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Thermal properties of spacetime foam
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Spacetime foam can be modeled in terms of nonlocal effective interactions in a classical nonfluctuating
background. Then, the density matrix for the low-energy fields evolves, in the weak-coupling approximation,
according to a master equation that contains a diffusion term. Furthermore, it is argued that spacetime foam
behaves as a quantum thermal field that, apart from inducing loss of coherence, gives rise to effects such as
gravitational Lamb and Stark shifts as well as quantum damping in the evolution of the low-energy observ-
ables. These effects can be, at least in principle, experimentally tested.@S0556-2821~98!04524-X#

PACS number~s!: 04.60.2m, 03.65.Bz, 04.20.Gz, 04.70.Dy
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I. INTRODUCTION

It seems natural to assume that spacetime at the Pl
scale must have a very complicated and ever-changing to
ogy. Indeed, it was Wheeler@1# who suggested the foamlik
structure of spacetime@1–3# as an inescapable ingredient
the yet-to-be-built quantum theory of gravity. Since the
various spacetime foam components have been propo
wormholes@4,5#, virtual black holes@6#, and quantum time
machines@7,8# among them.

The quantum theory of gravity suffers from problems@9#
that have remained unsolved for many years. They origin
in the fact that gravity deals with the frame in which ever
thing takes place, i.e., with spacetime, in sharp contrast w
any other interaction, for which spacetime is a passive fra
When gravity is brought onto the scene, the frame itself
comes dynamical. It suffers the quantum fluctuations of
other interactions and, even more, introduces its own fl
tuations, thus becoming an active agent in the theory.

We are use to putting everything into spacetime, so t
we can name and handle events. General relativity m
spacetime alive and, in this sense, was a major change.
although dynamical, the relations between different eve
were still sharply defined. Quantum mechanics changed
too. In such a dynamical frame, objects became fuzzy; e
locations were substituted by probability amplitudes of fin
ing an object in a given region of space at a given instan
time.

A quantum uncertainty in the position of a particle im
plies an uncertainty in its momentum and, therefore, due
the gravity-energy universal interaction, would also imply
uncertainty in the geometry, which in turn would introdu
an additional uncertainty in position of the particle. The g
ometry would thus be subject to quantum fluctuations t
would constitute the spacetime foam and that should be
the same order as the geometry itself at the Planck sc
This would give rise to a minimum length@10# beyond
which the geometrical properties of spacetime would be l
while on larger scales it would look smooth and with a we
defined metric structure.

The quantum structure of spacetime would be relevan
energies close to Planck scale and one could expect tha
quantum gravitational virtual processes that constitute
spacetime foam could not be described without knowing
0556-2821/98/58~12!/124015~11!/$15.00 58 1240
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details of the theory of quantum gravity. However, the gra
tational nature of spacetime fluctuations provides a mec
nism for studying the effects of these virtual processes
low-energy physics. Indeed, virtual gravitational collap
and topology change would forbid a proper definition of tim
at the Planck scale. More explicitly, in the presence of ho
zons, closed timelike curves, topology changes, etc.,
Hamiltonian vector field that represents time evolution o
side the fluctuation would vanish at points inside the fluct
tion. This means that it would not be possible to describe
evolution by means of a Hamiltonian unitary flow from a
initial to a final state and, consequently, quantum cohere
would be lost. These effects and their order of magnitu
would not depend on the detailed structure of the fluctuati
but rather on their existence and global properties. In g
eral, the regions in which the asymptotically timelike Ham
tonian vector fields vanish are associated with infinite r
shift surfaces and, consequently, these small space
regions would behave as magnifiers of Planck length sc
transforming them into low-energy modes as seen from o
side the fluctuations@11#. Therefore, spacetime foam and th
related minimum length would affect low-energy physics,
that low-energy experiments would effectively suffer a no
vanishing uncertainty. In this situation, a loss of quantu
coherence would be almost unavoidable@12#. In fact, Hawk-
ing @6# has pointed out that scalar fields may lose cohere
extremely fast and that the loss of quantum coherence m
also be responsible for the vanishing of theu angle of quan-
tum chromodynamics.

In this paper, we show that spacetime foam behaves
quantum thermal bath with a nearly Planckian temperat
that has a weak interaction with low-energy fields. As a co
sequence, other effects, apart from a loss of coherence,
as Lamb and Stark transition-frequency shifts, quant
damping, and cold diffusion, characteristic of systems in
quantum environment@13,14#, naturally appear as low
energy predictions of this model. A brief account of the
results has already appeared in Ref.@17#. This kind of quan-
tum gravitational effects can be, in principle, experimenta
tested~see, e.g., Refs.@15,16#!, as we also argue in this work

This paper is organized as follows. In Sec. II, we propo
an effective model of spacetime foam in terms of nonlo
interactions and argue that it is equivalent to a local the
with a stochastic classical Gaussian noise source. In Sec
©1998 The American Physical Society15-1
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LUIS J. GARAY PHYSICAL REVIEW D 58 124015
a master equation for the low-energy density matrix is
tained and the diffusion term is studied. Section IV is d
voted to the quantum effects that have not been taken
account in previous sections and derive a master equa
that includes them. It is also shown that spacetime foam
be described as a quantum thermal bath and the co
quences of this effective behavior are analyzed. We cl
this section with a short discussion about the kind of exp
ments and observations that could be sensitive enough to
these effects. In Sec. V, we study the role that some of
components of spacetime foam~wormholes, virtual black
holes and quantum time machines! play in the effective
theory. We summarize and conclude in Sec. VI.

II. EFFECTIVE INTERACTIONS

In this section, we will construct an effective theory f
the evolution of low-energy fields in spacetime foam, whe
we possibly have a finite resolution limit because the not
of distance is not valid at the quantum gravitational scale

With this aim, we will substitute spacetime foam by
fixed classical nonfluctuating background with low-ener
fields living on it. We will perform a 311 foliation of the
effective spacetime that, for simplicity, will be regarded
flat, t denoting the time parameter andx the spatial coordi-
nates. Spacetime foam features, i.e., the gravitational fluc
tions and the minimum length generated by them, will
characterized by nonlocal interactions. They will rela
spacetime points that are sufficiently close in the effect
nonfluctuating background, where a well-defined notion
distance exists. These effective nonlocal interactions will
described in terms of local interactions as follows.

