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Regular central structures in topologically nontrivial anti –de Sitter spacetimes

W. L. Smith and R. B. Mann
Department of Physics, University of Waterloo, Waterloo, Ontario, Canada N2L 3G1

~Received 2 June 1998; published 18 November 1998!

We investigate regular central structures in multiply connected, anti–de Sitter spacetimes with spherical,
planar and hyperbolic geometries. We obtain an exact solution for the pressure in terms of the radius when the
density is constant. We find that, apart from the usual simply connected spherically symmetric star with a
well-behaved metric atr 50, the only solutions with non-singular pressure and density have a wormhole
topology. However these wormhole solutions must be composed of matter which violates the weak energy
condition. Admitting this type of matter, we obtain a structure which is maintained via a balance between its
cohesive tension and its repulsive negative matter density. If the tension is insufficiently large, this structure
can collapse to a black hole of negative mass.@S0556-2821~98!03724-2#

PACS number~s!: 04.20.Gz, 04.70.Bw
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I. INTRODUCTION

Multiply connected spacetimes are attracting an incre
ing amount of attention among gravitational physicists a
cosmologists. Although the idea that our universe could
topologically non-trivial has been around for quite some ti
@1#, the possibility of setting observational constraints on t
topology by performing a careful search for particular cor
lations in the cosmic microwave background is a recent
velopment@2#. In a topologically non-trivial universe, a cen
tral structure with an edge at a constant radius will also
topologically non-trivial. It is with the formation of thes
objects that we are concerned in this work. Further interes
topological structures has been spurred by the realization
domain walls in the early universe can give rise to pa
production of black holes with event horizons whose top
ogy is non-trivial@4#. Such objects have been referred to
topological black holes~TBHs!.

We demonstrated that a dust cloud in a multiply co
nected, anti–de Sitter spacetime could collapse to a TBH
process that is analogous to the usual Oppenheimer-Sn
collapse in an earlier paper@3#. The solutions obtained
matched a static exterior spacetime to a dynamic collap
cloud. The question of whether corresponding static so
tions exist was left unresolved.

In this paper, we investigate the existence of regular p
fect fluid solutions in multiply-connected, anti–de Sitt
spacetime. The spatial sections of such spacetimes hav
topology R3Hg where Hg is a two-dimensional compac
space of genusg. Such a space may be described by a me
which is either flat or spherically or hyperbolically symme
ric. The spherically symmetric case is simply connected
has genusg50. The flat and hyperbolic cases are made co
pact via appropriate identifications in those two dimensio
Perfect fluid solutions in such spacetimes are centrally
cated, separated from the exterior spacetime at a con
radius. In theg50 case they correspond to a ball of flu
surrounded by a cosmological vacuum spacetime; in thg
Þ0 case the analogous objects may be referred to as t
logical stars. For instance, wheng51 the universe has a
0556-2821/98/58~12!/124021~7!/$15.00 58 1240
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toroidal topology, and the central structure is a torus insid
with both holes aligned.

We find that a necessary condition for regular perf
fluid solutions forg.0 is that a wormhole be present insid
the star. However this condition is not sufficient. A consta
positive matter density throughout the star necessarily
plies an infinite pressure somewhere in its interior, exclud
such objects as regular solutions.

The situation is considerably different if we consider m
ter which violates the weak energy condition. It has be
shown that negative concentrations of stress-energy can
lapse to black holes of negative mass provided the cos
logical constant is sufficiently large in magnitude@5#. We
find that it is possible to construct topological~wormhole!
stars with constant negative matter density and finite ne
tive pressure throughout. The negative pressure is a ten
which acts to hold together the negative density, which
gravitationally self-repulsive.

