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Topology change and causal continuity
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The result that, for a scalar quantum field propagating on a ‘‘trousers’’ topology in 111 dimensions, the
crotch singularity is a source for an infinite burst of energy has been used to argue against the occurrence of
topology change in quantum gravity. We draw attention to a conjecture due to Sorkin that it may be the
particular type of topology change involved in the trousers transition that is problematic and that other topol-
ogy changes may not cause the same difficulties. The conjecture links the singular behavior to the existence of
‘‘causal discontinuities’’ in the spacetime and relies on a classification of topology changes using Morse
theory. We investigate various topology changing transitions, including the pair production of black holes and
of topological geons, in the light of these ideas.@S0556-2821~98!07020-9#

PACS number~s!: 04.60.Gw, 02.40.Vh, 04.20.Gz
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I. INTRODUCTION

It is widely believed that any complete theory of quantu
gravity must incorporate topology change. Indeed, within
particle picture of quantum gravity@1# the frozen topology
framework for a generic spatial three-manifold leads to
problem of spin-statistics violations and such wild variet
of quantum sectors that it seems that a frozen topolog
unmaintainable@2#. There is one result, however, that h
been cited as counterevidence for topology change: tha
the singular propagation of a quantum field on a trous
spacetime in 111 dimensions@3,4#. We will see how it may
be possible to incorporate this result naturally in a fram
work which nevertheless allows topology change in gene

The most natural way of accommodating topology cha
ing processes in quantum gravity is using the sum-ov
histories~SOH! approach, although there has also been so
effort in this direction within the Hamiltonian picture@5#.
We take a history in quantum gravity to be a pair (M,g),
whereM is a smoothn-dimensional manifold andg is a
time-oriented Lorentzian metric onM. @Strictly, a history is
a geometry and only represented by (M,g).# The amplitude
for the transition from an initial space (V0 ,q0) to a final
space (V1 ,q1), where theVi are closed (n21) manifolds
and theqi are Riemannian (n21) metrics, receives contri
butions from all compact interpolating histories (M,g), sat-
isfying the boundary conditions]M5Vi IIVf , guVi , f5qi , f
where II denotes a disjoint union andV0 and V1 are initial
and final spacelike boundaries of (M,g). We call the mani-
fold M such that]M5Vi IIVf , a topological cobordism,
and (M,g), a Lorentzian cobordism. We will say that a
topological cobordism or a history istopology changingif
M is not a productV03I , whereI is the unit interval. We
will use the terminologytopology changing transitionto re-
fer to the transition fromV0 to V1 whenV0 andV1 are not

*Email address: dowker@@ic.ac.uk
†Email address: ssurya@@iucaa.ernet.in
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diffeomorphic, without reference to any particular cobor
ism.

WhenV0 andV1 are not diffeomorphic, the existence of
topological cobordismM is equivalent to the equality of the
Stiefel-Whitney numbers ofV0 andV1 and is not guaranteed
in arbitrary dimensions. If a topological cobordism does n
exist we would certainly conclude that the transition is fo
bidden. In 311 and lower dimensions, however, a topolog
cal cobordism always exists. Then, given a topological
bordismM a Lorentzian cobordism based onM will exist
iff @6,7# ~1! n is even andx(M)50 or ~2! n is odd and
x(V0)5x(V1). In 311 dimensions, a topological cobord
ism with x(M)50 always exists and thus any thre
dimensionalV0 andV1 are Lorentz cobordant.

The theorem of Geroch@8#, extended ton-spacetime di-
mensions, tells us that if a time oriented Lorentzian me
exists on a topology changing topological cobordismM then
that metric must contain closed timelike curves. We consi
these to be a worse pathology than the alternative which i
allow certain singularities in the metric, i.e., to weaken t
restriction that the metric be Lorentzian everywhere, a
which, following the proposal of Sorkin@9#, is what we will
choose to do in this paper. The singularities which we ne
to admit in order to be able to consider all possible topolo
cal cobordisms are rather mild. Given any topological cob
dism (M;V0 ,V1), there exists an almost everywhere Loren
zian metricg onM which has singularities which take th
form of degeneracies where the metric vanishes at~finitely
many! isolated points. These degeneracies each take on
(n11) standard forms described by Morse theory as
shall relate. Allowing such singular metrics seems natura
light of the fact that within the path integral formulation
paths are not always required to be smooth; in fact they
known to be distributional. Moreover, such degeneracies
allowed within a vielbien formulation of gravity. For a dis
cussion of these points, see@10#.

So, by allowing such mildly singular Lorentz cobordism
in the SOH no topological cobordism is excluded and,
particular, every transition in 311 dimensions is viable a
©1998 The American Physical Society19-1
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this level of the kinematics. We will refer to these cobor
isms as ‘‘Morse cobordisms.’’ However it seems that d
namically some Morse cobordisms may be more equal t
others. The~111!-dimensional case gives us an idea abou
possible class of ‘‘physically desirable’’ histories. For
massless scalar quantum field on a fixed~flat! metric on the
111 trousers topology there is an infinite burst of ener
from the crotch singularity that propagates along the fut
light cone of the singularity@3,4#. This tends to suggest tha
such a history would be suppressed in a full SOH for 111
quantum gravity. By contrast, the singular behavior of
quantum field on the background of a flat metric on the 111
‘‘yarmulke’’ cobordism ~i.e., a hemisphere representin
creation/destruction of anS1 from/to nothing! is of a signifi-
cantly different nature, in the sense that when integrated o
the future null directions the stress-energy is finite@11#. The
singularity in the yarmulke case is therefore effective
‘‘squelched,’’ while it propagates in the trousers. Indeed,
studying 111 models of topology change, the authors of@10#
have found that there is a suppression of the trousers co
dism in the SOH and an enhancement by an equal facto
the yarmulke cobordism~over the trivial cylinder! and sepa-
rate from the suppression due to the backgrounds not b
classical solutions.

