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Geometrodynamics of sine-Gordon solitons
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The relationship between N-soliton solutions to the Euclidean sine-Gordon equation and Lorentzian black
holes in Jackiw-Teitelboim dilaton gravity is investigated, with an emphasis on the important role played by
the dilaton in determining the black hole geometry. We show how an N-soliton solution can be used to
construct ‘‘sine-Gordon’’ coordinates for a black hole of mass M, and construct the transformation to more
standard ‘‘Schwarzchild-like’’ coordinates. For N51 and 2, we find explicit closed form solutions to the
dilaton equations of motion in soliton coordinates, and find the relationship between the soliton parameters and
the black hole mass. Remarkably, the black hole mass is non-negative for arbitrary soliton parameters. In the
one-soliton case the coordinates are shown to cover smoothly a region containing the whole interior of the
black hole as well as a finite neighborhood outside the horizon. A Hamiltonian analysis is performed for
slicings that approach the soliton coordinates on the interior, and it is shown that there is no boundary
contribution from the interior. Finally we speculate on the sine-Gordon solitonic origin of black hole statistical
mechanics.@S0556-2821~98!06222-5#

PACS number~s!: 04.60.Kz, 04.70.Bw, 04.70.Dy
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I. INTRODUCTION

Black holes are currently the subject of much research
two main reasons. First of all, there is a growing body
empirical evidence that black holes exist in binary system
well as at the center of most galaxies@1#. Secondly, black
holes pose fundamental problems whose resolution
likely provide important clues about the interface betwe
quantum mechanics and gravity. In particular, the mic
scopic origin of the Bekenstein-Hawking entropy of bla
holes is not fully understood, despite much recent progres
a variety of contexts@2–5#. The source of this problem is th
fact that from the outside, black holes are perhaps the s
plest, and least complicated objects in the Universe. They
pure geometry, and according to no-hair theorems prove
the 1960s, tend to settle into highly symmetric configuratio
with only a very few externally observable parameters. I
therefore very difficult to understand where the dynami
modes needed to account for the huge Bekenstein-Haw
entropy of black holes might reside.

Dilaton gravity theories in two spacetime dimensions p
vide useful theoretical laboratories for studying these qu
tions. They are diffeomorphism invariant theories that g
nerically do have black hole solutions, and yet are sim
enough to be exactly solved at both the classical and qu
tum levels. One such theory of particular interest is the
called Jackiw-Teitelboim theory@6#, which was originally
put forward because of its connection to the Liouvill
Polyakov action. Jackiw-Teitelboim gravity theory is disti
guished from other dilaton gravity theories in part becaus
has a great deal of symmetry. It has a gauge theory for
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lation, and its solutions correspond to maximally symmet
constant curvature metrics in two space-time dimensio
The black hole solutions to Jackiw-Teitelboim gravity a
related by dimensional reduction to the Banados-Teitelbo
Zanelli ~BTZ! black hole solutions@7# of anti–de Sitter grav-
ity in 211 dimensions. As shown in Ref.@8#, Jackiw-
Teitelboim black holes exhibit the usual thermodynam
properties, including black hole entropy, despite the abse
of field theoretic dynamical modes in the theory.

The feature of Jackiw-Teitelboim gravity most relevant
the present analysis is the fact that the black hole soluti
are space-times of constant curvature. The relationship
tween Euclidean, constant curvature metrics in two dim
sions and Lorentzian sine-Gordon solitons has been app
ated by mathematicians for a long time@9#.1 In particular,
the solutions of the sine-Gordon equation

2] t
2f1]x

2f5m2 sin f ~1!

determine Riemannian geometries with constant nega
curvature22m2 whose metric is given by the line-elemen

ds25sin2S f

2 Ddt21cos2S f

2 Ddx2. ~2!

The anglef describes the embedding of the manifold into
three-dimensional Euclidean space@9#. Moreover, it has re-
cently been proved that there is a direct connection betw
genus and soliton numbers@11#. In a recent Letter@12# the
relationship between Euclidean sine-Gordon solitons
black holes in Jackiw-Teitelboim gravity was derived. Th

1It was also used@10# to derive the relationship between solution
to the Liouville equation and the sine-Gordon solitons.
©1998 The American Physical Society10-1
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J. GEGENBERG AND G. KUNSTATTER PHYSICAL REVIEW D58 124010
relationship is interesting in part because sine-Gordon the
has a rich~and well-studied! dynamical structure, while, a
mentioned above, Jackiw-Teitelboim gravity has virtually
dynamical structure. Thus, the question arises as to whe
one can somehow understand the apparently rich dynam
structure of black holes in terms of the sine-Gordon solito
In this paper, we continue the analysis of@12#, and present
new results. In particular, we show how an N-soliton so
tion can be used to construct ‘‘sine-Gordon’’ coordinates
a black hole of mass M, and show generally how to tra
form to more standard ‘‘Schwarzschild-like’’ coordinate
For N51 and 2, we are able to find explicit closed for
solutions to the dilaton equations of motion in soliton co
dinates, and find the relationship between the soliton par
eters and the black hole mass. Remarkably, the black
mass is non-negative for all soliton parameters.

