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How unique is the expected stress-energy tensor of a massive scalar field?

Wolfgang Tichy and E´ anna É. Flanagan
Cornell University, Newman Laboratory, Ithaca, New York 14853-5001

~Received 9 June 1998; published 13 November 1998!

We show that the set of ambiguities in the renormalized expected stress-energy tensor allowed by the Wald
axioms is much larger for a massive scalar field~an infinite number of free parameters! than for a massless
scalar field~two free parameters!. We also use the closed-time-path effective action formalism of Schwinger to
calculate the expected value of the stress-energy tensor in the incoming vacuum state, for a massive scalar
field, on any spacetime which is a linear perturbation off Minkowski spacetime. This result generalizes an
earlier result of Horowitz and also Jordan in the massless case, and can be used as a testbed for comparing
different calculational methods.@S0556-2821~98!05622-7#

PACS number~s!: 04.62.1v, 03.70.1k, 04.20.Cv
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I. INTRODUCTION AND SUMMARY

A. Background and motivation

In semiclassical gravity, a classical metric is coupled
quantum fields according to the semiclassical Einstein eq
tion

Gab58pG^T̂ab&, ~1.1!

whereGab is the Einstein tensor andG is Newton’s gravita-
tional constant. This equation is usually postulated rat
than derived as there is no complete theory of quantum g
ity from which it could be derived, although several form
derivations have been given@1#. There are several well
known difficulties associated with the semiclassical theo
First, there are difficulties associated with the existence
unphysical, exponentially growing ‘‘runaway’’ solutions o
Eq. ~1.1!, which have not yet been completely resolved@2#.
The second difficulty, which is the subject of this paper,
the non-uniqueness of the expected stress-energy tens
the right hand side of Eq.~1.1!.

For a scalar field, several methods have been sugge
for calculating the expected stress energy tensor. These
clude~i! the ‘‘point splitting’’ algorithm @3#, ~ii ! the DeWitt-
Schwinger expansion method@4#, and ~iii ! the closed-time-
path or in-in effective action method@5–7#. There is no
general agreement as to which method is correct. For
ample, it is claimed in Ref.@3# that the DeWitt-Schwinger
method is invalid for a massive scalar field since it does
have a regular limit asm→0, wherem is the mass.

As is well known, a theorem of Wald@8,3# plays a crucial
role in this field. The theorem states that if one has t
different prescriptions for obtaining stress tensors from m
rics and from quantum states, and if these prescriptions o
a certain set of physically-motivated axioms, then the t
prescriptions must agree up to a local conserved tensor@9#.

Thus, if ^T̂ab& and^ T̃̂ab& are two different such prescription
for computing the expected stress-energy tensor, then
difference

tab[^T̂ab&2^ T̃̂ab& ~1.2!

must be a conserved local curvature tensor.
0556-2821/98/58~12!/124007~18!/$15.00 58 1240
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In the case of a massless scalar field, there is no nat
mass scale in the theory, and the following well-known
gument based on dimensional analysis shows that^T̂ab& is
unique up to a two parameter ambiguity. Let us use units
which \5c51, but in whichGÞ1. Then, there are only two
independent conserved local curvature tensors with the
propriate dimensions of (mass)4: namely

Hab
~1!~x!5

1

A2g

d

dgab~x!
E d4x8A2gR~x8!2 ~1.3!

and

Hab
~2!~x!5

1

A2g

d

dgab~x!
E d4x8A2gRcd~x8!Rcd~x8!.

~1.4!

Thus we must have

tab5aHab
~1!1bHab

~2! , ~1.5!

wherea andb are two unknown dimensionless paramete
Hence, the expected stress tensor^T̂ab& is unique up to a two
parameter ambiguity.

Consider now a massive scalar field. In this case
above argument fails, since there is a preferred mass s
present, namely the massm of the field. Using this mass
scale one can construct local conserved tensors of the fo

1

A2g

d

dgab~x!
E d4x8A2gm4FR~x8!

m2 G n

, ~1.6!

which have dimension (mass)4 and are thus possible cand
dates for tab . Here n can be any integer greater than
Similar terms can be constructed from the Ricci and R
mann tensors. The conventional view has been to excl
such terms as being unphysical, since they diverge am
→0 ~see, e.g., p. 90 of Ref.@3#!. Thus, the conventional view
has been that the allowed ambiguity for a massive field is
worse than that for a massless field, namely the two par
eter ambiguity~1.5!.
©1998 The American Physical Society07-1
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B. Ambiguity in expected stress tensor
for a massive scalar field

The first main point of this paper is that the above co
ventional view is unfounded. This can be seen as follo
Consider the local conserved tensor

tab5
1

A2g

d

dgab~x!
E d4x8A2gm4FFR~x8!

m2 G , ~1.7!

whereF(x) is any dimensionless function of a dimensionle
argumentx. In order for tab to be acceptable on physica
grounds as a contribution to the expected stress tenso
must satisfy the requirements that

tab→0 as m2→0 ~1.8!

and

tab→0 as R→0. ~1.9!

Now, the tensor~1.7! can be written as

tab52m2RabF8~R/m2!1m4F~R/m2!gab/21F9~R/m2!Yab

1F ~3!~R/m2!Zab /m2, ~1.10!

whereYab andZab are tensors constructed out of derivativ
of R, of dimension (mass)4 and (mass)6 respectively. Sup-
pose that we choose the functionF to be smooth, to satisfy
F(0)50, and to satisfyF ( j )(x)xj 22→0 as x→` for j
50,1,2,3, whereF ( j )(x) is the j th derivative ofF. Examples
of functions satisfying these requirements areF(x)5
x2exp(2x2) and F(x)5x2/(11x4). Then, the tensor~1.7!
will satisfy the required properties~1.8! and ~1.9! @10#.

