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Geometrodynamics of sine-Gordon solitons
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The relationship between N-soliton solutions to the Euclidean sine-Gordon equation and Lorentzian black
holes in Jackiw-Teitelboim dilaton gravity is investigated, with an emphasis on the important role played by
the dilaton in determining the black hole geometry. We show how an N-soliton solution can be used to
construct “sine-Gordon” coordinates for a black hole of mass M, and construct the transformation to more
standard “Schwarzchild-like” coordinates. For=NL and 2, we find explicit closed form solutions to the
dilaton equations of motion in soliton coordinates, and find the relationship between the soliton parameters and
the black hole mass. Remarkably, the black hole mass is non-negative for arbitrary soliton parameters. In the
one-soliton case the coordinates are shown to cover smoothly a region containing the whole interior of the
black hole as well as a finite neighborhood outside the horizon. A Hamiltonian analysis is performed for
slicings that approach the soliton coordinates on the interior, and it is shown that there is no boundary
contribution from the interior. Finally we speculate on the sine-Gordon solitonic origin of black hole statistical
mechanics[S0556-282(98)06222-5

PACS numbeps): 04.60.Kz, 04.70.Bw, 04.70.Dy

[. INTRODUCTION lation, and its solutions correspond to maximally symmetric,
constant curvature metrics in two space-time dimensions.

Black holes are currently the subject of much research forhe black hole solutions to Jackiw-Teitelboim gravity are
two main reasons. First of all, there is a growing body ofrelated by dimensional reduction to the Banados-Teitelboim-
empirical evidence that black holes exist in binary systems aganelli(BTZ) black hole solution$7] of anti—de Sitter grav-
well as at the center of most galaxigs]. Secondly, black ity in 2+1 dimensions. As shown in Ref8], Jackiw-
holes pose fundamental prob|ems whose resolution W|||T€|t9|b0|m black holes exhibit the usual thermOdynamiC
likely provide important clues about the interface betweerProperties, including black hole entropy, despite the absence
quantum mechanics and gravity. In particular, the micro-of field theoretic dynamical modes in the theory.

Scopic Origin of the Bekenstein-Hawking entropy of black The feature of Jackiw-Teitelboim graVity most relevant to
holes is not fully understood, despite much recent progress ifh€ present analysis is the fact that the black hole solutions
a variety of context§2—5]. The source of this problem is the are space-times of constant curvature. The relationship be-
fact that from the outside, black holes are perhaps the SirrpNeen Euclidean, constant curvature metrics in two dimen-
plest, and least complicated objects in the Universe. They ar@ions and Lorentzian sine-Gordon solitons has been appreci-
pure geometry, and according to no-hair theorems proven iated by mathematicians for a long tirf@]." In particular,

the 1960s, tend to settle into highly symmetric configurationghe solutions of the sine-Gordon equation

with only a very few externally observable parameters. It is 5 2, o .

therefore very difficult to understand where the dynamical — g+ dkp=m"sin ¢ @)
modes needed to account for the huge Bekenstein-Hawki
entropy of black holes might reside.

Dilaton gravity theories in two spacetime dimensions pro-
vide useful theoretical laboratories for studying these ques-
tions. They are diffeomorphism invariant theories that ge- d<2=sir? ¢
nerically do have black hole solutions, and yet are simple 2
enough to be exactly solved at both the classical and quan- , ) ) i
tum levels. One such theory of particular interest is the soJ N€ angle¢ describes the embedding of the manifold into a
called Jackiw-Teitelboim theory6], which was originally three-dimensional Euclidean s_pe{@._ Moreover, |t_ has re-
put forward because of its connection to the Liouville- cently been prpved that there is a direct connection between
Polyakov action. Jackiw-Teitelboim gravity theory is distin- 98nus and soliton numbef&1]. In a recent Lettef12] the
guished from other dilaton gravity theories in part because ifélationship between Euclidean sine-Gordon solitons and
has a great deal of symmetry. It has a gauge theory formdRlack holes in Jackiw-Teitelboim gravity was derived. This

n . . . . : .
getermme Riemannian geometries with constant negative
curvature— 2m? whose metric is given by the line-element

dt?+ cosz(;)dxz. 2)

*Email address: lenin@math.unb.ca LIt was also usefl10] to derive the relationship between solutions
TEmail address: gabor@theory.uwinnipeg.ca to the Liouville equation and the sine-Gordon solitons.
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relationship is interesting in part because sine-Gordon theors shown in[14], for every solutior{g,,, ,7} to the above
has a rich(and well-studiegl dynamical structure, while, as field equations there is a Killing vect&* which leaves both
mentioned above, Jackiw-Teitelboim gravity has virtually nothe metric and the dilaton invariant. It is

dynamical structure. Thus, the question arises as to whether

one can somehow understand the apparently rich dynamical et

structure of black holes in terms of the sine-Gordon solitons. k= \/—5% (6)