What features of the trousers and yarmulke might acco
for the different behaviors of quantum fields in these ba
grounds? A closer look shows that in the Morse cobord
on the trousers manifold an observer encounters a disc
nuity in the volume of her causal past as she traverses f
the leg region into the body. Since such a discontinuity
absent in the yarmulke topology and cylinder topologi
Sorkin has conjectured that there may be an intimate con
tion between the discontinuity in the volume of the cau
past/future of an observer~a causal discontinuity! and the
physically undesirable infinite burst of energy for a sca
field propagating in such a background. And then furth
that this could signal a suppression of the amplitude fo
causally discontinuous spacetime in the full SOH in quant
gravity.

The plan for this paper is the following. In the next se
tion we include a review of Morse theory and surgery theo
thus setting the stage for our work. We find that wheneve
component of the universe is created from nothing, its ini
spatial topology must be that of a sphere. In Sec. III we s
a conjecture of Borde and Sorkin that relates causal disc
tinuities to the Morse ‘‘type’’ of a cobordism. In order t
lend substance to this conjecture, we work out the exam
of the trousers topology in 111 dimensions which also gen
eralizes to higher dimensions. In Sec. IV we present an
gument by Sorkin@12#, thatany topology changing transition
in 311 dimensions can be achieved by some causally c
tinuous Morse cobordism, once the Borde-Sorkin conject
is assumed to hold. We then examine certain specific
amples of topology changing topological cobordisms in
following two sections. The first is the 311 black hole pair
production instanton studied in@13,14#. We show by direct
construction that a causally continuous Morse metric ex
on the background manifold of the instanton which is furth
evidence that that particular topology change is one wit
12401
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finite amplitude. This result generalizes simply to higher
mensions even though the exact instantons are not kno
The second class of cobordisms we analyze is a set of m
folds that describe in a natural way the pair production
topological geons in the particle picture of prime manifol
@1#. We will show that, unfortunately, these manifolds do n
support causally continuous Morse metrics. We summa
these results in the last section and discuss their implicati

II. MORSE THEORY AND SURGERY

SupposeM is an n-dimensional, compact, smooth, con
nected manifold such that]M has two disjoint
(n21)-dimensional componentsV0 and V1 that are closed
and correspond to the initial and final boundaries of
spacetime, respectively.

Any suchM admits aMorse function f:M→@0,1#, with
f uv i50, f uv f51 such thatf possesses a set of critical poin
$pk% „]af (pk)50… which are nondegenerate~i.e., the Hes-
sian ]a]bf at these points is invertible!. It follows that the
critical points off are isolated and that becauseM is com-
pact, there are only a finite number of them.

Using this Morse function and any Riemannian metrichab
onM, we may then construct an almost everywhere Lore
zian metric onM with a finite number of isolated degener
cies,

gab5hab~hcd]cf ]df !2z]af ]bf , ~1!

where the constantz.1 @10#. Clearly, gab is degenerate
~zero! precisely at the critical points off. We refer to these
points as ‘‘Morse singularities.’’ Expressing a metric onM
in terms of its Morse functionsf relates the latter to the
causal structure of the spacetime in an intimate manner
we will see.

We now make the proposal that in the SOH, for the a
plitude for a topology changing process, for each topologi
cobordism, only metrics that can be expressed in the form~1!
~i.e., which can be constructed from some Morse funct
and some Riemannian metric! will be included. We call such
metrics ‘‘Morse metrics.’’ Note that since a Riemannia
metric and Morse function always exist on a given topolo
cal cobordism, no cobordism is ruled out of the SOH at t
kinematical level.

A comment is in order here to relate this proposal to p
vious works on Lorentzian topology change and Mor
theory. In work by Yodzis@15# the attitude was taken tha
the Morse singularities should not be considered as par
spacetime, in other words, the Morse points themselves w
to be removed by sending them to infinity. In contrast, h
we are suggesting that the Morse points should remain
part of the spacetime. Amongst other things, this entails
tending the usual gravitational action to Morse metrics. T
is discussed in detail for 111 dimensions in@10#. Keeping
the Morse points still allows a well-defined causal structu
even at the Morse points and hence a well-defined ca
ordering of all the spacetime points. This is something wh
ties in well with the idea that the fundamental underlyi
structure is a causal set.
9-2
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TOPOLOGY CHANGE AND CAUSAL CONTINUITY PHYSICAL REVIEW D58 124019
Before proceeding any further, we briefly review som
relevant properties of Morse functions that we will empl
later. We have utilized Ref.@16–20#, extensively for this
purpose.

Lemma 1 (Morse Lemma), If pPM is a critical point of a
Morse function f:M→@0,1#, then there exists local coordi
nates x1 ,x2¯xn in some neighborhood of p in terms
which f is given, in that neighborhood, by f(x1 ,...,xn)5c
2x1

22x2
2
¯2xl

21xl11
2

¯1xn
2 for 0<l<n and c

5const..
The number of negative signsl in the above expression i

the number of maxima off at the pointp and is referred to as
the Morse indexof f at p. For example, the height functio
on the 111 yarmulke topology has index 0 at the botto
point, while that on its time reversed counterpart has inde
The height function on the trousers topology on the ot
hand has a Morse point of index 1 at the crotch as doe
time reverse.