Section II discusses the three spacetimes of interest
well as their topologies. The spherically symmetric case
much in common with earlier studies, but we drop the d
mand that the metric be well-behaved at the origin. Sect
III introduces the interior metrics and their Einstein equ
tions. In Sec. IV, the structure of the solutions for a variab
matter density is found using perturbative techniques. S
tion V produces a solution for the pressure within wormho
of constant density as a function of radius. It is shown in S
VI that this pressure must necessarily become infinite so
where within a wormhole with constant positive density. T
question of wormholes with negative matter density is a
dressed in Sec. VII.

II. FLUID TOPOLOGY

The universe described by the static solution presen
here is an asymptotically anti–de Sitter spacetime with
nontrivial topology. The exterior metric in this univers
adapted from@6#
©1998 The American Physical Society21-1
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ds252S 2
L

3G
R21b2

2M

R
D dT2

1
dR2

2 ~L/3!R21b2 2M /R

1R2@du21s~b,u!2df2#s~b,u!

5H sin~u! if b511,

1 if b50,

sinh~u! if b521,

~1!

whereT and R are the time and radial coordinates.M rep-
resents the mass of the star andL is the cosmological con
stant~whereL.0 corresponds to the de Sitter case!. f as-
sumes values between 0 and 2p.

When b511, the universe takes on the familiar sphe
cally symmetric form, and the (u,f) sector has constan
positive curvature. The cosmological constant may assu
either sign, but we will only examine behavior resulting fro
negative values in the models explored here. Whenb50, the
space is flat, withL less than zero. In order to produce th
central star to be examined, a space with two sides ident
is considered. The outer edge of the star will be an identi
flat plane of constant ‘‘radius,’’R. Identification requires the
edges of this plane to be geodesics, which are in this c
straight lines. The sum of the angles must be 2p, yielding a
parallelogram, or in the simplest case, a square or recta
with opposite sides identified, creating a toroidal topolo
as in Fig. 1~A!. The exterior universe will maintain this to
pology with two compact and one infinite spatial dimensio

FIG. 1. Examples of higher genus two-surfaces. The dotted l
represent the identifications of edges. A. The torus,g51, is a rep-
resentation of a square or rectangle in flat space identified in
dimensions. B. The pseudosphere,g52, is the simplest appropriat
hyperbolic two-surface, an octagon, after identification. C. Thig
53 surface is a slightly more complicated possibility.
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When b521, the (u,f) sector is a space with consta
negative curvature, also known as a hyperbolic plane, a
cussion of which is available in Balasz and Voros@7#. Geo-
desics are intersections between the hyperbolic plane
planes through the origin. A compact surface is formed fr
the hyperbolic plane by identifying opposite sides of a su
able polygon whose edges are geodesics. The polygon m
have a minimum of eight sides, and the number of sides m
be a multiple of four to avoid conical singularities. An ide
tified polygon with 4g sides is of genusg. The genus deter-
mines the topology of the compact space. The surface ge
g52 has two ‘‘holes,’’ and so is a double-holed doughnut
a pacifier. The surface withg53 has three ‘‘holes’’ and has
a pretzel shape, and so on, as shown in Fig. 1. This typ
identification of hyperbolic surfaces is described in more
tail in @3#.

The fluid cloud in these identified spacetimes is located
a central position, analogous to the central sphere in a sph
cally symmetric spacetime. The boundary between the fl
and the exterior universe is an identified flat or hyperbo
plane. The universe outside the fluid maintains the same
pology of the cloud boundary itself. The fluid forms a pac
fier within a pacifier with the holes lined up, or the bana
cream in our doughnut, if you will. The situation is anal
gous for higher genus topologies. Beyond the cloud, the
dial coordinate may range to infinity.

III. CALCULATIONS OF THE EINSTEIN EQUATIONS

The standard metric of an arbitrary, static spacetime w
spherical, toroidal or hyperbolic symmetry was used in co
junction with the Einstein equations to generate interior
lutions. The metric is given by:

ds252F~r ,b!dt21H~r ,b!dr21r 2
„du21s~b,u!2df2

…,
~2!

with s(b,u) as given in Eq.~1! above. Here,t is the time
coordinate,r is the radial coordinate, andu andf are coor-
dinates on a two-surface of constant positive, zero or ne
tive curvature, wheref has a range of 0 to 2p. The matching
of the metrics is analogous to that in@3#, and is carried out
under the conditions that the metrics and the extrinsic cur
tures match smoothly across the boundary.