Note that when one expands the functionF(x) as a power
series to obtain

FFR~x8!

m2 G5(
n

anFR~x8!

m2 G n

, ~1.11!

it can be seen that the tensor~1.7! contains terms of the form
~1.6!, each of which individually has unacceptable behav
asm→0. However the sum~1.7! of all these terms does hav
acceptable behavior asm→0. Note also that it is not possibl
to exclude terms of the form~1.7! by postulating, as an ad
ditional axiom, that the stress tensor be an analytic func
of m2, since for example the choiceF(x)5x2/(11x4)
yields a local conserved tensortab which is an analytic func-
tion of m2 in an open neighborhood of the real axis in t
complexm2 plane@11#.

The ambiguitytab in the stress-energy tensor allowed
the Wald axioms is therefore much worse in the massive c
than in the massless case. It is an infinite param
ambiguity—one can specify a free functionF(x)—rather
than a two parameter ambiguity@12#. Of course, it is still
possible that the various conventional calculational meth
still agree to within the two parameter ambiguity~1.5! @13#.
However, there is no guarantee that this should be the c
Therefore it would be worthwhile to find some addition
12400
-
.

s

it

r

n

se
er

s

se.

axiom or physical principle, to augment the Wald axiom
that would further pin down the stress tensor in the mass
case@14#.

C. Nearly flat spacetimes

Spacetimes which are linear perturbations off Minkows
spacetime form a useful testbed in which to probe these
sues@15#. The second principle purpose of this paper is
explicitly calculate the renormalized stress tensor of a m
sive scalar field in such spacetimes, using the closed-ti
path or in-in effective action formalism@5–7#. If our calcu-
lation is repeated using the point-splitting or DeWi
Schwinger methods, then it will be possible to compare
predictions of the different methods.

Now the Wald axioms imply that any prescription fo
calculating the stress tensor is determined by specifying
expected value of the stress tensor in the incoming vacu
state u0,in&. The expected value in any other state is th
uniquely determined@2#. Therefore, it suffices to conside
the expected value of the stress tensor in the incom
vacuum state. In the massless case, calculations of the
expected stress tensor have already been performed u
several different methods~see Horowitz@16# and Jordan
@17#!. The results of of these different calculations agree
to the two parameter ambiguity~1.5!, as they must according
to Wald’s theorem.

The result we obtain from the in-in effective action fo
malism @5–7# is @cf. Eq. ~4.13! below#

^0,inuT̂ab~x!u0,in&

5aḢab
~1!~x!1bḢab

~2!~x!2
1

256p2E d4x8

3@Ḣab
~1!~x8!T1~x2x8!1Ḣab

~2!~x8!T2~x2x8!#. ~1.12!

Here it is assumed that the metric tensor is of the form

gab5hab1hab , ~1.13!

wherehab is a flat, Minkowski metric, and that the coord
natesxa and x8aare Lorentzian coordinates with respect
hab . Also a andb are arbitrary dimensionless constants, t
distributionsT1(x2x8) and T2(x2x8) are defined by Eqs
~4.14! and ~4.15! below, andḢab

(1) and Ḣab
(2) are linearized

versions of the local conserved curvature tensors~1.3! and
~1.4!.

The stress-energy tensor~1.12! is causal, as it must be
and reduces to the known result of the massless case@16,17#
in the limit m→0. Furthermore it is not a smooth function o
m2 at m250. The calculational method we use also au
matically yields two undetermined parametersa and b, so
the result~1.12! explicitly exhibits the two parameter amb
guity, just as in the massless case@16#.
7-2
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D. Organization of this paper

Section II reviews the in-out and in-in effective actio
formalisms. In Sec. III we calculate the in-in and in-out e
fective actions of a massive scalar field propagating o
spacetime which is a linear perturbation off Minkows
spacetime. In Sec. IV we find the expected stress-energ
the incoming vacuum state, and then in Sec. V we discus
properties. Section VI summarizes our results.

Throughout we use units in which\5c51, and use the
metric signature and sign conventions of Misner, Thorne
Wheeler @18#. Further notational conventions are given
Appendix A.

II. THE IN-OUT AND IN-IN PATH INTEGRAL
FORMALISMS

In this section we review both the standard in-out p
integral formalism of quantum field theory~see, e.g., Refs
@19,4#!, as applied to curved spacetimes, and the modi
in-in formalism due to Schwinger@5#. This in-in or closed
time path method was later adapted to curved spacetime
Jordan@6,7#, and has been extensively explored by Hu@22#.
Our presentation of the in-in method in Sec. II C below d
fers from that of Refs.@6,7# in that all the fundamental defi
nitions are explicitly coordinate independent.

A. The classical theory

We consider a massive, minimally coupled scalar fieldf
for which the Einstein-Klein-Gordon action is

S@gab,f#5Sg@gab#1Sm@gab,f#, ~2.1!

where

Sg@gab#52mp
2E A2gRdnx ~2.2!

and

Sm@gab,f#52
1

2E A2g~gab¹af¹bf1m2f2!dnx.

~2.3!

Herem is the mass of the scalar field,mp
25(32pG)21 is the

square of the Planck mass, andn is the number of spacetim
dimensions~we shall be using the dimensional regularizati
scheme below!. The corresponding equations of motion a
4mp

2Gab5Tab and (h2m2)f50, where the stress-energ
tensor is

Tab5
22

A2g

d

dgab
Sm@gab,f#

5¹af¹bf2
1

2
gab¹cf¹cf2

1

2
gabm

2f2. ~2.4!
12400
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B. In-out formalism

We assume that the metricgab is asymptotically static at
early and late times so the incoming and outgoing vacu
statesu0,in& andu0,out& are well defined. In the usual way w
define the generating functional

eiW[gab,J][^0,outu0,in&J , ~2.5!

where the subscriptJ on the right hand side indicates that
source term

^J,f&[E dnxA2g~x!J~x!f~x! ~2.6!

has been added to the action. It can be shown thateiW[gab,J]

has the path integral representation

eiW[gab,J]5E Df ei ~Sm[gab,f] 1^J,f&!, ~2.7!

and that time-ordered matrix elements are given by

^0,outuTf̂~x!f̂~y!u0,in&J

5E Df f~x!f~y!ei ~Sm[gab,f] 1^J,f&!. ~2.8!