The Morse numberof M on the other hand is defined t
be the minimum over all Morse functionsf :M→@0,1# of
the number of critical points off. Thus, for example, al-
though the cylinder topology in 111 dimensionsallows
Morse functions with any even number of critical points,
Morse number is nevertheless zero. We then refer to a to
logical cobordism of Morse number 0 as atrivial cobordism
and that with Morse number 1 as anelementarycobordism.

Lemma 2. Any cobordism can be expressed as a com
sition of elementary cobordisms@16#.

This decomposition is, however, not unique, as can
seen in the case of a two-dimensional closed universeS2,
shown in Fig. 1. Here we see thatS2 could be decompose
into ~a! two elementary cobordisms, yarmulke and its tim
reverse, or~b! into four elementary cobordisms, namely, t
yarmulke and an upside down trousers topology with t
time reversed yarmulkes, one capping each leg. Clearly,
causal structure of the two resulting histories is very diff
ent.

Before introducing surgery we defineDk to be an openk
ball andBk to be the closedk ball ~andB15I !.

A surgeryof type l on an (n21)-dimensional manifold
V is defined to be the following operation: Remove a thic

FIG. 1. Two ways of decomposingS2 into elementary cobord-
isms.
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ened embedded (l21) sphereSl213Dn2l from V and re-
place it with a thickened (n2l21) sphereSn2l213Bl by
identifying the boundaries using a diffeomorphis
d:Sl213Sn2l21→Sn2l213Sl21.

In performing a surgery, effectively, a~l21! sphere is
‘‘destroyed’’ and an (n2l21) sphere is ‘‘created’’ in this
process. We then have the following theorem which o
depends on surgery type.

Theorem 1. If an(n21)-dimensional manifold V1 can be
obtained from another(n21)-dimensional manifold V0 by a
surgery of typel, then ' an elementary cobordismM,
called the trace of a surgery, with boundary V0IIV1 and a
Morse function f onM, f :M→@0,1# which has exactly one
Morse point of indexl @16#.

As an example, considerV05S2 and V15S13S1 or a
wormhole. Performing a type 1 surgery onS2 can result in
the manifoldS13S1, where anS0 is ‘‘destroyed’’ and anS1

is ‘‘created.’’ Theorem 1 then says that' an elementary
cobordismM with boundaryS2IIS13S1 and a Morse func-
tion f onM with a single critical point of indexl51. The
manifoldM may be visualized as shown in Fig. 2. We no
explain how to construct the trace of a general surgery.

A l surgery that turnsV0 into V1 gives us an embedding
i :Sl21→V0 and a neighborhoodN of that embedded spher
whose closureN̄ is diffeomorphic toSl213Bn2l. Indeed,
we have a diffeomorphismd:](N̄)→Sl213Sn2l21, the
‘‘surgery diffeomorphism.’’ Now Sl213Sn2l21 is the
boundary ofSl213Bn2l and we can extendd to a diffeo-
morphismd̃:N̄→Sl213Bn2l such thatd̃ restrictsd on the
boundary.d̃ is unique up to isotopy sinceBn2l is topologi-
cally trivial.

We construct the trace of the surgery by gluing toget
the two manifoldsM15V03I and M25Bl3Bn2l using a
diffeomorphism from part of the boundary of one to part
the boundary of the other in the following way. (N̄,1) is part
of ]M1 and is diffeomorphic viad̃ to Sl213Bn2l which is
part of the boundary ofM2 . We identify all points x
P(N̄,1) and d̃(x). The resultant manifold clearly has on
disjoint boundary component which isV0 . That the other
boundary is diffeomorphic toV1 , i.e., the result of the sur
gery on V0 , takes a little more thought to see. Rough
speaking, in doing the gluing byd̃ we are eliminatingN̄ from
V0 and replacing it with the rest of the boundary ofM2 @the
complement of Im(d̃) in ]M2#, i.e., Bl3Sn2l21 exactly as
in the original surgery.

Figure 3 is an example of the trace of a type 1 surgery
™S1IIS1, which is just the 111 trousers topology. Here,N̄

is the disjoint union of two line segmentsAWB and CWD.

FIG. 2. ‘‘Tracing out’’ a type 1 surgery onS2, whereby anS0 is
destroyed and anS1 is created to give the torusS13S1.
9-3
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FAY DOWKER AND SUMATI SURYA PHYSICAL REVIEW D 58 124019
Thus the trace of a surgery is a manifold with boundary w
the property that one part of the boundary is the origi
manifold and the other part of the boundary is the surgica
altered manifold~up to diffeomorphisms!.

A. Examples

The n-dimensional yarmulke cobordism and its time r
verse hold a special place in our analysis since they are
to characterize. Iff :M→@0,1# has a single Morse point o
index 0 thenM is the trace of the surgery of type 0 in whic
an S21[F is destroyed and anSn21 is created. IfM is
connected this implies thatM>Bn. In other words, a cobor
dism can have a single index 0 point if and only if it is th
yarmulke. This means that when a component of the u
verse is created from nothing~as opposed to being created b
branching off from an already existing universe! its initial
topology must be that of a sphere, no matter what the dim
sion: the big bang always results in an initially spheric
universe. This might be thought of as a ‘‘prediction’’ of th
way of treating topology change. A similar argument for t
time reversed case implies that a connected cobordism
have a single Morse point of indexn iff it is the time re-
versed yarmulke and the universe must be topologic
spherical before it can finally disappear in a big crunch.