The paper is organized as follows: Section II revie
Jackiw-Teitelboim gravity and describes the correspond
black hole solutions. Section III describes how Euclide
sine-Gordon solitons emerge from Jackiw-Teitelboim gr
ity, and constructs the general coordinate transformation
relates ‘‘soliton coordinates’’ to the more usual black ho
coordinates. Section IV adapts the formalism of Babelon
Bernard@13# to the case ofEuclideanN-solitons and pre-
sents the results for the 1- and 2-soliton sectors. Sectio
explicitly displays the black hole geometries associated w
1- and 2-soliton solutions derived in Sec. V. Section VI p
sents the Hamiltonian analysis for slicings that approach
soliton coordinates on the interior, and it is shown that th
is no boundary contribution from the interior. Finally, in Se
VII we close with conclusions, speculations and prospe
for future work.

II. JACKIW-TEITELBOIM GRAVITY

Since the solutions of the sine-Gordon equation determ
metrics with constant negative curvature, we need to c
sider black holes of this type. It is therefore natural to exa
ine black holes in Jackiw-Teitelboim gravity@6#. This
theory, like all local two-dimensional gravity theories, is n
purely metrical; rather there is, besides the metric tenso
spacetime, a real-valued scalar field called thedilaton field.

The action functional for Jackiw-Teitelboim gravity is

I JT@t,g#5
1

2G E
M2

d2xAugut ~R12m2!. ~3!

In the above, the spacetime metric isgmn , R is its scalar
Ricci curvature andg is its determinant;t is the dilaton field;
the constantm is related to the ‘‘cosmological constant’’L
by L5m2. Finally, G is the gravitational coupling constan
which in two-dimensional spacetime is dimensionless. Su
cient conditions that this functional be stationary under a
trary variations of the dilaton and metric fields are, resp
tively,

R12m250; ~4!

~¹m¹n2m2gmn!t50. ~5!
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As shown in@14#, for every solution$gmn ,t% to the above
field equations there is a Killing vectorkm which leaves both
the metric and the dilaton invariant. It is

km5
emn

mA2g
]nt, ~6!

whereemn is the permutation symbol. Moreover, up to di
feomorphisms there exists only a one parameter family
solutions. This parameter, which we call the mass observ
M , is the analogue of the Arnowitt-Deser-Misner~ADM !
mass in general relativity: it is the conserved charge ass
ated with translations along the Killing directionkm, and can
be expressed in coordinate invariant form as@14#

M52
1

m2 u¹tu21t2. ~7!

Although all the solutions of Jackiw-Teitelboim gravit
are locally diffeomorphic to two-dimensional anti–de Sitte
spacetime, one may obtain distinctglobal solutions, some of
which display many of the attributes of black holes@14,15#.
For example, consider a solution where the metric is giv
by

ds252~m2r 22M !dT21~m2r 22M !21dr2, ~8!

and dilaton field by

t5c1mr. ~9!

This solution corresponds to standard ‘‘Schwarzschild-lik
coordinatization of the black hole solution to Jackiw
Teitelboim gravity. Note thatc1 is an arbitrary constant o
integration that has no direct physical significance: the o
true observable isM as defined above. The constantc1 can
be fixed by imposing suitable boundary conditions on
fields. For example, requiring that the dilaton go to t
vacuum configurationt5mr as r→` fixes c151. Thus
without loss of generality we henceforth make this choice

Clearly there is an event horizon located atr 5AM /m. It
is important to note here that though this fact can be ea
read off of the metric, since the latter is in manifestly sta
form, it also follows from solving for the variabler in the
equation ukmu2ªgmnkmkn50. The global structure of the
black hole spacetime is in part determined by the dilat
Since the spacetime has constant curvature, there are no
vature singularities for any value oft. However, surfaces for
which t50 give rise to an infinite effective Newton’s con
stant and should therefore be excluded from the manifo
With this assumption, the global structure of the manifold
virtually identical to the (r ,t) section of a Schwarzschild
black hole, with exactly the same Penrose diagram@8#.

One can further motivate the exclusion oft50 surfaces
from the manifold by noting that the metric Eq.~8! is the
dimensionally truncated spinless BTZ black hole@7# in 2
11 anti–de Sitter gravity. The dilaton corresponds to t
‘‘missing’’ radial coordinate of the 211 solutions. As de-
scribed in@7#, there is a causal singularity in the BTZ blac
0-2
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GEOMETRODYNAMICS OF SINE-GORDON SOLITONS PHYSICAL REVIEW D58 124010
hole att50. By excluding these surfaces one removes
possibility of closed timelike curves. Of course, in the co
text of Jackiw-Teitelboim~JT! gravity there is no causal sin
gularity. The surfacet50 is completely regular.

