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Gravitational waves from pulsating stars: Evolving the perturbation equations
for a relativistic star
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We consider the perturbations of a relativistic star as an initial-value problem. Having discussed the formu-
lation of the problem~the perturbation equations and the appropriate boundary conditions at the center and the
surface of the star! in detail, we evolve the equations numerically from several different sets of initial data. In
all the considered cases, we find that the resulting gravitational waves carry the signature of several of the
star’s pulsation modes. Typically, the fluidf mode, the first twop modes, and the slowest damped gravitational
w mode are present in the signal. If such mode signals, from coalescing neutron stars or following a supernova,
can be detected by future gravitational-wave antennae, one can hope to infer detailed information about
neutron stars. Since a perturbation evolution should adequately describe the late time behavior of a dynami-
cally excited neutron star, the present work can also be used as a benchmark test for future fully nonlinear
simulations.@S0556-2821~98!01120-5#

PACS number~s!: 04.40.Dg, 04.30.2w, 95.30.Sf, 97.60.Jd
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I. INTRODUCTION

It is well known that a neutron star has a rich pulsati
spectrum@1–4#. We expect the stellar pulsation modes to
excited in many neutron star processes~ranging from core
quakes to the formation of a neutron star through grav
tional collapse!. A signal carrying the signature of thes
modes could, if detected by future gravitational-wave ant
nae, provide useful information about the star. The ques
is whether the various stellar pulsation modes can be
namically excited to a level that makes them astrophysic
relevant. This question is especially interesting because
the existence of ‘‘spacetime’’ modes@5#, which have no ana-
logue in the Newtonian theory of stellar pulsation. It h
been shown@6,7# that these modes, together with the norm
fluid pulsation modes, can provide valuable informati
about the mass, size, and equation of state of neutron s
Much of the initial deformation of spacetime in, e.g., a s
pernova collapse could conceivably be released thro
spacetime pulsation modes, yet most studies of neutron
formation and pulsation have not treated them because
have been done within the Newtonian or post-Newton
approximations.

With the present paper, we take the first steps toward
answer to the question of mode-excitation. We describe
merical evolutions of the equations that describe a pertur
relativistic star for various sets of initial data. Evolutions
the perturbation equations for black holes have provided
teresting information~see@8# for references!, and it seems
likely that this approach should prove equally instructive
stars. Our main focus is on the evolution problem itself: W
formulate the problem and discuss all relevant equation
0556-2821/98/58~12!/124012~12!/$15.00 58 1240
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some detail. We also present results from two test proble
which indicate that for a range of initial conditions, the e
ergy emitted is shared broadly among the pulsation
spacetime modes. This argues strongly, if in a prelimin
way, that dynamical calculations of the collision of two ne
tron stars or the late stages of a gravitational collapse d
within the Newtonian and post-Newtonian approximatio
may seriously underestimate the amount and the spe
character of the emitted gravitational radiation.~In order to
avoid confusion, we should emphasize that the po
Newtonian picture is still an excellent description of the b
nary inspiral phase.!

The plan of the paper is as follows. In Sec. II we form
late the linear perturbation problem for a neutron star in g
eral relativity as an initial-value problem, with special atte
tion to the boundary conditions and the treatment of
center of the star. In Sec. III we solve the initial-value pro
lem numerically for two sets of initial conditions, which rep
resent in some sense the extremes of the balance bet
exciting fluid modes on the one hand and spacetime mo
on the other. The spectrum of the gravitational waves gen
ated from these initial data show clearly the signatures
both the fluid modes and the spacetime modes. Importan
in both sets the excitation of the spacetime modes is ap
ciable. In Sec. IV we discuss the significance of the resu
and our plans for future work to determine a more realis
initial-data set to use for such calculations. We begin
providing, in the remainder of Sec. I, a more detailed mo
vation for this work in the context of numerical relativity an
gravitational wave detection, and a brief background on re
tivistic stellar pulsation theory with special focus on rece
developments.
©1998 The American Physical Society12-1
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A. Gravitational-wave astronomy and numerical relativity

With the building of several large-scale laser interfero
eters for gravitational-wave detection well under way@9,10#
‘‘gravitational-wave astronomy’’ may be established arou
the turn of the century. But many fundamental problems
main to be solved before this goal can be reached. For
theorist, the most pressing problems concern modeling
processes which generate gravitational waves@11#. Only by
comparing observational data to such models can we hop
infer detailed information about the various gravitation
wave sources.

Simulations of processes involving neutron stars h
~with a few exceptions! so far used Newtonian gravity@12#,
see the discussion in Sec. III C. This is mainly due to
difficulties of consistently treating both the matter and t
gravitational field within the framework of the standa
Arnowitt-Deser-Misner~ADM ! formalism. In these Newton
ian simulations, the gravitational radiation is calculated us
the quadrupole formula. That is, gravitational waves ori
nate solely from stellar fluid motion—there is no contrib
tion from the dynamics of the gravitational field itself. How
ever, the dynamics of the gravitational field should a
contribute to the emerging gravitational radiation. This
clear from the black hole case, in which the quasinorm
mode oscillations are entirely due to the dynamical spa
time @8#. At an intuitive level, one would expect similar fea
tures to exist for stars, although they are probably l
dominant, since a neutron star is less relativistic than a b
hole. As we describe below this is, indeed, the case. The
a set of pulsation modes of a relativistic star that can
directly associated with the spacetime curvature. But it is
yet known how important the spacetime contribution to
gravitational-wave emission will be in a dynamical scenar