The trousers and its higher dimensional analogues are
important examples. There exists a Morse function on
111 trousers topology which possesses a single Morse p
of index 1 and the trousers is therefore the trace of a surg
of type 1 in which an embeddedS03D1 is deleted from the
initial S1IIS1 and replaced with aB13S0 to form a single
S1. In (n21)11 dimensions, the higher dimensional tro
sers~the manifoldSn with three open balls removed! for the
processSn21IISn21→Sn21 has an index 1 point and is th
trace of a type 1 surgery in which anS03Dn22, i.e., two
balls, are removed and anSn223B1, or wormhole, added. In
these processes, parts of the universe which were spa
far apart suddenly become close~in these cases the parts
the universe are originally in disconnected components
the universe, but this is not the defining characteristic
index 1 points!. An index n21 point is the time reverse o
this and corresponds to a typen21 surgery in which a
wormhole is removed~or cut! and the ends ‘‘capped off’’

FIG. 3. Construction of the trace of a type 1 surgery onS1IIS1.

The line segmentsAWB and CWD are identified withA8WB8 and

C 8WD8, respectively.
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with two balls, so that neighboring parts of the universe s
denly become distant. It seems intuitively clear from the
examples that there is something causally peculiar about
index 1 andn21 points and in the next section we give
precise statement of a conjecture that encapsulates this.

III. CAUSAL DISCONTINUITY

Borde and Sorkin have conjectured that (M,gab) con-
tains acausal discontinuityif and only if the Morse function
f contains an index 1 or an indexn21 Morse point@21#.
What do we mean by causal discontinuity? There are m
equivalent conditions for a Lorentzian spacetime to be ca
ally discontinuous@22# and we define a Morse metric to b
causally discontinuous iff the spacetime minus the Mo
points ~which is Lorentzian! is causally discontinuous
Roughly speaking, a causal discontinuity results in the cau
past or future of a point in spacetime jumping discontin
ously as the point is continuously moved around. We see
behavior in the 111 trousers—see Fig. 4. Clearly the sam
kind of thing will happen in the higher dimensional trouse
but not in the yarmulkes. Furthermore in the cases of ind
lÞ1, n21, the spheres that are created and destroyed ar
connected and so it seems that neighboring parts of the
verse remain close and distant ones remain far apart.

To lend further plausibility to the conjecture we will wor
out an example, the index 1 point in 111 dimensions, in
detail. Choose a neighborhood of the Morse pointp in which
the Morse function has the standard form

f ~x,y!5 f ~p!2x21y2 ~2!

in terms of some local coordinates~x,y!. We take the flat
Riemannian metric

dsR
25hmndxmdxn5dx21dy2. ~3!

We define the Morse metricgmn as in Eq.~1! with z52 and
]m f 5(22x,2y) to obtain

dsL
2524~xdx2ydy!214~xdy1ydx!2. ~4!

This metric is actually flat since 2(xdx2ydy)5d(x22y2)
and 2(xdy1ydx)52d(xy). In Fig. 5 we see that the hyper

FIG. 4. Discontinuity in the causal pastI 2 of observerA in the
trousers topology~the dashed lines are appropriately identified!.
9-4
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TOPOLOGY CHANGE AND CAUSAL CONTINUITY PHYSICAL REVIEW D58 124019
bolasxy5c, c constant, are the integral curves of the vec
field jm5hmn]n f and the spatial ‘‘surfaces’’ of constantf are
the hyperbolasx22y25d, d constant.

What are the null curves in the neighborhood ofp? We
havedsL

250 which implies

d~x22y2!562d~xy!, ~5!

x22y2562xy1b. ~6!

The null curves that pass throughp are given byb50 so that
there are four solutions:y5(616&)x. These are the
straight lines throughp at anglesp/8, 3p/8, 5p/8, 7p/8, to
the x axis. These are the past and future light ‘‘cones’’ ofp.
The null curves which do not pass throughp are given by the
hyperbolasx8y85c8 and x822y825d8, where (x8,y8) are
rotated coordinates

x85cos
p

8
x1sin

p

8
y, ~7!

y852sin
p

8
x1cos

p

8
y. ~8!

Figure 6 shows a selection of null curves. In particular
see the past and future light cones of points on the negative
x axis and of a pointq on the future light cone ofp. Using
the results of@22# we can see that the spacetime aroundp is
not causally continuous. Indeed consider the pointq in Fig.
6. Then↓I 1(q)ÞI 2(q), whereI 1(q)„I 2(q)… is the chrono-
logical future ~past! of q and ↓(S), S, an open set, is the
interior of the set of all pointsx for which there exists a
forward directed timelike curve fromx to every point inS.
The points is an element of↓I 1(q) but not I 2(q).

The higher dimensional case can be similarly analyz
Now we have

f ~xW ,yW !5 f ~p!2x1
22¯2xl

21y1
21¯1yn2l

2 . ~9!

FIG. 5. The behavior of the Morse functionf around index 1
point p in 111 dimensions. The solid lines are integral curves
jm5hmn]n f with arrows in the direction of increasingf and the
dotted lines are surfaces of constantf.
12401
r

e
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Take the Cartesian metric in the local coordinates and
r 25x1

21¯xl
2 andr25y1

21¯yn2l
2 so

dsR
25dr21r 2dVl21

2 1dr21r2dVn2l21
2 . ~10!