In this paper, we continue the analysis[@2], and present mv—9

new results. In particular, we“show how ar,‘, N-soli.ton SOIU'Where e*” is the permutation symbol. Moreover, up to dif-
tion can be used to construct “sine-Gordon” coordinates forfeomorphisms there exists only a one parameter family of
a black hole of mass M,“and show g(_ene_rall,y’/ how to ransy) tions. This parameter, which we call the mass observable
form to more standard Schwarzschlld-llk.e- coordinates. M, is the analogue of the Arnowitt-Deser-MisngkDM)

For N=1 and 2, we are able to find explicit closed form oo iy general relativity: it is the conserved charge associ-

solutions to the dilaton equations of motion in soliton COOr- otad with translations along the Killing directidet, and can
dinates, and find the relationship between the soliton pararm, expressed in coordinate invariant form| 24] '
eters and the black hole mass. Remarkably, the black hole

mass is non-negative for all soliton parameters. 1
The paper is organized as follows: Section Il reviews M=— —|V 7|2+ 72 (7)
Jackiw-Teitelboim gravity and describes the corresponding m
black hole solutions. Section Il describes how Euclidean
sine-Gordon solitons emerge from Jackiw-Teitelboim grav-
ity, and constructs the general coordinate transformation thaS
e e e e o B e Sy many o he atrbutesofback s 15.
) ; . or example, consider a solution where the metric is given
Bernard[13] to the case oEuclideanN-solitons and pre-
sents the results for the 1- and 2-soliton sectors. Section \9y
explicitly displays the black hole geometries associated with ds?= — (m2r2— M)d T2+ (m?r2— M)~ 1dr2, @)
1- and 2-soliton solutions derived in Sec. V. Section VI pre-
sents the Hamiltonian analysis for slicings that approach thgnq dilaton field by
soliton coordinates on the interior, and it is shown that there
is no boundary contribution from the interior. Finally, in Sec. T=C M. (9)
VII we close with conclusions, speculations and prospects
for future work. This solution corresponds to standard “Schwarzschild-like”
coordinatization of the black hole solution to Jackiw-
1. JACKIW-TEITELBOIM GRAVITY Teitelboim gravity. Note that, is an arbitrary constant of
integration that has no direct physical significance: the only
Since the solutions of the sine-Gordon equation determingye observable i81 as defined above. The constantcan
metrics with constant negative curvature, we need to conpe fixed by imposing suitable boundary conditions on the
sider black holes of this type. It is therefore natural to exam<ields. For example, requiring that the dilaton go to the
ine b|aCk hOles in JaCkiW'TeitelbOim graVityG]. Th|S vacuum Configuratiom:mr asr—oo fixeS C].: 1. Thus
theory, like all local two-dimensional gravity theories, is not without loss of generality we henceforth make this choice.
purely metrical; rather there is, besides the metric tensor of cjearly there is an event horizon located atM/m. It
spacetime, a real-valued scalar field calleddiiaton field s important to note here that though this fact can be easily
The action functional for Jackiw-Teitelboim gravity is  read off of the metric, since the latter is in manifestly static
form, it also follows from solving for the variable in the
| ;1[7g]= 1 d2x[g[r(R+2m?). 3) equation|k“|2=:gﬂ_,,k"“k.”=.0. The global structure of the
2G Jwm, black hole spacetime is in part determined by the dilaton.
Since the spacetime has constant curvature, there are no cur-
In the above, the spacetime metricds,, R is its scalar vature singularities for any value ef However, surfaces for
Ricci curvature and is its determinantyris the dilaton field;  which 7=0 give rise to an infinite effective Newton's con-
the constantn is related to the “cosmological constantX  stant and should therefore be excluded from the manifold.
by A=m?. Finally, G is the gravitational coupling constant, With this assumption, the global structure of the manifold is
which in two-dimensional spacetime is dimensionless. Suffivirtually identical to the (,t) section of a Schwarzschild
cient conditions that this functional be stationary under arbiblack hole, with exactly the same Penrose diagf8m
trary variations of the dilaton and metric fields are, respec- One can further motivate the exclusion o0 surfaces

Although all the solutions of Jackiw-Teitelboim gravity
relocally diffeomorphic to two-dimensional anti—de Sitter
acetime, one may obtain distirgtbbal solutions, some of

tively, from the manifold by noting that the metric E(B) is the
dimensionally truncated spinless BTZ black h¢i in 2
R+2m?=0; (4) 41 anti—de Sitter gravity. The dilaton corresponds to the
“missing” radial coordinate of the 2 1 solutions. As de-
(VMV,,—ngM,,)r= 0. (5)  scribed in[7], there is a causal singularity in the BTZ black
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hole at7=0. By excluding these surfaces one removes theequations of motion in that there exist three functionally in-
possibility of closed timelike curves. Of course, in the con-dependent solutions;;,, i=1,2,3 of Eq.(5), which in turn
text of Jackiw-Teitelboin(JT) gravity there is no causal sin- determine three functionally independent vector fiekds

gularity. The surface=0 is completely regular. via
As shown in Sec. VI, the ADM energy of the black hole
solution Egs.(8),(9) is p
ki =——=0,7. (13
Egp=mM/2G. (10 D my=g "