As shown in Sec. VI, the ADM energy of the black ho
solution Eqs.~8!,~9! is

EBH5mM/2G. ~10!

It is straightforward to derive the thermodynamic propert
@14,8# of the black holes described by Eq.~8! and Eq.~9!.
The Hawking temperature is

TH5
AMm

2p
, ~11!

with an associated Bekenstein-Hawking entropy

SBH5
2pAM

G
. ~12!

It is important to note that since the constant curvat
metrics are maximally symmetric, there are three Killi
vector fields. This also follows directly from the dilato
is

e
lu
he
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equations of motion in that there exist three functionally
dependent solutionst ( i ) , i 51,2,3 of Eq.~5!, which in turn
determine three functionally independent vector fieldsk( i )

m

via

k~ i !
m 5

emn

mA2g
]nt~ i ! . ~13!

These three vector fields satisfy the Killing equations by v
tue of Eq.~5!, and also leave their respective generating
laton fields invariant~i.e. k( i )

m ¹mt ( i )50).
It is straightforward to show that in addition tot (1)5mr

the following are solutions to the dilaton equations~5! are

t~2!5Am2r 22M sinh s, ~14!

t~3!5A2m2r 21M coshs, ~15!

wheresªmAMT and we have set the overall scale facto
ci to unity. Note thatt ( i ) are functionally independent o
non-trivial domains of spacetime. The corresponding Killi
vector fields are
kW ~1!5~1,0!, ~16!

kW ~2!5S mr

Am2r 22M
sinh s,2AMAm2r 22M coshs D , ~17!

kW ~3!5S mr

A2m2r 21M
coshs,AMA2m2r 21M sinh s D . ~18!
nt

n

The conserved charge associated with each solution

M ~ i !52
1

m2
u¹t~ i !u21t~ i !

2 . ~19!

When the corresponding Killing vector is timelike, it can b
shown that this corresponds to the ADM energy of the so
tion. In fact, a straightforward calculation shows that t
conserved charges Eq.~19! for kW ( i ) are all equal:

M ~ i !5M . ~20!

III. FROM SINE-GORDON SOLITONS TO BLACK HOLES

Suppose one wants to solve the field equation Eq.~4! with
metrics of the form

ds252sin2
u

2
dt21cos2

u

2
dx2. ~21!
-

It is straightforward to show that this metric has consta
negative curvatureR522m2 if and only if u satisfies the
Euclideansine-Gordon equation

Du5m2sin u, ~22!

whereDª] t
21]x

2 . Moreover, for such a metric, the dilato
equations take the following form:

t91
sin~u/2!

2 cos~u/2!
u8t81

cos~u/2!

2 sin~u/2!
u̇ṫ2

m2

2
cos2~u/2!t50,

~23!

ẗ2
sin~u/2!

2 cos~u/2!
u8t82

cos~u/2!

2 sin~u/2!
u̇ṫ1

m2

2
sin2~u/2!t50,

~24!

ṫ82
cos~u/2!

2 sin~u/2!
u8ṫ1

sin~u/2!

2 cos~u/2!
u̇t850.

~25!
0-3
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J. GEGENBERG AND G. KUNSTATTER PHYSICAL REVIEW D58 124010
By taking a sum of Eq.~23! and Eq.~24! one finds that the
dilaton t must satisfy the linearized sine-Gordon equation

ẗ1t95m2cos~u!t. ~26!

Thus as first noted in@12#, the dilaton, which generates th
Killing vectors ~i.e. symmetries! of the black hole metric,
also maps solutions of the sine-Gordon equation onto o
solutions. That is ifu andt obey Eq.~22! and Eq.~26!, then
the fieldu85u1et, also solves Eq.~22! to first order ine.

Another method for deriving the linearized sine-Gord
equation for the dilaton was presented in@12#, where it was
noted that putting the metric ansatz Eq.~21! directly into the
action Eq.~3! yields an action of the form

I JT@t,u#5
1

2G E
M2

d2xt~Du2m2sin u!. ~27!

Varying the above with respect tou andt yields the linear-
ized sine-Gordon equation fort and the sine-Gordon equa
tion for u, respectively. It should however be remember
that varying the action after imposing a metric ansatz d
not necessarily yield exactly the same space of solution
obtained when the ansatz is substituted directly into
equations of motion. There are more solutions to the line
ized sine-Gordon equation than there are to the dilaton e
tions. However, it may, under certain circumstances be
sirable to consider the reduced action Eq.~27! as defining the
physical theory. This would be analogous to how the No
ström theory of gravity is obtained from general relativity
311 dimensions by requiring that the metric be conforma
flat.2 We will consider the full set of equations~5! as defin-
ing our theory and not consider this alternative formulat
further here.

Given a dilaton fieldt(x,t) satisfying the dilaton equa
tions of motion~5!, we can choose a new ‘‘radial coord
nate’’

r ~ t,x!ªt/m. ~28!

