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The result that, for a scalar quantum field propagating on a “trousers” topologytifh #limensions, the

crotch singularity is a source for an infinite burst of energy has been used to argue against the occurrence of
topology change in quantum gravity. We draw attention to a conjecture due to Sorkin that it may be the
particular type of topology change involved in the trousers transition that is problematic and that other topol-
ogy changes may not cause the same difficulties. The conjecture links the singular behavior to the existence of
“causal discontinuities” in the spacetime and relies on a classification of topology changes using Morse
theory. We investigate various topology changing transitions, including the pair production of black holes and
of topological geons, in the light of these idepfS0556-282(98)07020-9

PACS numbe(s): 04.60.Gw, 02.40.Vh, 04.20.Gz

I. INTRODUCTION diffeomorphic, without reference to any particular cobord-
ism.

It is widely believed that any complete theory of quantum  WhenV, andV; are not diffeomorphic, the existence of a
gravity must incorporate topology change. Indeed, within theiopological cobordism\ is equivalent to the equality of the
particle picture of quantum gravitl] the frozen topology  Stiefel-Whitney numbers 6§, andV; and is not guaranteed
framework for a generic spatial three-manifold leads to then arbitrary dimensions. If a topological cobordism does not
problem of spin-statistics violations and such wild varietiesexist we would certainly conclude that the transition is for-
of quantum sectors that it seems that a frozen topology igidden. In 3+ 1 and lower dimensions, however, a topologi-
unmaintainablg2]. There is one result, however, that hascal cobordism always exists. Then, given a topological co-
been cited as counterevidence for topology change: that @fordism M a Lorentzian cobordism based gl will exist
the singular propagation of a quantum field on a trousergf [6,7] (1) n is even andy(M)=0 or (2) nis odd and
spacetime in ¥ 1 dimensiong3,4]. We will see how it may  y(V,)=x(V;). In 3+1 dimensions, a topological cobord-
be possible to incorporate this result naturally in a frameism with x(M)=0 always exists and thus any three-
work which nevertheless allows topology change in genera|dimensional\/o andV, are Lorentz cobordant.

The most natural way of accommodating topology chang- The theorem of Gerocf8], extended ta-spacetime di-
ing processes in quantum gravity is using the sum-overmensions, tells us that if a time oriented Lorentzian metric
histories(SOH) approach, although there has also been somexists on a topology changing topological cobordisthen
effort in this direction within the Hamiltonian picturb].  that metric must contain closed timelike curves. We consider
We take a history in quantum gravity to be a pai¥1(g),  these to be a worse pathology than the alternative which is to
where M is a smoothn-dimensional manifold and) is @  allow certain singularities in the metric, i.e., to weaken the
time-oriented Lorentzian metric oM. [Strictly, a history is  restriction that the metric be Lorentzian everywhere, and
a geometry and only represented by!(g).] The amplitude  which, following the proposal of Sorkif9], is what we will
for the transition from an initial spacev(,qo) to a final  choose to do in this paper. The singularities which we need
space ¥1,q;), where theV; are closed f—1) manifolds  to admit in order to be able to consider all possible topologi-
and theq; are Riemannianr(—1) metrics, receives contri- cal cobordisms are rather mild. Given any topological cobor-
butions from all compact interpolating historie$4,g), sat-  dism (M;V,,V,), there exists an almost everywhere Lorent-
isfying the boundary conditionsM=V;l1V¢, g|V; ;=q; zian metricg on M which has singularities which take the
where Il denotes a disjoint union anty andV, are initial  form of degeneracies where the metric vanisheiaitely
and final spacelike boundaries of(,g). We call the mani- many) isolated points. These degeneracies each take one of
fold M such thatoM=V;lIV;, a topological cobordism (n+1) standard forms described by Morse theory as we
and (M,g), a Lorentzian cobordismWe will say that a shall relate. Allowing such singular metrics seems natural in
topological cobordism or a history ®pology changingf light of the fact that within the path integral formulation,
M is not a producyX 1, wherel is the unit interval. We paths are not always required to be smooth; in fact they are
will use the terminologytopology changing transitioto re-  known to be distributional. Moreover, such degeneracies are
fer to the transition fronV, to V,; whenV, andV; are not allowed within a vielbien formulation of gravity. For a dis-

cussion of these points, sg&0].
So, by allowing such mildly singular Lorentz cobordisms
*Email address: dowker@@ic.ac.uk in the SOH no topological cobordism is excluded and, in
TEmail address: ssurya@ @iucaa.ernet.in particular, every transition in 81 dimensions is viable at
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this level of the kinematics. We will refer to these cobord-finite amplitude. This result generalizes simply to higher di-
isms as “Morse cobordisms.” However it seems that dy-mensions even though the exact instantons are not known.
namically some Morse cobordisms may be more equal thamhe second class of cobordisms we analyze is a set of mani-
others. Thg1+1)-dimensional case gives us an idea about dolds that describe in a natural way the pair production of
possible class of “physically desirable” histories. For a topological geons in the particle picture of prime manifolds
massless scalar quantum field on a fix#alt) metric on the [1]. We will show that, unfortunately, these manifolds do not
1+1 trousers topology there is an infinite burst of energySupport causally continuous Morse metrics. We summarize
from the crotch singularity that propagates along the futurdhese results in the last section and discuss their implications.
light cone of the singularity3,4]. This tends to suggest that

such a history would be suppressed in a full SOH ferll Il. MORSE THEORY AND SURGERY
guantum gravity. By contrast, the singular behavior of a i . _
quantum field on the background of a flat metric on thell SupposeM is ann-dimensional, compact, smooth, con-

