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We consider the perturbations of a relativistic star as an initial-value problem. Having discussed the formu-
lation of the problenithe perturbation equations and the appropriate boundary conditions at the center and the
surface of the stauin detail, we evolve the equations numerically from several different sets of initial data. In
all the considered cases, we find that the resulting gravitational waves carry the signature of several of the
star’s pulsation modes. Typically, the fluidnode, the first twg modes, and the slowest damped gravitational
w mode are present in the signal. If such mode signals, from coalescing neutron stars or following a supernova,
can be detected by future gravitational-wave antennae, one can hope to infer detailed information about
neutron stars. Since a perturbation evolution should adequately describe the late time behavior of a dynami-
cally excited neutron star, the present work can also be used as a benchmark test for future fully nonlinear
simulations[S0556-282(198)01120-3

PACS numbes): 04.40.Dg, 04.306-w, 95.30.Sf, 97.60.Jd

[. INTRODUCTION some detail. We also present results from two test problems,
which indicate that for a range of initial conditions, the en-
It is well known that a neutron star has a rich pulsationergy emitted is shared broadly among the pulsation and
spectrum{ 1-4]. We expect the stellar pulsation modes to bespacetime modes. This argues strongly, if in a preliminary
excited in many neutron star processeanging from core way, that dynamical calculations of the collision of two neu-
guakes to the formation of a neutron star through gravitatron stars or the late stages of a gravitational collapse done
tional collaps@ A signal carrying the signature of these within the Newtonian and post-Newtonian approximations
modes could, if detected by future gravitational-wave antenmay seriously underestimate the amount and the spectral
nae, provide useful information about the star. The questiocharacter of the emitted gravitational radiatiém order to
is whether the various stellar pulsation modes can be dyavoid confusion, we should emphasize that the post-
namically excited to a level that makes them astrophysicalljNewtonian picture is still an excellent description of the bi-
relevant. This question is especially interesting because afary inspiral phasg.
the existence of “spacetime” mod¢S], which have no ana- The plan of the paper is as follows. In Sec. Il we formu-
logue in the Newtonian theory of stellar pulsation. It haslate the linear perturbation problem for a neutron star in gen-
been showii6,7] that these modes, together with the normaleral relativity as an initial-value problem, with special atten-
fluid pulsation modes, can provide valuable informationtion to the boundary conditions and the treatment of the
about the mass, size, and equation of state of neutron starsenter of the star. In Sec. Il we solve the initial-value prob-
Much of the initial deformation of spacetime in, e.g., a su-lem numerically for two sets of initial conditions, which rep-
pernova collapse could conceivably be released throughesent in some sense the extremes of the balance between
spacetime pulsation modes, yet most studies of neutron staxciting fluid modes on the one hand and spacetime modes
formation and pulsation have not treated them because theyn the other. The spectrum of the gravitational waves gener-
have been done within the Newtonian or post-Newtoniarated from these initial data show clearly the signatures of
approximations. both the fluid modes and the spacetime modes. Importantly,
With the present paper, we take the first steps towards aim both sets the excitation of the spacetime modes is appre-
answer to the question of mode-excitation. We describe nueiable. In Sec. IV we discuss the significance of the results,
merical evolutions of the equations that describe a perturbednd our plans for future work to determine a more realistic
relativistic star for various sets of initial data. Evolutions of initial-data set to use for such calculations. We begin by
the perturbation equations for black holes have provided inproviding, in the remainder of Sec. |, a more detailed moti-
teresting information(see[8] for references and it seems vation for this work in the context of numerical relativity and
likely that this approach should prove equally instructive forgravitational wave detection, and a brief background on rela-
stars. Our main focus is on the evolution problem itself: Wetivistic stellar pulsation theory with special focus on recent
formulate the problem and discuss all relevant equations idevelopments.
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A. Gravitational-wave astronomy and numerical relativity B. Pulsating stars

With the building of several large-scale laser interferom-  The study of stellar pulsation in a general relativistic con-
eters for gravitational-wave detection well under Way10]  text has a considerable history, dating back to the work of
“gravitational-wave astronomy” may be established aroundThorne and his colleagues in the late 196(4] (for a re-
the turn of the century. But many fundamental problems recent review se¢15]). Originally, the stellar pulsation prob-
main.to be solved beforg this goal can be reached. For them was approached from a “Newtonian” viewpoint. In this
theorist, the most pressing problems concern modeling thgicture, motion in the stellar fluid generates gravitational
processes which generate gravitational wajiel§. Only by yayes which carry energy away from the system. The char-
comparing observational data to such models can we hope igeristic frequencies of the various pulsation modes of the
infer detailed information about the various grawtanonal-star thus become complex valued. Due to the weak coupling

wave Sources. . . between matter and gravitational waves, the damping rate of
Simulations of processes involving neutron stars have