If this is substituted into Eq.~21! and the square in the term
in dt2 anddtdr is completed, the metric becomes

ds252
u¹tu2

m2 dT21
m2

u¹tu2 dr2, ~29!

where, as anticipated by the notation, the differential form

dTªtan
u

2

t ,x

u¹tu2 dt1cot
u

2

t ,t

u¹tu2 dx ~30!

5
2m

u¹tu2 * dt, ~31!

2We are grateful to M. Ryan for pointing this possibility out to u
12401
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where* is the Hodge dual, is closed in any region where t
coefficients ofdt,dx are smooth. The latter is a consequen
of the fact thatt satisfies Eq.~5!. Indeed, rewrite Eq.~31! as

Tm5
hm

n¹nt

u¹tu2
5

km

muku2 , ~32!

where hmn
ªemn/Augu is the completely skew-symmetri

tensor in two dimensions. Now use the fact that¹mhnp[0
and the dilaton equations of motion~5! to show that

hmn~]nTm!5hmn¹nTm[0. ~33!

Finally using Eq.~19!, we can write the metric Eq.~29! in
the form of the black hole metric Eq.~8!.

It is clear that the sine-Gordon coordinates are singula
u(t,x)5np, n50,61,62, . . . since the volume elemen
Augu vanishes at those space time points. For a generic s
ton solutionu, these coordinate singularities occur either
the soliton locations (n odd! or at spatial infinity, where the
soliton solution settles down to its asymptotic valuen
even!. On the other hand, the sine-Gordon coordinates
regular at the black hole event horizon whereuku2

52u¹tu250. Since the black hole coordinates are singu
at the horizon, the transformation from the sine-Gordon
ordinates (t,x) to black hole coordinates (T,r ) breaks down
there@cf. Eq. ~31!#.

IV. MULTI-SOLITONS

It is well-known that the sine-Gordon equation is int
grable, and various techniques are available for extrac
explicit solutions. Here we use Hirota’s method to more-
less explicitly display the multi-soliton solutions of theEu-
clideansine-Gordon equation.

Our approach here follows that of Babelon and Bern
@13#. In light-cone coordinatesz6ªx6t, the Lorentzian sig-
nature sine-Gordon equation is 4]1]2u5m2 sinu, where
]6ª

1
2 (]x6] t). We switch to the Euclidean signature viat

→ i t andz6→ 1
2 (]x7 i ] t). The Hirota functionst6 are re-

lated to the real functionu in the sine-Gordon equation by

t2

t1
5eiu/2. ~34!

The Hirota functions satisfy theHirota equations

t6~]2]1t6!2~]2t6!~]1t6!5
m2

16
~t6

2 2t7
2 !. ~35!

It is easy to see from Eq.~34! that the difference of the two
Hirota equations implies the sine-Gordon equations in lig
cone coordinates.

An N-soliton solution of the sine-Gordon equation
given by

t6
N
ªdet~16VN!, ~36!

whereVN is theN3N matrix with elementsVi j
N given by
0-4



ity

io

it

is

y

as

-

.

-

-

lu-

so-
on
-

GEOMETRODYNAMICS OF SINE-GORDON SOLITONS PHYSICAL REVIEW D58 124010
Vi j
N
ª2

Am im j

m i1m j
AXiXj , ~37!

where theXi are

XiªaiexpF1

2
m~m iz11m i

21z2!G . ~38!

In the above them i are complex parameters of modulus un
and theai56 iewi, where the1~2! sign signifies a soliton
~anti-soliton! and thewi are real. In fact, thewi can be ‘‘ab-
sorbed’’ into the exponent of theXi by writing
wiª2m ij12m i

21j2 and rewritingz6→z62j6 . The real-
ity conditions on the parameters are required so thatu is a
real-valued solution of the Euclidean sine-Gordon equat
For the Lorentzian sine-Gordon equation, them i are real.

It is useful to redefine the parameters as follows. Wr
m i5cosbi1i sinbi . Then define v iªtanbi , so that g i

ª1/A11v i
25cosbi . In this case theXi can be written as

Xiª i e ie
r i, ~39!

where

r iªmg i@x2x0
i 2v i~ t2t0

i !#, ~40!

with wi5mg i(x0
i 2v i t0

i ) ande i561.
Using this notation, the well known 1-soliton solution

obtained from

e2 iu/25cosu/22 i sin u/25
t1

t2
~41!

5
11 i eer

12 i eer , ~42!

which yields

u54 tan216e~r!. ~43!

For the 2-soliton, the Hirota functions are

t6516~X11X2!1l2X1X2 , ~44!

where

lªS m12m2

m11m2
D . ~45!

Now the solutionu of the sine-Gordon equation is given b

e2 iu/25
11l2X1X21~X11X2!

11l2X1X22~X11X2!
. ~46!

In terms of the more ‘‘physical’’ parametersv1 ,v2 , we
write l5 i l , with l real and given by

l 5
g1g2~v12v2!

11g1g2~11v1v2!
. ~47!
12401
n.

e

From this it follows that

u54 tan21 U e1er11e2er2

11l 2e1e2er11r2
U . ~48!