The Morse metric we construct from these andz52 is

dsL
254~r 21r2!@r 2dVl21

2 1r2dVn2l21
2 # ~11!

14~rdr1rdr!224~rdr 2rdr!2. ~12!

This is not flat forn>3. We can now solvedsL
250 for a

fixed point on the (l21) sphere and (n2l21) sphere and
find that the past and future light cones ofp have base
Sl213Sn2l21. Note that this base is disconnected forl
51 or n21. The light cones of other points are more com
plicated to calculate but a similar argument to that for t
111 example shows that there is a causal discontinuity
l51 or n21.

From now on we will assume that the Borde-Sorkin co
jecture holds. Thus, we can search for causally continu
histories onM by asking if it admits any Morse functionf
which has no index 1 orn21 critical points: a history cor-
responding to such anf would be causally continuous. If on
the other hand, such anf does not exist, i.e., all Morse func
tions onM have critical points of either index 1 orn21,
thenM does not support causally continuous histories.

We should remind ourselves that for a given Morse fun
tion f onM the number of indexl critical pointsml is not
a topological invariant; in general different Morse functio
will possess different sets of critical points. However the
are lower bounds on theml depending on the homology typ
of M. For the topological cobordism (M,V0 ,V1) we have
the Morse relation

(
l

„ml2bl~M,V0!…tl5~11t !R~ t !, ~13!

wherebl(M,V0) are the Betti numbers ofM relative toV0
andR(t) is a polynomial in the variablet which has positive

f
FIG. 6. Examples of null curves in a neighborhood ofp, all solid

lines. The straight lines are the past and future light cones ofp. q is
a point on the future null cone ofp.
9-5
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FAY DOWKER AND SUMATI SURYA PHYSICAL REVIEW D 58 124019
coefficients@19,20,18#. Letting t521, we immediately get
the relative Euler characteristic ofM in terms of the Morse
numbers

x~M,V0!5(
l

~21!lml . ~14!

Another consequence of Eq.~13! is

ml>bl~M,V0! ;l, ~15!

which places a lower bound on theml .

IV. GENERAL TOPOLOGY CHANGE IN n54

As we have noted, inn dimensions critical points of index
0 and n correspond to a big bang and big crunch, whi
allow causally continuous histories. It is only forn>4 that
other types of causally continuous histories can exist.
example, in four dimensions, elementary cobordisms w
index 1 or 3 critical points correspond to causally discontin
ous histories while those of index 2 are causally continuo

For n54, we have already mentioned that any two
manifolds V0 and V1 are cobordant, i.e.,' a four-
dimensionalM such that]M5V0IIV1 . However, we can
ask whether, given a particular pair$V0 ,V1%, a cobordism
M exists which admits a causally continuous metric. If n
then the Sorkin conjecture would imply that the transiti
V0→V1 would be suppressed. In other words, does a cob
dismM exist that admits a Morse function with no index
or 3 points? The answer to this is supplied by a well kno
result in three manifold theory, the Lickorish-Wallace the
rem, which states that any three manifoldV1 can be obtained
from any otherV0 by performing a series of type 2 surgeri
on V0 @12#. Thus, by Theorem 1 there exists an interpolat
cobordismM that is the trace of this sequence of surger
and that therefore admits a Morse function with only inde
points, so thatM admits a causally continuous metric.

This result has the immediate consequence that even i
Sorkin and Borde-Sorkin conjectures hold and causally
continuous histories are suppressed in the SOH, no topo
cal transitionV0→V1 would be ruled out in 311 dimen-
sions. Thus, in this sense, there is no ‘‘causal’’ obstruction
any transitionV0→V1 in 311 dimensions, just as there is n
topological~nor Lorentzian! obstruction in 311 dimensions.

This is somewhat disappointing, however, since there
some transitions that we might hope would be suppres
An important example is the process in which a single pri
three manifold is produced. Quantized primes or topolog
geons occur as particles in canonical quantum gravity sim
to the way skyrmions and other kinks appear in quant
field theory ~see@1# and Sec. VI!. We would therefore not
expect single geon production from the vacuum. Howev
the restriction of causal continuity will not be enough to ru
this out and we will have to wait for more dynamical arg
ments. This situation is in contrast to that for the Kaluz
Klein monopole where there is a purely topological obstr
tion to the existence of a cobordism for the creation o
single monopole@7# ~though that case is strictly not withi
the regime of our discussion since the topology change
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volved is not local but changes the boundary conditions
infinity!.

This result, however, says nothing about the status of
particular topological cobordism in the SOH. In other word
it may not be true that a given topological cobordismM
admits a causally continuous Morse metric.

V. PAIR PRODUCTION OF BLACK HOLES

The pair creation of black holes has been investigated
studying Euclidean solutions of the equations of moti
which satisfy the appropriate boundary conditions for t
solution to be an instanton for false vacuum decay. One d
not have to subscribe to the Euclidean SOH approach
quantum gravity in order to believe that the instanton cal
lations are sensible. Indeed, we take the attitude that the
stantons are not ‘‘physical’’ but only useful machinery f
approximately calculating amplitudes@9# and that the func-
tional integral is actually over Morse metrics. The issue
whether quantum fields can propagate in a nonsingular
on these Morse geometries is therefore relevant and the q
tion arises as to whether causally continuous Morse met
can live on the instanton manifold.