It is straightforward to derive the thermodynamic propertiesThese three vector fields satisfy the Killing equations by vir-
[14,8] of the black holes described by E@) and Eq.(9).  tue of Eq.(5), and also leave their respective generating di-

The Hawking temperature is laton fields invarianti.e. kf;)V 75 =0).
It is straightforward to show that in addition tQ,)=mr
YMm . . : A
H= 5 (11)  the following are solutions to the dilaton equatid$ are
T

— Jm2r2_ H
with an associated Bekenstein-Hawking entropy T~ VMT" =M sinh o, (14

2mM 7(3y=\—m?r?+M cosho, (15)

wheres:=myMT and we have set the overall scale factors
It is important to note that since the constant curvaturec; to unity. Note thatr;, are functionally independent on
metrics are maximally symmetric, there are three Killing non-trivial domains of spacetime. The corresponding Killing
vector fields. This also follows directly from the dilaton vector fields are

k1)=(1,0), (16)

mr2—M

. mr
k(2)=<—sinh o, —\IM\m2r2—m cosho), (17)

R mr
k(a):< cosha, VM —m?r2+M sinh 0) (18
V-—m?r?+M

The conserved charge associated with each solution is It is straightforward to show that this metric has constant
negative curvatur®=—2m? if and only if u satisfies the
1 Euclideansine-Gordon equation
M(i):__2|VT(i)|2+T(2i)- (19)
m Au=m?sin u, (22)

When the corresponding Killing vector is timelike, it can be WhereA::aer af(_ Moreover, for such a metric, the dilaton
shown that this corresponds to the ADM energy of the soluequations take the following form:
tion. In fact, a straightforward calculation shows that the

conserved charges E(L9) for E(i) are all equal: . sin(u/2) ~ coqu/2) m? 3
+ 2005{u/2)u 7'+ 2 sin(ui2) ur 5 cos(u/2)r=0,
I1l. FROM SINE-GORDON SOLITONS TO BLACK HOLES —Sm(U/z) ey —COS(U/Z) Ur+ m” i(u/2)r=0
' " ZcoguY T Zsimuiz) VT 7 Sim(w2)7=0,
Suppose one wants to solve the field equation(Eowith (29
metrics of the form
coqu/2) . sin(u/2) '—0
u u T — 5si u' T ur =0.
a2 g2 Y2 sin(u/2) 2 cogu/2)
ds? 3|n22dt +co§2dx . (21 (25
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By taking a sum of Eq(23) and Eq.(24) one finds that the wherex is the Hodge dual, is closed in any region where the
dilaton 7 must satisfy the linearized sine-Gordon equation coefficients ofdt,dx are smooth. The latter is a consequence
of the fact thatr satisfies Eq(5). Indeed, rewrite Eq(31) as
7+ 7'=m’cogu) . (26)
7,'V,T K,

Thus as first noted ifi12], the dilaton, which generates the Tu= |V 72 B m|k|?’ (32)
Killing vectors (i.e. symmetries of the black hole metric,

also maps solutions of the sine-Gordon equation onto othewhere 7“*:=¢**/\|g| is the completely skew-symmetric
solutions. That is iu and 7 obey Eq.(22) and Eq.(26), then  tensorin two dimensions. Now use the fact théy, »" =0
the fieldu’ =u+ er, also solves Eq(22) to first order ine. and the dilaton equations of motid@h) to show that

Another method for deriving the linearized sine-Gordon

equation for the dilaton was presented 2], where it was n*"(a,T,)=n*"V,T,=0. 33
noted that putting the metric ansatz Eg1) directly into the ) ) ) . ]
action Eq.(3) yields an action of the form Finally using Eq.(19), we can write the metric Eq29) in

the form of the black hole metric EG8).
1 It is clear that the sine-Gordon coordinates are singular at
lsrl7ul= 55 d?xr(Au—m?sin u). (27)  u(t,x)=nm,n=0,£1,+2,... since the volume element
M2 J]g[ vanishes at those space time points. For a generic soli-
. ) i ) ton solutionu, these coordinate singularities occur either at
Varying the above with respect toand 7 yields the linear- o soliton locationsr odd) or at spatial infinity, where the
ized sine-Gordon equation farand the sine-Gordon equa- ggjiton solution settles down to its asymptotic value (
tion for u, respectively. It should however be rememberedever)_ On the other hand, the sine-Gordon coordinates are
that varying the action after imposing a metric ansatz doe?egular at the black hole event horizon whefk|?
not necessarily yield exactly the same space of solutions as _ |V 7|2=0. Since the black hole coordinates are singular

obtained when the ansatz is substituted directly into they e norizon, the transformation from the sine-Gordon co-

equations of motion. There are more solutions to the ”nearbrdinates {,x) to black hole coordinatesT(r) breaks down
ized sine-Gordon equation than there are to the dilaton equ@ﬁere[cf. E<’:|. 31)].