“yarmulke” cobordism (i.e., a hemisphere representing "ected manifold such thatoM has two disjoint
creation/destruction of ag! from/to nothing is of a signifi- (N —1)-dimensional component$, andV, that are closed
cantly different nature, in the sense that when integrated ove¥"d correspond to the initial and final boundaries of the
the future null directions the stress-energy is fifilté]. The ~ SPacetime, respectively. _ _
singularity in the yarmulke case is therefore effectively Any suchM admits aMorse function f M—[0,1], with
“squelched,” while it propagates in the trousers. Indeed, inflvi=0. flv¢=1 such thaf possesses a set of critical points
studying 1 models of topology change, the authorgtd]  {Px} (daf(Pi)=0) which are nondegeneratee., the Hes-
have found that there is a suppression of the trousers cobofl@n dadyf at these points is invertiblelt follows that the
dism in the SOH and an enhancement by an equal factor d¥itical points off are isolated and that becausé is com-
the yarmulke cobordisrtover the trivial cylindey and sepa-  Pact, there are only a finite number of them.
rate from the suppression due to the backgrounds not being Using this Morse function and any Riemannian melrjg
classical solutions. on M, we may then construct an almost everywhere Lorent-
What features of the trousers and yarmulke might accourgian metric onM with a finite number of isolated degenera-
for the different behaviors of quantum fields in these back<C!€S.
grounds? A closer look shows that in the Morse cobordism
on the trousers manifold an observer encounters a disconti- Gab=han(h®9cfagf ) = Ld,f dpf, (1)
nuity in the volume of her causal past as she traverses from
the leg region into the body. Since such a discontinuity iswhere the constant>1 [10]. Clearly, g, is degenerate
absent in the yarmulke topology and cylinder topologies(zero precisely at the critical points df We refer to these
Sorkin has conjectured that there may be an intimate connegoints as “Morse singularities.” Expressing a metric &
tion between the discontinuity in the volume of the causalin terms of its Morse function$ relates the latter to the
past/future of an observea causal discontinuityand the causal structure of the spacetime in an intimate manner, as
physically undesirable infinite burst of energy for a scalarwe will see.
field propagating in such a background. And then further, We now make the proposal that in the SOH, for the am-
that this could signal a suppression of the amplitude for glitude for a topology changing process, for each topological
causally discontinuous spacetime in the full SOH in quantuncobordism, only metrics that can be expressed in the faym
gravity. (i.e., which can be constructed from some Morse function
The plan for this paper is the following. In the next sec-and some Riemannian metriwill be included. We call such
tion we include a review of Morse theory and surgery theorymetrics “Morse metrics.” Note that since a Riemannian
thus setting the stage for our work. We find that whenever anetric and Morse function always exist on a given topologi-
component of the universe is created from nothing, its initialcal cobordism, no cobordism is ruled out of the SOH at this
spatial topology must be that of a sphere. In Sec. Ill we statkinematical level.
a conjecture of Borde and Sorkin that relates causal discon- A comment is in order here to relate this proposal to pre-
tinuities to the Morse “type” of a cobordism. In order to vious works on Lorentzian topology change and Morse
lend substance to this conjecture, we work out the exampltheory. In work by Yodziq15] the attitude was taken that
of the trousers topology in1 dimensions which also gen- the Morse singularities should not be considered as part of
eralizes to higher dimensions. In Sec. IV we present an arspacetime, in other words, the Morse points themselves were
gument by Sorkirf12], thatanytopology changing transition to be removed by sending them to infinity. In contrast, here
in 3+1 dimensions can be achieved by some causally conwe are suggesting that the Morse points should remain as
tinuous Morse cobordism, once the Borde-Sorkin conjecturgart of the spacetime. Amongst other things, this entails ex-
is assumed to hold. We then examine certain specific extending the usual gravitational action to Morse metrics. This
amples of topology changing topological cobordisms in thes discussed in detail for41 dimensions if10]. Keeping
following two sections. The first is the43L black hole pair the Morse points still allows a well-defined causal structure
production instanton studied {i3,14. We show by direct even at the Morse points and hence a well-defined causal
construction that a causally continuous Morse metric existordering of all the spacetime points. This is something which
on the background manifold of the instanton which is furtherties in well with the idea that the fundamental underlying
evidence that that particular topology change is one with structure is a causal set.
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FIG. 1. Two ways of decomposin§ into elementary cobord-
isms.

Before proceeding any further, we briefly review some

relevant properties of Morse functions that we will employ
later. We have utilized Refl16—2(, extensively for this
purpose.

Lemma 1 (Morse Lemma), IfepM is a critical point of a
Morse function fAM—[0,1], then there exists local coordi-
nates x,X, --X, in some neighborhood of p in terms of
which f is given, in that neighborhood, byx,...x,)=c
—x2—x5—x24+x2, -+ x2 for O<A<n and c
=const.