(with a few exceptionsso far used Newtonian gravifyL 2], a tyl_ﬂ;a‘l,ﬁuﬁ?t'rﬁnnrpo?i '? V?%rlr?i?lg]i that the d .
see the discussion in Sec. Il C. This is mainly due to the ewtonian- picture 1S edin that the dynam!-

difficulties of consistently treating both the matter and theCal pro_pert|es Of the spacetime itself are neglected. Tha? a
gravitational field within the framework of the standard dYNamic spacetime can add new features to the pulsation
Arnowitt-Deser-MisnefADM) formalism. In these Newton- problem can be understood in terms of a simple, but instruc-
ian simulations, the gravitational radiation is calculated usindive, model problem due to Kokkotas and Schiitz]. There
the quadrupole formula. That is, gravitational waves origi-2'e pulsation modes directly associated with spacetime itself.
nate solely from stellar fluid motion—there is no contribu- These new modes have been termed “gravitational-wave
tion from the dynamics of the gravitational field itself. How- modes” (or w-modes [5]. They have relatively high oscil-
ever, the dynamics of the gravitational field should alsolation frequencieg6—14 kHz for typical neutron starsnd
contribute to the emerging gravitational radiation. This isbarely excite any fluid motion. They are also rapidly
clear from the black hole case, in which the quasinormaldamped, with a typical lifetime of a fraction of a millisecond.
mode oscillations are entirely due to the dynamical spaceOur understanding of the-modes has improved with a body
time [8]. At an intuitive level, one would expect similar fea- of recent work{4,18-20.
tures to exist for stars, although they are probably less The existence of pulsation modes that are directly associ-
dominant, since a neutron star is less relativistic than a blackted with the spacetime itself is interesting from a theoretical
hole. As we describe below this is, indeed, the case. There goint of view, but it is necessary to establish if these modes
a set of pulsation modes of a relativistic star that can bere of astrophysical significan¢é]. One can argue that the
directly associated with the spacetime curvature. But it is nogravitational-wave modes could be relevant in many sce-
yet known how important the spacetime contribution to thenarios. Consider, for example, gravitational collapse to a
gravitational-wave emission will be in a dynamical scenario.neutron star, or the coalescence of two neutron stars. In both
There is growing optimism in the numerical relativity cases will there be changes in the deformation of spacetime,
community over the feasibility of simulating neutron starswhich could potentially lead to considerable amounts of en-
within general relativity, but even though such projects areergy being radiated through tive-modes. Detailed calcula-
ultimately the only way to provide reliable gravitational- tions are needed to provide guantitative information. In es-
wave estimates, the first results will not be available forsence, there are two important questions that must addressed:
some years. In the meantime, we must resort to approximat@ Will the gravitational-wave modes be excited in processes
methods. The present paper describes a project to investigagech as supernova collapse or neutron star coalescéince?
the excitation of the stellar pulsation modes using perturba¥hat is the possibility of observing such modes in data from
tion theory. We recall that non-linear numerical calculationsthe new generation of gravitational-wave detectors, and what
for black holes have shown that the quasinormal modes tenphysical information could such observations provide?
to be clearly present in the radiation. Furthermore, compari- As an initial attempt to answer the second question was
sons with non-linear calculations have indicated that theecently provided by two of uf7]. As for the first issue, we
more tractable linear approximations can provide accuratbave studied scattering of wave-packets by a uniform density
waveforms for a wide range of initial data. A particularly star[6]. This is not a problem of great astrophysical impor-
interesting example of this is the “close-limit” approxima- tance(it is difficult to imagine a situation, where the imping-
tion for colliding black holeg13]. It seems likely that per- ing gravitational wave has sufficient magnitude to make the
turbation calculations will also be a useful tool for problemsscattered wave observapléut the results were nevertheless
involving relativistic stars. The relative simplicity of the per- encouraging. The resultant gravitational waves show the
turbation approach compared to the full non-linear calcula<lear signature of thev-modes for neutron star sized objects
tions makes its application and interpretation easier. We catR/M~5). Similar results have since been obtained for a
hope to learn some of the relevant physics by pursuing thearticle falling in the stellar spacetini@l]. The present pa-
perturbation approach. In the near future, while non-lineaper describes more detailed work along these lines: We
codes are still being developed, approximate studies can leaVolve the linearized equations from general initial data.
the way. A further benefit from this work is its application as Most importantly, our analysis is not restricted to an initial
a test for the full non-linear codes for simulations of stellarperturbation with compact support in the vacuum outside the
processes. star. To construct our stellar model, we use a polytropic
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equation of state. Contrary to the simple uniform densitywhere
model, polytropes allow several fluid pulsation modes to ex-

ist (the singlef-mode and an infinite sequencemimodes.
dv  2eMm+4mprd)

——. 5
Il. STELLAR PERTURBATIONS AS AN INITIAL dr r? ®)

VALUE PROBLEM

In this section we describe the stellar perturbation prob-These equations do, of course, require an equation of state
lem. We will introduce all the necessary equations, but noP=P(p) as input. In this paper we considéor reasons of
discuss their origin in great detail. For further details wesimplicity) only polytropic equations of state
refer the reader to previous wofli4,16,22-24 It is rel-
evant to point out that most of the existing work on pertur- o
bations of stars has been performed in the frequency domain P=Kp”. ©®)
(after Fourier decomposition of the various perturbed quan-

tities). This is the natural approach as long as one is mainlyn particular, we present numerical results for a model with
interested in the spectral properties of a star. Kind, Ehlerg =100 kn? and y=2. We have performed calculations us-
and Schmid{25] appear to be the only authors that haveing different parametergand also tested our numerical code
considered relativistic stellar perturbations as an initial valueyith some realistic equations of statéut, since the results
problem. (Perturbations of a time-dependent geometry wergyere similar to those discussed in Sec. Ill B, we will only
considered by Seidedt al. [26-2§ in the context of gravi-  discuss one stellar model in detail. The specific model we
tational collapsg.The motivation of Kindet al. was to show have chosen has a central dengity=3x 105 g/cn®. The
that initial Cauchy data with the appropriate junction condi-corresponding radius and mass dRe=8.86 km and M
tions at the stellar surface determines a unique solution to the 1 87 km~1.2M,, respectively. The pulsation properties

time-dependent equations. Thus, Kietlal. address impor-  of this stellar model have already been investigated in detail

tant mathematical questions for the stellar evolution probys,
lem. The motivation of the present investigation is rather

gljf[ezrg?t, but our formulation of the problem is still inspired B. The perturbation problem