There is growing optimism in the numerical relativi
community over the feasibility of simulating neutron sta
within general relativity, but even though such projects
ultimately the only way to provide reliable gravitationa
wave estimates, the first results will not be available
some years. In the meantime, we must resort to approxim
methods. The present paper describes a project to invest
the excitation of the stellar pulsation modes using pertur
tion theory. We recall that non-linear numerical calculatio
for black holes have shown that the quasinormal modes
to be clearly present in the radiation. Furthermore, comp
sons with non-linear calculations have indicated that
more tractable linear approximations can provide accu
waveforms for a wide range of initial data. A particular
interesting example of this is the ‘‘close-limit’’ approxima
tion for colliding black holes@13#. It seems likely that per-
turbation calculations will also be a useful tool for problem
involving relativistic stars. The relative simplicity of the pe
turbation approach compared to the full non-linear calcu
tions makes its application and interpretation easier. We
hope to learn some of the relevant physics by pursuing
perturbation approach. In the near future, while non-lin
codes are still being developed, approximate studies can
the way. A further benefit from this work is its application
a test for the full non-linear codes for simulations of stel
processes.
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B. Pulsating stars

The study of stellar pulsation in a general relativistic co
text has a considerable history, dating back to the work
Thorne and his colleagues in the late 1960’s@14# ~for a re-
cent review see@15#!. Originally, the stellar pulsation prob
lem was approached from a ‘‘Newtonian’’ viewpoint. In th
picture, motion in the stellar fluid generates gravitation
waves which carry energy away from the system. The ch
acteristic frequencies of the various pulsation modes of
star thus become complex valued. Due to the weak coup
between matter and gravitational waves, the damping rat
a typical pulsation mode is very low@16#.

This ‘‘Newtonian’’ picture is limited in that the dynami
cal properties of the spacetime itself are neglected. Th
dynamic spacetime can add new features to the pulsa
problem can be understood in terms of a simple, but instr
tive, model problem due to Kokkotas and Schutz@17#. There
are pulsation modes directly associated with spacetime its
These new modes have been termed ‘‘gravitational-w
modes’’ ~or w-modes! @5#. They have relatively high oscil-
lation frequencies~6–14 kHz for typical neutron stars! and
barely excite any fluid motion. They are also rapid
damped, with a typical lifetime of a fraction of a millisecon
Our understanding of thew-modes has improved with a bod
of recent work@4,18–20#.

The existence of pulsation modes that are directly ass
ated with the spacetime itself is interesting from a theoret
point of view, but it is necessary to establish if these mod
are of astrophysical significance@6#. One can argue that th
gravitational-wave modes could be relevant in many s
narios. Consider, for example, gravitational collapse to
neutron star, or the coalescence of two neutron stars. In
cases will there be changes in the deformation of spacet
which could potentially lead to considerable amounts of
ergy being radiated through thew-modes. Detailed calcula
tions are needed to provide quantitative information. In
sence, there are two important questions that must addres
~i! Will the gravitational-wave modes be excited in proces
such as supernova collapse or neutron star coalescence~ii !
What is the possibility of observing such modes in data fr
the new generation of gravitational-wave detectors, and w
physical information could such observations provide?

As an initial attempt to answer the second question w
recently provided by two of us@7#. As for the first issue, we
have studied scattering of wave-packets by a uniform den
star @6#. This is not a problem of great astrophysical impo
tance~it is difficult to imagine a situation, where the imping
ing gravitational wave has sufficient magnitude to make
scattered wave observable!, but the results were neverthele
encouraging. The resultant gravitational waves show
clear signature of thew-modes for neutron star sized objec
(R/M'5). Similar results have since been obtained fo
particle falling in the stellar spacetime@21#. The present pa-
per describes more detailed work along these lines:
evolve the linearized equations from general initial da
Most importantly, our analysis is not restricted to an init
perturbation with compact support in the vacuum outside
star. To construct our stellar model, we use a polytro
2-2
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GRAVITATIONAL WAVES FROM PULSATING STARS: . . . PHYSICAL REVIEW D 58 124012
equation of state. Contrary to the simple uniform dens
model, polytropes allow several fluid pulsation modes to
ist ~the singlef -mode and an infinite sequence ofp-modes!.

II. STELLAR PERTURBATIONS AS AN INITIAL
VALUE PROBLEM

In this section we describe the stellar perturbation pr
lem. We will introduce all the necessary equations, but
discuss their origin in great detail. For further details w
refer the reader to previous work@14,16,22–24#. It is rel-
evant to point out that most of the existing work on pert
bations of stars has been performed in the frequency dom
~after Fourier decomposition of the various perturbed qu
tities!. This is the natural approach as long as one is ma
interested in the spectral properties of a star. Kind, Eh
and Schmidt@25# appear to be the only authors that ha
considered relativistic stellar perturbations as an initial va
problem.~Perturbations of a time-dependent geometry w
considered by Seidelet al. @26–28# in the context of gravi-
tational collapse.! The motivation of Kindet al. was to show
that initial Cauchy data with the appropriate junction con
tions at the stellar surface determines a unique solution to
time-dependent equations. Thus, Kindet al. address impor-
tant mathematical questions for the stellar evolution pr
lem. The motivation of the present investigation is rath
different, but our formulation of the problem is still inspire
by @25#.

A. The stellar model

A static spherically symmetric stellar model can be d
scribed by the metric

ds252endt21eldr21r 2~du21sin2udw2!, ~1!

where the metric coefficientsn andl are functions ofr only.
Specifically,

el5S 12
2m~r !

r D 21

, ~2!

and the ‘‘mass inside radiusr ’’ is represented by

m~r !54pE
0

r

rr 2dr. ~3!