The number of negative signsin the above expression is
the number of maxima dfat the pointp and is referred to as
the Morse indexof f at p. For example, the height function
on the 1+1 yarmulke topology has index O at the bottom
point, while that on its time reversed counterpart has index

The height function on the trousers topology on the other
hand has a Morse point of index 1 at the crotch as does itd

time reverse.

The Morse numbenf M on the other hand is defined to
be the minimum over all Morse functionfs M—[0,1] of
the number of critical points of. Thus, for example, al-
though the cylinder topology in 41 dimensionsallows
Morse functions with any even number of critical points, its
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FIG. 2. “Tracing out” a type 1 surgery 082, whereby ars’ is
destroyed and aB' is created to give the toru8'x St

ened embedded\(— 1) sphereS* " 1x D" from V and re-
place it with a thickenedr(—\ —1) sphereS" *~1xB* by
identifying the boundaries using a diffeomorphism
d:S)”lX Snf}\fl_)snf)\flxs)\fl.

In performing a surgery, effectively, @ —1) sphere is
“destroyed” and an G—\—1) sphere is “created” in this
process. We then have the following theorem which only
depends on surgery type.

Theorem 1. If an{n— 1)-dimensional manifold Y can be
obtained from anothefn— 1)-dimensional manifold Yy by a
surgery of type\, then 3 an elementary cobordismi,
called the trace of a surgery, with boundary\W,; and a
Morse function f onM, f:M—[0,1] which has exactly one
Morse point of index [16].

As an example, consideV,=S? and V;=S'xS! or a
wormhole. Performing a type 1 surgery &3 can result in
the manifoldS' x St, where ars? is “destroyed” and arS!
is “created.” Theorem 1 then says tha an elementary
cobordismM with boundaryS?lIStx St and a Morse func-
tion f on M with a single critical point of index=1. The
manifold M may be visualized as shown in Fig. 2. We now
explain how to construct the trace of a general surgery.

A \ surgery that turn¥/, into V, gives us an embedding
:S* 1V, and a neighborhooN of that embedded sphere
hose closureN is diffeomorphic toS* *xB""*. Indeed,
we have a diffeomorphisnd: 9(N)—S' 1xS""*~1  the
“surgery diffeomorphism.” Now S* " 1xS""*1 s the
boundary ofS*"*xB""* and we can extend to a diffeo-
morphismd:N—S*~*x B"* such thatd restrictsd on the
boundary.d is unique up to isotopy sincB"* is topologi-
cally trivial.

Morse number is nevertheless zero. We then refer to a topo- We construct the trace of the surgery by gluing together

logical cobordism of Morse number 0 agravial cobordism
and that with Morse number 1 as alementarycobordism.

the two manifoldsM ;=V,x| andM,=B"XB"* using a
diffeomorphism from part of the boundary of one to part of

Lemma 2. Any cobordism can be expressed as a compehe boundary of the other in the following way (1) is part

sition of elementary cobordisnj46].

of dM, and is diffeomorphic vial to S* "X B"~* which is

This decomposition is, however, not unique, as can b?,art_of the boundary ofM,. We identify all pointsx

seen in the case of a two-dimensional closed univ&se
shown in Fig. 1. Here we see thgt could be decomposed

into (a) two elementary cobordisms, yarmulke and its timeboundary is diffeomorphic t/,

reverse, ofb) into four elementary cobordisms, namely, the

yarmulke and an upside down trousers topology with twoS
time reversed yarmulkes, one capping each leg. Clearly, thsD
causal structure of the two resulting histories is very differ- " ©

ent.

Before introducing surgery we defifiz® to be an operk
ball andBX to be the closed ball (andB*=1).

A surgeryof type A on an (1—1)-dimensional manifold

V is defined to be the following operation: Remove a thick-

e (N,1) andd(x). The resultant manifold clearly has one
disjoint boundary component which ¥,. That the other
i.e., the result of the sur-
gery onV,, takes a littte more thought to see. Roughly
eaking, in doing the gluing iy we are eliminatindN from
and replacing it with the rest of the boundaryMf, [the
complement of Img) in dM,], i.e., B*xS"*1 exactly as
in the original surgery.

Figure 3 is an example of the trace of a type 1 surgery on
™SS, which is just the 31 trousers topology. Herdy

is the disjoint union of two line segmentsé and C D.
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FIG. 3. Construction of the trace of a type 1 surgery3HS?.

Theﬁline segmgntsA B andCD are identified withA" B’ and FIG. 4. Discontinuity in the causal palst of observerA in the
C ' D', respectively. trousers topologythe dashed lines are appropriately identified

Thus the trace of a surgery is a manifold with boundary withwith two balls, so that neighboring parts of the universe sud-
the property that one part of the boundary is the originaldenly become distant. It seems intuitively clear from these
manifold and the other part of the boundary is the surgicallyexamples that there is something causally peculiar about the
altered manifoldup to diffeomorphismys index 1 andn—1 points and in the next section we give a
precise statement of a conjecture that encapsulates this.