In Eqs.~2.7! and~2.8!, the usual boundary conditions on th
path integral are assumed, namely thatf is purely negative
frequency (}eivt with v.0) at early times and positive
frequency at late times, or equivalently, that the ma
squared parameter is understood to have a small neg
imaginary part,m2→m22 i e. From Eqs.~2.8! and ~2.4! it
follows that

22

A2g

dW@gab,0#

dgab

52 ie2 iW[gab,0]E Df i
22

A2g

d

dgab
Sm@gab,f#eiSm[gab,f]

5
^0,outuT̂abu0,in&

^0,outu0,in&
. ~2.9!

The effective action is defined in the usual way as a L
endre transform of the generating functional:

Gm@gab,f̄#[W@gab,J#2^J,f̄&, ~2.10!

where

f̄5
1

A2g

dW@gab,J#

dJ
5^0,outuf̂u0,in&J . ~2.11!

Here and henceforth the subscriptm in Gm indicates that the
classical action from whichGm is computed @Eq. ~2.7!
above# includes only the matter partSm and not the gravita-
tional partSg . Combining Eqs.~2.9!–~2.11! we now obtain
7-3
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22

A2g

dGm@gab,f̄#

dgab U
f̄5f̄[gab]

5
^0,outuT̂abu0,in&

^0,outu0,in&
.

~2.12!

Here the right hand side is a functional only of the met
gab, while on the left hand sidef̄@gab# is the solution to Eq.
~2.11! at J50.

Since the action~2.3! is quadratic inf, it is straightfor-
ward to compute the effective action exactly. The resul
the standard, formal, expression@20#

Gm@gab,f̄#5Sm@gab,f̄#1
i

2
tr ln Ā, ~2.13!

whereĀ is the operator given byĀf5(h2m21 i e)f. The
operatorĀ is the natural operator associated with the q
dratic formSm and with the covariant inner product on fun
tions on spacetime

^ f ,h&[E dnxA2g~x! f ~x!* h~x!. ~2.14!

The reason the inner product~2.14! is the appropriate inne
product is that the measureDf in Eq. ~2.7! is determined by
the metricgab @21#.

Finally, we define the quantityG@gab,f̄# ~as opposed to
Gm@gab,f̄#) to be the effective action obtained when o
starts from the full action~2.1! rather than just the matter pa
~2.3!. It is clear that

G@gab,f̄#5Gm@gab,f̄#1Sg@gab#. ~2.15!

C. In-in formalism

We introduce the generating functional

eiW[g1
ab ,g2

ab ,J1 ,J2][E Da^0,inua,T&J2
^a,Tu0,in&J1

,

~2.16!

which depends on two independent sourcesJ1(x) and
J2(x), as well as two metricsg1

ab andg2
ab . Equation~2.16!

includes an integration over a complete set of statesua,T& on
the hypersurfacex05T at some future timeT. We assume
that g1

ab5g2
ab for x0>T. Each of the matrix elements in Eq

~2.16! can be expressed as path integrals in the usual w

^a,Tu0,in&J6
5E Df6ei ~Sm[g6

ab ,f6] 1^J6 ,f6&6!,

~2.17!

where the measureDf1 and inner product̂ . . . &1 are de-
termined by the metricg1

ab , the measureDf2 and the inner
product^ . . . &2 by the metricg2

ab . Combining Eqs.~2.16!
and ~2.17! yields
12400
s

-

:

eiW[g1
ab ,g2

ab ,J1 ,J2]5E DaE Df2e2 i ~Sm* [g2
ab ,f2] 1^J2 ,f2&2!

3E Df1ei ~Sm[g1
ab ,f1] 1^J1 ,f1&1!,

~2.18!

with the boundary condition thatf15f25a on the hyper-
surface given byx05T. Another boundary condition, neede
to assure convergence of the path integrals, is thatf1 be
purely negative frequency andf2 be purely negative fre-
quency at early times, or equivalently thatm2 be interpreted
asm22 i e in the action~2.3!. From now on we assume th
second of these. We can rewrite the generating functio
~2.18! as

eiW[g1
ab ,g2

ab ,J1 ,J2]5E Df1Df2 expi $Sm@g1
ab ,f1#

1^J1 ,f1&12Sm* @g2
ab ,f2#

2^J2 ,f2&2%, ~2.19!

where the integral*Da is now included in the integration
over f1 and f2 , and the boundary condition is thatf1

5f2 on the hypersurface given byx05T. Below we will be
taking the limitT→`. From Eq.~2.19! it follows that

22

A2g1

dW@g1
ab ,g2

ab,0,0#

dg1
ab U

g
1
ab5g

2
ab5gab

5^0,inuT̂abu0,in&.

~2.20!

The effective action is defined to be a Legendre transfo
of the generating functional as before:

Gm@g1
ab ,g2

ab ,f̄1 ,f̄2#[W@g1
ab ,g2

ab ,J1 ,J2#

2^J1 ,f̄1&11^J2 ,f̄2&2 ,

~2.21!

where

f̄6@g1
ab ,g2

ab ,J1 ,J2#56
1

Ag6

dW@g1
ab ,g2

ab ,J1 ,J2#

dJ6
,

~2.22!

and where we use the shorthand notation~2.6!. Note that
when g1

ab5g2
ab and J15J2 , we find from Eqs.~2.19! and

~2.21! that

f̄6@gab,gab,J,J#5^0,inuf̂u0,in&J . ~2.23!