Let us consider a basis$hi(t)% of local gauge-invariant
interactions at the spacetime point (x,t), each element con
sisting of factors of the forml

*
2n(11s)24@f(x,t)#2n, and f

being the low-energy field strength of spins. As a notational
convention, each indexi implies a dependence on the spat
positionx by default; whenever the indexi does not carry an
implicit spatial dependence, it will appear as underlinediI.
Also, any contraction of indices~except for underlined ones!
will entail an integral over spatial positions. Then, the no
local effective interaction can be included in the Euclide
action by means of a term of the form

I int5(
N
IN , ~2.1!

whereI int is theN-local interaction term,

IN5
1

N! E dt1¯dtNci 1¯ i N~ t1 ...tN!hi 1
~ t1!¯hi N

~ tN!.

~2.2!

The dimensionless functionsci 1¯ i N(t1 ...tN) cannot depend
on the location of the gravitational fluctuation itself becau
of conservation of energy and momentum: the fluctuati
do not carry energy, momentum, or gauge charges. T
diffeomorphism invariance is preserved, at least at lo
energy scales, provided that the coefficientsci 1¯ i N(t1 ...tN)
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only depend on relative positions. This invariance cannot
expected to hold at the Planck scale as well. However,
violation of energy-momentum conservation is safely ke
within Planck scale limits@18#, where the processes will n
longer be Markovian.

The coefficientsci 1¯ i N(t1 ...tN) must vanish for relative
spacetime distances larger than the length scaler of the
gravitational fluctuations. Indeed, if the gravitational fluctu
tions are smooth in the sense that they only involve triv
topologies or contain no horizons, the coefficien
ci 1¯ i N(t1 ...tN) will be N-point propagators which, as suc
will have infinitely long tails and the size of the gravitation
fluctuations will be effectively infinite. In other words, w
would be dealing with a local theory written in a nonstanda
way. The gravitational origin of these fluctuations elimina
these long tails because of the presence of gravitational
lapse and topology change. This means that, for insta
virtual black holes@6# will appear and disappear and hor
zons will be present throughout. As Padmanabhan@11# has
also argued, horizons induce nonlocal interactions of fin
range since the Planckian degrees of freedom will be m
nified by the horizon~because of an infinite redshift facto!
thus giving rise to low-energy interactions as seen from o
side the gravitational fluctuation. Virtual black holes repr
sent a kind of components of spacetime foam that, beca
of the horizons and their nontrivial topology, will induc
nonlocal interactions but, most probably, other fluctuatio
with complicated topology will warp spacetime in a simil
way and the same magnification process will also take pla

Finally, the coefficientsci 1¯ i N(t1 ...tN) will contain a fac-
tor @e2S(r )/2#N, S(r ) being the Euclidean action of the grav
tational fluctuation, which is of the order (r / l * )2. This is just
an expression of the idea that inside large fluctuations, in
actions that involve a large number of spacetime points
strongly suppressed. As the size of the fluctuation decrea
the probability for events in which three or more spaceti
points are correlated increases, in close analogy with the
netic theory of gases: the higher the density of molecule
the gas, the more probable is that a large number of m
ecules collide at the same point. The expansion paramet
this example is typically the density of molecules. In o
case, the natural expansion parameter is the transition am
tude. It is given by the square root of the two-point transiti
probability which in the semiclassical approximation is
the forme2S(r ).

A simple calculation shows that

IN;eN~r / l !2N24)
iI51

N

~ l * / l !2niI~11siI!22, ~2.3!

where e5e2S(r )/2(r / l * )2. Indeed, IN contains a factor
@e2S(r )/2#N coming from the coefficientci 1¯ i N(t1 ...tN), as
discussed above; each interactionhi provides a factor
( l * / l )2niI(11siI)l

*
24 ; there are alsoN integrals over spacetime

positions,N21 of which are integrals over relative position
and therefore give a factorr 4 each; and, finally, the integra
over the global spacetime position provides an additio
factor l 4. The interaction termIN has contributions from
three different length scales, Planck lengthl * , the size of the
5-2
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THERMAL PROPERTIES OF SPACETIME FOAM PHYSICAL REVIEW D58 124015
gravitational fluctuationsr , and the low-energy length sca
l , through the ratiosr / l * , r / l and l / l * : the factor
eN(r / l )2N24 depends only on the first two and is common
all powersn and spinss while the factors (l * / l )2niI(11siI)22

depend only on the low-energy scale~in Planck units! and
contain information about the different kind of interactio
involved.

The contributions of the trilocal and higher effective i
teractions are, at most, of ordere3. Therefore, in the weak
coupling approximation, i.e., up to second order in the
pansion parametere, they can be ignored. On the other han
the local termsI0 andI1 can be absorbed in the bare actio
Indeed, the coefficientc appearing inI0 is constant; the
coefficientsci(t) in I1 cannot depend on spacetime positio
because of diffeomorphism invariance and are therefore c
stant as well. Consequently, we can write the nonlocal in
action term in the Euclidean action as the bilocal contrib
tion

I int5
1

2 E dtdt8ci j ~ t2t8!hi~ t !hj~ t8!, ~2.4!

where we have renamedci j (t,t8) asci j (t2t8). This coeffi-
cient is symmetric in the pair of indicesi j and depends on
the spatial positionsxiI andxjI

only through the relative dis

tanceuxiI2xjI
u. It is of ordere2S(r ) and is concentrated within

a spacetime region of sizer .
The effect of a single spacetime fluctuation can be

scribed in the path integral approach by adding a contri
tion *Dfe2I 0I int to the bare low-energy Euclidean path i
tegral*Dfe2I 0, I 0 being the bare low-energy action. If w
considerN indistinguishable gravitational fluctuations, th
contribution is *Dfe2I 0(I int)

N/N!. Thus, summing over
any numberN of them, we obtain the path integra
*Dfe2I 01I int.