In the casee1e2,0,u describes anN52 soliton which be-
haves asymptotically as two 1-solitons and may be viewed
the scattering of the 1-solitons from each other. Fore1e2
.0, on the other hand, Eq.~48! describes a soliton-anti
soliton scattering solution.

It is useful to write Eq.~48! in a somewhat different form
We proceed by writingl 2

ªes and factoring out ane1 from
the numerator ande1e2es from the denominator in the argu
ment of the inverse tangent in Eq.~48!. Then after multiply-

ing the numerator and denominator by exp@ 1
2 (s2r12r2)# we

obtain

u54 tan21
e2

l F e
1
2 ~r12r2!1e1e2e2

1
2 ~r12r2!

e
1
2 ~r11r21s!1e1e2e2

1
2 ~r11r21s!

G . ~49!

Now choose new parametersm,v in terms of thev1 ,v2 by
solving the equations

g12g252gv sin m, ~50!

g11g252g cosm, ~51!

g1v12g2v2522g sin m, ~52!

g1v11g2v252gv cosm. ~53!

In terms of the new parameters,l 5tanm and we obtain

u54 tan21~F/G!, ~54!

where for theN52 soliton

Fªcot~m!sinh@m sin~m!g~ t1vx!#, ~55!

Gªsinh@m cos~m!g~x2vt !#, ~56!

whereas for the soliton-anti-soliton

Fªcot~m!cosh@m sin~m!g~ t1vx!#, ~57!

Gªcosh@m cos~m!g~x2vt !#. ~58!

Note that we have absorbed terms of1
2 s in the exponents

into the parametersw1 ,w2 , without loss of generality. In
Figs. 1 and 2, the N52 soliton and soliton-anti-soliton solu
tion are graphed for fixedt.

For a more complete description of the N-soliton so
tions, see the review articles in@9# or @16#.

V. BLACK HOLE GEOMETRIES
FROM MULTI-SOLITONS

We now display the explicit black hole geometries as
ciated with the 1- and 2-soliton solutions of the sine-Gord
equation. The 1-soliton solution of the ‘‘Euclidean’’ sine
0-5
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Gordon equation can be written as

u~ t,x!54 tan21exp$6mg~x2vt2d0!%, ~59!

with gª(11v2)2
1
2 , andd05w/mg is an integration con-

stant. The constantv is a ‘‘spectral parameter.’’ The solutio
with the1 sign in the exponent is the 1-soliton solution; t
opposite sign is the anti-soliton solution.3 Upon ‘‘Wick rota-
tion’’ to the Lorentzian signature,~and in this casev→ iv),
one sees that the soliton~anti-soliton! propagates through
space with constant velocityv (2v). Hence we may think
of the soliton as being located atx5vt at time t.

We shall now demonstrate that the 1-soliton solution E
~59! of the sine-Gordon equation determines a metric in
coordinate patch onM2 in which there is a Killing vector
field which is timelike in the region outside the event ho
zon, but which becomes null at an interior point of the pat
In other words, it determines a black hole metric. Inde
when Eq.~59! is used in the Lorentzian metric Eq.~75!, the
latter simplifies to

ds12sol
2 52sech2rdt21tanh2rdx2, ~60!

where

rªmg ~x2vt !, ~61!

and we have chosen for simplicityd050.
According to the analysis in Sec. III, we may transform

black hole coordinates (T,r ) if we have a solutiont to the
dilaton equations for metric given by Eq.~60!. Such a dilaton
can easily be found by recalling@12# that the dilaton equa
tions imply that the fieldt also satisfies the linearized sin

3It seems that the6 sign determining the solitonic and ant
solitonic nature of the solution has migrated from a factor multip
ing the exponential function in Eq.~43! into the exponential itself in
Eq. ~59!. In fact the solutions differ by 2p, and so are equivalent.

FIG. 1. Graph of soliton-soliton solution~solid line! and corre-
sponding dilaton at~dashed line! fixed t ~not to scale!.
12401
.
a

.
,

Gordon equation~26!. It is straightforward to show that the
linearized sine-Gordon equation is automatically satisfied
a field of the form

t 5au̇1bu8, ~62!

wherea andb are arbitrary constants. We therefore take E
~62! as our anasatz and then see whether there are value
a andb for which the remaining dilaton equations are sat
fied. In the one soliton solution Eq.~59!

u̇574mgv sechr52vu8, ~63!

and Eq.~62! satisfies all the dilaton equations for anya,b. In
the above, the minus and plus signs refer to the soliton
anti-soliton respectively. We therefore chooseb50, so that

t54muavug sech~r!, ~64!

where we assume that the sign ofa has been chosen to mak
t positive. The black hole coordinates (r ,T) can therefore be
defined by

r 5t/m54uavug sechr, ~65!

dT5~4uavum2g2!21Fdt2v
tanh2r

mg~sech2 r2v2 tanh2 r!
drG .
~66!