The cosmological constant will be absorbed into defi
tions of the density and pressure, so that

r5rm2
uLu

8pG
, P5Pm1

uLu
8pG

, ~3!

whererm andPm are the density and pressure due to mat
respectively. Since theL,0 case is of interest here, the a
solute value ofL is used for the remainder of this pape
Einstein equations are therefore simply

Gmn528pGTmn ~4!

Tmn5Pgmn1~r1P!umun ~5!

s

o
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TABLE I. A summary of smallr behavior for stars with variablerm . In every case, the relevant nonze
constantA, B, C, or D must be positive, restricting the possible values ofrm anduLu. For more detail on the
solution types, see Fig. 2.~i! For A50, BÞ0, when r m50 a spherically symmetric (b511) star in an
anti–de Sitter spacetime may form, with the Ricci scalar vanishing at the center.~ii ! For the infinite hour-
glass, onlyb50 is allowed.

AÞ0 A50, BÞ0 A5B50, CÞ0 A5B5C50, DÞ0

r m50 cusp no solutioni no solution infinite hourglassii

Ricci scalar 2b( 3
2 cl )24/3 N/Ai N/A 26D

r mÞ0 finite throat finite throat infinite trumpet infinite trumpet
Ricci scalar 2b/r m

2 2b/r m
2 2b/r m

2 2b/r m
2
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with the fluid four-velocity given byua5F21/2(]/]t)a.
This means that the components of the Einstein tensor

G0052FS H8

H2r
2

1

r 2 ~1/H2b! D528prF ~6!

G1152HS F8

FHr
1

1

r 2 ~1/H2b! D528pPH ~7!

G2252
r

4F2H2 ~2F8FH22H8F212rF 9FH

2rF 82H2rF 8H8F !

528pPr25
G33

sinh2 u
~8!

where the primed variables refer to the derivative,d/dr.

IV. VARIABLE DENSITY SOLUTIONS

Equation~6! produces the following solution forH(r ):

H5
r

~ uLu/3G! r 31br1c2* r m

r 8prmr 2 ~9!

wherec is a constant of undetermined sign, andr m is the
minimum value of the radius. In order to examine behav
of the metric, expand about the minimum radius with t
infinitesimal,r 5r m1e, and use a Taylor series approxim
tion for the integral. The spatial metric then becomes

dss
25

~r m1e!de2

A1Be1Ce21De31 . . .
1~r m1e!2dV2, ~10!

where dV2 is the appropriate angular spatial section. T
behavior at smallr will depend on the parameters,A, B, C
andD, as well as the value ofr m . The parameters are give
by

A5
uLu
3G

r m
3 1brm1c, ~11!

B5
uLu
G

r m
2 1b28prmr m

2 , ~12!
12402
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C5
uLu
G

r m28prmr m24prm8 r m
2 , ~13!

D5
uLu
3G

2
8

3
prm2

16

3
prm8 r m2

4

3
prm9 r m

2 . ~14!

Small r behavior is tabulated in Table I. A finite throa
refers to the situation in which the radial coordinate reac
a minimal value at some finite distance from the outer ed
of the fluid, and then expands again into another universe
the genusg50 case a series of spheres of smaller a
smaller proper radii are encountered, as an observer tra
into the star. Eventually, a sphere of minimum size is e
countered, beyond which the spheres begin to grow o
more. In the genusg.0 case, the situation is the same, e
cept that the spheres are replaced with pacifiers (g>2) or
tori (g51). Hence, the spacetime within the fluid has
wormhole structure, and may be matched at each end of
wormhole~wherer 5R! to an exterior spacetime whose me
ric is given by Eq.~1!.