A. Examples IIl. CAUSAL DISCONTINUITY

The n-dimensional yarmulke cobordism and its time re- ) )
verse hold a special place in our analysis since they are easy Borde and Sorkin have conjectured that1(g,,) con-
to characterize. If: M—[0,1] has a single Morse point of t&ins acausal discontinuityf and only if the Morse function

index 0 thenM is the trace of the surgery of type 0 in which f contains an index 1 or an index—1 Morse point[21].
an S"'= is destroyed and a8" ! is created. IfM is What do we mean by causal discontinuity? There are many

connected this implies thatt=B". In other words, a cobor- equivalent conditions for a Lorentzian spacetime to be caus-
dism can have a single index 0 point if and only if it is the @y discontinuoug22] and we define a Morse metric to be
yarmulke. This means that when a component of the uni¢ausally discontinuous iff the spacetime minus the Morse
verse is created from nothirigs opposed to being created by POINts (which 'is Lorentzian is causally discontinuous.
branching off from an already existing universes initial ~ Roughly speaking, a causal discontinuity results in the causal
topology must be that of a sphere, no matter what the dimerast or future Qf a pomt_ in spacetime jumping discontinu-
sion: the big bang always results in an initially spherical©Usly as the pointis continuously moved around. We see that
universe. This might be thought of as a “prediction” of this Pe€havior in the 3 1 trousers—see Fig. 4. Clearly the same
way of treating topology change. A similar argument for thekind of thing will happen in the higher dimensional trousers,

time reversed case implies that a connected cobordism cait not in the yarmulkes. Furthermore in the cases of index
have a single Morse point of index iff it is the time re- N#1,n—1, the spheres that are created and destroyed are all

versed yarmulke and the universe must be topologicallponnected and so it seems that neighboring parts of the uni-
spherical before it can finally disappear in a big crunch. ~ Verse remain close and distant ones remain far apart.

The trousers and its higher dimensional analogues are also 10 lend further plausibility to the conjecture we will work
important examples. There exists a Morse function on th@ut an example, the index 1 point in+1l dimensions, in
1+1 trousers topology which possesses a single Morse poirftetail. Choose a neighborhood of the Morse pgiit which
of index 1 and the trousers is Tﬂ?refolre the trace of a surged® Morse function has the standard form
of type 1 in which an embedde®t XD~ is deleted from the _ 2, o
initial S'1IS! and replaced with 8x S° to form a single fxy)=f(p)=x"+y 2)

St. In (n—1)+1 dimensions, the higher dimensional trou-
sers(the manifoldS" with three open balls removgtbr the
processS" 1S" 13" has an index 1 point and is the
trace of a type 1 surgery in which #XD"2, ie., two dsi=h,,,dx“dx"=dx2+dy?. 3)
balls, are removed and 812X B?, or wormhole, added. In

these processes, parts of the universe which were spatialife define the Morse metrig,,, as in Eq.(1) with {=2 and
far apart suddenly become clo€a these cases the parts of d,f=(—2x,2y) to obtain

the universe are originally in disconnected components of

the universe, but this is not the defining characteristic of ds’=—4(xdx—ydy)?+4(xdy+ydx)2. 4
index 1 pointg. An indexn—1 point is the time reverse of

this and corresponds to a type-1 surgery in which a This metric is actually flat since 2@x—ydy)=d(x?>—y?)
wormhole is removedor cud and the ends “capped off’ and 2kdy+ydx)=2d(xy). In Fig. 5 we see that the hyper-

in terms of some local coordinatég,y). We take the flat
Riemannian metric
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FIG. 5. The behavior of the Morse functidnaround index 1 FIG. 6. Examples of null curves in a neighborhoocppa” solid

pointp in 1+1 dimensions. The solid lines are integral curves of jines. The straight lines are the past and future light congs gfs
g4=h#"g,f with arrows in the direction of increasingand the 3 point on the future null cone q@f

dotted lines are surfaces of constant

Take the Cartesian metric in the local coordinates and let
bolasxy=c, c constant, are the integral curves of the vectorr?2=x2+---x2 andp?=y3+---y2_, so

field é“=h#"g,f and the spatial “surfaces” of constahare

the hyperbolas®—y?=d, d constant. dsi=dr?+r2dQ2_,+dp?+p2dQ2_, ;. (10
What are the null curves in the neighborhoodpdf We
haveds’=0 which implies The Morse metric we construct from these af?2 is
dO®—y?)=x2d(xy), (5) ds?=4(r?+p?)[r?dO3_; +p%d07 4] (12)
X2—y2=+2xy+b. 6) +4(pdr+rdp)®—4(rdr—pdp)?. (12)

The null curves that pass througtare given byp=0 so that ~ This is not flat forn=3. We can now solvels’=0 for a
there are four solutionsy=(=1+v2)x. These are the fixed point onthe X—1) sphere andr(—\—1) sphere and
straight lines througlp at angles/8, 3m/8, 5m/8, 78, to  find that the past and future light cones pfhave base
the x axis. These are the past and future light “cones’pof S'~ "X S" *~*. Note that this base is disconnected for