tions. However, it may, under certain circumstances be de-
sirable to consider the reduced action Ef) as defining the
physical theory. This would be analogous to how the Nord-
stram theory of gravity is obtained from general relativity in -t js well-known that the sine-Gordon equation is inte-
3+1 dimensions by requiring that the metric be conformallygrable, and various techniques are available for extracting
flat” We will consider the full set of equatior(s) as defin-  explicit solutions. Here we use Hirota’s method to more-or-
ing our theory and not consider this alternative formulatiomess exp||c|t|y d|sp|ay the multi-soliton solutions of tii&u-

IV. MULTI-SOLITONS

further here. clideansine-Gordon equation.

Given a dilaton fieldr(x,t) satisfying the dilaton equa-  Our approach here follows that of Babelon and Bernard
tions of motion(5), we can choose a new “radial coordi- [13]. In light-cone coordinates. :=x+t, the Lorentzian sig-
nate” nature sine-Gordon equation is?49_u=m? sinu, where

d.:=73 (dy* ;). We switch to the Euclidean signature tia

—it andz.— 3 (d4Fid,). The Hirota functionsr.. are re-
lated to the real functiom in the sine-Gordon equation by

r(t,x):=7/m. (28

If this is substituted into Eq21) and the square in the terms
in dt? anddtdr is completed, the metric becomes

T_ .
=el2, (34)
ds? |VT|2dT2 m dr? 29 N
=—— + . . . . .
m? |V 72 m @9 The Hirota functions satisfy thelirota equations

m2
T(0-9,72)=(0-7)(d172)= E(Ti_ﬁ) (39

F

where, as anticipated by the notation, the differential form

u 7T u T
dT:=tan— —'det+ cot— ! 5dx (30 It is easy to see from Ed34) that the difference of the two
2 |V 2|V Hirota equations implies the sine-Gordon equations in light-
cone coordinates.
-m An N-soliton solution of the sine-Gordon equation is
= T2E *dr, (3D given by

N :=de(1+VV), (36)
e are grateful to M. Ryan for pointing this possibility out to us. whereVN is the Nx N matrix with elements\/i'\jl given by
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N /MiMj From this it follows that
Bt €1e”1+ e |
u=4tan?t : : (48)
where theX; are 1+ /26162691+p2‘

1 In the cases,€,<0,u describes atN=2 soliton which be-
Xi=aiexp 5 M(puiz, + pi "2-)|. (38 haves asymptotically as two 1-solitons and may be viewed as
the scattering of the 1-solitons from each other. k¢,

In the above the.; are complex parameters of modulus unity >0, on the other hand, Eq48) describes a soliton-anti-
and thea;= +ie"i, where the+(—) sign signifies a soliton soliton scattering solution.
(anti-soliton) and thew; are real. In fact, thev; can be “ab- It is useful to write Eq(48) in a somewhat different form.
sorbed” into the exponent of theX; by writing We proceed by writing”?:=e“ and factoring out a®, from
Wi=—uié, — p Té_ and rewritingz. —z. — £, . Thereal-  the numerator and,; e,e” from the denominator in the argu-
ity conditions on the parameters are required so that a  ment of the inverse tangent in E@8). Then after multiply-
real-valued solution of the Euclidean sine-Gordon equationing the numerator and denominator by Bxfo— p;—p,)] we

For the Lorentzian sine-Gordon equation, flaeare real. obtain
It is useful to redefine the parameters as follows. Write
wi=cosBi+ising,. Then definev;:=tanB,, so that y, e o2 (h1p2) 1 s 3 (p1—p2)
:=1/\1+v?=cosp.. In this case thé; can be written as u=4tanfl7 T T . (49
/ e2 (pl+p2+o')+ €16, 5 (pptpoto)
Xi = eie”i, (39)
Now choose new parametegsv in terms of thev,,v, by
where solving the equations
pi=myi[X—Xp—vi(t—ty)], (40 Y1~ ¥2=2yv Sinu, (50
with w;=my;(Xg—v;ity) and = =1. vi+y,=27v cospu, (51
Using this notation, the well known 1-soliton solution is
obtained from Y11~ Y22= — 2y Sin u, (52
e U2= cosu/2—i sinu/2= —- (41) Y101t Y2022y COSp. 53
- In terms of the new parameterS=tanu and we obtain
_1tiee” 42 u=4tan }(F/G), (54)
1-iee”
where for theN=2 soliton
which yields
F:=cot{ w)sinf m sin( w) y(t+vXx)], (55
u=4tan 1=e). (43
G:=sinfm cog ) y(x—vt)], (56)
For the 2-soliton, the Hirota functions are
whereas for the soliton-anti-soliton
7o =15 (X1 +X5) +A2X X5, (44)
F:=cof(w)coshm sin(w) y(t+vX)], (57)
where
G:=coshim coq u) y(x—vt)]. (58
M1 M2