From Table I, it is readily apparent that the interesti
cases, the finite throats, are those for which the behavio
the metric at smallr is independent ofr8. We will next
examine the constant density case in more detail to see i
solutions are indeed regular.

V. CONSTANT DENSITY STARS AND THE BUCHDAHL
IDENTITY

Equation~6! leads to a solution for the functionH, if the
density is taken as constant,

H5S br 21b1
a

r D 21

~15!

in which a an arbitrary constant and

b52
8

3
pr52

8

3
prm1

uLu
3G

. ~16!

Here, r is the net density. For now, we assume the ma
density is positive or zero.H must always be greater tha
zero, to preserve the signature of the metric.

If we let F5e2F, then Eq.~7! will be
1-3
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dF

dr
5

8pPr32br 32a

2r ~br 31br1a!
. ~17!

The final Einstein tensor equation,~8!, along with Eq.~15!
leads to a solution for the change in pressure as a func
of r :

dP

dr
52~P1r!

dF

dr
52

~8pP23b!~8pPr32br 32a!

16pr ~br 31br1a!
.

~18!

In order to solve this equation, note that it can be put
the form
re

g
ac
l-

q.

on
rm

he
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n

n

S 16p

r

~br 31b1a!

8pP23b DdP1S 1

r 2 ~8pPr32br 32a! Ddr50

~19!

and the integrating factor

m5S r

br 31br1a D 3/2 21

8pP23b
~20!

applied. By integrating from the outer edge of the star, wh
the pressure isuLu/8pG to an arbitrary radius within the star
we find that
P5
rm

A~br 21b1a/r !/~bR21b1a/R!24prmA~br 21b1a/r !* r
R~ r̃ d r̃/~b r̃ 21b1a/ r̃ !3/2!

1
3b

8p
. ~21!
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The condition thatH be real for all radii, forces the pressu
to be real everywhere.

The Buchdahl identity is normally found by demandin
the central pressure be finite in a simply connected sp
time, whereg50. Furthermore,a is assumed to vanish, a
lowing the metric to be well-behaved atr 50. In this case it
is straightforward to explicitly carry out the integral in E
~21! to obtain

P5rF KA12 ~8/3! prR22A12 ~8/3! prr 2

A12 ~8/3! prr 223KA12 ~8/3! prR2G ,

K5
P~R!1r

3P~R!1r
5

4prm

4prm1uLu/G
. ~22!

The pressure should be positive definite, meaning

1

3
<KA12 ~8/3! prR2

12 ~8/3!prr 2 ,1. ~23!

The right hand inequality constrainsK most strongly at the
edge of the cloud, and the left at the center. This sec
constraint may be translated as a limit on the mass in te
of the radius,

M5E
0

R

4prr 2dr,
9K221

18K2 R ~24!

which reduces to the familiarM,4R/9 limit when L50
@8#. By demanding that (dPm /drm) >0, thatM (0)50 and
that the pressure was non-negative and bounded everyw
Hiscock was able to obtain the stronger constraint

M /R<
2

9 F12
3uLu
4G

R21S 11
3uLu
4G

R2D 1/2G ~25!

for the b511 case@9#.
e-

d
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We will not demanda50. Theb511 case has alread
been examined for nonzeroa, in which regular stars withg
50 may form, by Hiscock. Consider now the higher-gen
cases. Wheng50, b50 and the parameterb is forced to be
positive. Wheng>2, b521, implying b.1/R2. The equa-
tion for the pressure becomes, for any genus,

P5rS Abr 21b2KAbR21b

3KAbR21b2Abr 21b
D , ~26!

provideda50. The analogous Buchdahl identity, found b
demanding that the pressure is a definite positive, is the

1/3,KAbR21b

br 21b
<1 ~27!

for all r .
When R5r , the left hand equality demands thatuLu/G

,8prm but maintaining a metric with the correct signatu
throughout requiresuLu/G.8prm . This contradiction rules
out the possibility of a genusg.0 regular star witha50
and positive pressure everywhere.