The null curves which do not pass throughre given by the =1 orn—1. The light cones of other points are more com-
hyperbolasx’'y’=c’ andx’2—y’2=d’, where &’,y’) are Plicated to calculate but a similar argument to that for the

rotated coordinates 1+1 example shows that there is a causal discontinuity for
A=1orn—1.
. - From now on we will assume that the Borde-Sorkin con-
x’=cos§ X+ sin§ Y, (7)  jecture holds. Thus, we can search for causally continuous

histories onM by asking if it admits any Morse functioh
which has no index 1 on—1 critical points: a history cor-
P ain T Z responding to such anwould be causally continuous. If on
y sin 8 X+C058 y ® the other hand, such drdoes not exist, i.e., all Morse func-
tions on M have critical points of either index 1 or—1,
Figure 6 shows a selection of null curves. In particular wethen M does not support causally continuous histories.
see the past and future light cones of paimn the negative We should remind ourselves that for a given Morse func-
x axis and of a point on the future light cone op. Using  tion f on M the number of index critical pointsm, is not
the results of22] we can see that the spacetime aroprid  a topological invariant; in general different Morse functions
not causally continuous. Indeed consider the pqiitt Fig.  will possess different sets of critical points. However there
6. Then|1*(q)#17(q), wherel *(q)(17(q)) is the chrono-  are lower bounds on tha, depending on the homology type
logical future (pas} of g and | (S), S an open set, is the of M. For the topological cobordismM,V,,V,) we have
interior of the set of all pointx for which there exists a the Morse relation
forward directed timelike curve from to every point inS.
The pointsis an element of 1 *(q) but notl ~(q).
The higher dimensional case can be similarly analyzed. 2;4 (M) = Br(M, Vo)t = (1+DR(D), (13
Now we have

. s 5 whereg, (M,V,) are the Betti numbers 0¥ relative toV,
fXY)=f(p)—XT— - =x3+yi+-+yi . (9  andR(t) is a polynomial in the variablewhich has positive
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coefficients[19,20,18. Letting t=—1, we immediately get volved is not local but changes the boundary conditions at

the relative Euler characteristic @#1 in terms of the Morse infinity).

numbers This result, however, says nothing about the status of any
particular topological cobordism in the SOH. In other words,

_ it may not be true that a given topological cobordigh
Vo)=2> (—1)*m,. 14 M ME : :
X(M,Vy) 2;4 (=1)%my (14) admits a causally continuous Morse metric.
Another consequence of E(L3) is V. PAIR PRODUCTION OF BLACK HOLES
m=B\(M, Vo) VA, (15 The pair creation of black holes has been investigated by
_ studying Euclidean solutions of the equations of motion
which places a lower bound on time, . which satisfy the appropriate boundary conditions for the
solution to be an instanton for false vacuum decay. One does
IV. GENERAL TOPOLOGY CHANGE IN  n=4 not have to subscribe to the Euclidean SOH approach to

quantum gravity in order to believe that the instanton calcu-
hlations are sensible. Indeed, we take the attitude that the in-
stantons are not “physical” but only useful machinery for
pproximately calculating amplitud¢9] and that the func-
ional integral is actually over Morse metrics. The issue of

As we have noted, in dimensions critical points of index
0 andn correspond to a big bang and big crunch, whic
allow causally continuous histories. It is only foe=4 that
other types of causally continuous histories can exist. Fo

example, in four dimensions, elementary cobordisms wit hether quantum fields can propagate in a nonsinaular wa
index 1 or 3 critical points correspond to causally discontinu-" quantum Ti can propagate | Inguiar way
on these Morse geometries is therefore relevant and the ques-

ous histories while those of index 2 are causally continuousﬁ N ari to whether I ntin Morse metri
For n=4, we have already mentioned that any two 390" @rises as to whether causally continuous Vorse metrics

manifolds V, and V,; are cobordant, i.e.,.3 a four- can live on the instanton manifold.

dimensionalM such thatiM=V.lIV.. However. we can The doubled instanton, or bounce, corresponding to the
ask whether, given a particular Opa{kll. Vyl, a cc;bordism pair creation and annihilation of nonextremal black holes has
3 0 V1S

2o w2 i ;
M exists which admits a causally continuous metric. If not,the topology S*x S°—pt [13]. Let us compactify this to

2y Q2 2y q2 imnli P
then the Sorkin conjecture would imply that the transition.S XS, The fact thatS .XS IS C'Os?d implies that It will
nclude at least one universe creation and one universe de-

Vy—V; would be suppressed. In other words, does a cobor

dism M exist that admits a Morse function with no index 1 struction, corr(_aspondmg to Morse index 0 an_d 4 points, re-
spectively. This can be seen from the Betti numbgs,

or 3 points? The answer to this is supplied by a well known™ =" N h . 9

result in three manifold theory, the Lickorish-Wallace theo-._'Bi‘_tﬁ' fl_ff_o(’j an(i,Blz;IZthso tne l\ﬁorsi (l)nequalmes

rem, which states that any three manifdlgd can be obtained Imply thatmy=1 andm,=_. oughf,=pB;=0 we can-

from any othelV,, by performing a series of type 2 surgeries not conclude that there exists a Morse function that saturates
0

on Vg [12]. Thus, by Theorem 1 there exists an interpolatingthe botmds of t.rlwle mequr;lllme(seeh the next ?ectpn for an
cobordismM that is the trace of this sequence of surgeriesexf”lmp e)._We_vw prol/e t_at such a I\_/Iorse unction exists
and that therefore admits a Morse function with only index p(with mo=m,=1, m;=m;=0 ac%g M2~ 2) by an explicit
points, so thatM admits a causally continuous metric. construction on the half-instant XB ' 2