From Eqs.~2.20! and ~2.21! we obtain the expected stres
energy tensor in the in-coming vacuum state:

Tab in-in[^0,inuT̂abu0,in&5
22

A2g1

dGm

dg1
abU

f̄65f̄[gab],g
6
ab5gab

.

~2.24!
7-4
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Here f̄@gab# is given by Eq.~2.22! at J15J250 andg1
ab

5g2
ab5gab:

f̄@gab#5f̄1@gab,gab,0,0#. ~2.25!

From Eq.~2.23! it can be seen thatf̄@gab# is the expected
value of the field in the incoming vacuum state. Equat
~2.24! is the formula we will use below to compute the stre
tensor.

We introduce the shorthand notationfs5(f1 ,f2),

Ĵs5S 1J1

2J2D , ~2.26!

and

Sm@gs
ab ,fs#5Sm@g1

ab ,f1#2Sm* @g2
ab ,f2#, ~2.27!

where the indexs takes the values1 and2. The generating
functional ~2.19! can be rewritten using this notation as

eiW[gs
ab ,Ĵs]5E Df re

i ~Sm[gs
ab ,fs] 1^ Ĵt ,f t& t!, ~2.28!

where a sum over the repeated indext is understood.
Next, we derive the analog of the formal expressi

~2.13! for the in-in effective action. We define the operatorĀ
on pairs of functionsfs5(f1 ,f2) by

~Āf!s~x!5E dnyA2gt~y!Āst~x,y!f t~y!, ~2.29!

where

Āst~x,y![
1

Ags~x!gt~y!

d2Sm@gr
ab ,f r #

dfs~x!df t~y!
, ~2.30!

which can be written using Eqs.~2.3! and ~2.27! as

Āst~x,y!5dn~x2y!F h1,x2m21 i e

A2g1~x!
0

0
2h2,x1m21 i e

A2g2~x!

G .

~2.31!

Here h1,x denotes the wave operator associated with

metricg1
ab acting on the coordinatesx5xa, and similarly for

h2,x . Using Eqs.~2.21!, ~2.28! and~2.30!, we then find the
following analog of Eq.~2.13!:

Gm@gr
ab ,f̄ r #5Sm@gr

ab ,f̄ r #1
i

2
Tr ln~Āst!, ~2.32!

where Tr denotes the appropriate trace over both space
variables and over the indicess,t. The operatorĀ is the
12400
n
s

e
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natural operator associated with the quadratic form~2.27!
and with the covariant inner product on pairs of functio
( f 1 , f 2) given by

^~ f 1 , f 2!,~h1 ,h2!&[ (
s51,2

E dnxA2gs~x! f s~x!* hs~x!.

~2.33!

The reason the inner product~2.33! is the appropriate inne
product is that the measuresDf1 andDf2 in Eq. ~2.19! are
determined by the metricsg1

ab andg2
ab respectively.

In our perturbative computations below, we shall deri
an expression for the effective action in terms of a series
products of operators. For that purpose, it will be conveni
to use the Hilbert space structure associated with the coo
nate dependent inner product

^~ f 1 , f 2!,~h1 ,h2!&c[ (
s51,2

E dnx fs~x!* hs~x!,

~2.34!

instead of that associated with the covariant inner prod
~2.33!. We will always choose the coordinate systemxa ap-
pearing in Eq.~2.34! to be a Lorentzian coordinate syste
associated with the flat metrichab .

Finally, we define the quantityG@g1
ab ,g2

ab ,f̄1 ,f̄2# ~as
opposed toGm) to be the effective action obtained when o
starts from the full action~2.1! rather than just the matter pa
~2.3!. It is clear that

G@g1
ab ,g2

ab ,f̄1 ,f̄2#

5Gm@g1
ab ,g2

ab ,f̄1 ,f̄2#1Sg@g1
ab#2Sg@g2

ab#.

~2.35!

The semiclassical equations of motion are given by

dG

dg1
abU

f̄65f̄,g
6
ab5gab

5
dG

df̄1

U
f̄65f̄,g

6
ab5gab

50. ~2.36!

The second of these equations is automatically solved w
we choosef̄5f̄@gab#, cf. Eq. ~2.25! above, corresponding
to the incoming vacuum state. Thus the equation of mot
reduces to

dG

dg1
abU

f̄65f̄[gab],g
6
ab5gab

50. ~2.37!

III. THE EFFECTIVE ACTION FOR NEARLY FLAT
SPACETIMES

In this section we specialize to almost flat spacetimes
the form ~1.13!, and calculate the in-out effective actio
~2.15! and the in-in effective action~2.35! as series expan
sions in powers of the metric perturbationhab . We use the
methods of Hartle and Horowitz@23# and of Jordan@6,17#,
who performed similar calculations in the massless case
7-5
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We start by further simplifying Eq.~2.32!. Note that

d

dg1
ab

Tr ln@Āst#5TrS Āsr
21dĀrt

dg1
abD ~3.1!

5trS Ā11
21 dĀ11

dg1
ab D , ~3.2!

since in the sum overr in Eq. ~3.1!, only Ā11 depends on
g1

ab . Here tr denotes a trace over the spacetime variablesx,y
only, not including a sum over thes,t indices. Combining
Eqs.~2.32! and ~3.2! we now obtain

Gm@gr
ab ,f̄ r #5Sm@gr

ab ,f̄ r #1
i

2
tr ln Ā111F1@g2

ab#,

~3.3!

whereF1@g2
ab# is some functional ofg2

ab . This termF1@g2
ab#

will not contribute to the functional derivative in Eq.~2.24!
and hence will not contribute to the in-in expected str
tensor.