VI. CONSTANT DENSITY SOLUTIONS

Whenr is constant, the parametersA, B, C andD from
Sec. IV may still be nonzero. The behavior of the soluti
will depend on the character of the lower cutoff of the po
tive region ofbr 31br1a being examined. If that function
is cut off by a double or triple root, an infinite throat wi
result. If the largest root is negative, a cusp will be forme
If, however, the function has a non-degenerate, positive r
as the lower bound to its positive region, the star will hav
finite throat, with a minimum radius given by that root.

None of these wormholes will have a well behaved pr
sure for a positive matter density. Note that we can rew
Eq. ~21! as
1-4
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Pm5
rm

A~br 21b1a/r !/~bR21b1a/R!24prmA~br 21b1a/r !* r
R~ r̃ d r̃/~b r̃ 21b1a/ r̃ !3/2!

2rm . ~28!
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The first term in the denominator varies from a value of un
at the outer radius to zero at the throat. The integral in
second term is a well-behaved positive function, so the s
ond term will be zero at the outer radius and some posi
number at the throat. To see this, approximate the beha
of the term near a single root,r 0 .

Abr 21b1a/r E
r

R rdr

~br 21b1a/r !3/2

'
r 0

2Ar 2r 0

qr0
21sr01t

E
r

R dr

~r 2r 0!3/2

'
2r 0

2

~qr0
21sr01t !

. ~29!

It is therefore unavoidable that the two terms in the d
nominator will become equal at some value ofr , at which
point the pressure will be infinite. This type of wormho
metric can never be regular. Sample plots displaying
behavior were obtained by numerical integration, and
shown in Fig. 3.

VII. NEGATIVE MATTER DENSITY WORMHOLES

Wormhole solutions have long been known to require
existence of exotic matter~matter which violates the wea
energy condition! @10#, so it is not surprising that this cas
also requires such. A study of wormhole solutions in top
logically trivial spacetimes with nonzero cosmological co
stant also led to this conclusion, although the actual con
tions on the exotic matter are modified@11#. The necessity of
exotic matter is an unpleasant, but not prohibitive situati

FIG. 2. ~A! For a cusp, the star reaches a vanishing minim
radius, but this occurs an infinite proper distance from the exte
of the star.~B!. The infinite hourglass is composed of a ‘‘worm
hole’’ of infinite proper distance connecting two spaces where
radius may grow to infinity, e.g, two universes. The minimum
dius is zero, so the infinite hourglass may also be considered
cusps joined atr 50. ~C!. The infinite trumpet is similar to the
infinite hourglass, but has a nonzero, finite minimum radius. It s
has an infinite proper length.~D!. The finite throat is a prope
wormhole analogue. Two spaces where the universe may gro
infinity are connected by a throat of finite proper length and n
zero, finite minimum radius.
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the Casimir effect being perhaps the best known exampl
a manifestation of the violation of the energy conditions.

The most likely situation in which topological black hole
have physical relevance is in the early universe@6# and is
also one in which quantum fluctuations may produce~tem-
porarily at least! regions in which the weak energy conditio
is violated. It is therefore natural to consider in more det
topological ‘‘stars’’ in which the energy conditions are vio
lated. Indeed, a study of a dust cloud of negative ene
density indicated that exotic matter may behave in a coun
intuitive manner, collapsing to form black holes@5#.

The simplest case which requiresrm to be negative is tha
for which the parametera vanishes, as referred to earlie
The behavior of the pressure in this situation is represe
tive of the more complicatedaÞ0 cases. Here the matte
density is forced to be negative in order that the metric
real. The pressure takes on the simple form

Pm52urmu

3S Abr 21b2AbR21b

3urmu/urmu2uLu/~4pG!AbR21b2Abr 21b
D .

~30!