A general description of the stellar perturbation problem

A. The stellar model is as follows: We want to solve the perturbed Einstein equa-

. . . tions
A static spherically symmetric stellar model can be de-

scribed by the metric
6G,,=8mdT,,. 7

ds?=—e’dt?>+erdr?+r?(d6>+sirfade?), (1)

The small amplitude motion that a perturbation induces in
the stellar fluid is described by displacemedfts £ and £%.

The fluid displacement affects also the pressure and the den-
sity of the fluid. To describe these, we use the Eulerian varia-
tions &p and &p.

L 2m(r)\ 1 As is familiar from black-hole problemi8,29], the per-
et={1- r ' 2 turbed metric can be split into two classes: axial and polar
(alternatively called odd and even parity, or toroidal and
spheroidal perturbations. That is, the metric can be written

where the metric coefficientsand\ are functions of only.
Specifically,

and the “mass inside radius’ is represented by

_ Pack d I ial
glw_gﬂa;c groun_’_hzoyar_’_ hix;a. (8)

m(r)=4wforpr2dr. ®)

If we work in Regge-Wheeler gaug&vhich has been used
This means that the total mass of the stavlis m(R), with ~ for most of the previous studies of the stellar problethe
R being the stars radiu§We use geometric unit§=c=1  axial perturbations are described by four variables linked to
throughout this paper. the metric coefficientd,, h;,, h;, andh,,. These pertur-

A star in hydrostatic equilibrium is governed by the Pations induce a differential rotatio_n of the star, where th_e
Tolman-Oppenheimer-VolkoffTOV) equations: To deter- Only non-zero component of the fluid-displacement vector is
mine a stellar model, we must solve &?. The polar metric perturbations correspond to six vari-

ables related to the metric coefficietitg, h;,, h, hyy, hy,

and h,,, together with the fluid displacements and &,
@_ _ptp ﬂ 4) Exactly as for black holes, it turns out that the equations that
B govern the axial and the polar quantities decouple in the case
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of a nonrotating stafthis will not be the case if the star is These functions are related to the standard Regge-Wheeler
rotating [24,30). We thus have two problems that can befunctionsK(t,r) andHg(t,r) (see, e.g.[14] or [24]) by F
approached separately. =rK, S=e”(Hy—K)/r. We also evolve a fluid functiotthe

In this paper we only consider the polar problem. Thereperturbed relativistic enthalpy
are several reasons for this. We have recently considered the
initial-value problem for axial perturbations of a uniform
density staf6]. Because an axial perturbation does not in- H(t,r)= ﬁ (12)
duce pulsations in the stellar flujd4], we do not expect the ' p+p’
results for a more realistic stellar model to be dramatically
different from those for uniform density. Basically, an axial
perturbation can only result in the excitation wfmodes,
and as long as the two stars have similar compactne
(R/M), the corresponding frequencies are quite similar for
uniform density star and a more realistic mof#]. Hence,

which is defined only inside the star. In these definitions of
F, S andH, we have suppressed the angular dependence
1].
The above variables are not obvious, but we have good
reasons for introducing them. Let us first consider the func-

we focus on the polar problem here. . X . .
The polar problem corresponds to seven perturbed fiel&On S Wher] we mtroduc:a th|§ funct|on', and” also use the
Standard definition of the “tortoise coordinate

equations and three equations of motion for four metric per-
turbations and four fluid variablgs4,24,25. At first this
would seem to be an overdetermined problem, but this is not J J

the case. Three of our original equatioftse equations of = =e<V"‘)/23—r, (13
motion, say are void of new information because of the *
Bianchi identities. Moreover, we can use
we find that[32]
Sp= izﬁp (9 ?S d*S 2e’
Cs — 5+ —5+—5[2ar3(p+3p)+m—(n+1)r]S
at ary r

whereC. is the acoustic wave-speed in the stellar fluid. We 4e?” [ (m+4mprd)? 5
are thus left with seven equations for seven unknown vari- =T 5 (r—2m) +ampr'=3m|F, (14

ables.