Next, we define the coordinate dependent operatoA
5Ars acting on pairs of functions (f1 ,f2) by

~Af!r~x!5A2gr~x!~Āf!r~x!. ~3.4!

Then from Eqs.~2.29! and ~2.31! the kernelArs(x,y) of A
with respect to the coordinate dependent inner product~2.34!
is given by

Ars~x,y!5A2gr~x!A2gs~y!Ārs~x,y!. ~3.5!

@HereĀrs(x,y) is the kernel of the operatorĀ with respect to
the inner product~2.33!, given by Eq.~2.31!#. Combining
Eqs.~2.31! and ~3.3!–~3.5! now yields

Gm@gr
ab ,f̄ r #

5Sm@gr
ab ,f̄ r #1F1@g2

ab#1
i

2
tr ln A111F2@det~g1!#,

~3.6!

where F2@det(g1)# is some functional of the determinan
det@g1

ab(x)#. When we take the variational derivative ofGm

in Eq. ~2.24! to calculate the stress tensor, the termF2 will
contribute a term proportional to the metricgab and hence
will contribute only to the renormalization of the cosmolog
cal constant.

We define the propagatorḠst to be the inverse of the
operatorĀst . Its kernelḠst(x,y) with respect to the inne
product~2.33! is given by

E dnx8A2gs~x8!Ārs~x,x8!Ḡst~x8,y!52
dn~x2y!

A2gt~y!
d rt .

~3.7!

Note that the operation of taking the inverse is unique
virtue of the boundary conditions imposed on the path in
12400
s

y
-

grals and the fact that the mass squared parameter is ass
to have a small negative imaginary part~see Appendix C!.
We also define a coordinate dependent operatorGst to be the
inverse of the operatorAst ; its kernelGst(x,y) with respect
to the inner product~2.34! is given by

E dnx8Ars~x,x8!Gst~x8,y!52dn~x2y!d rt . ~3.8!

From Eqs.~3.5!, ~3.7! and ~3.8! it follows that Grs(x,y)
5Ḡrs(x,y), that is, the above two kernels coincide.

A. Perturbation expansion for the in-in effective action

We now expand the operatorAst as

Ars~x,x8!5Ars
0 ~x,x8!1Vrs~x,x8!, ~3.9!

where

Vrs~x,x8!5Vrs
~1!~x,x8!1Vrs

~2!~x,x8!1•••. ~3.10!

HereArs
0 is the Minkowski spacetime operator, and the ter

V(1) and V(2) are the pieces ofArs that are linear and qua
dratic in the metric perturbationhab , respectively@see Eqs.
~3.27! and ~3.28! below#. Note that from Eqs.~2.31!, ~3.5!
and ~3.9! it follows that the operatorVrs is diagonal in the
indicesr ands and is of the form

Vrs@g1
ab ,g2

ab#

5FV11@g1
ab ,g2

ab# V12@g1
ab ,g2

ab#

V21@g1
ab ,g2

ab# V22@g1
ab ,g2

ab#
G

5FV@g1
ab# 0

0 2V@g2
ab#* G , ~3.11!

for some functionalV5V@gab#.
We similarly expand the propagatorGst as

Gst5Gst
0 1Gst

~1!1Gst
~2!1•••. ~3.12!

The Minkowski spacetime propagatorGst
0 can be obtained by

combining Eqs.~2.31!, ~3.5! and ~3.8! and usinggab5hab .
In Appendix C we show that this yields

Gst
0 ~x,y!5FG11

0 ~x,y! G12
0 ~x,y!

G21
0 ~x,y! G22

0 ~x,y!
G

5F G~x2y! D1~x2y!

2D1~x2y!* 2G~x2y!* G , ~3.13!

where

G~x!5E dnp

~2p!n

eipx

p21m22 i e
~3.14!

is the free Feynman propagator and
7-6
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D1~x!52p i E dnp

~2p!n
eipxd~p21m2!Q~2p0!

~3.15!

is the positive Wightman function.
Next, by combining the expansions~3.9! and ~3.12! to-

gether with the definition~3.8!, we find the following expres-
sion for the logarithmic term appearing in the effective a
tion ~3.3! ~see Appendix D!:

ln@G11#5 ln@G11
0 #1V11

~1! G11
0

1V11
~2! G11

0 1
1

2
V11

~1! G11
0 V11

~1! G11
0

1V11
~1! G12

0 V22
~1! G21

0 1O~h3!. ~3.16!

The products on the right hand side of Eq.~3.16! are operator
products, where the kernels are understood to refer to
inner product ~2.34!, so that, for example
@V11

(1) G11
0 #(x,y)[*dny8V11

(1) (x,y8)G11
0 (y8,y). Combin-

ing Eqs.~3.16! and ~3.3! we finally obtain the perturbation
expansion of the in-in effective action

Gm@gr
ab ,f̄ r #5Sm@gr

ab ,f̄ r #2
i

2
tr ln G11

0

2
i

2
trFV11

~1! G11
0 1V11

~2! G11
0

1
1

2
V11

~1! G11
0 V11

~1! G11
0

1V11
~1! G12

0 V22
~1! G21

0 G1F1@g2
ab#

1F2@det~g1!#1O~h3!. ~3.17!