This means that the total mass of the star isM5m(R), with
R being the stars radius.~We use geometric unitsG5c51
throughout this paper.!

A star in hydrostatic equilibrium is governed by th
Tolman-Oppenheimer-Volkoff~TOV! equations: To deter
mine a stellar model, we must solve

dp

dr
52

r1p

2

dn

dr
, ~4!
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dn

dr
5

2el~m14ppr3!

r 2 . ~5!

These equations do, of course, require an equation of s
p5p(r) as input. In this paper we consider~for reasons of
simplicity! only polytropic equations of state

p5krg. ~6!

In particular, we present numerical results for a model w
k5100 km2 andg52. We have performed calculations u
ing different parameters~and also tested our numerical cod
with some realistic equations of state!, but, since the results
were similar to those discussed in Sec. III B, we will on
discuss one stellar model in detail. The specific model
have chosen has a central densityrc5331015 g/cm3. The
corresponding radius and mass areR58.86 km and M
51.87 km'1.2M ( , respectively. The pulsation propertie
of this stellar model have already been investigated in de
@5#.

B. The perturbation problem

A general description of the stellar perturbation proble
is as follows: We want to solve the perturbed Einstein eq
tions

dGmn58pdTmn . ~7!

The small amplitude motion that a perturbation induces
the stellar fluid is described by displacementsj r , ju andjw.
The fluid displacement affects also the pressure and the
sity of the fluid. To describe these, we use the Eulerian va
tions dp anddr.

As is familiar from black-hole problems@8,29#, the per-
turbed metric can be split into two classes: axial and po
~alternatively called odd and even parity, or toroidal a
spheroidal! perturbations. That is, the metric can be writte

gmn5gmn
background1hmn

polar1hmn
axial. ~8!

If we work in Regge-Wheeler gauge~which has been used
for most of the previous studies of the stellar problem!, the
axial perturbations are described by four variables linked
the metric coefficientshtu , htw , hrw andhru . These pertur-
bations induce a differential rotation of the star, where
only non-zero component of the fluid-displacement vecto
jw. The polar metric perturbations correspond to six va
ables related to the metric coefficientshtt , htr , hrr huu , huw

and hww together with the fluid displacementsj r and ju.
Exactly as for black holes, it turns out that the equations t
govern the axial and the polar quantities decouple in the c
2-3
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ALLEN, ANDERSSON, KOKKOTAS, AND SCHUTZ PHYSICAL REVIEW D58 124012
of a nonrotating star~this will not be the case if the star i
rotating @24,30#!. We thus have two problems that can
approached separately.

In this paper we only consider the polar problem. The
are several reasons for this. We have recently considered
initial-value problem for axial perturbations of a unifor
density star@6#. Because an axial perturbation does not
duce pulsations in the stellar fluid@14#, we do not expect the
results for a more realistic stellar model to be dramatica
different from those for uniform density. Basically, an ax
perturbation can only result in the excitation ofw-modes,
and as long as the two stars have similar compactn
(R/M ), the corresponding frequencies are quite similar fo
uniform density star and a more realistic model@4#. Hence,
we focus on the polar problem here.

The polar problem corresponds to seven perturbed fi
equations and three equations of motion for four metric p
turbations and four fluid variables@14,24,25#. At first this
would seem to be an overdetermined problem, but this is
the case. Three of our original equations~the equations of
motion, say! are void of new information because of th
Bianchi identities. Moreover, we can use

dr5
1

Cs
2 dp, ~9!

whereCs is the acoustic wave-speed in the stellar fluid. W
are thus left with seven equations for seven unknown v
ables.

C. Evolution equations

There are many possible formulations of the perturbat
problem, even within the Regge-Wheeler gauge, and i
difficult to predict if a specific one may be advantageo
from the point of view of numerical evolutions. Here w
have chosen a formulation that reflects the physics of
system. That is, we consider a set of wave-equations des
ing gravitational waves coupled to acoustic waves in the s
lar fluid. Furthermore, we have cast the ‘‘spacetime’’ equ
tions into a form which resembles the more famili
equations for black-hole perturbations. This facilitates
comparison between the two problems.

The perturbed Einstein equations and the fluid equati
of motion can be manipulated into a set of evolution eq
tions for a reduced number of variables. The remain
spacetime and fluid perturbations are determined~at all
times! by a number of constraint equations. Here we evo
two spacetime variablesF(t,r ) andS(t,r ) which are related
to the metric perturbations by

huu~ t,r !5rF ~ t,r !, ~10!

htt~ t,r !2
en

r 2 huu~ t,r !5rS~ t,r !. ~11!
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These functions are related to the standard Regge-Whe
functionsK(t,r ) and H0(t,r ) ~see, e.g.,@14# or @24#! by F
5rK , S5en(H02K)/r . We also evolve a fluid function~the
perturbed relativistic enthalpy!

H~ t,r !5
dp

r1p
, ~12!

which is defined only inside the star. In these definitions
F, S and H, we have suppressed the angular depende
@31#.