: (45 Note that we have absorbed termsiof in the exponents
into the parametersv,,w,, without loss of generality. In
Now the solutionu of the sine-Gordon equation is given by Figs. 1 and 2, the N 2 soliton and soliton-anti-soliton solu-
tion are graphed for fixet
1+ N2X Xo+ (X +Xy) 46 For a more complete description of the N-soliton solu-
LXK (Xt X) (46)  tions, see the review articles [8] or [16].

M1t o

e iu2_

V. BLACK HOLE GEOMETRIES

In terms of the more “physical” parametets,,v,, we
FROM MULTI-SOLITONS

write =i/, with / real and given by
_ We now display the explicit black hole geometries asso-
,__ V1v2(vimva) _ (47)  ciated with the 1- and 2-soliton solutions of the sine-Gordon

1+ y172(1+v105) equation. The 1-soliton solution of the “Euclidean” sine-
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124 Gordon equatior{26). It is straightforward to show that the
linearized sine-Gordon equation is automatically satisfied by

10 a field of the form

8 r=au+bu’, (62)

i A wherea andb are arbitrary constants. We therefore take Eg.

j (62) as our anasatz and then see whether there are values for
/A a andb for which the remaining dilaton equations are satis-
A fied. In the one soliton solution E¢59)

40 NS ° 0, 40 uU=¥4myv sechp=—vu’, (63
Vo -2
"“ l' ] and Eq.(62) satisfies all the dilaton equations for aay. In
i - the above, the minus and plus signs refer to the soliton and
v 5 anti-soliton respectively. We therefore chodse0, so that
FIG. 1. Graph of soliton-soliton solutiofsolid line) and corre- T=4m|av|y seclip), (64)

sponding dilaton atdashed lingfixed t (not to scalg
where we assume that the signaohas been chosen to make

Gordon equation can be written as 7 positive. The black hole coordinates ) can therefore be
defined by
u(t,x)=4 tan exp{=my(x—vt— &y}, 59
(t.X) A=my(x—v o} ©9 r=r7/m=4|av|y sechp, (65
1

with y:=(1+v?)~ 2, and §ob=w/my is an integration con- P tanitp
stant. The constant is a “spectral parameter.” The solution dT=(4]av[m*y%) " dt—v my(seck p— o2 tanit p) dp|.
with the + sign in the exponent is the 1-soliton solution; the (66)
opposite sign is the anti-soliton solutidhJpon “Wick rota- _ o
tion” to the Lorentzian signaturgand in this case —iv),  In these coordinates, the metric is of the form
one sees that the solitofanti-solitor) propagates through _ 22 2 2 4 4o D
space with constant velocity (—v). Hence we may think dsg,= — (m?r2—16m?a®y*v*)d T
of the soliton as being located at=vt at timet. +(m2r2—16m2a2y*ut) ~1dr2. (67)

We shall now demonstrate that the 1-soliton solution Eq.
(59) of the sine-Gordon equation determines a metric in &This is the metric of a Jackiw-Teitelboim black hole with
coordinate patch oM, in which there is a Killing vector mass parameter
field which is timelike in the region outside the event hori-
zon, but which becomes null at an interior point of the patch. M isoi=16a’m?y*v?, (68)
In other words, it determines a black hole metric. Indeed, . 2 0
when Eq.(59) is used in the Lorentzian metric Ef5), the ~ and event horizon at= my=4m[a|y*v". It is important to

latter simplifies to note that the mashl is non-negative for all values ef and
a. The choice of the normalization constanis discussed in
_ 2 2 the following section on the Hamiltonian analysis.
ds; o= — sechtpdt® +tantfpd>’, (60) As noted previously, the sine-Gordon metric E0) is
Kruskal-like in that there is no coordinate singularity at the
where horizon. The metric is regular on a patch extending fiem
=—o, wherer=0, to the location of the soliton, wheye
p:=my(x—uvt), 61) =0, wherer= Tc=4mayv. Thus the location of the sine-
Gordon soliton is the surface along which the sine-Gordon
and we have chosen for simplicigy=0. coordinates break down. Since the ratio
According to the analysis in Sec. lll, we may transform to
black hole coordinatesT(r) if we have a solutionr to the TH v
dilaton equations for metric given by E@0). Such a dilaton —Tws Neweea (69)
can easily be found by recallind 2] that the dilaton equa- ¢ 1+v

tions imply that the fieldr also satisfies the linearized sine- the soliton is always located outside the horizon. The sine-