The bilocal effective action above does not lead to a u
tary evolution for the low-energy fields because there e
different trajectories that arrive at a given configurati

(f,ḟ); the future evolution depends on these past traje

ries and not only on the values off andḟ at that instant of
time. Therefore, it is not sufficient to know the fields a
their time derivatives at an instant of time in order to kno
their values at a later time: we need to know the history
the system, at least for a timer . As a consequence, th
system cannot possess a well-defined Hamiltonian ve
field and undergoes an intrinsic loss of predictability@19#.

The exponential of the interaction termeI int can be written
as @20#

E Dae2~1/2!*dtdt8g i j ~ t2t8!a i ~ t !a j ~ t8!e2*dta i ~ t !hi ~ t !, ~2.5!

where, the continuous matrixg i j (t2t8) is the inverse of
ci j (t2t8), i.e.,

E dt9g ik~ t2t9!ck j~ t92t8!5d i
jd~ t2t8!. ~2.6!
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Note that the quadratic character of the distribution for
fields a i is a consequence of the weak-coupling approxim
tion ~second order ine!, which keeps only the bilocal term in
the action. Beyond the weak-coupling approximatio
higher-order terms would introduce deviations from th
noise distribution. Note also that we have a different fielda i

for each kind of interactionhi . Thus, we have transferred th
nonlocality of the low-energy fieldsf to the set of fieldsa i ,
which are nontrivially coupled to it.

If we now perform a Wick rotation back to Lorentzia
spacetime, we see that the path integral has the form

E DaP@a#E Dfei [S01*dta i ~ t !hi ~ t !] , ~2.7!

whereS0 is the low-energy Lorentzian action and

P@a#5e2~1/2!*dtdt8g i j ~ t2t8!a i ~ t !a j ~ t8!e2*dta i ~ t !hi ~ t ! ~2.8!

is the Gaussian probability distribution with correlation fun
tionsci j (t2t8) for the stochastic nonlocal fieldsa i that rep-
resent spacetime foam and which are not affected by
Wick rotation.

III. CLASSICAL DIFFUSION

The analysis of the previous section ignores in a way
quantum nature of gravitational fluctuations such as virt
black holes or quantum time machines. Indeed, the fieldsa i

represent quantum gravitational spacetime foam but, as
have seen, the path integral for the whole system does
contain any trace of the dynamical character of the fieldsa i .
It just contains a Gaussian probability distribution for the
The path integral above can then be interpreted as a Gau
average over the classical noise sourcesa i . Classicality here
means that we can keep the sourcesa i fixed, ignoring the
noise commutation relations in a kind of zeroth-order se
classical approximation, and, at the end of the calculatio
we just average over them. The next section will be devo
to the quantum noise effects generated by spacetime f
that we are ignoring here.

The master equation that governs the Lorentzian dyn
ics of the low-energy fields in foamlike spacetimes is deriv
in what follows. For each fixed set of fieldsa i , the evolution
equation for the density matrixra(t), obtained with the
Hamiltonian

Ha~ t !5H01a i~ t !hi , ~3.1!

H0 being the bare Hamiltonian of the low-energy field, is

ṙa~ t !52 i @H0 ,ra~ t !#2 ia i~ t !@hi ,ra~ t !#. ~3.2!

In the interaction picture, this equation becomes

ṙa
I ~ t !52 ia i~ t !@hi

I~ t !,ra
I ~ t !#, ~3.3!

where

ra
I ~ t !5U0

1~ t !ra~ t !U0~ t !, ~3.4!
5-3
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LUIS J. GARAY PHYSICAL REVIEW D 58 124015
hi
I~ t !5U0

1~ t !hiU0~ t ! ~3.5!

with U0(t)5e2 iH 0t. Averaging this equation overa i would
provide a master equation for the density matrix of the s
tem although it would not be very useful since it wou
contain terms of all orders ina i . To avoid this problem, we
integrate this equation between an initial timet0 and t:

ra
I ~ t !5ra

I ~ t0!2 i E
t0

t

dt8a i~ t8!@hi
I~ t8!,ra

I ~ t8!# ~3.6!

and introduce this formal solution back to the different
equation for ra

I noting that at the initial timera
I (t0)

5r I(t0) does not depend ona i ~if this were not the case
there would be an extra renormalization term in the Ham
tonian!:

ṙa
I ~ t !52 ia i~ t !@hi

I~ t !,r I~ t0!#

2E
t0

t

dt8a i~ t !a j~ t8!@hi
I~ t !,@hj

I~ t8!,ra
I ~ t8!##.

~3.7!

Next, we perform the Gaussian average overa i taking
into account thatra

I (t) does not depend ona i at zeroth order
but only at first order, i.e.,ra

I (t)5r I(t)1O(a) with r I(t)
5^ra

I (t)& and keep terms up to second order ine ~weak-
coupling approximation!. We then obtain the following
equation forr I(t):

ṙ I~ t !52E
0

t2t0
dt^a i~ t !a j~ t2t!&

3@hi
I~ t !,@hj

I~ t2t!,r I~ t2t!##, ~3.8!

where we have made a change of integration variables f
t8 to t5t2t8. We also assume thatr I(t) hardly changes
within a correlation timer ~Markov approximation!, so that
r I(t2r );r I(t). This amounts to ignoring terms of ordere4

in the master equation. The initial condition can be taken
t052`, so that the integration range is now~0,̀ !. Note
that, sincê a i(t)a j (t2t)&5ci j (t) is nonvanishing only for
t,r , this limit t0→2` just implies that the evolution mus
take place over periods of time much larger than the co
lation timer for the approximation to be valid. The resultin
master equation in the interaction picture is then

ṙ I~ t !52E
0

`

dtci j ~t!@hi
I~ t !,@hj

I~ t2t!,r I~ t !##, ~3.9!

Transforming this equation back to the Schro¨dinger pic-
ture, we obtain the equation

ṙ52 i @H0 ,r#2E
0

`

dtci j ~t!@hi ,@hj
I~2t!,r##.

~3.10!