_ _ where 2=(1-1)(1+2). We thus have a simple wave-
C. Evolution equations equation with no explicit dependency on the perturbations of
There are many possible formulations of the perturbatiorthe fluid. For the other “metric” variablé, we find[32]
problem, even within the Regge-Wheeler gauge, and it is

difficult to predict if a specific one may be advantageous
b b Y ] P°F  °F  2e’

from the point of view of numerical evolutions. Here we 3

X , — ==+t —=+—=3[27r°(3p+p)+m—(n+1)r]F
have chosen a formulation that reflects the physics of the o? o ors o ord [2m(3p+P) (n+1)r]
system. That is, we consider a set of wave-equations describ-
ing gravitational waves coupled to acoustic waves in the stel- =—2[4nr?(p+p)—e NS

lar fluid. Furthermore, we have cast the “spacetime” equa-
tions into a form which resembles the more familiar 1
equations for black-hole perturbations. This facilitates a +8m(p+ p)re”( - @) H. (15
comparison between the two problems. s

The perturbed Einstein equations and the fluid equations
of motion can be manipulated into a set of evolution equaThis equation is also quite simple, but here the coupling to
tions for a reduced number of variables. The remaininghe fluid variableH is apparent. Both of our wave equations
spacetime and fluid perturbations are determiriatl all  are valid inside the star as well as in the exterior vacuum. In
times by a number of constraint equations. Here we evolvethe exterior the mass is, obviously, the total masel. Our
two spacetime variablgs(t,r) andS(t,r) which are related reason for introducing andF should now be apparent: In
to the metric perturbations by terms of these variables, the perturbation equations become
similar to the wave-equation that governs a perturbed
Schwarzschild black holg8], or the equation for axial per-

Rgo(t,r)=TF (L1, (10 turbations of a star33]. That the polar equations can be cast
in a similar form has not been shown previously.
The equation that governs the fluid varialbleis, how-
e’ ever, still somewhat messy. After some algebra, we find that
he(t,r) = 2 hg(tr)=rS(LT). @y gy ST Y gebra, we
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1 (72H (92H e(V+)\)/2
-+t —+
cZ ot or2 r2

(9H+26V 2ot
ot wr(p+p)

*

1
e

S

(m+4mpr?) +2(r —2m) —(n+1)|H

3+ !
Cs

mearor®| 1 1)\ er 2 lev gF  4S
=(MEAmPON 1= o) 2 o, " ary

(m+4mpr3)? ( 1 ) m+4mprd ( 1 )

r2(r—2m) +E§ - 2r? c?

2(m+4mpr®2 1 m+4mprd 1
Trr—2m 2 a2z |\t TAmBete)

Finally, we have the Hamiltonian constrai®2]

eV

—47r(3p+p) F. (16)

PE etV JE e S
Hi=—5 — —5—(M+47r3p) —+ 3 [127r3p—m—2(n+ 1)r]F—re” ("*NV2_—
ary r oy r I 4
) 4m 8mr
+| 87r (p+p)—(n+3)+T S+ o2 e’(p+p)H=0, 17
S

which must be satisfied by the initial data and also throughout an evolution. We will discuss this constraint in more detail in
Sec. Il A.

Here it could be worthwhile to note that it is possible to find a new “fluid” variable such that the corresponding wave
equation[that would replace Eq(16)] contains no first derivatives. However, this extra step is not convenient because it
involves the solution of a differential equation involviGf .

It is also meaningful to comment on the number of equations that we use. It is well known that the interior problem for
polar perturbations can be reduced to two coupled wave equafi8r&4. It would be easy to use E{L7) to replaceH in Eq.

(15 (as was done by Ipser and Pri@8] and Kojima[24]). If we do this, we get

! 62F+52F A +4mprd ox +eV 4713 3p+ P 1 3 2(n+1)r|F
CZ at? " or2 ci) r? (M+4mpr) or, 3| ee c? m c? (n+1)r
= 1—i re*““‘)’za—SJr 2e M| 1- —|(n+1)—8m(p+p)r?|S (18)
C? ar, c? '

However, Eq.(18) is rather “unphysical” because a metric single homogeneous wave equation—the Zerilli equdi#in
variable F) plays the role of the fluidin the sense that it is If we define[28,34

governed by the sound spe€d). Beside, it is useful to keep

one fluid variable explicit. With the equations f8r F, and (n+1)(nr+3M) 10F (n+2)r—M

H above, we can easily monitor the fluid motion during the 3 Z=-v o, —3 FFS
evolution. Moreover, Kindet al. [25] have shown that, as (19
long asp>0 at the surface, our problem is well posgidat

a unique solutions existsThe result of Kindet al.is appli-  we find thatZ evolves according to

cable also to our evolutions even though our density distri-

bution vanishes as—R, since we always introduce the 927 3°Z

“surface” of the star at a small nonzero value pfin the — +V(r)Z=0 (20
numerical code. *

Let us now turn to the exterior problem. In the vacuum
outside the star, the problem is identical to that for a per
turbed Schwarzschild black hole. Thus, the equations sim-
plify considerably, and we only need to consider the two Vy(r) = 2e”
equations forS andF (note that the two effective potentials z (nr+3M)>?r3
are equal in the exterior vacuiymFurthermore, we know
from tﬂe studies of perturbed black holes that we can reduce X[N*(n+1)r*+3n°Mre+9nM°r + OM”].
the problem even further. We only need to consider one (21

where the effective potential is given by
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This equation has the advantage that the funclors  In principle, this constitutes a boundary condition férat
gauge-invariant and unconstraing¢#8,34. But from the the surface of the star, but in practice this result is not very
point of view of a numerical evolution, it may be preferable helpful. First of all, we are not explicitly calculating'.
to solve the coupled system f&and F—the variables that Moreover, it is known from Newtonian pulsation theory that
are used inside the star—rather than switching to the Zerill€" is not constrained at the surface of the sineed only be
equation in the exterior. Furthermore, it turns out that it isnon-singulay. Thus, the vanishing oAp asr—R does not
trivial to obtain gauge-invarianfout constrainedquantities  lead to a useful boundary condition for the fluid variable
from S and F. If we useq; and g, to denote the gauge Instead, we infer the behavior ¢f at r=R from Eq. (16).
invariant variables that were first introduced by Seidd], However, because the sound spé&edvanishes as—R, it
we find that is not convenient to use Eq16) close to the surface. The

behavior ofH at the stellar surface follows after we take the
limit Cs—0 in Eq. (16). Keeping only terms of order @Z,