The above variables are not obvious, but we have g
reasons for introducing them. Let us first consider the fu
tion S. When we introduce this function, and also use t
standard definition of the ‘‘tortoise coordinate’’

]

]r *
5e~n2l!/2

]

]r
, ~13!

we find that@32#

2
]2S

]t2 1
]2S

]r
*
2 1

2en

r 3 @2pr 3~r13p!1m2~n11!r #S

52
4e2n

r 5 S ~m14ppr3!2

~r 22m!
14prr 323mDF, ~14!

where 2n5( l 21)(l 12). We thus have a simple wave
equation with no explicit dependency on the perturbations
the fluid. For the other ‘‘metric’’ variableF, we find @32#

2
]2F

]t2 1
]2F

]r
*
2 1

2en

r 3 @2pr 3~3r1p!1m2~n11!r #F

522@4pr 2~p1r!2e2l#S

18p~r1p!renS 12
1

Cs
2DH. ~15!

This equation is also quite simple, but here the coupling
the fluid variableH is apparent. Both of our wave equation
are valid inside the star as well as in the exterior vacuum
the exterior the massm is, obviously, the total massM . Our
reason for introducingS andF should now be apparent: In
terms of these variables, the perturbation equations bec
similar to the wave-equation that governs a perturb
Schwarzschild black hole@8#, or the equation for axial per
turbations of a star@33#. That the polar equations can be ca
in a similar form has not been shown previously.

The equation that governs the fluid variableH is, how-
ever, still somewhat messy. After some algebra, we find t
@32#
2-4
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2
1

Cs
2

]2H

]t2 1
]2H

]r
*
2 1

e~n1l!/2

r 2 F ~m14ppr3!S 12
1

Cs
2D 12~r 22m!G ]H

]r *
1

2en

r 2 F2pr 2~r1p!S 31
1

Cs
2D 2~n11!GH

5~m14ppr3!S 12
1

Cs
2D e~l2n!/2

2r S en

r 2

]F

]r *
2

]S

]r *
D1F ~m14ppr3!2

r 2~r 22m! S 11
1

Cs
2D 2

m14ppr3

2r 2 S 12
1

Cs
2D

24pr ~3p1r!GS1
en

r 2 F2~m14ppr3!2

r 2~r 22m!

1

Cs
2 2

m14ppr3

2r 2 S 12
1

Cs
2D 24pr ~3p1r!GF. ~16!

Finally, we have the Hamiltonian constraint@32#

Hª
]2F

]r
*
2 2

e~n1l!/2

r 2 ~m14pr 3p!
]F

]r *
1

en

r 3 @12pr 3r2m22~n11!r #F2re2~n1l!/2
]S

]r *

1S 8pr 2~r1p!2~n13!1
4m

r DS1
8pr

Cs
2 en~r1p!H50, ~17!

which must be satisfied by the initial data and also throughout an evolution. We will discuss this constraint in more d
Sec. III A.

Here it could be worthwhile to note that it is possible to find a new ‘‘fluid’’ variable such that the corresponding
equation@that would replace Eq.~16!# contains no first derivatives. However, this extra step is not convenient beca
involves the solution of a differential equation involvingCs

2 .
It is also meaningful to comment on the number of equations that we use. It is well known that the interior probl

polar perturbations can be reduced to two coupled wave equations@23,24#. It would be easy to use Eq.~17! to replaceH in Eq.
~15! ~as was done by Ipser and Price@23# and Kojima@24#!. If we do this, we get

2
1

Cs
2

]2F

]t2 1
]2F

]r
*
2 2S 12

1

Cs
2D e~n1l!/2

r 2 ~m14ppr3!
]F

]r *
1

en

r 3 F4pr 3S 3r1
p

Cs
2D 2mS 12

3

Cs
2D 22~n11!r GF

5S 12
1

Cs
2D re2~n1l!/2

]S

]r *
1F2e2l1S 12

1

Cs
2D ~n11!28p~p1r!r 2GS. ~18!
c
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However, Eq.~18! is rather ‘‘unphysical’’ because a metri
variable (F) plays the role of the fluid~in the sense that it is
governed by the sound speedCs!. Beside, it is useful to keep
one fluid variable explicit. With the equations forS, F, and
H above, we can easily monitor the fluid motion during t
evolution. Moreover, Kindet al. @25# have shown that, as
long asr.0 at the surface, our problem is well posed~that
a unique solutions exists!. The result of Kindet al. is appli-
cable also to our evolutions even though our density dis
bution vanishes asr→R, since we always introduce th
‘‘surface’’ of the star at a small nonzero value ofr in the
numerical code.

Let us now turn to the exterior problem. In the vacuu
outside the star, the problem is identical to that for a p
turbed Schwarzschild black hole. Thus, the equations s
plify considerably, and we only need to consider the t
equations forS andF ~note that the two effective potentia
are equal in the exterior vacuum!. Furthermore, we know
from the studies of perturbed black holes that we can red
the problem even further. We only need to consider o
12401
i-

r-
-

ce
e

single homogeneous wave equation—the Zerilli equation@8#.
If we define@28,34#

~n11!~nr13M !

r 3 Z52
1

r

]F

]r *
1

~n12!r 2M

r 3 F1S,

~19!

we find thatZ evolves according to

]2Z

]t2 2
]2Z

]r
*
2 1VZ~r !Z50 ~20!

where the effective potential is given by

VZ~r !5
2en

~nr13M !2r 3

3@n2~n11!r 313n2Mr 219nM2r 19M3#.

~21!
2-5
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This equation has the advantage that the functionZ is
gauge-invariant and unconstrained@28,34#. But from the
point of view of a numerical evolution, it may be preferab
to solve the coupled system forS andF—the variables that
are used inside the star—rather than switching to the Ze
equation in the exterior. Furthermore, it turns out that it
trivial to obtain gauge-invariant~but constrained! quantities
from S and F. If we use q1 and q2 to denote the gauge
invariant variables that were first introduced by Seidel@28#,
we find that

q15H05
F

r
1re2nS, ~22!

q25K5
F

r
. ~23!