Gordon coordinates are therefore regular at the horizon.
Moreover, by taking the limit —, we can place the soli-
3t seems that the+ sign determining the solitonic and anti- ton arbitrarily close to the horizon. We note here that the

solitonic nature of the solution has migrated from a factor multiply- metric corresponding to the 1-soliton in the limit@as» o is
ing the exponential function in E¢43) into the exponential itself in

Eq. (59). In fact the solutions differ by 2 and so are equivalent. ds’= —sec(mt)dt?+ tantf(mt)dx°. (70)
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This metric has constant curvature2m?. The correspond- *t

ing mass parametevl”=16a’m? and now the location of ﬂ “
the soliton, at =0, coincides with*=0, where the dilaton
s

1
= coshikmx)tanimt). (71 / 61

Hence the entire spacetime, excluding= 0, but including o
the asymptotic region=7"/m—o, is covered by the sine-
Gordon coordinate patch. Figure 3 illustrates the locations of
the event horizons and coordinate singularities in 1-soliton Nl
sine-Gordon coordinates. Figure 4 shows how a generic sur-
face of constant soliton coordinat&s(A..B..C..D..B andt
(F..G..H..) are embedded in the Kruskal diagram for the - - . . -
corresponding black hole. Note that bets 0 andr= 7 are *

c!early coordinate singularities in the. soliton qoordinates, FIG. 2. Graph of soliton-anti-soliton scattering solutitsolid
since they are reached only asymptotically by lines of conjine) and corresponding dilatotdiashed ling for fixed t (not to

)

stantx andt, respectively. scals.
We now discuss the 2-soliton coordinates. The metric, in
this case given by E(q54), is VI. HAMILTONIAN ANALYSIS
G2— F2 We now review the Hamiltonian analysis for Jackiw-
ds2_ o =—2 ——dt?+ ———dx?, (72)  Teitelboim gravity using the notation ¢f4]. Spacetime is
F+G F+G split into a product of space and timbt,=3 xR and the

metrich,,, is given an ADM-like parametrizatiof7]:

where the quantitie§ and G are given by either Eq(55)
and Eq.(56) or Eq.(57) and Eq.(58) above. ds?=e“[ - g?dt?+ (dx+Vdt)?]. (75

Using MAPLE, we computed the dilaton for the 2-soliton
metric above by invoking the ansatz E®2). It turns out
that this ansatz satisfies all three dilaton equations providin
that b=2va/(1—v?). The resulting dilaton, for the case
whereF,G are given by Eqs(55),(56), is

where @, V and o are functions on spacetini,. In the
llowing, we denote by the overdot and prime, respectively,
erivatives with respect to the time coordinatand spatial
coordinatex.
The canonical momenta conjugate to the fidlds} are

4am cotu
T:—y(uz—l) In,= E(Vr’—b—), (76)
[v cosu coshp_sinhp, —sin u coshp ., sinhp_] 1
[sintp_+cofu sintfp. ] ' ;=555 (-atVe'+2V). 77)

(73 The vanishing of the momenta canonically conjugaté/to

i ando yield the primary constraints for the system. Following
where p.. :=my(t+vX)sin u,p_:=my(x—uvt)cosu. The cor- e standard Dirac prescripti¢8], we obtain the canonical

responding conserved mass parameter is Hamiltonian(up to spatial divergences
2am(v?cogu—sirfu)]? 1
M250|= 5 1 . (74) H():f dx| VF+ %Ug , (78)
v2—

- . - . . where we have defined
It is interesting that this is again non-negative for all values

of the soliton parameters. See Fig. 5 for the structure of the Fe=a'll .+ 7'11,— 211, (79
horizons, coordinate singularities and some constantves
for the geometry in these coordinates. For the soliton-anti- g:=27-"—a’7'—(2e)211a117— 2m2e®r. (80)

soliton scattering solution, i.e. the case whEr& are given

by Egs.(57),(58), the expression for the dilaton is given by Clearly 1/Z5 ¢ andV play the role of Lagrange multipliers
Eqg. (73) but with sinh and cosh interchanged; while the ex-that enforce the secondary constraiffts:0 andG~0.

pression for the conserved mass parameter is identical to Eq. The energy can be constructed by noting that the follow-
(74) above. Figure 6 displays some of the geometrical feaing linear combination of the constraints is a total spatial
tures. derivative:

124010-7



J. GEGENBERG AND G. KUNSTATTER

4>
‘o"&

S
$7 -
[

5‘9% £:N

0>
v°°

F

FIG. 3. Horizons and coordinate singularity in 1-soliton coordi-
nates.