Since hj
I (2t)5U0

1(2t)hjU0(2t) and U0(t)51
1O(t/ l ), the final form of the master equation for a low
12401
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energy system subject to gravitational fluctuations treated
a classical environment and at zeroth order inr / l ~the effect
of higher order terms inr / l will be thoroughly studied in the
next section! is @21#

ṙ52 i @H0 ,r#2E
0

`

dtci j ~t!@hi ,@hj ,r##. ~3.11!

The first term would also be present in the absence
fluctuations, since it governs the low-energy Hamiltoni
evolution. The second term is a direct consequence of
foamlike structure of spacetime and the related existence
minimum length. It is a diffusion term which will be respon
sible for the loss of coherence. Note that a dissipation te
necessary to preserve the commutation relations under
evolution, is not present. However, we have considered
classical noise limit, i.e., the fieldsa i have been considere
as classical sources and the commutation relations are a
matically preserved. We will see that the dissipation ter
apart from being of quantum origin, isr / l times smaller than
the diffusion term and we have only considered the zer
order approximation inr / l .

The diffusion term induces a characteristic decohere
time td that can be easily calculated. Indeed, the interact
Hamiltonian densityhi is of order l

*
24( l * / l )2niI(11siI) and

ci j (t) is of order e2S(r ). Furthermore, the diffusion term
contains one integral over time and two integrals over spa
positions. The integral over time and the one over relat
spatial positions provide a factorr 4, sinceci j (t) is different
from zero only in a spacetime region of sizer 4, and the
remaining integral over global spatial positions provides
factor l 3, the typical low-energy spatial volume. Putting e
erything together, we see that the diffusion term is of ord
l 21e2( iI jI

( l * / l )h iI1h jI, with h iI52niI(11siI)22. This quan-

tity defines the inverse of the decoherence timetd . There-
fore, the ratio between the decoherence timetd and the low-
energy length scalel is

td / l;e22F(
iI jI

~ l * / l !h iI1h jIG21

. ~3.12!

Only gravitational fluctuations whose size is very close
Planck length will give a sufficiently small decoheren
time, because of the exponential dependence ofe
;e2S(r )/2(r / l * )2. Slightly larger fluctuations will have a
very small effect on the unitarity of the effective theory. F
the interaction term that corresponds to the mass of a sc
field, the parameterh vanishes and, consequently,td / l
;e22. Thus, the scalar mass term will lose coherence fa
than any other interaction. Indeed, for higher spins and
powers of the field strength,h>1 and thereforetd / l in-
creases by powers ofl / l * . For instance, the scalar-fermio
interaction termf2c̄c, which has the next relevant decohe
ence time, corresponds to a decoherence ratiotd / l
;e22l / l * . We see that the decoherence time for the mas
scalars is independent of the low-energy length scale and
gravitational fluctuations of size close to Planck lengthe
may be not too small so that scalar masses may lose co
5-4
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THERMAL PROPERTIES OF SPACETIME FOAM PHYSICAL REVIEW D58 124015
ence fairly fast, maybe in a few times the typical evoluti
scale. Higher power and/or spin interactions will lose coh
ence much slower but for sufficiently high energiesl 21, al-
though much smaller than the gravitational fluctuations
ergy r 21, the decoherence time may be small enough. T
means that quantum fields will lose coherence faster
higher-energy regimes.

IV. QUANTUM BATH

In this section, we will take into account the quantu
dynamical character of the fieldsa i that represent spacetim
gravitational fluctuations~e.g., virtual black holes or quan
tum time machines! and describe spacetime foam in terms
a quantum thermal bath. By comparing the system consis
of low-energy fields suitably coupled to a quantum ba
@13,14# with the results obtained above for gravitational flu
tuations, we will see that spacetime foam can be substitu
by an effective quantum thermal bath.

Let us start studying a system with a Hamiltonian

H5H01H int1Hb , ~4.1!

whereH0 is the bare Hamiltonian that represents the lo
energy fields andHb is the Hamiltonian of a bath that, fo
simplicity, will be represented by a real massless scalar fi
The interaction Hamiltonian will be chosen to have the fo
H int5j ihi , the noise operatorsj i being given by

j iI~x,t !5 i E dk

Av
x iI~v!@a1~k!ei ~vt2kx!2a~k!e2 i ~vt2kx!#.

~4.2!

In this expression,a anda1 are, respectively, the annihila
tion and creation operators associated with the bathv
5Ak2, andx iI(v) are real functions that represent the co
pling between the system and the bath for each frequencv
and for each interactionhi . These couplingsx iI(v) can also
be written in the position representation if we note that
momentum of the bath scalar fieldp(x,t) has the form

p~x,t !5 i E dkAv@a1~k!ei ~vt2kx!2a~k!e2 i ~vt2kx!#,

~4.3!

so that the noise operatorsj i have the form

j iI~x,t !5E dx8x iI~x2x8!p~x8,t !. ~4.4!

Here,

x iI~y!5E dk

Av
x iI~v!cos~ky! ~4.5!

represents the couplings between the low-energy fields
the bath in the position representation. Since we are tryin
construct a model for spacetime foam, we will assume t
the couplingsx iI(y) will be concentrated on a region of ra
12401
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dius r and therefore the couplingsx iI(v) will induce a sig-
nificant interaction with all the bath frequenciesv up to the
natural cutoff r 21. Furthermore, these couplings have d
mensions of length and we will also assume that they are
order e2S(r )/2r . All the relevant information about the cou
plings is encoded in the commutation relations and the c
relation function of the noise operatorsj i .

Let us start with the commutation relations at differe
times of the noise variables. Taking into account the co
mutation relations for the annihilation and creation operat
a anda1, i.e.,

@a~k!,a~k8!#5@a1~k!,a1~k8!#50, ~4.6!

@a~k!,a1~k8!#5d~k2k8!, ~4.7!

it is easy to see that

@j i~ t !,j j~ t8!#5 i ḟ i j ~ t2t8!, ~4.8!

where

f i j ~t!5E
0

`

dvGi j ~v!cos~vt!, ~4.9!

Gi j ~v!58p
sin~vuxiI2xjI

u!

vuxiI2xjI
u

x iI~v!x jI~v!.

~4.10!