B. Perturbation expansion for the in-out effective action

Consider now the corresponding calculation in the in-
formalism. If we compare the generating functionals~2.7! of
the in-out formalism and~2.19! of the in-in formalism, we
see that the terms inf and in f1 in these equations coin
cide. Hence, from the definitions~2.10! and ~2.21! of the
effective actions in terms of the generating functionals
follows that the in-out propagator and effective action can
obtained from the corresponding in-in quantities simply
replacingf1 with f, J1 with J, and dropping all terms
generated byf2 andJ2 . The resulting in-out action is

Gm@gab,f̄#5Sm@gab,f̄#2
i

2
tr ln G0

2
i

2
trFV~1!G01V~2!G01

1

2
V~1!G0V~1!G0G

1F2@det~g!#1O~h3!, ~3.18!
12400
-

he

t

it
e

whereG0(x,y)5G(x2y) is the usual free Feynman propa
gator~3.14!, andV(1) andV(2) are the pieces of the operato
V defined in Eq.~3.11! that are linear and quadratic inhab .
Comparing Eq.~3.18! with the in-in effective action~3.17!
and using Eqs.~3.11! and~3.13!, we see that the only differ-
ence is the term involvingG21

0 (x,y), sinceG11
0 5G0 and

V115V. Hence we can write

Gm@g1
ab ,g2

ab ,f̄1 ,f̄2# in-in

5Gm@g1
ab ,f̄1# in-out1F3@g2

ab#1U@g1
ab ,g2

ab ,f̄1 ,f̄2#,

~3.19!

where

U@g1
ab ,g2

ab ,f̄1 ,f̄2#52
i

2
tr@V11

~1! G12
0 V22

~1! G21
0 #

~3.20!

andF3@g2
ab# is a term which does not depend ong1

ab or f̄1 .

C. Explicit calculations

We write the spacetime metric as

gab5hab1hab , ~3.21!

wherehab is a flat Minkowski metric. From now on indice
are raised and lowered withhab , and derivatives denoted b
a comma are coordinate derivatives in a Lorentzian coo
nate system associated with the metrichab . Expanding the
action ~2.1! to second order inhab yields ~see Appendix A!

S@gab,f#5Ṡg@hab#1Ṡm@hab ,f#1O~h3!, ~3.22!

where the quadratic actionsṠg and Ṡm are given by

Ṡg@hab#52mp
2E ~hab

,ab2h,a
a!dnx ~3.23!

and

Ṡm@hab ,f#

52
1

2E ~habf ,af ,b1m2f2!dnx2
1

2E F1

2
hhabf ,af ,b

2habf ,af ,b1
1

2
hm2f2Gdnx

2
1

2E F S 1

8
h22

1

4
habhabDhabf ,af ,b

1S 1

8
h22

1

4
habhabDm2f2

2
1

2
hhabf ,af ,b1hachb

cf ,af ,bGdnx. ~3.24!

Hereh is the traceh[habhab .
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Next, we find from Eqs.~2.31! and ~3.5! the formula for
the operatorA11

A11~x,y!5dn~x2y!~hab]a]b2m21V!, ~3.25!

where@cf. Eq. ~3.11! above#

V5V~1!1V~2!1O~h3! ~3.26!

with

V~1!5
1

2
]ah]a2]ahab]b2

1

2
m2h

52]ah̄ab]b1
1

n22
m2h̄ ~3.27!

and

V~2!5]ah̄ach̄b
c]b2

1

4
]ah̄cdh̄cdh

ab]b

2
1

n22
]ah̄h̄ab]b1

1

4~n22!
]ah̄2hab]b

1
m2

4 F h̄cdh̄cd2
1

n22
h̄2G . ~3.28!

Here for simplicity we have writtenhab1 simply ashab .
Also we are using a notational convention where, for e
ample, (]ah]a)w[]a(h]aw). We have also introduced th
quantity

h̄ab[hab2
1

2
hhab ~3.29!
12400
-

and its traceh̄5habh̄ab . Note thath̄ab is the trace-reversa
of the metric perturbationhab when the dimensionn of
spacetime is 4, but not otherwise.

Using Eqs.~2.35!, ~3.11!, ~3.17!, ~3.27!, and ~3.28!, we
now find that the in-in effective action is

G@hab1 ,hab2 ,f̄1 ,f̄2#

5Ṡ@hab1 ,hab2 ,f̄1 ,f̄2#1U@hab1 ,hab2#1K1@hab1#

1K2@hab1#1L@hab1#1F4@g2
ab ,det~g1!#

1O~h3!, ~3.30!

where

Ṡ@hab1 ,hab2 ,f̄1 ,f̄2#

5Ṡg@hab1#1Ṡm@hab1 ,f1#

2Ṡg@hab2#2Ṡm* @hab2 ,f2#. ~3.31!

In Eq. ~3.30!, we have absorbed the constant tr lnG11
0 and

the termsF1 and F2 into the functionalF4@g2
ab ,det(g1)#.

As before this term is a quantity which depends on the me
g1

ab only through its determinant, and which thus affects t
in-in equation of motion only via a renormalization of th
cosmological constant. The termsU@hab1 ,hab2#,
K1@hab1#, K2@hab1# andL@hab1# in Eq. ~3.30! are given by
U@hab1 ,hab2#52
i

2E dnxE dnx8V~1!@hab1~x!#G12
0 ~x2x8!$2V~1!* @hab2~x8!#%G21

0 ~x82x!, ~3.32!

K1@hab#52
i

2E dnxE dnx8dn~x2x8!V~1!~x!G~x2x8!

52
i

2E dnxE dnx8dn~x2x8!F2]ah̄ab]b1
1

n22
m2h̄GG~x2x8!, ~3.33!

K2@hab#52
i

2E dnxE dnx8dn~x2x8!V~2!~x!G~x2x8!