In these coordinates, the metric is of the form

dsbh
2 52~m2r 2216m2a2g4v4!dT2

1~m2r 2216m2a2g4v4!21dr2. ~67!

This is the metric of a Jackiw-Teitelboim black hole wi
mass parameter

M1sol516a2m2g4v4, ~68!

and event horizon att5tH54muaug2v2. It is important to
note that the massM is non-negative for all values ofv and
a. The choice of the normalization constanta is discussed in
the following section on the Hamiltonian analysis.

As noted previously, the sine-Gordon metric Eq.~60! is
Kruskal-like in that there is no coordinate singularity at t
horizon. The metric is regular on a patch extending fromr
52`, wheret50, to the location of the soliton, wherer
50, wheret5tC54magv. Thus the location of the sine
Gordon soliton is the surface along which the sine-Gord
coordinates break down. Since the ratio

tH

tC
5gv5

v

A11v2
, ~69!

the soliton is always located outside the horizon. The si
Gordon coordinates are therefore regular at the horiz
Moreover, by taking the limitv→`, we can place the soli-
ton arbitrarily close to the horizon. We note here that t
metric corresponding to the 1-soliton in the limit asv→` is

ds252sech2~mt!dt21tanh2~mt!dx2. ~70!

-
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This metric has constant curvature22m2. The correspond-
ing mass parameterM`516a2m2 and now the location of
the soliton, att50, coincides witht`50, where the dilaton
t` is

t`5
1

m
cosh~mx!tanh~mt!. ~71!

Hence the entire spacetime, excludingt`50, but including
the asymptotic regionr 5t`/m→`, is covered by the sine
Gordon coordinate patch. Figure 3 illustrates the location
the event horizons and coordinate singularities in 1-soli
sine-Gordon coordinates. Figure 4 shows how a generic
face of constant soliton coordinatesx ~A..B..C..D..E! and t
~F..G..H..I! are embedded in the Kruskal diagram for t
corresponding black hole. Note that botht50 andt5tC are
clearly coordinate singularities in the soliton coordinat
since they are reached only asymptotically by lines of c
stantx and t, respectively.

We now discuss the 2-soliton coordinates. The metric
this case given by Eq.~54!, is

ds22sol
2 522

FG

F21G2 dt21
G22F2

F21G2 dx2, ~72!

where the quantitiesF and G are given by either Eq.~55!
and Eq.~56! or Eq. ~57! and Eq.~58! above.

Using MAPLE, we computed the dilaton for the 2-solito
metric above by invoking the ansatz Eq.~62!. It turns out
that this ansatz satisfies all three dilaton equations provid
that b52va/(12v2). The resulting dilaton, for the cas
whereF,G are given by Eqs.~55!,~56!, is

t 5
4am cotm

g~v221!

3
@v cosm coshr2sinh r12sin m coshr1sinh r2#

@sinh2r21cot2m sinh2r1#
,

~73!

where r1ªmg(t1vx)sinm,r2ªmg(x2vt)cosm. The cor-
responding conserved mass parameter is

M2sol5F2am~v2cos2m2sin2m!

v221 G2

. ~74!

It is interesting that this is again non-negative for all valu
of the soliton parameters. See Fig. 5 for the structure of
horizons, coordinate singularities and some constantt curves
for the geometry in these coordinates. For the soliton-a
soliton scattering solution, i.e. the case whereF,G are given
by Eqs.~57!,~58!, the expression for the dilaton is given b
Eq. ~73! but with sinh and cosh interchanged; while the e
pression for the conserved mass parameter is identical to
~74! above. Figure 6 displays some of the geometrical f
tures.
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VI. HAMILTONIAN ANALYSIS

We now review the Hamiltonian analysis for Jackiw
Teitelboim gravity using the notation of@14#. Spacetime is
split into a product of space and time:M2.S3R and the
metric hmn is given an ADM-like parametrization@17#:

ds25ea @2s2dt21~dx1Vdt!2#. ~75!

where a, V and s are functions on spacetimeM2 . In the
following, we denote by the overdot and prime, respective
derivatives with respect to the time coordinatet and spatial
coordinatex.

The canonical momenta conjugate to the fields$a,t% are

Pa5
1

2Gs
~Vt82 ṫ !, ~76!

Pt5
1

2Gs
~2ȧ1Va812V8!. ~77!

The vanishing of the momenta canonically conjugate toV
ands yield the primary constraints for the system. Followin
the standard Dirac prescription@18#, we obtain the canonica
Hamiltonian~up to spatial divergences!

H05E dxS VF1
1

2G
sGD , ~78!

where we have defined

Fªa8Pa1t8Pt22Pa8 , ~79!

Gª2t92a8t82~2G!2PaPt22m2eat. ~80!

Clearly 1/2G s andV play the role of Lagrange multipliers
that enforce the secondary constraintsF'0 andG'0.