These equations prescribe how the gauge invariant quan
can be generated from the specific functions that we solve
in Regge-Wheeler gauge. It is straightforward to generateq1
and q2 once we knowS and F ~or the standard Regge
Wheeler functionsH0 and K!. Furthermore, for the fluid
variable one finds thatdr in Regge-Wheeler gauge corre
sponds immediately to the gauge-invariant variableDh that
was used by Seidel@28#.

D. Behavior at the center and the surface of the star

When evolving the perturbation equations, one must g
special consideration to the behavior of the variables clos
the center and the surface of the star.

To infer the behavior at the center is relatively easy
cause we know that, for a physical solution, all the perturb
variables should be regular atr 50. Working in the Fourier
domain and expanding all variables in powers ofr ~as was
done by Lindblom and Detweiler@16#!, we can infer that

F;r l 11

S;r l 11

H;r l
J as r→0. ~24!

We also need to deduce the behavior of the various fu
tions at the surface of the star. We must implement the u
junction conditions@35# for the spacetime functions atr
5R, and also impose a boundary condition on the fluid va
ableH.

The surface of the star is formally defined by the vani
ing of the Lagrangian variation in the pressureDp. That is,
at the surface we have

Dp5dp1j r
dp

dr
50. ~25!

This immediately leads todp;rj r as r→R, or

H;j r , as r→R. ~26!
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In principle, this constitutes a boundary condition forH at
the surface of the star, but in practice this result is not v
helpful. First of all, we are not explicitly calculatingj r .
Moreover, it is known from Newtonian pulsation theory th
j r is not constrained at the surface of the star~it need only be
non-singular!. Thus, the vanishing ofDp as r→R does not
lead to a useful boundary condition for the fluid variableH.
Instead, we infer the behavior ofH at r 5R from Eq. ~16!.
However, because the sound speedCs vanishes asr→R, it
is not convenient to use Eq.~16! close to the surface. The
behavior ofH at the stellar surface follows after we take th
limit Cs→0 in Eq. ~16!. Keeping only terms of order 1/Cs

2,
we get

Ḧ1
M

R2

]H

]r *
2

M

2R3

]F

]r *
1

M

2~R22M !

]S

]r *

1
M ~R12M !

2R5 F1
M

2R~R22M !
S50, ~27!

at r 5R. We use this equation to evolveH at the surface of
the star.

Let us now consider the behavior of the two ‘‘metric
variables atr 5R. From the junction conditions~the conti-
nuity of the first and second fundamental forms across
surface of the star@25#! we find thatF, S, and]S/]r * are
continuous atr 5R. That is, if we let subscriptsi and e
represent functions obtained for the interior and the exter
respectively, we have

Fi5Fe , Si5Se ,
]Si

]r *
5

]Se

]r *
. ~28!

It is also apparent from Eq.~14! that these conditions imply

]2Si

]r
*
2 5

]2Se

]r
*
2 , ~29!

as long asr→0 asr→R. This means that all terms in Eq
~14! are well defined at the boundary, and this equation
consequently be used to evolveS there.

For the functionF the situation is somewhat differen
First we notice that we can derive an equation similar to E
~27! also for F ~i.e., an equation with no second derivativ
with respect tor * !. This equation is

F̈2
M

R2

]F

]r *
2R

]S

]r *
2

3M

R3 S 12
2M

R DF2~n11!S50,

~30!

at r 5R. Using this equation, and the already establish
continuity of ]S/]r * , we can infer that

]Fi

]r *
5

]Fe

]r *
. ~31!

Thus,]F/]r * is continuous across the surface of the star
Finally, it follows from the wave equation~15! that
2-6
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]2Fi

]r
*
2 2

]2Fe

]r
*
2 58pRen~R!H~R! lim

r→R

p1r

Cs
2 →8pRen~R!H~R!

r22g

kg
as r→R, ~32!
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wherek and g are the constant and index in the polytrop
equation of state, respectively. Thus we see that in the
that we consider~g52! the right hand side of Eq.~32! ap-
proaches a constant asr→R. Consequently, the second d
rivative of F will be discontinuous across the surface of t
star.

III. TWO MODEL PROBLEMS

In the previous section we discussed the equations
govern perturbations of a relativistic star. We now want
evolve these equations from a given set of initial data. T
ultimate purpose of this exercise is to use the perturba
approach to infer what one should expect in a problem
physical interest, e.g., when two neutron stars coalesce
the present time such discussions are beyond our means
fore trying to implement ‘‘astrophysically relevant’’ initia
data, we must ensure that we can evolve the stellar pertu
tion equations accurately. Hence, we have tested our ev
tion code by experimenting with different kinds of initia
data. This enables us to conclude that our numerical im
mentation of the various equations is reliable. We also g
some insight into the excitation of the stellar pulsati
modes.

A. Specifying initial data

To define acceptable initial data for the evolution proble
is not a trivial task. To specify astrophysically relevant init
data, one should first solve the fully nonlinear thre
dimensional initial-value problem for~say! a newly formed
neutron star that settles down after core collapse. Then
results must be translated into a form that makes them us
as initial data for the perturbation equations. Although e
to describe in words, each step is difficult and requires g
care~cf. the analogous problem of two colliding black hol
@13#!. In short, a detailed formulation of initial data for th
perturbation equations requires much further work, and
will return to it in the future. Here we will focus on th
evolution of the perturbation equations from initial data th
seems logical.

