at the out the possibility of a genug>0 regular star witha=0
edge of the cloud, and the left at the center. This secondnd positive pressure everywhere.
constraint may be translated as a limit on the mass in terms

of the radius, VI. CONSTANT DENSITY SOLUTIONS
(R ) K2—-1 Whenp is constant, the parametefs B, C andD from
M= | 4mpr dr<— gz R (24 sec. IV may still be nonzero. The behavior of the solution

will depend on the character of the lower cutoff of the posi-
which reduces to the familiaM <4R/9 limit when A=0 tive region of Br3+br+ a being examined. If that function
[8]. By demanding thatdP,,/dp,,) =0, thatM(0)=0 and is cut off by a double or triple root, an infinite throat will
that the pressure was non-negative and bounded everywher€sult. If the largest root is negative, a cusp will be formed.
Hiscock was able to obtain the stronger constraint If, however, the function has a non-degenerate, positive root

as the lower bound to its positive region, the star will have a

2 3|Al_, 3JA[ _,\ 17 finite throat, with a minimum radius given by that root.
M/R< 9| ER 1+ ER (29 None of these wormholes will have a well behaved pres-
sure for a positive matter density. Note that we can rewrite
for theb=+1 casg9]. Eqg. (21) as
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Pm
Po= — P
" J(BrE+b+ aln)[(BRZ+ b+ alR) — Ampy\(Br+ b+ alr) fRTAT/( BF2+ b+ alf)3?) Pm

(28)

The first term in the denominator varies from a value of unitythe Casimir effect being perhaps the best known example of
at the outer radius to zero at the throat. The integral in the manifestation of the violation of the energy conditions.
second term is a well-behaved positive function, so the sec- The most likely situation in which topological black holes
ond term will be zero at the outer radius and some positivdhave physical relevance is in the early univef§¢ and is
number at the throat. To see this, approximate the behavialso one in which quantum fluctuations may prodteen-

of the term near a single roaty. porarily at leastregions in which the weak energy condition
is violated. It is therefore natural to consider in more detail
~———— (R rdr topological “stars” in which the energy conditions are vio-
pr +b+0‘/rf, (Br?+b+alr)3? lated. Indeed, a study of a dust cloud of negative energy
density indicated that exotic matter may behave in a counter-
rgx/r—ro R dr intuitive manner, collapsing to form black holEs].
~ qr(2,+sr0+t fr (r—rg)%? The simplest case which requirgg to be negative is that

for which the parametew vanishes, as referred to earlier.

The behavior of the pressure in this situation is representa-

~———————, (29  tive of the more complicated#0 cases. Here the matter
(qrgtsrott) density is forced to be negative in order that the metric be

) ) ) real. The pressure takes on the simple form
It is therefore unavoidable that the two terms in the de-

nominator will become equal at some valuergfat which

2
2rg

point the pressure will be infinite. This type of wormhole Pm= =l

metric can never be regular. Sample plots displaying this JBri+b— JBR*+Db

behavior were obtained by numerical integration, and are .
shown in Fig. 3. 3lpml!|pml = [Al/(47G) VBR?+ b~ \Bre+b

(30)
VIl. NEGATIVE MATTER DENSITY WORMHOLES
thén this case the pressure is well behaved. It vanishes at the
K stars edge and decreases to a finite central value=at,.
The pressure here is always negative, so in fact it is a ten-

Wormhole solutions have long been known to require
existence of exotic mattegimatter which violates the wea
energy condition[10], so it is not surprising that this case
also requires such. A study of wormhole solutions in topo-
logically trivial spacetimes with nonzero cosmological con- 100,
stant also led to this conclusion, although the actual condi-
tions on the exotic matter are modifigtil]. The necessity of

exotic matter is an unpleasant, but not prohibitive situation, 50
A B. C.
Pm
3 3
= ° = . Sy ; |
E E E 2 01 16 18 2
g g . r
8 I L=
-50

FIG. 2. (A) For a cusp, the star reaches a vanishing minimum
radius, but this occurs an infinite proper distance from the exterior
of the star.(B). The infinite hourglass is composed of a “worm- !
hole” of infinite proper distance connecting two spaces where the -100 (
radius may grow to infinity, e.g, two universes. The minimum ra-
dius is zero, so the infinite hourglass may also be considered tWP
cusps joined ar=0. (C). The infinite trumpet is similar to the or 8
infinite hourglass, but has a nonzero, finite minimum radius. It still"™@0t, 'm=1. The equation used iH(r,b)=— (1) (3 mpm
has an infinite proper lengtD). The finite throat is a proper — |A|/3)r2(x—1){x?+x+1—b[r2(2 mpm— [A]/3)]7%}. All the
wormhole analogue. Two spaces where the universe may grow tourves have|A|=1, p,=0.5, R=2 and r,,=1. The dashed
infinity are connected by a throat of finite proper length and non-curve hasb= -1, the solid curve hab=0, and the dotted curve
zero, finite minimum radius. hasb=+1.