The energy can be constructed by noting that the follo
ing linear combination of the constraints is a total spa
derivative:

FIG. 2. Graph of soliton-anti-soliton scattering solution~solid
line! and corresponding dilaton~dashed line! for fixed t ~not to
scale!.
0-7
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G̃ª
l

2
e2a@~2G!2PaF1t8G#

5~q@a,t,Pa ,Pt#!8 ~81!

'0, ~82!

where we have defined the variableq as

qª
1

2m
@e2a

„~2GPa!22~t8!2
…1m2t2#. ~83!

The expression on the right-hand side above is nominally
implicit function of the spatial coordinate, but is constant
the constraint surface. Moreover, it is straightforward
show thatq commutes with both constraintsF, G. Thus, the
constant mode ofq is a physical observable in the Dira
sense.

In terms of the canonical momenta the magnitude of
Killing vector can be written as

uku25
e2a

m2
@~2GPa!22~t8!2#. ~84!

Thus the observableq is

q5
m

2
~ uku21t2!

5
Mm

2
. ~85!

The momentum conjugate toq is found by inspection to
be @19#

pª2E
S
dx

2Paea

~2GPa!22~t8!2
. ~86!

The value ofp depends on the global properties of the spa
time slicing. This is consistent with the generalized Birkho

FIG. 3. Horizons and coordinate singularity in 1-soliton coor
nates.
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theorem@19# which states that there is only one independ
diffeomorphism invariant parameter characterizing the sp
of solutions.

It is instructive to write the observablep in covariant
form:

p5E
S
dxea/2nm

¹mt

uku2
~87!

522E
S
dxm

km

uku2
~88!

522mE
S
dT. ~89!

Note thatdxea/2 is the measure induced onS by hmn . In the
expression forp the vector fieldnm is the unit ~timelike!
normal toS. The final expression is obtained by using t
result Eq. ~31!, and proves explicitly that the momentum
conjugate toM is equal to the ‘‘Schwarzschild time separ
tion’’ of the slice @20,14#.

The canonical Hamiltonian in terms ofG̃ is

H05E dxS ṽF2s̃
q8

G D1H12H2 , ~90!

whereṽ5V22GsPa /t8 and

s̃5
msea

t8
. ~91!

Note that from Eq.~75! it follows that

sea5Augu5usin~u/2!cos~u/2!u ~92!

FIG. 4. Surfaces of constantx ~A..B..C..E! and t ~F..G..H..I! in
Kruskal coordinates.
0-8
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where the last expression is only valid in soliton coordinat
In Eq. ~90! H1 andH2 are surface terms needed to make
variational principle well defined. These surface terms
pend on the boundary conditions, and will be determin
below.

We now impose boundary conditions on our spatial sl
consistent with soliton coordinates Eq.~21!. In particular, we
assume that the spatial coordinatex runs fromX252` to
X151`. At the inner boundaryX2 the metric and dilaton
should take on values corresponding to the asymptoticx
→2`) region of a constantt surface in soliton coordinates
As illustrated for the one-soliton case in Fig. 4, such surfa
approacht50 asymptotically along the horizon.4 Thus, we
require V2→0,s2→0,Ptu2→0,eau2→1,t2→0 and
t28→0. However, in order for the Hamiltonian to be we
defined, s̃ must be finite at the boundary, so we restr
s̃25const. This condition has two important consequenc
First it allows the boundary terms to be integrated in
straightforward fashion, as shown below. Secondly, once
soliton metric is specified, it fixes the scale of the dilato
That is, given any soliton solution, there exists a correspo
ing black hole with uniquely determined mass.5 As we saw
in Sec. V, without this condition the linearity of the dilato
equations of motion allow an arbitrary multiplicative sca
factor in the solution for the dilaton, and the resulting bla
hole mass observable is proportional to the square of
scale factor. However, in order to be able to impo
this boundary condition ons̃ it is necessary tha
usin(u/2)cos(u/2)u/t8 remain finite asx→2` for every soli-
ton solution u and dilaton fieldt. We have been able to
verify this explicitly in the 1- and 2-soliton sector, but not
the general case. Specifically, in the one soliton case, for
solution given by Eq.~59! and Eq. ~64! we find that
usin(u/2)cos(u/2)u/t851/(4mg2) for all x, so we choosea
51/(4mg2) and the corresponding black hole mass isM
5v2 with corresponding ADM energyE5mv2/(2G). It is
interesting that the ADM energy of the black hole is equa
the ~non-relativistic! kinetic energy of the soliton.

In the two soliton case, one finds that

usin~u/2!cos~u/2!u/t8

→S v221

2a D F uv sin m cosmu
v

~11v2!G21

,

~93!

asx→2`, so we choose

a5S v221

2 D F uv sin m cosmu
v

~11v2!G21

, ~94!

to get a mass:

4Slicings of this general form were considered for spherica
symmetric gravity in@21#.

5Another way to state this is that each soliton solutionu provides
a unique slicing of the interior of black hole spacetime of fix
mass.
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M5v2F cos2mv22sin2m

v22uv sin m cosmu~11v2!
G . ~95!