The doubled instanton, or bounce, corresponding to
pair creation and annihilation of nonextremal black holes
the topologyS23S22pt @13#. Let us compactify this to
S23S2. The fact thatS23S2 is closed implies that it will
include at least one universe creation and one universe
struction, corresponding to Morse index 0 and 4 points,
spectively. This can be seen from the Betti numbers,b0
5b451, b15b350, andb252 so the Morse inequalities
imply that m0>1 andm4>1. Althoughb15b350 we can-
not conclude that there exists a Morse function that satur
the bounds of the inequalities~see the next section for a
example!. We will prove that such a Morse function exis
~with m05m451, m15m350 and m252! by an explicit
construction on the half-instantonS23B2.

Let ~u,f! be standard polar coordinates onS2 and (r ,c)
polar coordinates onB2, where uP@0,p#, fP@0,2p#, 0
<r<1 andcP@0,2p#. The boundary ofS23B2 is S23S1

so thatS23B2 corresponds to the creation from nothing
an S23S1 wormhole.

We define the function

f ~u,f,r ,c!5 1
3 „11r 21cos~12r 2!u…. ~16!

Now, f :S23B2→@0,1#. The level surfacef 21(1) satisfies
the conditionr 51. This is easily seen to be the bounda
S23S1 of S23B2 ~Fig. 7!. On the other hand, the level su
face f 21(0) satisfies the conditionr 50, u5p which is a
point onS23B2.

We find the critical points off by noting that] r f 5( 2
3)r

1(2
3)ru sin(12r2)u and ]u f 52 1

3 (12r 2)sin(12r2)u, while
]f f 5]c f 50 everywhere. Thus, there are only two~and
therefore isolated! critical points of f, i.e., p15(r 50, u
5p) andp25(r 50, u50) which are not on the boundary
In order to show the critical points are nondegenerate an
determine their indices we make use of the Morse Lem
and rewritef in suitable local coordinate patches.
9-6
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Near p1 . At p1 , f 50. In the neighborhood ofp1 , we
may writeu5p2e wheree andr are both small and of the
same order~note that the topology of this neighborhood
just B23B2!. Then,

cos~12r 2!u'cos~p2e! ~17!

'211
1

2
e2, ~18!

and putting x15(r /))sinc, x25(r /))cosc, x3

5(e/A6)sinf andx45(e/A6)cosf, we see that

f 'x1
21x2

21x3
21x4

2. ~19!

Thus,p1 is an index 0 point.
Near p2 . At p2 , f 5 2

3. In the neighborhood ofp2 , r andu
are small and of the same order. Then

f ' 2
3 1 1

3 r 22 1
6 u2, ~20!

and using y15(u/A6)sinf and y25(u/A6)cosf, y3
5(r /))sinc, y45(r /))cosc, we see that

f ' 2
3 2y1

22y2
21y3

21y4
2. ~21!

So p2 is an index 2 point.
The existence of such a Morse function with two critic

points, one of index 0 and the other of index 2, shows t
the black hole pair production topology can support histor
that are causally continuous. The index 0 point is the crea
of an S3 from nothing and the index 2 point is the transitio
from S3 to S23S1. That this is means that a Morse functio
with the same Morse points exists on the original nonco
pact cobordism, half ofS23S2-$point% was later shown in
@23#. This result is evidence of consistency between the c
clusion that the existence of an instanton implies that
process has a finite rate~approximated byẽ2I whereI is the
Euclidean action! and the idea that only causally continuo
Morse histories contribute to the SOH.

We note that a simple generalization of the above Mo
function shows that the higher dimensional black hole p
creation-annihilation topological cobordismSn223B2 ad-
mits a Morse function with one index 0 point and an ind
(n22) point and thus supports histories that are caus
continuous for any dimensionn.4 ~though the actual in-
stanton solution is unknown!. It is also interesting that ther

FIG. 7. The level surfacef 21(1) is the boundaryS23S1 of
S23B2.
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is another simple cobordism for the transition fromS3 to
S23S1 which is B33S1 with an embedded open four-ba
deleted. This, however, by virtue of the Morse inequaliti
admits no Morse function without an index 1 point and so
causally discontinuous. In some sense, this second cau
discontinuous process is the way one might naturally im
ine a wormhole forming: two distant regions of space co
ing ‘‘close in hyperspace’’ and touching to form the worm
hole. The index 2 cobordism for creation of a wormhole
harder to visualise.

VI. PAIR PRODUCTION OF TOPOLOGICAL GEONS

Topological geons are particles that exist because of
nontrivial topology of space. A geon is based on a prim
three manifold, one which cannot be divided further in
nontrivial pieces by embedded two spheres. One can bu
kinematical particle picture in quantum gravity whereby t
geons can be endowed with spin and statistics@1,24,25,2#.
Every prime can be constructed from a solid polyhedron
identifying its boundary in some way—it is helpful in wha
follows to imagine the prime as a torusT3, so the polyhe-
dron is a solid cube and opposite faces are identified~Fig. 8!.
To take the connected sum of a primeP with any three
manifold V, denotedP#V, the ~open! solid polyhedron is
deleted fromV and the same identifications made on t
resultant boundary.~The connected sum is also formed b
removing open balls from each of two three-manifolds a
identifying the resultingS2 boundaries.!

A rather natural cobordism for pair-production of top
logical geons, inspired by its Feynman-diagram likeness
the ‘‘U tube’’ @26,27#. Figure 9 is a 211 sketch of this
manifold which is formed by removing aU tube of solid
polyhedral cross section out ofR33I as shown and identi-
fying the resulting boundaries in a manner appropriate to

FIG. 8. A T3 prime: the opposite sides of the cube are identifi
as are the opposite edges.