Note that the functionsGi j (v) and, hence,f i j (t) depend on
the relative spatial distanceuxiI2xjI

u, are symmetric in the

pair of indicesi j and are uniquely determined by the co
plings x iI(v) and vice versa. In particular, they are com
pletely independent of the state of the bath or the system

In order to compare this model with that of topologic
fluctuations previously described, it is convenient to intr
duce the so-called commutative noise representation@13# by
defining new noise operatorsa i in the following form:

a i~ t !Q~ t8![
1

2
@j i~ t !,Q~ t8!#1 ~4.11!

for any operatorQ. As we have seen, the commutators of t
noise operatorsj i at different times arec numbers. There-
fore, it is straightforward to check that the operatorsa i com-
mute at any time, i.e.,

@a i~ t !,a j~ t8!#50. ~4.12!

However, the commutator ofa i with any low-energy opera-
tor A is in general nonvanishing and has the form:

@A~ t !,a i~ t8!#5E
0

t

dt@A~ t !,hj~t!# ḟ i j ~ t82t! ~4.13!

with hi(t)5U1(t)hiU(t) and U(t)5e2 iHt . The function
f i j (t) can be interpreted as a kind of memory function. I
deed, these commutators are nonzero for low-energy op
tors that are in the future or, at most, in the near past of
noise and vanish only when they are in the far past. Only
the so-called first Markov approximation the frontier amo
5-5
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both regimes is sharply located where both noise and l
energy fields are at the same instant of time.

We are now ready, following similar steps to those o
lined in the previous section, to write down the master eq
tion for the low-energy density matrix. We will describe th
whole system~low-energy field and bath! by a density matrix
rT(t). We will assume that, initially, the low energy field
and the bath are independent, i.e., that at the timet0

rT~ t0!5r~ t0! ^ rb . ~4.14!

As in the classical noise case, if the low-energy fields and
bath do not decouple at any time, an extra renormaliza
term should be added to the Hamiltonian. In the interact
picture, the density matrix has the form

rT
I ~ t !5U1~ t !rT~ t !U~ t !, ~4.15!

with U(t)5U0(t)Ub(t), where U0(t)5e2 iH 0t and Ub(t)
5e2 iH bt. It obeys the equation of motion

ṙT
I ~ t !52 i @j i~ t !hi

I~ t !,rT
I ~ t !#. ~4.16!

Here,

j i~ t !5U1~ t !j iU~ t !5Ub
1~ t !j iUb~ t !, ~4.17!

hi
I~ t !5U1~ t !hiU~ t !5U0

1~ t !hiU0~ t !.
~4.18!

Integrating this evolution equation and introducing the res
back into it, we obtain the following integro-differentia
equation:

ṙT
I ~ t !52 i @j i~ t !hi

I~ t !,rT
I ~ t0!#

2E
t0

t

dt8@j i~ t !hi
I~ t !,@j j~ t8!hj

I~ t8!,rT
I ~ t8!##.

~4.19!

If we now trace over the variables of the bath, definer I(t)
[trb@rT

I (t)# and note that trb@j i(t)hi
I(t)rT

I (t0)#50 ~because
trb@j i(t)rb#50!, we obtain

ṙ I~ t !52E
t0

t

dt8trb$@j i~ t !hi
I~ t !,@j j~ t8!hj

I~ t8!,rT
I ~ t8!##%.

~4.20!

In the weak-coupling approximation, which implies th
j ihi is much smaller thanH0 andHb ~this is justified since it
is of ordere!, we assume that the bath density matrix do
not change because of the interaction, so thatrT

I (t)5r I(t)
^ rb . The error introduced by this substitution is of ordere
and ignoring it in the master equation amounts to keep
terms only up to second order in this parameter. Si
@j i(t),hj

I (t8)#50 because@j i ,hj #50, the right-hand side o
this equation can be written in the following way:
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2 E
t0

t

dt8$^@j i~ t !,j j~ t8!#1&@hi
I~ t !,@hj

I~ t8!,r I~ t8!##

1^@j i~ t !,j j~ t8!#&@hi
I~ t !,@hj

I~ t8!,r I~ t8!#1#%, ~4.21!

where the average of any operatorQ has been defined a

^Q&[trb(Qrb). Next we note that̂ @j i(t),j j (t8)#&5 i ḟ i j (t
2t8) and, using the commutative noise representation in
duced above, we can write

1

2
^@j i~ t !,j j~ t8!#1&5^a i~ t !a j~ t8!&[ci j ~ t2t8!.

~4.22!

If we make the assumption that the bath is in a therm
staterb5Z21e2Hb /T with a temperature inversely propo
tional to the size of the gravitational fluctuations~e.g., the
radius of the virtual black holes, or the size of the regio
containing closed timelike curves in the case of quant
time machines!, T;1/r , the correlation functionci j (t2t8)
acquires the form:

ci j ~t!5E
0

`

dvvGi j ~v!@N~v!11/2#cos~vt!,

~4.23!

whereN(v)5@exp(v/T)21#21 is the mean occupation num
ber of the bath corresponding to the frequencyv. In this
calculation, we have made use of the following relatio
valid for a thermal state:

^a~k!&5^a1~k!&50, ~4.24!

^a~k!a~k8!&5^a1~k!a1~k8!&50, ~4.25!

^a1~k!a~k8!&5N~v!d~k2k8!. ~4.26!

Similarly, we can easily compute the higher order corre
tions ^a i(t)a j (t8)ak(t9)&, etc. Those containing an od
number of fieldsa i turn out to be identically zero while
those containing an even number can be written in term
the two-point correlation functionci j (t). This means that the
trace ^Q& corresponds to a Gaussian average overa i , pro-
vided that the bath is in a thermal state, as we are consi
ing. In this way, we have established a relation betwee
quantum thermal bath and spacetime foam, which can
be described by a Gaussian average, as we have seen.