F
q1=H0=F+re*”S, (22) we get
. MoH M 9F M s
Ht D — s —t 55— —
F Reor, 2R*dr, 2(R—2M) or,
A=K=. (23
+M(R+2M) N M s—0 27
These equations prescribe how the gauge invariant quantities 2R® 2R(R—2M) '

can be generated from the specific functions that we solve for, . .
in Regge-Wheeler gauge. It is straightforward to genegate f[ir:er ;[I; We use this equation to evol¥é at the surface of
and g, once we knowS and F_(or the standard Regge- Let ué now consider the behavior of the two “metric”
Wheeler functionsHy and K). Furthermore, for the fluid

variable one finds thasp in Regge-Wheeler gauge corre- va_riables aty=R. From the junction conditiongthe conti-
sponds immediately to the gauge-invariant variable that nuity of the first and second fundamental forms across the

: surface of the staf25]) we find thatF, S, anddS/ar, are
was used by Seid¢Ps]. continuous atr=R. That is, if we let subscripts and e
represent functions obtained for the interior and the exterior,

D. Behavior at the center and the surface of the star respectively, we have
When evolving the perturbation equations, one must give
special consideration to the behavior of the variables close to IS 9IS
the center and the surface of the star. Fi=Fe, S=S., Z: or, (28)

To infer the behavior at the center is relatively easy be-
cause we know that, for a physical solution, all the perturbedt is also apparent from Eq14) that these conditions imply
variables should be regular at=0. Working in the Fourier
domain and expanding all variables in powersrofas was PSS,

done by Lindblom and DetweildtL6]), we can infer that pr e ol (29
* *
Fr!tl as long asp—0 asr—R. This means that all terms in Eq.
S~r'"1Y as r—o0. (24) (14) are well defined at the boundary, and this equation can
H~r! consequently be used to evol@there.

For the functionF the situation is somewhat different.
We also need to deduce the behavior of the various funcFirst we notice that we can derive an equation similar to Eq.
tions at the surface of the star. We must implement the usudR7) also forF (i.e., an equation with no second derivative
junction conditions[35] for the spacetime functions at  with respect tar, ). This equation is
=R, and also impose a boundary condition on the fluid vari-

ableH. . M JF dS 3M 2M
The surface of the star is formally defined by the vanish- F- RZar, RE_ R 1- R F-(n+1)S=0,
ing of the Lagrangian variation in the pressutp. That is, (30)

at the surface we have

at r=R. Using this equation, and the already established

dp continuity of 9S/dr, , we can infer that

Ap=5p+§rd—=0. (25
r (5'F| &Fe

ar, - ar,’ (31)

This immediately leads tép~p&" asr—R, or

Thus, dF/dr, is continuous across the surface of the star.
H~¢, asr—R. (26) Finally, it follows from the wave equatioiL5) that

124012-6



GRAVITATIONAL WAVES FROM PULSATING STARS . .. PHYSICAL REVIEW D 58 124012

P*F;  I°F + 2=y
e grRePHR)Im Pl 87R&PH(R) E— as r—R, (32)
a2 a2 m ez Ky

where x and y are the constant and index in the polytropic pointed out that the time derivative of the Hamiltonian con-

equation of state, respectively. Thus we see that in the caggraint H=0 is automatically satisfied for time-symmetric

that we considefy=2) the right hand side of Eq32) ap- data.

proaches a constant as+R. Consequently, the second de-  The choice off F,S,H} to satisfy?{=0 on the initial hy-

rivative of F will be discontinuous across the surface of thepersurface depends on the model problem under consider-

star. ation. So far we have considered two different classes of data
sets. The first involves no initial fluid perturbation in the star,

1. TWO MODEL PROBLEMS while the second includes a nonzero fluid perturbation.

) ) ) ) The first initial data set corresponds to the scattering of an
In the previous section we discussed the equations thqﬁcoming gravitational wave packet by the star. Here the
govern perturbations of a relativistic star. We now want t0q,,ig variableH is set to zero, and the metric variables ini-

evolve these equations from a given set of initial data. Thqially have support only in the exterior vacuum. To enable

ultimate purpose of this exercise is to use .the perturbatio omparison with the axial problem considered by Andersson
approach to infer what one should expect in a problem o

physical interest, e.g., when two neutron stars coalesce. &nd Kokkotag 6] we specify the Zerilli functionZ to be a

the present time such discussions are beyond our means. garrow Gaussian centered at a Iarg_e radius. The spacetime
fore trying to implement “astrophysically relevant” initial VaiableF can then be calculated using

d_ata, we must ensure that we can evolve the stellar perturba- 9Z  n(n+1)r2+3nMr+6M2
tion equations accurately. Hence, we have tested our evolu- F=r (33
tion code by experimenting with different kinds of initial I r(nr+3m)

data. This enables us to conclude that our humerical imple-

mentation of the various equations is reliable. We also gain ) o o
some insight into the excitation of the stellar pulsationThis equation follows when the definitidd9) of the Zerilli
modes. function is combined with the constraint equatiity). Fi-
nally, we specify the remaining functio by numerically
integrating the constraint equatioh=0. An example of
such initial data is shown in Fig. 1.