FIG. 9. A (211)-dimensional representation of theU-tube co-
bordism forR3→R3#P#P* .
9-7
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primeP. The initial boundary isR3 and the final boundary is
R3#P#P* where P* denotes the chiral conjugate~mirror
image! of P. ~In our example,T3 is self-conjugate.! Such a
U-tube cobordism was used to prove a spin-statistics co
lation for certain lens space topological geons~all of which
are self-conjugate! @27#. Moreover, the argument that certa
proposed rules for assigning quantum phases to differen
bordisms would give a completely general spin-statistics c

FIG. 10. TheU-tube pair creation of the primeP is homotopic
to P2D3.
e

ly
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relation for geons also relies on theU tube @24#. In the
present context, then, it seems important to test the ca
continuity of theU tube.

In order to use our Morse technology we compactify t
cobordism by adding a point at spatial infinity at every sp
tial hypersurface. This creates a cobordism betweenS3 and
P#P* . Then we close off the initial boundary by capping
with B4. This produces a cobordismM betweenB and
P#P* which is B4 with a U tube of primeP.

The question we ask is whether theU-tube cobordismM,
admits Morse functions withm15m350. In order to do this
we first calculate the Euler characteristicx~M! and then em-
ploy Eq. ~14! which relates it to theml’s.

Now, we can unbend theU tube until it is straight~Fig.
10! to see thatM>I 3(P#B3);P#B3>P2D3 ~where>
implies diffeomorphic and; homotopy equivalence! and so
x(M5x(P2D3). We now use the Mayer-Vietoris se
quence for homology groups@28#.

¯→Hk~X1ùX2!→Hk~X1! % Hk~X2!→Hk~X!

→Hk21~X1ùX2!→¯ , ~22!

where X1 and X2 are subspaces ofX with X
5 int(X1)ø int(X2). ChooseX1>P2D3 and X2>B3 such
that X5 int(X1)ø int(X2)5P and X1ùX2>S23I;S2. On
substitution, the above sequence breaks up into the two
exact sequences
0→H3~P2D3!→
a

H3~P!→
D

H2~S2!→
b

H2~P2D3!→
d

H2~P!→0, ~23!

and

0→
a

H1~P2D3!→
b

H1~P!→
c

H0~S2!→
d

H0~P2D3! % H0~D3!→
e

H0~P!→
f

0. ~24!
Let us first examine the mapD:H3(P)→H2(S2) in Eq.
~23!. For ann-dimensional spaceX5X1øX2 , eachn cyclez
in X is homologous to a cycle of the formg11g2 whereg i

is an n cycle in Xi . Moreover, if D:Hl(X1øX2)
→Hl21(X'ùX2) is the connecting homomorphism in th
Mayer-Vietoris sequence, thenD(clsz)5D„cls(g11g2)…
5cls(]g1) ~Lemma 6.19 in@28#!.

Now, H3(P)5Z andH2(S2)5Z. Let clszbe the genera-
tor of H3(P). From the above,D(clsz)5D„cls(g11g2)…
5cls(]g1), whereg1 is a three cycle inP2D3 andg2 one
in B3. Remembering thatP5(P2D3)øB3 is a closed
manifold, the only nontrivial three cycle is one that ful
triangulatesP. This means that]g1 is a nontrivial two cycle
in ](P2D3);(P2D3)ùB3;S2 and hencecls]g1 is the
generator ofH2(S2). ThusD maps the generator ofH3(P)
5Z to the generator ofH2(S2)5Z which implies that it is an
isomorphism.

SinceD is an isomorphism,ker(D)505 im(a). a being
a 121 map, H3(P2D3)50. Next, ker(b)5 im(D)
5H2(S
2). Hence im(b)505ker(d). Thus, d which is an

onto map is also 121⇒d, an isomorphism, orH2(P2D3)
5H2(P).

From Eq.~24!, usingH0(X)5Z for X connected, we see
that ker(e)5Z5 im(d)⇒d is onto and hence 121.
Thus, ker(d)505 im(c)⇒ ker(c)5H1(P)5 im(b). This
implies thatb is onto and also being 121, an isomorphism.
ThusH1(P2D3)>H1(P).

Summarizing, we have

Hl~P2D3!5Hl~P! for l50,1,2 ~25!

50 for l>3. ~26!

Thus, the first three Betti numbers ofM: b0(M),
b1(M), b2(M) are the same as those forP. SinceP is a
closed three-manifold,x(P)50, andb3(P)51 and there-
fore x(M)5x(P)1151.

From the Morse inequalities we havem0>1 andm4>0.
Using this along with relation~14! we see that
9-8
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TOPOLOGY CHANGE AND CAUSAL CONTINUITY PHYSICAL REVIEW D58 124019
m11m32m2>0. ~27!

Equation~27! implies that either~a! m1 or m3 ~or both! are
nonzero or~b! m15m25m350.

From our earlier comments on the special role played
the big bang and big crunch topologies it seems that~b! must
be ruled out since there would otherwise be no topolo
change apart from the big bang creation of anS3 from noth-
ing. A systematic argument leading to this conclusion e
ploys the following theorem due to Reeb@29#:

Theorem 2. IfM is a compact n-dimensional manifol
without boundary, admitting a Morse function f:M→@0,1#
with only two critical points, thenM is homeomorphic to
Sn.