This result has the immediate consequence that even if the Let (6,¢) be standarzd polar coordinates &nand ()
Sorkin and Borde-Sorkin conjectures hold and causally digPolar coordinates or”, where 06[0’77]’2 ¢62[.0’2727]’ (1)
continuous histories are suppressed in the SOH, no topologi§rs1 a2nd ‘ﬁf [0,27]. The boundary 05 XB7is S X.S
cal transitionVy—V, would be ruled out in 31 dimen-  ° trzlatsle corresponds to the creation from nothing of
sions. Thus, in this sense, there is no “causal” obstruction @S XS _vvormhole. .
any transitiorVg—V, in 3+ 1 dimensions, just as there is no We define the function
topological(nor Lorentziah obstruction in 3+ 1 dimensions. _1 2 )

This is somewhat disappointing, however, since there are 1041, y)=3(1+1"+cog1-r7)6). (16
some transitions that we might hope would be suppresseqyow, f:S?xB2—[0,1]. The level surfacef ~1(1) satisfies
An important example is the process in which a single priméne conditionr = 1. This is easily seen to be the boundary
three manifold is prc_)ducgd. Quant|zed primes or topolqucabzxsl of $2x B2 (Fig. 7). On the other hand, the level sur-
geons occur as pa.rtlcles in canon|ca_1l quantum gravity similagzce f-1(0) satisfies the condition=0, 6= which is a
to the way skyrmions and other kinks appear in q“a”tunboint onS2x B2.
field theory(see[1] and Sec. VI. We would therefore not
expect single geon production from the vacuum. However,
the restriction of causal continuity will not be enough to rule +(3)r 6 sin(1-r?6 and d,f = — 5(1—r?)sin(1-r?6, while
this out and we will have to wait for more dynamical argu- d,f=4,f=0 everywhere. Thus, there are only twand
ments. This situation is in contrast to that for the Kaluza-therefore isolated critical points of f, i.e., p;=(r=0, 6
Klein monopole where there is a purely topological obstruc-= ) andp,=(r=0, §=0) which are not on the boundary.
tion to the existence of a cobordism for the creation of aln order to show the critical points are nondegenerate and to
single monopold7] (though that case is strictly not within determine their indices we make use of the Morse Lemma
the regime of our discussion since the topology change inand rewritef in suitable local coordinate patches.

We find the critical points of by noting thatd, f=(3)r
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""" Boundary of $2 X D 2
e = 525!
FIG. 7. The level surfacd (1) is the boundang2x St of FIG. 8. AT® prime: the opposite sides of the cube are identified

% B2, as are the opposite edges.

is another simple cobordism for the transition fré®h to
S?x St which is B3x St with an embedded open four-ball
deleted. This, however, by virtue of the Morse inequalities,
admits no Morse function without an index 1 point and so is
causally discontinuous. In some sense, this second causally

Near p,. At p;, f=0. In the neighborhood op,, we
may write 6= 7— € wheree andr are both small and of the
same order(note that the topology of this neighborhood is
just B2x B?). Then,

cog1-r?)g~cog m—e) (17)  discontinuous process is the way one might naturally imag-
ine a wormhole forming: two distant regions of space com-

1 ing “close in hyperspace” and touching to form the worm-

~—1+ 2 €, (18) hole. The index 2 cobordism for creation of a wormhole is

harder to visualise.

and putting x;=(r/v3)sinyg, x,=(r/v3)cosy, X
= (e/\/6)sin ¢ andx,= (e/\/6)cos¢, we see that

f~x24+ x5+ X5+ X5. (19
Thus, p; is an index 0 point.

Near p,. At p,, f=3. In the neighborhood gf,, r and§
are small and of the same order. Then

VI. PAIR PRODUCTION OF TOPOLOGICAL GEONS

Topological geons are particles that exist because of the
nontrivial topology of space. A geon is based on a prime
three manifold, one which cannot be divided further into
nontrivial pieces by embedded two spheres. One can build a
kinematical particle picture in quantum gravity whereby the

geons can be endowed with spin and statistic®4,25,2.
Every prime can be constructed from a solid polyhedron by
identifying its boundary in some way—it is helpful in what
follows to imagine the prime as a tords, so the polyhe-
dron is a solid cube and opposite faces are identifégl 8).
To take the connected sum of a prirRewith any three
manifold V, denotedP#V, the (open solid polyhedron is
Sop, is an index 2 point. deleted fromV and the same identifications made on the
The existence of such a Morse function with two critical resultant boundary(The connected sum is also formed by
points, one of index 0 and the other of index 2, shows thafémoving open balls from each of two three-manifolds and
the black hole pair production topology can support historiesdentifying the resultings® boundaries.
that are causally continuous. The index 0 point is the creation A rather natural cobordism for pair-production of topo-
of an S® from nothing and the index 2 point is the transition logical geons, inspired by its Feynman-diagram likeness, is
from S® to S2x S'. That this is means that a Morse function the “U tube” [26,27. Figure 9 is a 2-1 sketch of this
with the same Morse points exists on the original noncomMmanifold which is formed by removing & tube of solid
pact cobordism, half oB%x S%-{point was later shown in polyhedral cross section out &< | as shown and identi-
[23]. This result is evidence of consistency between the contying the resulting boundaries in a manner appropriate to the
clusion that the existence of an instanton implies that the
process has a finite ratapproximated by~ wherel is the
Euclidean actiopand the idea that only causally continuous
Morse histories contribute to the SOH. P
We note that a simple generalization of the above Morse P
function shows that the higher dimensional black hole pair
creation-annihilation topological cobordis®' ?xB? ad- 3
mits a Morse function with one index O point and an index
(n—2) point and thus supports histories that are causally
continuous for any dimension>4 (though the actual in- FIG. 9. A (2+1)-dimensional representation of thetube co-
stanton solution is unknownlt is also interesting that there bordism forR3— R3#P#P* .

f~2+ir2-1¢? (20

and using y;=(6/\6)sing and y,=(6/\6)cos¢, ys3
=(r/v3)siny, y,=(r/v3)cosy, we see that

f~%—yi-y3+yi+y;. (22)

3 *
R#P#P
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relation for geons also relies on the tube [24]. In the
present context, then, it seems important to test the causal
continuity of theU tube.