To define acceptable initial data for the evolution problem The Scattering of gravitationa| waves is, however, not the
is not a trivial task. To specify astrophysically relevant initial problem that we are interested in. Generically, one would
data, one should first solve the fully nonlinear three-expect a non-vanishing perturbation inside the star. Thus, we
dimensional initial-value problem foisay a newly formed  would like to consider various perturbations in the stellar
neutron star that settles down after core collapse. Then thgyid. That is, we specify{ (arbitrarily) at some initial time.
results must be translated into a form that makes them usefgyom the Hamiltonian constraint, it is clearly seen that such
as initial data for the perturbation equations. Although eas fluid perturbation must be accompanied by a non-vanishing
to describe in words, each step is difficult and requires greghetric perturbation. Thus, we should formally figdand F
care(cf. the analogous problem of two colliding black holes i such a way that the constraint equatidy) is satisfied
[13]) In Short, a detailed formulation of |n|t|a.| da.ta for the inside the star. There is rwpriori method Of Ca|cu|atin§
pgrturbation e_qu_ations requires much furt_her work, and Weynd F uniquely, since we seemingly have the freedom to
will return to it in the future. Here we will focus on the choose either of these two functions. To test our numerical

seems logical. _ o kinds of initial data:
A careful analysis of the constraints that our initial data

must satisfy indicates that we are free to choose our evolved!) We combine the specified functish with F=0. This is
variables{F,S,H} such that the Hamiltonian constraint and ~ convenient since we then only need to integrate a first

A. Specifying initial data

its first derivative are satisfief course all boundary con- order differential equatiort17) to determine the corre-
ditions and physical constraints must also be satisfia€]. spondingS.

As an initial simplification we consider only time-symmetric (2) An alternative to this is inspired by the weak-field limit.
initial data (F=S=H=0). This assumption leads to rather It is known that(in the standard Regge-Wheeler nota-
contrived initial data from a physical point of view. Basi-  tion) Ho—K—0 as the star becomes Newtonifgv].
cally, the waveforms that we see as outgoing at future null ~ This would correspond t6= 0. Once we have made this
infinity were initially incoming at past null infinity. Never- assumption, we can numerically integrate the second or-

theless, time-symmetric initial data provide a useful starting  der differential equatioril7) and find an acceptable.
point for studies of the evolution problem. It should also be(3) The third set of initial data is also based on the weak
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In{|q,[)

In(lq.l)

s L L L n L L L | L s s L | L n L = - ! ! . ! L ! ! L L !
0 10 20 20 % 100 200 w0 w0 500 600

radius r,

FIG. 1. Initial data for the case when an initial perturbation in ~FIG. 3. Evolution of the gauge-invariant quantitggsandq; for
the fluid is specified. Here we u$e=AC§(r/R)2 cos@rr/2R) and initial data corresponding to a Gaussian Zerilli function, cf. Fig. 2.
solve the constraint equations to obtain the requBesdF. These 2 2
then lead to the two gauge-invariant quantitigsandg, (defined in H=Cs(r/R)“cod wr/2R), (35
Sec. 11 G shown here. is shown in Fig. 1.

field result. We seE=26U, wheresU is the perturba- B. Numerical results

we have chosefsee Figs. 1 and)Zare rather different, the

gravitational waves that emerge from the system during each
evolution are qualitatively quite similar.
5 d7(p+p) In Fig. 3 we show the gravitational waves that follow
VioU=—4mdp=——-—H. (349 when a Gaussian in the Zerilli function is scattered off the
s star. The corresponding initial data is shown in Fig. 2. We
use the gauge invariant quantitigs and g, [cf. (23)] to
represent the gravitational waves that reach a distant ob-
Then the appropriate functidis obtained by integrating server. In this specific example, the observer is located at
Eq. (17). An example of this kind of initial data, for r,=200M. After a sudden burst of waves follows a ring-

1000

500

0

‘h(ovr-)

-500

-1000

q,(0,r.)
o

200 210
radius T,

g
8
N
B

FIG. 2. Initial data corresponding to a Gaussian pulse in the Zerilli function. We show the two gauge-invariant qupnéties),
(defined in Sec. Il ©
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power spectrum of q,

In{|q,[)

power spectrum of §p Ppower spectrum of q,

o] o 20 a ] ’:g, b
C A g L
.j.\ ] 20 - * * * : * * * : * * *
0 5 10 15 20 -200 0 r 200 400
frequency (kHz)