52
i

2E dnxE dnx8dn~x2x8!F]ah̄ach̄b
c]b2

1

4
]ah̄cdh̄cdh

ab]b2
1

n22
]ah̄h̄ab]b1

1

4~n22!
]ah̄h̄hab]b

1
m2

4 S h̄cdh̄cd2
1

n22
h̄h̄D GG~x2x8!, ~3.34!
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and

L@hab#52
i

4E dnxE dnx8V~1!~x!G~x2x8!V~1!~x8!

3G~x82x!

5L1@hab#1L2@hab#1L3@hab#1L4@hab#. ~3.35!

We have also defined

L1@hab#52
i

4E dnxE dnx8h̄~x!abG~x2x8! ,bc8

3h̄~x8!c8d8G~x82x! ,d8a , ~3.36!

L2@hab#52
i

4E dnxE dnx8
m2

n22
h̄~x!G~x2x8! ,c8

3h̄~x8!c8d8G~x82x! ,d8 , ~3.37!

L3@hab#52
i

4E dnxE dnx8h̄~x!abG~x2x8! ,b

3
m2

n22
h̄~x8!G~x82x! ,a , ~3.38!

and

L4@hab#52
i

4E dnxE dnx8
m2

n22
h̄~x!G~x2x8!

3
m2

n22
h̄~x8!G~x82x!. ~3.39!

In Eqs. ~3.32! and ~3.35!, the differential operators in eac
factor of V(1) act only on the propagator immediately to th
right of such factors.

It is straightforward to obtain the in-out effective actio
from the in-in effective action~3.30! using the method of
Sec. III B above. Using Eqs.~3.19! and ~3.30! we obtain

G@hab ,f̄#5S@hab ,f̄#1K1@hab#

1K2@hab#1L@hab#1F2@det~g!#1O~h3!.

~3.40!

As already mentioned@cf. Eq. ~3.19! above# the term
U@hab1 ,hab2# in Eq. ~3.32! contains the differences be
tween the in-in and in-out formalisms, and has to be adde
the in-out effective actionG@hab ,f̄# to obtain the in-in ef-
fective actionG@hab1 ,f̄1 ,hab2 ,f̄2#.

Next, we insert the expression~3.14! for the Feynman
propagatorG(x2x8) into Eqs.~3.33!–~3.39! to evaluate the
quantitiesU, K1 , K2 andL. To simplify the calculations, we
work in the Lorentz gauge whereh̄ab

,b50, and we regularize
the results using dimensional regularization. The results
written in terms of curvature invariants using Appendix
and are listed in Appendix E.

As an example, we show how to compute the term~3.38!:
12400
to

re
,

L3@hab#52
i

4E dnxE dnx8h̄ab~x!
m2

n22
h̄~x8!

3E dnp

~2p!nE dnq

~2p!n

pbqaei ~p2q!~x2x8!

~p21m22 i e!~q21m22 i e!

52
i

4E dnxE dnx8h̄~x!ab
m2

n22
h̄~x8!

3E dnk

~2p!n
eik~x2x8!E dnq

~2p!n

3
qa~kb1qb!

„~k1q!21m22 i e…~q21m22 i e!
. ~3.41!

We can drop thekb in the term (kb1qb), since we are work-
ing in the Lorentz gauge. This yields

L3@hab#52
i

4E dnxE dnx8h̄~x!ab
m2

n22
h̄~x8!

3E dnk

~2p!n
eik~x2x8!I ab~k! ~3.42!

where

I ab~k!5E dnq

~2p!n

qaqb

„~k1q!21m22 i e…~q21m22 i e!
.

~3.43!

In order to perform this integral, we analytically continue
Euclidean signature. DefiningI ab

E (k0,kj )[I ab(2 ik0,kj ) and
using the transformations

q0→2 iq0 and k0→2 ik0 ~3.44!

in Eq. ~3.43!, we obtain

I ab
E ~k!

5E
0

1

dxE idnq

~2p!n

~ i !da
0
1db

0
qaqb

@q21m212qk~12x!1k2~12x!#2
.

~3.45!

In Eq. ~3.45! we have also introduced the Feynman para
eterx, and dropped thei e. The integral overq can now be
evaluated~see, e.g., Ramond@24#!. The result is

I ab
E ~k!5E

0

1

dx
i

~4p!n/2G~2!
H kakbf ~k,x!

1
~ i !da

0
1db

0
dabG~12n/2!/2

@m21k2~12x!2k2~12x!2#12n/2J .

~3.46!

Next, the termkakbf (k,x) can be dropped, since it will no
contribute to L3@hab# as we are working in the Lorent
7-9
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gauge. Also, when we analytically continue back to Lore

zian signature usingk0→ ik0, we find (i )da
0
1db

0
dab→hab .

Thus we obtain

I ab~k!5
i

~4p!2

hab

22nF 2

42n
2g1 ln 4pG

3E
0

1

dx@m21k2~12x!x#

3$12~22n/2!ln@m21k2~12x!x#%

1O@~42n!#, ~3.47!

whereg is Euler’s constant. The integration overx can now
be performed with the result

I ab~k!5
i

~4p!2

hab

22nF S 2

42n
2g

2 ln
m2

4p
1

5

3D S m21
k2

6 D2
m2

3
2

1

3
~k214m2!

3Ak214m2

k2
arctanhA k2

k214m2G
1O@~42n!#. ~3.48!

Below we will write the function arctanh(K)5 ln@(11K)/(1
2K)#/2 appearing in Eq.~3.48! in terms of a logarithm.
When thei e from the mass-term is included this will lead
logarithms of the form

ln~K2 i e![ lnuKu2 ipQ~2K !, ~3.49!

where Q(K) is the Heavyside step function. Hencefor
when we write ln we shall mean the logarithm defined in E
~3.49!, which has a branchcut along the negative real ax

When the remaining terms in Eq.~3.30! are evaluated in
the same fashion, and written in terms of curvature invaria
~see Appendix B!, we find the results listed in Appendix E
The effective action~3.40! then becomes

G@hab ,f̄#5S@hab ,f̄#1W, ~3.50!

with

W5
1

512p2E d4xF8m4A`A2g28
m2

3
B`A2gR

1
C`

30
A2g8RabR

ab1
D`

30
A2g4R2G1Wnl

1F2@det~g!#. ~3.51!