In order to use our Morse technology we compactify the
cobordism by adding a point at spatial infinity at every spa-
tial hypersurface. This creates a cobordism betw&tand
P#P*. Then we close off the initial boundary by capping it
with B*. This produces a cobordismv between@ and
P#P* which is B* with a U tube of primeP.

The question we ask is whether tbetube cobordism\,
admits Morse functions witm;=m;=0. In order to do this
we first calculate the Euler characteristicM) and then em-
ploy Eq. (14) which relates it to then,’s.

Now, we can unbend th® tube until it is straight(Fig.

10) to see thatM=| X (P#B%)~P#B3=P—D? (where=
implies diffeomorphic and- homotopy equivalengeand so
x(M=x(P—D3%). We now use the Mayer-Vietoris se-
quence for homology groug28].

s = H(X1N X3) = H(X1) @ H(X3) — H(X)

FIG. 10. TheU-tube pair creation of the prime is homotopic
to P—DS3,

prime P. The initial boundary i®* and the final boundary is
R3#P#P* where P* denotes the chiral conjugatenirror
image of P. (In our example T2 is self-conjugateé.Such a
U-tube cobordism was used to prove a spin-statistics correwhere X; and X, are subspaces ofX with X
lation for certain lens space topological geda# of which  =int(X;)Uint(X,). ChooseX;=P—D? and X,=B? such

are self-conjugajg27]. Moreover, the argument that certain that X=int(X;)Uint(X,)=P and X;NX,=S*X1~S?. On
proposed rules for assigning quantum phases to different caubstitution, the above sequence breaks up into the two long
bordisms would give a completely general spin-statistics corexact sequences

—Hy1(X{NX5)—---, (22)

@ D

B
O—>H3(P—D3)—>H3(P)—>H2(SZ)—>H2(P—D3)—>H2(P)—>O,

and

a b c d

0—H(P-D3%—H(P)—=H(S?»)—HoP-D%@®H(D%)—Hy(P)—0.

Let us first examine the map:H3(P)—H,(S?) in Eq.
(23). For ann-dimensional spack¥=X;UX,, eachn cyclez
in X is homologous to a cycle of the form + y, wherey,
is an n cycle in X;. Moreover, if D:H,(X;UX,)
—H,_1(X, NX,) is the connecting homomorphism in the
Mayer-Vietoris sequence, theB(clsz)=D(cls(yi+ v,))
=cls(dy,) (Lemma 6.19 if28)).

Now, H3(P)=7 andH,(S?) =Z. Let clszbe the genera-
tor of H3(P). From the aboveD(cls2)=D(cls(y;+ v5))
=cls(dy,), wherey, is a three cycle iP—D? and y, one
in B3. Remembering thaP=(P—D3®UB?® is a closed
manifold, the only nontrivial three cycle is one that fully
triangulatesP. This means tha#y; is a nontrivial two cycle
in 9(P—D3~(P-D%NB3*~S? and henceclsdy, is the
generator oH,(S?). ThusD maps the generator ¢ 3(P)
=7 to the generator dfl ,(S?) =Z which implies that it is an
isomorphism.

SinceD is an isomorphismker(D)=0=im(«). « being
a 1-1 map, Hy(P—D3=0. Next, ker(8)=im(D)

5
(23

e f

(29)

=H,(S). Henceim(B)=0=ker(s). Thus, § which is an
onto map is also + 1= 8, an isomorphism, oH,(P—D3)

From Eq.(24), usingHy(X) =7 for X connected, we see
that ker(e)=Z=im(d)=d is onto and hence 11.
Thus, ker(d)=0=im(c)= ker(c)=H,(P)=im(b). This
implies thatb is onto and also being-11, an isomorphism.
ThusH,(P—D3%=H,(P).

Summarizing, we have

H\,(P—D3%=H,(P) for A=0,1,2 (25

=0 for A=3. (26)
Thus, the first three Betti numbers oM: By(M),
B1(M), Bo(M) are the same as those fBr SinceP is a
closed three-manifoldy(P)=0, and B3(P)=1 and there-
fore y(M)=x(P)+1=1.
From the Morse inequalities we hawg,=1 andm,=0.
Using this along with relatioril4) we see that
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m; +mz—m,=0. (27) VII. CONCLUSIONS

We have described a rather natural framework for consid-
ering topology change within the SOH for quantum gravity
based on Morse theory. Two key conjectures lead to the