The Markov approximation allows the substitution
r I(t8) by r I(t) in the master equation because the integ
over t8 will get a significant contribution from timest8 that
are close tot due to the factorsḟ i j (t2t8) andci j (t2t8) and
because, in this interval of time, the density matrixr I will
not change significantly. Indeed, the typical evolution tim
of r I is the low-energy time scalel , which will be much
larger than the time scaler associated with the bath. If we
perform a change of the integration variable fromt8 to t
5t2t8, write

r I~ t8!5r I~ t2t!5r I~ t !2tṙ I~ t !1O~t2!, ~4.27!
5-6
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and introduce this expression in the master equation ab
we easily see that the error introduced by the Markov
approximation is of ordere2, i.e., it amounts to ignoring a
term of ordere4. The upper integration limitt in both inte-
grals can be substituted bỳfor evolution timest2t0 much
larger than the correlation timer , because of the factor
ḟ i j (t) andci j (t) that vanish fort.r , which is equivalent to
taking the initial condition to the infinite pastt0→2`.

Then, the master equation in the interaction picture
quires the form

ṙ I~ t !52
i

2 E
0

`

dt ḟ i j ~t!@hi
I~ t !,@hj

I~ t2t!,r I~ t !#1#

2E
0

`

dtci j ~t!@hi
I~ t !,@hj

I~ t2t!,r I~ t !##. ~4.28!

We can now transform the resulting equation back to
Schrödinger picture

ṙ52 i @H0 ,r#2
i

2 E
0

`

dt ḟ i j ~t!@hi ,@hj
I~2t!,r#1#

2E
0

`

dtci j ~t!@hi ,@hj
I~2t!,r##. ~4.29!

After an integration by parts, the second term of the rig
hand side becomes

i

2
f i j ~0!@hihj ,r#2

i

2 E
0

`

dt f i j ~t!@hi ,@ ḣ j
I~2t!,r#1#.

~4.30!

The first term is just a finite renormalization of the origin
low-energy Hamiltonian fromH0 to

H085H02
1

2
f i j ~0!hihj ~4.31!

and the master equation can then be written in its final fo

ṙ52 i @H08 ,r#2
i

2 E
0

`

dt f i j ~t!@hi ,@ ḣ j
I~2t!,r#1#

2E
0

`

dtci j ~t!@hi ,@hj
I~2t!,r##. ~4.32!

Before discussing this equation in full detail, let us fir
study the classical noise limit. With this aim, let us introdu
the parameter

s5E dk8@a~k!,a1~k8!#, ~4.33!

which is equal to 1 for quantum noise and 0 for classi
noise. Then, thef term is proportional tos and therefore
vanishes in the classical noise limit. Thec term also contains
a factor s but, in addition,N(v) becomesN(sv) when
introducing the parameters. In the limit s→0, the term
12401
e,
n
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t

l

proportional to 1/2 inci j (t) vanishes and the term propo
tional to N(sv) acquires the valuecclass

i j (t)5T fi j (t). Also,
the renormalization term of the low-energy Hamiltonian va
ishes in this limit. In this way, we have arrived at the sam
master equation that we obtained in the previous sect
This is not surprising because the origin of thef term is
precisely the noncommutativity of the noise operators, i
its quantum nature, while thecclassterm actually contains the
temperature effects. At zeroth order inr / l , the master equa
tion for classical noise then acquires the form

ṙ52 i @H0 ,r#2E
0

`

dtcclass
i j ~t!@hi ,@hj ,r##. ~4.34!

Let us now analyze the general master equation, valid
to second order ine that takes into account the quantu
nature of the gravitational fluctuations. These contributio
although small in the low-energy regime, might still be e
perimentally testable. In addition, they may provide intere
ing information about the higher-energy regimes in whichl
may be of the order of a few Planck lengths and for wh
the weak-coupling approximation is still valid. In order
see these contributions explicitly, let us further elaborate
master equation. In terms of the operatorL0 defined as
L0A5@H0 ,A# acting on any low-energy operatorA, the time
dependent interactionhj

I (2t) can be written as

hj
I~2t!5e2 iL 0thj . ~4.35!

The interactionhj can be expanded in eigenoperatorshj V
6 of

the operatorL0 , i.e.,

hj5E dmV~hj V
1 1hj V

2 !, ~4.36!

with L0hj V
6 56Vhj V

6 anddmV being an appropriate spectra
measure, which is naturally cut off around the low-ener
scale l 21. This expansion always exists provided that t
eigenstates ofH0 form a complete set. Then,hj

I (2t) can be
written as

hj
I~2t!5E dmV~e2 iVthj V

1 1eiVthj V
2 !. ~4.37!

It is also convenient to define the new interaction operat
for each low-energy frequencyV:

hj V
1 5hj V

1 2hj V
2 , ~4.38!

hj V
2 5hj V

1 1hj V
2 . ~4.39!

Both the term proportional tof i j (t) and the term propor-
tional to ci j (t) are integrated overtP(0,̀ ). Because of
these incomplete integrals, each term provides two differ
kinds of contributions coming from the bulk term and th
principal part in the well-known formula

E
0

`

dteivt5pd~v!1P~ i /v!, ~4.40!
5-7
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LUIS J. GARAY PHYSICAL REVIEW D 58 124015
whereP is the Cauchy principal part@22#.
The master equation can then be written in the follow

form:

ṙ52~ iL 081Ldiss1Ldiff1 iL stark1 iL lamb!r, ~4.41!

where the meaning of the different terms is explained
what follows.

The first term2 iL 08r, with L08r5@H08 ,r#, is responsible
for the renormalized low-energy Hamiltonian evolution. T
renormalization term is of order«2 as compared with the
low-energy HamiltonianH0 , where «25e2( iI jI

( l * / l )h iI1h jI

and, remember,h iI52niI(11siI)22 is a parameter specific t
each kind of interaction termhi .

The dissipation term

Ldissr52
p

4 E dmVVGi j ~V!@hi ,@hj V
1 ,r#1# ~4.42!

is necessary for the preservation in time of the low-ene
commutators in the presence of quantum noise. As we h
seen, it is proportional to the commutator between the no
creation and annihilation operators associated with the ef
tive bath that represents spacetime foam and, therefore,
ishes in the classical noise limit. Its size is of order«2r / l 2.