G: —e‘“[(ZG)ZH F+1'G]

=(Q[a, 711, I1;])’ (81)
~0, (82
where we have defined the varialyjeas
1
:—[e *((2GII )%~ (7")2)+m?7?]. (83

The expression on the right-hand side above is nominally an
implicit function of the spatial coordinate, but is constant on
the constraint surface. Moreover, it is straightforward to

show thatg commutes with both constrainis, G. Thus, the
constant mode of] is a physical observable in the Dirac
sense.

In terms of the canonical momenta the magnitude of the

Killing vector can be written as

|K|?= —(7)?. (84
Thus the observablg is
m
_ 2, .2
5 (k24 72)
Mm
- (85

The momentum conjugate tpis found by inspection to
be[19]
211 e“
p=- f dx
s

(2GI1,)2—(7)? (89

PHYSICAL REVIEW [38 124010
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FIG. 4. Surfaces of constart(A..B..C..B andt (F..G..H..) in
Kruskal coordinates.

theorem[19] which states that there is only one independent
diffeomorphism invariant parameter characterizing the space
of solutions.

It is instructive to write the observablp in covariant

form:
dxe¥’n+—— VuT 8
p= f IR 87)
fd H—= Ky (88
= X
> k2
= —ZmJ dT. (89
s
Note thatdxe*? is the measure induced @by h,,. Inthe

expression fomp the vector fieldn* is the unit (timelike)
normal to3. The final expression is obtained by using the
result Eqg.(31), and proves explicitly that the momentum
conjugate toM is equal to the “Schwarzschild time separa-
tion” of the slice[20,14.

The canonical Hamiltonian in terms 6fis

The value ofp depends on the global properties of the space-

time slicing. This is consistent with the generalized Birkhoff

Hozfdx(v}‘— qE +H,—H_, (90)
wherev =V—-2Goll, /7" and
moe*
o= — (91
T
Note that from Eq(75) it follows that
oe?=/|g|=|sin(u/2)cog u/2)| (92)

124010-8
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where the last expression is only valid in soliton coordinates. copuv?—sirfu

In Eq.(90) H, andH _ are surface terms needed to make the M=v? 5 - > |- (95
variational principle well defined. These surface terms de- v?=|v sin u cosu|(1+v?)

pend on the boundary conditions, and will be determined

The choice of boundary conditions at the outer boundary
ejs somewhat more delicate. In order to consider black hole
dynamics and thermodynamics we would like our spatial
slice to include the asymptotic region of the black hole. Soli-
ton coordinates, as discussed above, cannot be extended into
the asymptotic region since there is a coordinate singularity
at u=(2n+1)=x/2, which corresponds to the location of a
goliton. We avoid this problem by assuming that>at
—oo, our spatial slice approaches asymptotically a static
Schwarzschild slice, with no coordinate singularity between
X_ andX_ . This requires a change of coordinates between
the horizon and the soliton location, since soliton coordinates
are good in the neighborhood of the horizon, while

below.

We now impose boundary conditions on our spatial slic
consistent with soliton coordinates EgJ1). In particular, we
assume that the spatial coordinateuns fromX_= —« to
X, =+, At the inner boundaryX_ the metric and dilaton
should take on values corresponding to the asymptotic (
— —o0) region of a constartt surface in soliton coordinates.
As illustrated for the one-soliton case in Fig. 4, such surface
approachr=0 asymptotically along the horizénThus, we
require V_—0,0_—0,II1,|] —0,e*_—1,7.—0 and
7. —0. However, in order for the Hamiltonian to be well
defined, & must be finite at the boundary, so we restrict

@ =const. This condition has two important CONSEQUENCESg -\ varzschild coordinates are good in the neighborhood of

F'rSF it allows the _boundary terms to be integrated in e soliton. As discussed iri4], the only boundary condi-
straightforward fashion, as shown below. Secondly, once th ons that we require &, ared, —1,5,—0
+ + Ut :

sohto_n metric is spegmed, It f!xes the sca_le of the dilaton. Given the above boundary conditions it is possible to
That is, given any soliton solution, there exists a correspond-

ing black hole with uniquely determined masAs we saw evaluate the surface terms for any solitonic solution of the
in Sec. V, without this condition the linearity of the dilaton sine-Gordon equations. Using the identity

equations of motion allow an arbitrary multiplicative scale e«

factor in the solution for the dilaton, and the resulting black a'll,—211),=— T (e‘“l‘[i)’, (96)
hole mass observable is proportional to the square of the @

scale factor. However, in order to be able o Impos&ye first write the canonical Hamiltonian in the following
this boundary condition ono it is necessary that o