FIG. 5. Evolution of the gauge-invariant quantitggsandq, for

FIG. 4. Power spectrum for the data in Fig. 3. The part of thequ initial data shown in Fig. 1

signal that is used is shown in the upper right-hand corner of eac
panel. The two upper panels show the power spectra for the gauges is not very surprising, since in the first case, the imping-
invariant quantities|; andq,, respectively. The lower panel shows ing waves must excite motion in the fluid, which then leads
the power spectrum for the fluid motiofas represented by the "0 o itational waves witlisay f-mode characteristics. In
Eulerian variation in the densityp). In each panel we also show the second case, the fluid is already perturbed so one would

Fhe position of the various pulsation modes of the star. fFheode expect a more pronounced excitation of the fluid modes,
is represented by a circle, tipemodes by squares, and tvemodes S - .
Our results indicate that there can be situations where a

by triangles. It is clear that the emerging gravitational waves con- iderabl t of - | d th h th
tain the firstw-mode together with th&-mode and the firgh-mode. considerable amount of energy IS release roug e
w-modes, but one should be careful not to read too much
. . hysics into this result. One reason for caution is that we find

down corresponding to the quasinormal modes of the staf[:)hat the threead hocways to specify initial data with an

The ringdown consists of two parts. The first pdrom t I : . . .
S S . . initial fluid perturbation(see the previous sectiptead to
r~200-280M in Fig. 3) shows the high frequencies and different predictions for the energy released through

thr(:\vit;a':ipol gal-\(/jvaar\?glrm% detgaErh:rseeC(;:rT;ra;riegfs'zlr:::siO;ﬂf Ithew-modes. Basically, we find that the excitation of the
9 . ' P - w-modes increases with the initial value $f That is, if we
t—r,>280M) is slowly damped, and the oscillations have - . :

. : et S=0, the evolutions only show a glimmer @f-mode
longer wavelength. This part of the signal should correspon scillations. In contrast, th&-modes dominate the signal in
to the fluid pulsation modes. A spectral analysis of the signa? : ’ 9

shows that the emerging waves are composed of imede cases, where==0 initi_ally. The_ answer to the question
the first p-mode and the slowest dampedmode for thé whether thew-modes will be excited to a detectable level in

star, cf. Fig. 4. an astrophysically relevant situation requires a more detailed

The result is similar in the case when the stellar fluid isstudy.
perturbed initially. An example of such an evolution is _ )
shown in Fig. 5. This example corresponds to the initial data C. A brief survey of the literature
(39), cf. Fig. 1. Again, the post-burst signal can be roughly  Since we have found that several of the stars pulsation
decomposed into two parts: the first patrt-(, ~0—25M) modes are excited in our test simulations, it is worthwhile to
corresponds to thev-modes and the later signat-{r, compare our results to previous numerical neutron star simu-
>25M) is due to the fluid modes. The corresponding speciations. The available simulations fall into two categories:
trum shows the presence of thenode, the firsp-mode and  Simulations of coalescing stars and studies of rotating core
the slowest dampeai-mode, cf. Fig. 6. collapse.

These two examples show that one should expect both Almost uniquely, studies of coalescing neutron stars use
fluid and gravitational pulsation modes to be excited in aNewtonian hydrodynamics and extract the gravitational
generic situation. But it is also clear that the relative ampli-waves via the quadrupole formula. As already mentioned
tudes of the various modes depend on the initial data. In thebove, this approach cannot account for #enodes, but
case of a gravitational-wave pulse impinging on the stashould be able to reveal the presence of the fluid pulsation
(Figs. 3 and #more energy is released through thenodes  modes—provided that these are excited to a significant level.
than in the case of an initially perturbed fluigigs. 5and & A survey of the literature reveals several indications that the
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expected to bounce at nuclear densities, but if the star is
rotating, the collapse can also bounce at subnuclear densities
because of the centrifugal force. In each case, the emerging
gravitational waves are dominated by a burst associated with
the bounce. But the waves that follow a centrifugal bounce
can also show large amplitude oscillations that may be asso-
ciated with pulsations in the collapsed core. Such results
have been obtained by Mohmeyeret al. [42]. Some of
their models show the presence of modes with different an-
gular dependence superimpos@ge Fig. 5 in[42]). Typi-
cally, these oscillations have a period of a few ms and damp
out in 20 ms. The calculations also show that the energy in
the higher multipoles is roughly three orders of magnitude
smaller than that of the quadrupole. More recent simulations
by Yamada and Satet3] and Zwerger and Mier [44] also
X 3 show post-bounce oscillatiorisf. waveforms in Figs. 2—4 of
C 7 [43] and Figs. 5 and 6 di44]).
5 j\ 3 There is thus some indications that the fluid pulsation
o s 0 s 2 modes of a star will be excited in both the collapse and the
frequency (kHz) coalescence scenaffid5]. But it is not a clear-cut case: The
oscillations that are seen are often tiny, and may be due to
ﬁpurious numerical effects rather than physics. However, the