FIG. 3. The pressure, as found in E{8), is evaluated
the special case where the largest rootH{ir,b) is a single
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rho, r
25 2 -15 ™1 .05 1 12 14716 18 2

0.7

FIG. 4. The matter pressure as a function of matter density for
b=0,+1,—1, represented by the solid, dotted and dashed lines. AI%
plots use|A|/G=1, r=1.001, R=2 andr,=1 in the equation
shown for Fig. 3. The cutoff of the allowed region is a},=
—1.06, —1.45, and—0.69 forb=0, +1, and,— 1, respectively.

FIG. 5. The matter pressure, as found in E2f), is evaluated
or the same equation far(r,b) as before, but now,,<0 is
permitted. The parameters used to find the solid, dotted and dashed
lines areb=0, +1, —1. All plots use|A|/G=1, p,=—0.5, R
=2 andr,,=1. The lines here approach finite values at the throat,

. .. . . r=rmy.
sion. Generalizing the constraint from Ré¢f] to include "

negative matter pressure and density yields matter density within the star is negative, with a magni-
tude smaller than a critical value determined by E2f).
dPn dPn (31 In this case the topological star consists of a fluid of gra-

dpm> 2dlpml' vitationally repulsive negative energy, held together by a
sufficiently large tension(i.e., negative pressure Both
This will guarantee that the matter pressiygmust become  pressure and density are finite everywhere throughout the
more negative as the matter density becomes more negativgar, This is the reverse of a normal star, whose gravita-
as is physically reasonableee Fig. 4. This constraint may tjonally self-attractive density is prevented from collapsing
also be interpreted as a limit on the matter density, sincy its pressure. Should the pressure of the negative-mass
when it becomes too negative, the inequality will no longerstar decrease below a certain threshold during its evolution,
hold throughout the star. This constraint is most ea.Sin evalui't will either exp|0de due to gravitationa| Se|f-repu|3i0n or
ated numerically. _ ~ collapse to a black hole of negative mass. The former situa-
The behavior of the matter pressure wheis non-zero is  tjon will occur if the magnitude of the density is sufficiently
qualitatively similar. The function is We”'behaved, zero at |arge relative tdA|/G Otherwise’ the evolution of the star
the outer edge and finite at the throat. The same constraighoy|d proceed along the lines described in RS, ulti-

(31) as before is employed to produce physically reasonablghately reaching a black hole of negative mass as its final
results(see Fig. 4. The strongest constraint arises at a radiussiate.

near the throat radius, as was done in Fig. 5. The most likely physical situation in which any of these
scenarios is relevant is in the early universe. Topological
VIll. CONCLUSIONS black holes can be formed via pair-production in the pres-

nce of domain wallf6] or from the collapse of a dust cloud
Although the collapse of a pressureless dust cloud o . o . ” ' .

. . . (of either positive or negative densjtiyn a topologically suit-
positive energy to a topological black hole proceeds in &

manner somewhat analogous to that in the usual spherichIe setting3,5]. However, if it is possible to produce exofic

case(with genusg=0) [3], the formation of regular central Mmatter in such settings, the results of this paper indicate that
9 9="1) 1, . T regut regular(wormhole-type central structures can form. The sta-
structures in topologically non-trivial anti—de Sitter space-

times differs considerably from the topologically trivial case bility of such solutions, as well as the existence of regular
; 'y pologicatly tri " stable solutions with variable density remain interesting open
Indeed geometric requirements are in conflict with energy :
S : ) : questions.
positivity requirements, implying that there are no regular
central structures formed from a perfect fluid respecting
the energy conditions and whose exterior metric is given by
Eq. (1). This work was supported by the National Science and
The only “regular” solutions are those in which the Engineering Council of Canada.
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