|sin/2)cos(/2)|/ 7' remain finite asx— — o for every soli-

ton solutionu and dilaton fieldz. We have been able to ver _q
verify this explicitly in the 1- and 2-soliton sector, but not in Hozf dx| — (e I +3ll7' =G = |+H, —H_.
the general case. Specifically, in the one soliton case, for the “ (97)

solution given by Eq.(59) and Eq. (64) we find that
|sin?2)cos(/2)|/ 7' = 1/(4my?) for all X, so we choos@  The variation ofH, contains the following boundary terms:
=1/(4mvy?) and the corresponding black hole massMs
=v?2 with corresponding ADM energf=mv?/(2G). It is
interesting that the ADM energy of the black hole is equal to
the (non-relativisti¢ kinetic energy of the soliton.

In the two soliton case, one finds that +6H, —6H_. (98)

ver o _4q\’
5H0|boundary: dx T o(e Ha)_’_UHTéT_O-E

|sin(u/2)cogu/2)|/ 7’ Given the above boundary conditions, potentially non-zero
contributions are

2 i -1
v—1\[|v sin u cosu| 5
+ ~
~| = (1+v9)| , oHy _ . 59 (ve Se-oTI2)— 3 5q>‘
Olboundary- — 9 "~| | 771 o) T 0 T~
93 Gl, M Gl
asx— —, so we choose ToH,—6H_. (99)
v2—1\[|v sin u cos u| ) -1 Using the expression fay with for 7=7'=0, and the fact
a=|— (1+v9)| (94)  that whenv=0,5e*/11,=—73, we find that there is no sur-
face contribution aX_ , whereas the surface contribution in
to get a mass: the asymptotic region can easily be integrated to give
H,=0qg/G= Mm 100
+=0alG= 5 (100

“Slicings of this general form were considered for spherically
symmetric gravity in21].

SAnother way to state this is that each soliton solutioprovides
a unique slicing of the interior of black hole spacetime of fixed SFor a detailed Hamlitonian analysis with exterior boundary con-
mass. ditions corresponding to a black hole in a static box [s58.
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-4 = ot % ¥ -4t

FIG. 5. Horizons and coordinate singularity in 2-soliton coordi- ~ FIG. 6. Horizons and coordinate singularities in soliton-anti-
nates. soliton coordinates.

VII. CONCLUSIONS B2, so the rest energy of the state Eg=mN/B. Now
. . . . . _combinatorics come in. The degeneracy of the state arises
We have discussed in some detail how Euclidean sin€g o, the indistinguishability of the lumps in the N-soliton
Gordon solitons can be used to coordinatize black holes idi5ie 1 other words, the degeneracy is the number of differ-
Jackiw-Teitelboim gravity. The solitons appear as coordlnat%m ways to write N as the sum of non-negative integers. This

A the number-theoretic partition function Hardy-Ramanujan
can be faithfully coordinatized by the sine-Gordon coordi- P y J

nates. The horizons generically are regular in these coord[— ]
nates. In the one-soliton case the soliton was a surface of
constant dilaton field that lay just outside the horizon. There
are still many unanswered questions about how our specific
results for the 1- and 2-soliton sectors generalize to the Nfor largeN. Hence the entropy behaves as
soliton case.

Of course the most important question concerns whether S~log n(N)~7-r\/N~1-r\/E_0. (103
or not there is any physics in this. It is tantalizing to specu-
late on what would happen if we were able to treat the soli-This is just the Bekenstein-Hawking entrofup to factors of
tons as physical particles propagating through the black holerder 1) for a Jackiw-Teitelboim black hole with total energy
spacetime, and providing a physical boundary whose deforg,.
mations are in some way related to the diffeomorphisms of This is quite sketchy, as well as speculative. In order to
the horizon itself. Since in Carlip’s prograpd] the diffeo-  make the argument more rigorous, at least the following
morphisms of the horizon may be related to the black holemust be addressed:
entropy, we might be able to quantize the horizon diffeos by (1) Can one ignore breathers and other non-solitonic so-
quantizing the solitons and account for the black hole entutions of the sine-Gordon equation?
tropy by counting soliton states. (2) It is not obvious that the black hole energy is given by

The following is evidence that such a procedure may behe rest energy of the N-soliton solution. It is true however
worth pursuing. A black hole state has total eneligy Sup-  that the energy of the black hole corresponding to a 1-soliton
pose it is described by an N-soliton solution of the sine-in the limit as the soliton parameter—o is (up to numeri-
Gordon equation(lgnore breathers and other exotica for cal factors of order unitythe same as that of the 1-soliton
now,) Ignoring breathers, etc., Takhtadjan and Fadde&y itself.

compute the total energy, valid both classically and quantum Work is in progress to address these issues.
mechanically,

n(N)~e™2NB, (102
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