) : o roposal that only causally continuous cobordisms be in-
the big bang and big crunch topologies it seems thamust )b . ; o .
be ruled out since there would otherwise be no topologfIUded in the sum and that these are identified with Morse

change apart from the big bang creation ofS#rfrom noth- \r;]vetlrcs wgh no index 1 om -1 p%mts. The_f I_Ig:korlsh—h
ing. A systematic argument leading to this conclusion em- allace theorem on surgery on three-maniiolds together

ploys the following theorem due to Re€9]: with the Borde-Sorkin conjecture means that any topology
Theorem 2. IfM is a compact n-dimensional manifold changing transition in 31 dimensions is achievable by a
without boundary, admitting a Morse function¥(—[0,1]  causally c_ontinuous cobordism. The higher dimensional
with only two critical points, thenM is homeomorphic to Statement is not known.
SN, We have shown that the black hole pair production instan-
Using this, we now show thdb) leads to a contradiction. ton S*XS? admits causally continuous Morse metrics
First, this implies thaty=1 andm,=0. Then, consider the Whereas the U-tube” cobordism for pair production of to-
double of M, the manifoldV= MU M where M is a time-  Pological geons of any sort is necessarily causally discon-
reversed copy oM and the union is taken by identifying the tinuous. _ o
boundaries in the obvious way. F is the time-reversed ~ The result on the black hole pair production instanton
pointsm, of f are related to then, by m,=m,_, . We can topological georlU-tube pair production cobordism calcula-
Ao -

extend the Morse functiohon M to someF on A’ as fol- tion is a serious setback. It is hard to see how to rescue the
lows: spin-statistics theorem for lens spaces if théube cobord-

ism is indeed suppressed because it cannot support causally
F =1 (29) continuous histories. It seems to be the canonical pair-
' creation cobordism and the proof of the theorem rests
— heavily on its properties. Moreover the more general rules
Fm=1t. (29 proposed by Sorkifi24] that would lead to a spin-statistics
correlation for all geons also rely on cobordisms that contain
F will therefore have exactly twice the total number of criti- U-tubes and these would also be in jeopardy.

Equation(27) implies that eithe(a) m; or mg (or both are
nonzero or(b) m;=my,=m3;=0.
From our earlier comments on the special role played b

cal points thaf has, and the number of indexpoints of 7 This might mean that the notion of primes as particles
are given by does not survive with topology change. The causal continuity
o of the single prime creation and the causal discontinuity of
My =My My =my +mp_y (30)  the U-tube cobordism can then be regarded as a manifesta-

tion of this problem. However, since an important and physi-

so thatu,=un_». Thenuo=pus=1, u1=u,=u3=0 and cally appealing motivation for topology change comes from
so F possesses only two critical points, one of index 0 andhe study of primes as particlé$,24], we suggest here that
the other of index 4. Sinc&’is a closed manifold, theorem 2 this is not the case.
implies that\is homeomorphic t&*, which is clearly false, A possible resolution that might save the geon spin-
i.e., (b) is incorrect. statistics result, is that there must be a weakness in the se-

Thus, from(a) we see thatiny Morse functionf on M guence of conjectures to which we have drawn attention and
must possess critical points of index 1 or 3. This meansvhich form the framework in which causal continuity be-
therefore that any spacetim@(,g,,) WhereM is ageneric comes so central. The Borde-Sorkin conjecture—that a
U-tube cobordism in which an arbitrary prinfé is pair-  Morse metric is causally continuous iff it contains no index 1
produced will have causal discontinuities. Notice that we caror (n—1) points—seems to be the most solid. Work on a
choose the prime manifol® to be such that the Betti num- proof is currently underwa}30]. The Sorkin conjecture that
bers of the cobordism are zero, except By and 8,. For  an infinite energy/particle production would occur in a
example, P=RP%. This, then, is an example where the Morse spacetime iff it contained a causal discontinuity seems
bounds of the Morse inequalities cannot be realized. plausible but would need to be verified by more examples

The implications of this result are not very favorable tothan the (& 1)-dimensional trousers and yarmulke studied
the particle picture of primes. It seems that either the pictureso far. In particular, the first example of a causally continu-
we have been building here in which causally discontinuou®us spacetime that is not the yarmulke occurs in113di-
histories are suppressed in the SOH fails in some way or thmensions. Work on this second conjecture will be easier
restoration of the spin-statistics correlation for geons in aronce the first is proved since then simple examples of caus-
illusion (the kinematical calculations ¢R7] would remain  ally continuous metrics can be written down using the Morse
true but the more dynamical considerations of causal contieonstruction. Then finally, there is the idea that the singular
nuity would reveal the amplitudes considered to be neglibehavior of quantum fields on a causally discontinuous back-
gible) We discuss some possible ways out in the final secground is a signal that it is infinitely suppressed in the SOH.
tion. What one means by this is the following. Consider a scalar
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field minimally coupled to gravity. The path integral is should be defined fundamentally as a sum over whatever
discrete structure will prove to underly the differentiable

S f [dg][d¢]eif¢TgR+if¢——g(a¢)2 (31) manlfp!d of general re!at|V|ty. If it is a causa_l set t_hen all

quantities calculated will be regulated. The elimination alto-

_ o _ gether of the causally discontinuous cobordisms would then
(where we have omitted the explicit and important statemenpe too severe a truncation, and even if they are still sup-

about boundary conditionsWe may integrate out the scalar pressed, they might give a nontrivial contribution.
field degrees of freedom, i.e.,

all topologies

f [dp]ell =90’ = F[q]. 32 ACKNOWLEDGMENTS
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