The diffusion process is governed by

Ldiffr5
p

2 E dmVVGi j ~V!@N~V!11/2#@hi ,@hj V
2 ,r##,

~4.43!

which contains two contributions: the first one is a tempe
ture effect of order«2/ l and the second is a cold diffusio
originated in the vacuum fluctuations of the gravitation
field and it is of order«2r / l 2. In the classical noise limit
only the first contribution survives and was already stud
in the previous section.

The next term provides an energy shift which can be
terpreted as a gravitational ac Stark effect by compari
with its quantum optical analog@13,14#. Its expression is

Lstarkr5E dmVPE
0

`

dv
vV

v22V2

3Gi j ~v!N~v!@hi ,@hj V
1 ,r##. ~4.44!

Although it is also a temperature-dependent effect with
same origin as the diffusion term, it contains a Cauchy p
cipal part. This translates into the fact that it is smaller th
the diffusion term although it does not vanish in the class
noise limit. It is of order«2r / l 2.

Finally, L lambr is an energy shift generated by the vacuu
fluctuations of the gravitational field~as the dissipation term
and the cold diffusion term! and that can therefore be inte
preted as a gravitational Lamb shift. It has the form
12401
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L lambr5
1

2 E dmVPE
0

`

dv
V

v22V2 Gi j ~v!

3$v@hi ,@hj V
1 ,r##2V@hi ,@hj V

2 ,r#1#%.

~4.45!

The second term is of order«2r 2/ l 3, which is fairly small.
However, the first term will provide a significant contribu
tion of order«2r / l 2 log(l/r). This logarithmic dependence o
the relative scale is indeed characteristic of the Lamb s
@13,14,23#.

As a summary, thec term gives rise to four differen
contributions: a thermal diffusion term, another diffusio
term originated from the vacuum fluctuations of the bath
contribution to what can be interpreted as a gravitatio
Lamb shift, and, finally, a shift in the scalar-field oscillatio
frequencies that can be interpreted as a gravitational S
effect. Thef term provides a dissipation part, necessary
the preservation of commutators, and another contributio
the gravitational Lamb shift. The size of these effects gen
ated by spacetime foam, compared with the bare evolut
are the following: the thermal diffusion term is of order«2,
which is the only one that survived in the approximations
the previous section; the diffusion created by vacuum fl
tuations, the damping term, and the Stark effect are sma
by a factorr / l ; and the Lamb shift has two contribution
one is smaller than the diffusion term by a factor (r / l )2 and
the other is of order (r / l )log(l/r) as compared with the dif-
fusion term. Note that the quantum effects induced by spa
time foam become relevant as the low-energy length scal
decreases, as we see from the fact that these effects de
on the ratior / l , while, in this situation, the diffusion proces
becomes slower, except for the mass of scalars, which
ways decoheres in a time scale which is close to the lo
energy evolution time.

These quantum gravitational effects could be measure
least in principle, since they are just energy shifts and de
herence effects similar to those appearing in other area
physics, where fairly well established experimental pro
dures and results exist, and which can indeed be app
here—such as those briefly discussed below—provided
sufficiently high accuracy can be achieved. On the ot
hand, scalar fields lose quantum coherence extremely
and Hawking has argued@6# that this might be the reason fo
not observing the Higgs particle. He has also suggested
loss of quantum coherence might be responsible for the v
ishing of theu angle in quantum chromodynamics@6#.

Neutral kaon beams have been proposed as experim
systems for measuring the loss of coherence owing to qu
tum gravitational fluctuations@15,24,25#. In these systems
the main experimental consequence of the diffusion term~to-
gether with the dissipative one necessary for reaching a
tionary regime! is violation of CPT @26,12# because of the
nonlocal origin of the effective interactions. The estima
for this violation are very close to the values accessible
current experiments with neutral kaons and will be within t
range of near-future experiments. Macroscopic neutron in
ferometry@15,27# provides another kind of experimental sy
5-8



u
nc

r
re
s

ich
as
e,
ri

ua
de
is

rg

nt
o
b
n

ec
h

y
en
v

r-
-
fly
n
ie

l

th
th

te

th

n
a
in
t

-

ill
w
nt
p

g

ke
ob-
vo-

f a
he

p-
ns
ach
or-
co-
e

if we
al
d.
ing
at
c-
ce
ni-

ant.
e
point

ch
dent
he
e
they
era-
se-
ua-

rgy
y a
nal
ite
e
ith
the

o a

rto
m
ess-
tion

gy

lity
ex-

ma-
cal
ill
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tems in which the effects of the diffusion term have meas
able consequences since they may cause the disappeara
the interference fringes@15,27#.

As for the gravitational Lamb and Stark effects, they a
energy shifts that depend on the frequency, so that diffe
low-energy modes will undergo different shifts. This tran
lates into a modification of the dispersion relations, wh
makes the velocity of propagation frequency-dependent,
low-energy fields propagated in a ‘‘medium.’’ Therefor
upon arrival at the detector, low-energy modes will expe
ence different time delays~depending on their frequency! as
compared to what could be expected in the absence of q
tum gravitational fluctuations. These time delays in the
tected signals will be very small in general. However, it
still possible to measure them if we make the low-ene
particles travel large~cosmological! distances. In fact,g-ray
bursts provide such a situation as has been recently poi
out @16#, thus opening a new doorway to observations
these quantum gravitational effects. Indeed, the ratio
tween the time delay owing to gravitational fluctuations a
the width of the intrinsic time structure ofg-ray bursts has
been estimated to be of order 1 for emissions with millis
ond time structure and energy around 20 MeV, provided t
they travel a distance of 1010 light years @16#, which are
compatible withg-ray burst observations. If this sensitivit
can actually be reached, one would expect that the pres
of the gravitational Lamb and Stark shifts predicted abo
could be observationally tested.

V. VIRTUAL BLACK HOLES, WORMHOLES,
AND TIME MACHINES

It is well-known that it is not possible to classify all fou
dimensional topologies@2# and, consequently, all the pos
sible components of spacetime foam. Here, we will brie
discuss three different kinds of fluctuations: simply co
nected nontrivial topologies, multiply connected topolog
with trivial second homology group~i.e., with vanishing sec-
ond Betti number!, and finally spacetimes with a nontrivia
causal structure, i.e., with closed timelike curves, in
bounded region.