Using this, we now show that~b! leads to a contradiction
First, this implies thatm051 andm450. Then, consider the
double ofM, the manifoldN5MøM̄ whereM̄ is a time-
reversed copy ofM and the union is taken by identifying th
boundaries in the obvious way. Iff̄ is the time-reversed
Morse function onM̄ then the number of indexl critical
pointsm̄l of f̄ are related to theml by ml5m̄n2l . We can
extend the Morse functionf onM to someF onN as fol-
lows:

FuM5 f , ~28!

FuM̄5 f̄ . ~29!

F will therefore have exactly twice the total number of cri
cal points thatf has, and the number of indexl points ofF
are given by

ml5ml1m̄l5ml1mn2l ~30!

so thatml5mn2l . Thenm05m451, m15m25m350 and
soF possesses only two critical points, one of index 0 a
the other of index 4. SinceN is a closed manifold, theorem
implies thatN is homeomorphic toS4, which is clearly false,
i.e., ~b! is incorrect.

Thus, from~a! we see thatany Morse functionf onM
must possess critical points of index 1 or 3. This mea
therefore that any spacetime (M,gab) whereM is ageneric
U-tube cobordism in which an arbitrary primeP is pair-
produced will have causal discontinuities. Notice that we c
choose the prime manifoldP to be such that the Betti num
bers of the cobordism are zero, except forb0 and b4 . For
example, P5RP3. This, then, is an example where th
bounds of the Morse inequalities cannot be realized.

The implications of this result are not very favorable
the particle picture of primes. It seems that either the pict
we have been building here in which causally discontinu
histories are suppressed in the SOH fails in some way or
restoration of the spin-statistics correlation for geons in
illusion ~the kinematical calculations of@27# would remain
true but the more dynamical considerations of causal co
nuity would reveal the amplitudes considered to be ne
gible.! We discuss some possible ways out in the final s
tion.
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VII. CONCLUSIONS

We have described a rather natural framework for cons
ering topology change within the SOH for quantum grav
based on Morse theory. Two key conjectures lead to
proposal that only causally continuous cobordisms be
cluded in the sum and that these are identified with Mo
metrics with no index 1 orn21 points. The Lickorish-
Wallace theorem on surgery on three-manifolds toget
with the Borde-Sorkin conjecture means that any topolo
changing transition in 311 dimensions is achievable by
causally continuous cobordism. The higher dimensio
statement is not known.

We have shown that the black hole pair production inst
ton S23S2 admits causally continuous Morse metri
whereas the ‘‘U-tube’’ cobordism for pair production of to
pological geons of any sort is necessarily causally disc
tinuous.

The result on the black hole pair production instant
cobordism fits in well with the conjectures. However, t
topological geonU-tube pair production cobordism calcula
tion is a serious setback. It is hard to see how to rescue
spin-statistics theorem for lens spaces if theU-tube cobord-
ism is indeed suppressed because it cannot support cau
continuous histories. It seems to be the canonical p
creation cobordism and the proof of the theorem re
heavily on its properties. Moreover the more general ru
proposed by Sorkin@24# that would lead to a spin-statistic
correlation for all geons also rely on cobordisms that cont
U-tubes and these would also be in jeopardy.

This might mean that the notion of primes as partic
does not survive with topology change. The causal continu
of the single prime creation and the causal discontinuity
the U-tube cobordism can then be regarded as a manife
tion of this problem. However, since an important and phy
cally appealing motivation for topology change comes fro
the study of primes as particles@1,24#, we suggest here tha
this is not the case.

A possible resolution that might save the geon sp
statistics result, is that there must be a weakness in the
quence of conjectures to which we have drawn attention
which form the framework in which causal continuity b
comes so central. The Borde-Sorkin conjecture—tha
Morse metric is causally continuous iff it contains no index
or (n21) points—seems to be the most solid. Work on
proof is currently underway@30#. The Sorkin conjecture tha
an infinite energy/particle production would occur in
Morse spacetime iff it contained a causal discontinuity see
plausible but would need to be verified by more examp
than the (111)-dimensional trousers and yarmulke studi
so far. In particular, the first example of a causally contin
ous spacetime that is not the yarmulke occurs in 311 di-
mensions. Work on this second conjecture will be eas
once the first is proved since then simple examples of ca
ally continuous metrics can be written down using the Mo
construction. Then finally, there is the idea that the singu
behavior of quantum fields on a causally discontinuous ba
ground is a signal that it is infinitely suppressed in the SO
What one means by this is the following. Consider a sca
9-9
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field minimally coupled to gravity. The path integral is

(
all topologies

E @dg#@df#ei *A2gR1 i *A2g~]f!2
~31!

~where we have omitted the explicit and important statem
about boundary conditions!. We may integrate out the scala
field degrees of freedom, i.e.,

E @df#ei *A2g~]f!2
5F@g#. ~32!

The functionalF@g# which is the path integral for a scala
field in a fixed background can now be regarded as an ove
weight in the path integral over metrics,

(
all topologies

E @dg#F@g#ei *A2gR. ~33!

The idea is thatF@g# is zero if g is causally discontinuous.
Perhaps, however, all the conjectures do hold at the c

tinuum level and the simplest loophole of all is that the SO
d
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in,
’’
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m
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should be defined fundamentally as a sum over whate
discrete structure will prove to underly the differentiab
manifold of general relativity. If it is a causal set then a
quantities calculated will be regulated. The elimination al
gether of the causally discontinuous cobordisms would t
be too severe a truncation, and even if they are still s
pressed, they might give a nontrivial contribution.
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