A careful analysis of the constraints that our initial da
must satisfy indicates that we are free to choose our evo
variables$F,S,H% such that the Hamiltonian constraint an
its first derivative are satisfied~of course all boundary con
ditions and physical constraints must also be satisfied! @36#.
As an initial simplification we consider only time-symmetr
initial data (Ḟ5Ṡ5Ḣ50). This assumption leads to rath
contrived initial data from a physical point of view. Bas
cally, the waveforms that we see as outgoing at future n
infinity were initially incoming at past null infinity. Never
theless, time-symmetric initial data provide a useful start
point for studies of the evolution problem. It should also
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pointed out that the time derivative of the Hamiltonian co
straint Ḣ50 is automatically satisfied for time-symmetr
data.

The choice of$F,S,H% to satisfyH50 on the initial hy-
persurface depends on the model problem under cons
ation. So far we have considered two different classes of d
sets. The first involves no initial fluid perturbation in the st
while the second includes a nonzero fluid perturbation.

The first initial data set corresponds to the scattering of
incoming gravitational wave packet by the star. Here
fluid variableH is set to zero, and the metric variables in
tially have support only in the exterior vacuum. To enab
comparison with the axial problem considered by Anders
and Kokkotas@6# we specify the Zerilli function,Z to be a
narrow Gaussian centered at a large radius. The space
variableF can then be calculated using

F5r
]Z

]r *
1

n~n11!r 213nMr16M2

r ~nr13M !
Z. ~33!

This equation follows when the definition~19! of the Zerilli
function is combined with the constraint equation~17!. Fi-
nally, we specify the remaining functionS by numerically
integrating the constraint equationH50. An example of
such initial data is shown in Fig. 1.

The scattering of gravitational waves is, however, not
problem that we are interested in. Generically, one wo
expect a non-vanishing perturbation inside the star. Thus
would like to consider various perturbations in the stel
fluid. That is, we specifyH ~arbitrarily! at some initial time.
From the Hamiltonian constraint, it is clearly seen that su
a fluid perturbation must be accompanied by a non-vanish
metric perturbation. Thus, we should formally findS andF
in such a way that the constraint equation~17! is satisfied
inside the star. There is noa priori method of calculatingS
and F uniquely, since we seemingly have the freedom
choose either of these two functions. To test our numer
code, we have therefore made calculations for three diffe
kinds of initial data:

~1! We combine the specified functionH with F50. This is
convenient since we then only need to integrate a fi
order differential equation~17! to determine the corre
spondingS.

~2! An alternative to this is inspired by the weak-field limi
It is known that~in the standard Regge-Wheeler not
tion! H02K→0 as the star becomes Newtonian@37#.
This would correspond toS50. Once we have made thi
assumption, we can numerically integrate the second
der differential equation~17! and find an acceptableF.

~3! The third set of initial data is also based on the we
2-7
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field result. We setF52dU, wheredU is the perturba-
tion in the Newtonian potential. ThendU satisfies@37#

¹2dU524pdr52
4p~p1r!

Cs
2 H. ~34!

Then the appropriate functionS is obtained by integrating
Eq. ~17!. An example of this kind of initial data, for

FIG. 1. Initial data for the case when an initial perturbation
the fluid is specified. Here we useH5ACs

2(r /R)2 cos(pr/2R) and
solve the constraint equations to obtain the requiredS andF. These
then lead to the two gauge-invariant quantitiesq1 andq2 ~defined in
Sec. II C! shown here.
12401
H5Cs
2~r /R!2cos~pr /2R!, ~35!

is shown in Fig. 1.

B. Numerical results

Even though the initial data for the model scenarios t
we have chosen~see Figs. 1 and 2! are rather different, the
gravitational waves that emerge from the system during e
evolution are qualitatively quite similar.

In Fig. 3 we show the gravitational waves that follo
when a Gaussian in the Zerilli function is scattered off t
star. The corresponding initial data is shown in Fig. 2. W
use the gauge invariant quantitiesq1 and q2 @cf. ~23!# to
represent the gravitational waves that reach a distant
server. In this specific example, the observer is located
r 5200M . After a sudden burst of waves follows a ring

FIG. 3. Evolution of the gauge-invariant quantitiesq1 andq2 for
initial data corresponding to a Gaussian Zerilli function, cf. Fig.
*

FIG. 2. Initial data corresponding to a Gaussian pulse in the Zerilli function. We show the two gauge-invariant quantitiesq1 and q2

~defined in Sec. II C!.
2-8



ta

d
th

ve
on
n

is
is
at
ly

ec

o

li
th
ta

g-
ds

ould

e a
the

uch
nd

gh
e

n
n
in
iled

tion
to

mu-
s:
ore

use
nal
ed

tion
vel.
the

th
a
ug
s

e

on

GRAVITATIONAL WAVES FROM PULSATING STARS: . . . PHYSICAL REVIEW D 58 124012
down corresponding to the quasinormal modes of the s
The ringdown consists of two parts. The first part~from t
2r * '2002280M in Fig. 3! shows the high frequencies an
the rapid damping that are characteristics of
gravitational-wave modes. The second part of the signal~for
t2r * .280M ! is slowly damped, and the oscillations ha
longer wavelength. This part of the signal should corresp
to the fluid pulsation modes. A spectral analysis of the sig
shows that the emerging waves are composed of thef -mode,
the first p-mode and the slowest dampedw-mode for the
star, cf. Fig. 4.