In this case the pressure is well behaved. It vanishes at
star’s edge and decreases to a finite central value atr 5r m .
The pressure here is always negative, so in fact it is a

r

e
-
o

ll

to
-

FIG. 3. The pressure, as found in Eq.~28!, is evaluated
for the special case where the largest root ofH(r ,b) is a single

root, r m51. The equation used isH(r ,b)52 (1/x) ( 8
3 prm

2 uLu/3)r m
2 (x21)$x21x112b@r m

2 ( 8
3 prm2 uLu/3)#21%. All the

curves haveuLu51, rm50.5, R52 and r m51. The dashed
curve hasb521, the solid curve hasb50, and the dotted curve
hasb511.
1-5
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sion. Generalizing the constraint from Ref.@9# to include
negative matter pressure and density yields

dPm

drm
>0>

dPm

durmu
. ~31!

This will guarantee that the matter pressurePm must become
more negative as the matter density becomes more nega
as is physically reasonable~see Fig. 4!. This constraint may
also be interpreted as a limit on the matter density, si
when it becomes too negative, the inequality will no long
hold throughout the star. This constraint is most easily eva
ated numerically.

The behavior of the matter pressure whena is non-zero is
qualitatively similar. The function is well-behaved, zero
the outer edge and finite at the throat. The same const
~31! as before is employed to produce physically reasona
results~see Fig. 4!. The strongest constraint arises at a rad
near the throat radius, as was done in Fig. 5.

VIII. CONCLUSIONS

Although the collapse of a pressureless dust cloud
positive energy to a topological black hole proceeds in
manner somewhat analogous to that in the usual sphe
case~with genusg50! @3#, the formation of regular centra
structures in topologically non-trivial anti–de Sitter spac
times differs considerably from the topologically trivial cas
Indeed geometric requirements are in conflict with ene
positivity requirements, implying that there are no regu
central structures formed from a perfect fluid respect
the energy conditions and whose exterior metric is given
Eq. ~1!.

The only ‘‘regular’’ solutions are those in which th

FIG. 4. The matter pressure as a function of matter density
b50,11,21, represented by the solid, dotted and dashed lines
plots useuLu/G51, r 51.001, R52 and r m51 in the equation
shown for Fig. 3. The cutoff of the allowed region is atrm5
21.06, 21.45, and20.69 forb50, 11, and,21, respectively.
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matter density within the star is negative, with a mag
tude smaller than a critical value determined by Eq.~31!.
In this case the topological star consists of a fluid of g
vitationally repulsive negative energy, held together by
sufficiently large tension~i.e., negative pressure!. Both
pressure and density are finite everywhere throughout
star. This is the reverse of a normal star, whose grav
tionally self-attractive density is prevented from collapsi
by its pressure. Should the pressure of the negative-m
star decrease below a certain threshold during its evolut
it will either explode due to gravitational self-repulsion
collapse to a black hole of negative mass. The former sit
tion will occur if the magnitude of the density is sufficient
large relative touLu/G. Otherwise, the evolution of the sta
should proceed along the lines described in Ref.@5#, ulti-
mately reaching a black hole of negative mass as its fi
state.

The most likely physical situation in which any of thes
scenarios is relevant is in the early universe. Topologi
black holes can be formed via pair-production in the pr
ence of domain walls@6# or from the collapse of a dust clou
~of either positive or negative density! in a topologically suit-
able setting@3,5#. However, if it is possible to produce exoti
matter in such settings, the results of this paper indicate
regular~wormhole-type! central structures can form. The st
bility of such solutions, as well as the existence of regu
stable solutions with variable density remain interesting op
questions.
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FIG. 5. The matter pressure, as found in Eq.~28!, is evaluated
for the same equation forH(r ,b) as before, but nowrm,0 is
permitted. The parameters used to find the solid, dotted and da
lines areb50, 11, 21. All plots use uLu/G51, rm520.5, R
52 andr m51. The lines here approach finite values at the thro
r 5r m .
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