panel. The two upper panels show the power specira for the gaugglted examples are encouraging, and_ it seems _reasonable that
invariant quantities}, andg,, respectively. The lower panel shows th&W-modes should also be excited in a generic case. But to
the power spectrum for the fluid motiofas represented by the Show that this is the case one must incorporate general rela-
Eulerian variation in the densitgp). In each panel we also show tivity in the simulations of collapse and coalescence. As yet
the position of the various pulsation modes of the star. ffheode  there has been few attempts to do this, but an interesting
is represented by a circle, tipemodes by squares, and themodes ~ example is provided by the core-collapse studies of Seidel
by triangles. It is clear that the emerging gravitational waves conet al.[27,26,2§. The approach adopted in those papers is, in
tain the firstw-mode together with th&-mode and the firqi)'mode. fact, quite similar to our present one: One considers axial
(odd parity or polar (even parity perturbations of a time-
pulsation modes are present in the gravitational wave signal$ependent backgrour{that evolves according to a specified
from coalescing stars. Waveforms obtained by Nakamuraollapse scenarjoAs expected from the Newtonian studies,
and Oohar438] show clear mode presentd. Figs. 5, 8 and  the extracted gravitational waves are dominated by a sharp
11in[38]). Their Fig. 5 is actually very similar to our Fig. 5. purst associated with the bounce at nuclear densities. But
Ruffertet al. [39] have also obtained gravitational wave sig- there are also features that may be related tavtimeodes. In
nals from CoaIeSCing stars that show late-time OSCi”atiOﬂSa case designed to Co”apse and rebound with extreme energy
Their waveforms and specti@f. Figs. 24 and 27 if39])  seidelet al. find a ringing mode in the post-bounce gravita-
show oscillations at frequencies between 1.5-2 kHz. tional waves(cf. Fig. 7(b) of [26]). Since there are no axial
Further possible evidence can be found in the results ofiyid modes for a nonrotating star, it is plausible that this
Zhugeet al.[40,41]. They model coalescing polytropic stars mode corresponds to one of the axiaimodes of the core.
using SPH. In their waveformg&f. Fig. 6 in[40]) one can  Fyrthermore, the power spectrum for one of the simulations
see transient oscillations in the late-time waveforms. Howqiscussed in27] (cf. their Fig. 2 shows some enhancement
ever, even though all the calculated spectra show a clegfround 7 kHz. As the authors state, this “is probably a result
peak beyond the cutoff frequency that is associated with thgf some numerical noés. .. rather than a true physical ef-
actual coalescendef. Fig. 12 in[40]), one must be careful fect,” but it may be relevant to note that the slowest damped

and not assign these oscillations too much physical relaxjalw-mode has a pulsation frequency of roughly this mag-
evance. Although the oscillations could correspond to certaipjiyde.

pulsation modegpossibly p-modes in the merged objects,

the oscillations are tiny and their. true nature is I.ikely to be IV. CONCLUDING DISCUSSION

strongly compromised by numerical effedisspecially the

artificial viscosity [41]. Nevertheless, the indicated oscilla-  In this paper we have discussed the evolution problem for

tions are suggestive and future studies, with better resolutiorthe equations that govern a linear perturbation of a relativis-

should be able to provide a reliable physical interpretation. tic star. We have taken the first steps towards developing a
The situation is similar as far as rotating core collapse iframework within which one can study the behavior of a

concerned. Most available studies use Newtonian hydrodyReutron star at the late stages after a gravitational collapse or

namics and account for gravitational-wave emission througla binary coalescence. Such a framework would provide a

the quadrupole formula. The collapse of a nonrotating star ipowerful testbed for fully relativistic simulations. Further-

power spectrum of q,

power spectrum of §p Ppower spectrum of q,

FIG. 6. Power spectrum for the data in Fig. 5. The part of the
signal that is used is shown in the upper right-hand corner of eac
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more, we can also hope to learn some physics from théme coordinatet and the spatial coordinate, . Since the

present approach. coefficients in the equations are functions of the Schwarzs-
The results we have presented suggest that the gravitahild radiusr, we have to solve Eq13) numerically.

tional waves that are generated by a perturbed neutron star Some of the coefficients in the evolution equations di-

will carry the signature of both the gravitational-wave modesyerge at the origin, and the finite difference equations cannot

and the fluid pulsation modes. This is a significant resultye ysed close to=0. However, as discussed in Sec. Il D,

because it indicates that present estimates of thg,o dynamical variables all approach zeroras0, and in

gravitational-wave emission from gravitational collapse and, actice it was sufficient to use the leading order behavior
coalescing neutron stafthat are mainly based on Newton- (24) close to the origin.

ian calculations and the quadrupole formuiaay be flawed.
Such studies would never yield themode part of the sig-
nal, so the energy that is released through these modes woud. < oy olved using the evolution equatitid). A standard

not be accounted for. outgoing wave boundary condition was implemented Sor

However, to show that the-modes are astrophysically ,nqF at the outer boundary of the grid. This causes some
relevant(here we have only provided evidence that they cargfiection from the boundary, since in both cases the poten-

carry a considerable energy in certain model situalion® ;5 in the wave equation is small, but not zero. These reflec-

must consider the question of initial data more carefully.;jong were too small to be “seen” in the numerical data, but

This can be done either by extending our equations t0 thg, e safe the outer boundary was placed sufficiently far

case of gravitational collapgallowing the background to be away that it could have no influence on the results.

time dependent or by incorporating d=constant data set 14 construct initial data the Hamiltonian constraia)

from a fully relativistic 3D collapse. After extracting the per- ¢ he solved. For the cases we considered this reduced to

turbations, one can then evolve them on a static backgroundyying either a first order ordinary differential equation

We will return to this problem in the near future. (ODE) for S (whenF andH were given or a second order

ODE forF (whenS andH were given. The first order ODE
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