The result is similar in the case when the stellar fluid
perturbed initially. An example of such an evolution
shown in Fig. 5. This example corresponds to the initial d
~35!, cf. Fig. 1. Again, the post-burst signal can be rough
decomposed into two parts: the first part (t2r * '0225M )
corresponds to thew-modes and the later signal (t2r *
.25M ) is due to the fluid modes. The corresponding sp
trum shows the presence of thef -mode, the firstp-mode and
the slowest dampedw-mode, cf. Fig. 6.

These two examples show that one should expect b
fluid and gravitational pulsation modes to be excited in
generic situation. But it is also clear that the relative amp
tudes of the various modes depend on the initial data. In
case of a gravitational-wave pulse impinging on the s
~Figs. 3 and 4! more energy is released through thew-modes
than in the case of an initially perturbed fluid~Figs. 5 and 6!.

FIG. 4. Power spectrum for the data in Fig. 3. The part of
signal that is used is shown in the upper right-hand corner of e
panel. The two upper panels show the power spectra for the ga
invariant quantitiesq1 andq2 , respectively. The lower panel show
the power spectrum for the fluid motion~as represented by th
Eulerian variation in the densitydr!. In each panel we also show
the position of the various pulsation modes of the star. Thef -mode
is represented by a circle, thep-modes by squares, and thew-modes
by triangles. It is clear that the emerging gravitational waves c
tain the firstw-mode together with thef -mode and the firstp-mode.
12401
r.

e

d
al

a

-

th
a
-
e
r

This is not very surprising, since in the first case, the impin
ing waves must excite motion in the fluid, which then lea
to gravitational waves with~say! f -mode characteristics. In
the second case, the fluid is already perturbed so one w
expect a more pronounced excitation of the fluid modes.

Our results indicate that there can be situations wher
considerable amount of energy is released through
w-modes, but one should be careful not to read too m
physics into this result. One reason for caution is that we fi
that the threead hoc ways to specify initial data with an
initial fluid perturbation~see the previous section! lead to
different predictions for the energy released throu
w-modes. Basically, we find that the excitation of th
w-modes increases with the initial value ofS. That is, if we
set S50, the evolutions only show a glimmer ofw-mode
oscillations. In contrast, thew-modes dominate the signal i
cases, whereF50 initially. The answer to the questio
whether thew-modes will be excited to a detectable level
an astrophysically relevant situation requires a more deta
study.

C. A brief survey of the literature

Since we have found that several of the stars pulsa
modes are excited in our test simulations, it is worthwhile
compare our results to previous numerical neutron star si
lations. The available simulations fall into two categorie
Simulations of coalescing stars and studies of rotating c
collapse.

Almost uniquely, studies of coalescing neutron stars
Newtonian hydrodynamics and extract the gravitatio
waves via the quadrupole formula. As already mention
above, this approach cannot account for thew-modes, but
should be able to reveal the presence of the fluid pulsa
modes—provided that these are excited to a significant le
A survey of the literature reveals several indications that

e
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e-

-

FIG. 5. Evolution of the gauge-invariant quantitiesq1 andq2 for
the initial data shown in Fig. 1.
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ALLEN, ANDERSSON, KOKKOTAS, AND SCHUTZ PHYSICAL REVIEW D58 124012
pulsation modes are present in the gravitational wave sig
from coalescing stars. Waveforms obtained by Nakam
and Oohara@38# show clear mode presence~cf. Figs. 5, 8 and
11 in @38#!. Their Fig. 5 is actually very similar to our Fig. 5
Ruffert et al. @39# have also obtained gravitational wave si
nals from coalescing stars that show late-time oscillatio
Their waveforms and spectra~cf. Figs. 24 and 27 in@39#!
show oscillations at frequencies between 1.5–2 kHz.

Further possible evidence can be found in the results
Zhugeet al. @40,41#. They model coalescing polytropic sta
using SPH. In their waveforms~cf. Fig. 6 in @40#! one can
see transient oscillations in the late-time waveforms. Ho
ever, even though all the calculated spectra show a c
peak beyond the cutoff frequency that is associated with
actual coalescence~cf. Fig. 12 in @40#!, one must be carefu
and not assign these oscillations too much physical
evance. Although the oscillations could correspond to cer
pulsation modes~possiblyp-modes! in the merged objects
the oscillations are tiny and their true nature is likely to
strongly compromised by numerical effects~especially the
artificial viscosity! @41#. Nevertheless, the indicated oscill
tions are suggestive and future studies, with better resolu
should be able to provide a reliable physical interpretatio

The situation is similar as far as rotating core collapse
concerned. Most available studies use Newtonian hydro
namics and account for gravitational-wave emission thro
the quadrupole formula. The collapse of a nonrotating sta

FIG. 6. Power spectrum for the data in Fig. 5. The part of
signal that is used is shown in the upper right-hand corner of e
panel. The two upper panels show the power spectra for the ga
invariant quantitiesq1 andq2 , respectively. The lower panel show
the power spectrum for the fluid motion~as represented by th
Eulerian variation in the densitydr!. In each panel we also show
the position of the various pulsation modes of the star. Thef -mode
is represented by a circle, thep-modes by squares, and thew-modes
by triangles. It is clear that the emerging gravitational waves c
tain the firstw-mode together with thef -mode and the firstp-mode.
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expected to bounce at nuclear densities, but if the sta
rotating, the collapse can also bounce at subnuclear dens
because of the centrifugal force. In each case, the emer
gravitational waves are dominated by a burst associated
the bounce. But the waves that follow a centrifugal boun
can also show large amplitude oscillations that may be a
ciated with pulsations in the collapsed core. Such res
have been obtained by Mo¨nchmeyeret al. @42#. Some of
their models show the presence of modes with different
gular dependence superimposed~see Fig. 5 in@42#!. Typi-
cally, these oscillations have a period of a few ms and da
out in 20 ms. The calculations also show that the energy
the higher multipoles is roughly three orders of magnitu
smaller than that of the quadrupole. More recent simulati
by Yamada and Sato@43# and Zwerger and Mu¨ller @44# also
show post-bounce oscillations~cf. waveforms in Figs. 2–4 of
@43# and Figs. 5 and 6 of@44#!.