The choice of boundary conditions at the outer bound
is somewhat more delicate. In order to consider black h
dynamics and thermodynamics we would like our spa
slice to include the asymptotic region of the black hole. So
ton coordinates, as discussed above, cannot be extended
the asymptotic region since there is a coordinate singula
at u5(2n11)p/2, which corresponds to the location of
soliton. We avoid this problem by assuming that atX1

→`, our spatial slice approaches asymptotically a sta
Schwarzschild slice, with no coordinate singularity betwe
X2 andX1 . This requires a change of coordinates betwe
the horizon and the soliton location, since soliton coordina
are good in the neighborhood of the horizon, wh
Schwarzschild coordinates are good in the neighborhood
the soliton. As discussed in@14#, the only boundary condi-
tions that we require at6 X1 are s̃1→1, ṽ1→0.

Given the above boundary conditions it is possible
evaluate the surface terms for any solitonic solution of
sine-Gordon equations. Using the identity

a8Pa22Pa852
ea

Pa
~e2aPa

2 !8, ~96!

we first write the canonical Hamiltonian in the followin
form:

H05E dxS 2
ṽea

Pa
~e2aPa

2 !81 ṽPtt82s̃
q8

G D1H12H2 .

~97!

The variation ofH0 contains the following boundary terms

dH0uboundary5E dxS 2
ṽea

Pa
d~e2aPa

2 !1 ṽPtdt2s̃
dq

G D 8

1dH12dH2 . ~98!

Given the above boundary conditions, potentially non-z
contributions are

dH0uboundary52s̃
dq

G U
1

2S ṽea

Pa
d~e2aPa

2 !2s̃
dq

G D U
2

1dH12dH2 . ~99!

Using the expression forq with for t5t850, and the fact
that whenV50, ṽea/Pa 52s̃, we find that there is no sur
face contribution atX2 , whereas the surface contribution
the asymptotic region can easily be integrated to give

H15q/G5
Mm

2G
. ~100!

6For a detailed Hamlitonian analysis with exterior boundary co
ditions corresponding to a black hole in a static box see@22#.
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VII. CONCLUSIONS

We have discussed in some detail how Euclidean s
Gordon solitons can be used to coordinatize black hole
Jackiw-Teitelboim gravity. The solitons appear as coordin
singularities that constitute the boundaries of the patches
can be faithfully coordinatized by the sine-Gordon coor
nates. The horizons generically are regular in these coo
nates. In the one-soliton case the soliton was a surfac
constant dilaton field that lay just outside the horizon. Th
are still many unanswered questions about how our spe
results for the 1- and 2-soliton sectors generalize to the
soliton case.

Of course the most important question concerns whe
or not there is any physics in this. It is tantalizing to spec
late on what would happen if we were able to treat the s
tons as physical particles propagating through the black h
spacetime, and providing a physical boundary whose de
mations are in some way related to the diffeomorphisms
the horizon itself. Since in Carlip’s program@4# the diffeo-
morphisms of the horizon may be related to the black h
entropy, we might be able to quantize the horizon diffeos
quantizing the solitons and account for the black hole
tropy by counting soliton states.

The following is evidence that such a procedure may
worth pursuing. A black hole state has total energyE0 . Sup-
pose it is described by an N-soliton solution of the sin
Gordon equation.~Ignore breathers and other exotica f
now.! Ignoring breathers, etc., Takhtadjan and Faddeev@23#
compute the total energy, valid both classically and quan
mechanically,

E5(
i

N

~64m2/b21pi
2!1/2, ~101!

wherepi is canonical momentum ofi th lump andb is the
sine-Gordon coupling constant. Absorb factors of 64 in

FIG. 5. Horizons and coordinate singularity in 2-soliton coor
nates.
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b22, so the rest energy of the state isE05mN/b. Now
combinatorics come in. The degeneracy of the state ar
from the indistinguishability of the lumps in the N-solito
state. In other words, the degeneracy is the number of dif
ent ways to write N as the sum of non-negative integers. T
is the number-theoretic partition function Hardy-Ramanu
@24#,

n~N!;epA2N/3, ~102!

for largeN. Hence the entropy behaves as

S; log n~N!;pAN;pAE0. ~103!

This is just the Bekenstein-Hawking entropy~up to factors of
order 1! for a Jackiw-Teitelboim black hole with total energ
E0 .

This is quite sketchy, as well as speculative. In order
make the argument more rigorous, at least the follow
must be addressed:

~1! Can one ignore breathers and other non-solitonic
lutions of the sine-Gordon equation?

~2! It is not obvious that the black hole energy is given
the rest energy of the N-soliton solution. It is true howev
that the energy of the black hole corresponding to a 1-sol
in the limit as the soliton parameterv→` is ~up to numeri-
cal factors of order unity! the same as that of the 1-solito
itself.

Work is in progress to address these issues.
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FIG. 6. Horizons and coordinate singularities in soliton-an
soliton coordinates.
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