The effective description proposed in this paper and
associated master equation are particularly suited to
study of low-energy effects produced by simply connec
topology fluctuations~e.g., virtual black holes!. Hawking@6#
has shown that compact simply connected bubbles with
topologyS23S2 ~whose second Betti number isB251! can
be interpreted as closed loops of virtual black holes if o
realizes@28# that the process of creation of a pair of re
charged black holes accelerating away from each other
spacetime which is asymptotic toR4 is provided by the Erns
solution@29#. This solution has the topologyS23S2 minus a
point ~which is sent to infinity! and this topology is the to
pological sum of the bubbleS23S2 plus R4. Virtual black
holes will not obey classical equations of motion but w
appear as quantum fluctuations of spacetime and thus
become part of the spacetime foam. Particles could fall i
these black holes and be re-emitted. The scattering am
tudes of these processes@6# could be interpreted as bein
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produced by nonlocal effective interactions that would ta
place inside the fluctuations and the master equation
tained above could then be interpreted as providing the e
lution of the low-energy density matrix in the presence o
bath of ubiquitous quantum topological fluctuations of t
virtual-black-hole type.

Wormholes@4#, i.e., multiply connected fluctuations~with
vanishing second Betti number!, also admit a description in
terms of nonlocal interactions that, in the weak-coupling a
proximation, become bilocal. These quantum fluctuatio
connect spacetime points that may be far apart from e
other, in the dilute gas approximation. Therefore, diffeom
phism invariance on each spacetime region requires the
efficientsci j of this bilocal interaction term to be spacetim
independent. The same conclusion can also be reached
analyze wormholes from the point of view of the univers
covering manifold, which is, by definition, simply connecte
A wormhole is then represented in the universal cover
manifold by two boundaries, suitably identified, located
infinity. This identification can be implemented by introdu
ing coefficientsci j that relate the bases of the Hilbert spa
of wormholes in both regions of the universal covering ma
fold. As coefficients in a change of basis,ci j cannot depend
on spacetime positions and, therefore, will just be const
This means that the fieldsa i cannot be interpreted as nois
sources that are Gaussian distributed at each spacetime
independently, because the correlation time for the fieldsa i

is infinite. Indeed, the constancy ofci j implies that they are
infinitely coherent and the Gaussian distribution to whi
they are subject is therefore global, spacetime indepen
@5#. One could still expect some effects originated in t
quantum nature ofa i such as a cold diffusion term in th
master equation or even dissipation. However, because
are spacetime independent, they commute with every op
tor, including low-energy ones, thus giving rise to super
lection sectors. Therefore, all the terms in the master eq
tion, except the one responsible for the unitary low-ene
evolution, vanish. Still, wormholes can be represented b
thermal bath as we have done with localized gravitatio
fluctuations. However, in order to reproduce their infin
correlation time, the couplingsj i between the bath and th
low-energy fields must be constant, they must commute w
every other operator, and, related to these two facts, only
zero-frequency~i.e., infinite wavelength! mode of the bath
can be coupled to the low-energy fields, thus leading t
unitary effective theory.

From the semiclassical point of view, most of the hithe
proposed time machines@30# are unstable because quantu
vacuum fluctuations generate divergences in the str
energy tensor, i.e., are subject to the chronology protec
conjecture@31#. However, quantum time machines@8# con-
fined to small spacetime regions, for which the chronolo
protection conjecture does not apply@32#, are likely to occur
within the realm of spacetime foam, where strong causa
violations or even the absence of a causal structure are
pected. These Planck-size regions with quantum time
chines admit an effective representation in terms of nonlo
interactions that account for the causality violations and w
lead to a loss of quantum coherence@7# that can also be
5-9
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LUIS J. GARAY PHYSICAL REVIEW D 58 124015
effectively described as coming from the interaction of lo
energy fields with a thermal bath. In this case, the lo
energy density matrix will also evolve according to the m
ter equation obtained in the previous sections.

VI. CONCLUSIONS

In this paper, we have built an effective theory in whi
quantum gravitational spacetime foam has been substit
by a fixed classical background plus nonlocal interactio
between the low-energy fields confined to bounded spa
time regions of nearly Planck size. In the weak-coupling
proximation, these nonlocal interactions become bilocal. T
low-energy evolution is not unitary because of the absenc
a nonvanishing timelike Hamiltonian vector field. The no
unitarity of the bilocal interaction can be encoded in a cl
sical noise source locally coupled to the low-energy fie
and subject to a Gaussian probability distribution. Then,
evolution of low-energy fields is provided by a master eq
tion which contains a diffusion term. This diffusion is a d
rect consequence of the nonlocal character of the quan
gravitational fluctuations encompassed by spacetime fo
The decoherence rate is suppressed by powers of the
between the gravitational fluctuation size and the low-ene
length scale, except for the mass interaction term of sc
fields for which this rate is comparable with the low-ener
evolution scale.

We have argued that the quantum nature of space
foam is not represented in this effective theory but only
thermal properties. A model in terms of a quantum therm
field, which in the classical noise limit coincides with the o
n
d

r-
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described above, has been proposed as describing the q
tum and thermal properties of spacetime foam. In this mo
the low-energy density matrix evolves according to a mas
equation that, apart from inducing loss of coherence, c
tains additional terms that may be relevant for sufficien
high energies. These terms correspond to a dissipation
cess that ensure the preservation of commutators, a cold
fusion, and energy shifts that can be interpreted as grav
tional Lamb and Stark effects. We have also brie
discussed some of the possible experimental implicati
that these quantum gravitational effects may have. A c
structive model in terms of nonlocal interactions that tak
into account the quantum origin of spacetime foam will
developed elsewhere@33,34# within the formalism of Feyn-
man and Vernon@35–37#.

Finally, among the possible components of spaceti
foam, the role of virtual black holes and small bounded
gions that contain closed timelike curves has been bri
analyzed in the context of our effective model. We have a
argued that dilute wormholes do not admit a description
terms of a thermal bath coupled to the whole low-ene
spectrum and that they are infinitely coherent as was alre
shown by Coleman@5#.
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