There is thus some indications that the fluid pulsat
modes of a star will be excited in both the collapse and
coalescence scenario@45#. But it is not a clear-cut case: Th
oscillations that are seen are often tiny, and may be du
spurious numerical effects rather than physics. However,
cited examples are encouraging, and it seems reasonable
thew-modes should also be excited in a generic case. Bu
show that this is the case one must incorporate general
tivity in the simulations of collapse and coalescence. As
there has been few attempts to do this, but an interes
example is provided by the core-collapse studies of Se
et al. @27,26,28#. The approach adopted in those papers is
fact, quite similar to our present one: One considers a
~odd parity! or polar ~even parity! perturbations of a time-
dependent background~that evolves according to a specifie
collapse scenario!. As expected from the Newtonian studie
the extracted gravitational waves are dominated by a sh
burst associated with the bounce at nuclear densities.
there are also features that may be related to thew-modes. In
a case designed to collapse and rebound with extreme en
Seidelet al. find a ringing mode in the post-bounce gravit
tional waves~cf. Fig. 7~b! of @26#!. Since there are no axia
fluid modes for a nonrotating star, it is plausible that th
mode corresponds to one of the axialw-modes of the core.
Furthermore, the power spectrum for one of the simulatio
discussed in@27# ~cf. their Fig. 2! shows some enhanceme
around 7 kHz. As the authors state, this ‘‘is probably a res
of some numerical noise . . . rather than a true physical ef
fect,’’ but it may be relevant to note that the slowest damp
axial w-mode has a pulsation frequency of roughly this ma
nitude.

IV. CONCLUDING DISCUSSION

In this paper we have discussed the evolution problem
the equations that govern a linear perturbation of a relati
tic star. We have taken the first steps towards developin
framework within which one can study the behavior of
neutron star at the late stages after a gravitational collaps
a binary coalescence. Such a framework would provid
powerful testbed for fully relativistic simulations. Furthe
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GRAVITATIONAL WAVES FROM PULSATING STARS: . . . PHYSICAL REVIEW D 58 124012
more, we can also hope to learn some physics from
present approach.

The results we have presented suggest that the gra
tional waves that are generated by a perturbed neutron
will carry the signature of both the gravitational-wave mod
and the fluid pulsation modes. This is a significant res
because it indicates that present estimates of
gravitational-wave emission from gravitational collapse a
coalescing neutron stars~that are mainly based on Newton
ian calculations and the quadrupole formula! may be flawed.
Such studies would never yield thew-mode part of the sig-
nal, so the energy that is released through these modes w
not be accounted for.

However, to show that thew-modes are astrophysicall
relevant~here we have only provided evidence that they c
carry a considerable energy in certain model situations!, we
must consider the question of initial data more carefu
This can be done either by extending our equations to
case of gravitational collapse~allowing the background to be
time dependent!, or by incorporating at5constant data se
from a fully relativistic 3D collapse. After extracting the pe
turbations, one can then evolve them on a static backgro
We will return to this problem in the near future.
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APPENDIX: THE NUMERICAL EVOLUTIONS

We discretized the evolution equations~14!, ~15! and~16!
in a standard way, using second order centered finite dif
encing, on a regular grid. The grid is equally spaced in
-
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c
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time coordinatet and the spatial coordinater * . Since the
coefficients in the equations are functions of the Schwa
child radiusr , we have to solve Eq.~13! numerically.

Some of the coefficients in the evolution equations
verge at the origin, and the finite difference equations can
be used close tor 50. However, as discussed in Sec. II D
the dynamical variables all approach zero asr→0, and in
practice it was sufficient to use the leading order behav
~24! close to the origin.

The boundary equations~27! and ~30! were used to
evolve the functionsH andF at the stellar boundary, andS
was evolved using the evolution equation~14!. A standard
outgoing wave boundary condition was implemented forS
and F at the outer boundary of the grid. This causes so
reflection from the boundary, since in both cases the po
tial in the wave equation is small, but not zero. These refl
tions were too small to be ‘‘seen’’ in the numerical data, b
to be safe, the outer boundary was placed sufficiently
away that it could have no influence on the results.

To construct initial data the Hamiltonian constraint~17!
must be solved. For the cases we considered this reduce
solving either a first order ordinary differential equatio
~ODE! for S ~whenF andH were given! or a second order
ODE for F ~whenS andH were given!. The first order ODE
was solved using a fourth order Runge-Kutta method@46#,
and the second order ODE was solved using a relaxa
method. A potential problem with finding the solution at th
stellar boundary~where the second space derivative ofF can
be discontinuous ifHÞ0, see Sec. II D! was avoided by only
using initial data withH50 at the boundary.

Analytically, the Hamiltonian constraintH50 is satisfied
throughout the evolution if it is satisfied initially. Numer
cally, there will always be some errors, and we can calcu
H in the discrete L2 norm over the grid on eacht
5constant slice and plot the result as a function of tim
Calculating this error using different grid resolutions for
particular model allows the convergence of the code to
tested. For all the results reported here, second order con
gence was found.
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