Here
12400
-

.

ts

Wnl5
1

512p2E d4xE d4x8E d4k

~2p!4
eik~x2x8!

3@R~x!R~x8!Q̃1~k!

1Rab~x!Rab~x8!Q̃2~k!# ~3.52!

is the non-local part of the effective action. Furthermore
have defined the functions

Q̃1~k!54F 2
4

15

m4

k4
2

37

45

m2

k2
2

1

30
ln

m22 i e

m2

2S ~k214m2!2

30k4
2

2m2~k214m2!

3k4
1

2m4

k4 D
3A11

4~m22 i e!

k2

3 lnSA11
4~m22 i e!

k2
11

A11
4~m22 i e!

k2
21

D G ~3.53!

and

Q̃2~k!58F 16

15

m4

k4
1

28

45

m2

k2
2

1

30
ln

m22 i e

m2
2

~k214m2!2

30k4

3A11
4~m22 i e!

k2

3 lnSA11
4~m22 i e!

k2
11

A11
4~m22 i e!

k2
21

D G . ~3.54!

The logarithm used here is the one defined in Eq.~3.49!. The
constants appearing in Eq.~3.51! are

A`5
2

42n
1 ln 4p2g2 ln m21

3

2
2 ln

m2

m2
, ~3.55!
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B`5
2

42n
1 ln 4p2g2 ln m2112 ln

m2

m2
, ~3.56!

C`5
2

42n
1 ln 4p2g2 ln m21

46

15
~3.57!

and

D`5
2

42n
1 ln 4p2g2 ln m21

1

15
. ~3.58!

Note that bothQ̃1(k) andQ̃2(k) are finite atk250 and that
they reduce to

Q̃2~k!52Q̃1~k!52
4

15
lnS k22 i e

m2 D
52

4

15F lnU k2

m2U2 ipQ~2k2!G ~3.59!

if m50. Note also that the constantm2 appearing in Eqs.
~3.53!–~3.58! drops out when these equations are inserted
Eqs.~3.51! and~3.52! in themÞ0 case. The constantm2 has
dimension (mass)2 and has been inserted to yield the corre
dimensions in the logarithms of Eqs.~3.53! and ~3.54!.

Now the functionalF2@det(g)# in Eq. ~3.51! must be a
coordinate invariant, sinceGm and the rest of the terms i
that equation are. It follows that

F2@det~g!#}E dnxA2g~x!. ~3.60!

D. Renormalization of the in-out effective action

We now rewrite the classical action~2.1! in terms of some
bare coupling constantsmpb

2 , Lb , ab andbb :

S@gab ,f̄#52
1

2E dnxA2g~¹af̄¹af̄1m2f̄2!

1E dnxA2gF2mpb

2 ~R22Lb!

2
1

2
bbRabR

ab2
1

2
abR2G . ~3.61!

From Eqs.~3.50!, ~3.51! and ~3.61! we then find

G@hab ,f̄#52
1

2E d4xA2g@¹af̄¹af̄1m2f̄2#

1E d4xA2gF2mp
2~R22L!

2
1

2
bRabR

ab2
1

2
aR2G1Wnl . ~3.62!
12400
in

t

Here mp
2 , L, a and b are the renormalized values of th

parameters, given by

mp
25mpb

2 2
1

384p2
m2B` , ~3.63!

mp
2L5mpb

2 Lb2
1

256p2
m4A`1D, ~3.64!

a5ab2
1

1920p2
D` , ~3.65!

and

b5bb2
1

960p2
C` . ~3.66!

In the usual way, the renormalized values of the parame
are finite when we choose the bare parameters suitably
Eq. ~3.64!, the quantityD is the ~uncalculated! contribution
to the renormalization of the cosmological constant due
the term~3.60!. Note also that the parametersa andb which
appear in the local part of the renormalized effective act
and the parameterm which appears in the non-local partWnl
are not all independent: from Eqs.~3.52!–~3.54! and~3.62! it
can be seen that a change inm can be compensated for b
changes ina andb.

Finally, the renormalized in-in effective action is given b
combining Eqs.~3.19!, ~3.62!, and Eq.~E8! from Appendix
E below.

IV. THE STRESS ENERGY TENSOR

A. Equations of motion in the in-out formalism

The semiclassical equations of motion are obtained fr

22

A2g

d

dgab
G@hcd ,f̄#50, ~4.1!

and

d

df̄
G@hcd ,f̄#50. ~4.2!

Equation~4.2! is automatically solved when we choose

f̄5f̄@gab#, ~4.3!

the functional given by Eq.~2.11! above atJ50. When we
insert Eqs.~3.62! and ~4.3! into Eq. ~4.1!, the functional
derivative of the first term on the right hand side of E
~3.62! can be dropped since it is of orderO(h2) @asf̄ from
Eq. ~2.11! for J50 is of orderO(h)#. The resulting equation
of motion is
7-11
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Gab~x!1Lgab~x!5
1

4mp
2

Tab~x! in-out, ~4.4!

where we have defined the in-out expected stress-energy
sor

Tab~x! in-out[
^0,outuT̂abu0,in&

^0,outu0,in&

5
21

256p2E d4x8E d4k

~2p!4
eik~x2x8!

3@Ḣab
~1!~x8!Q̃1~k!1Ḣab

~2!~x8!Q̃2~k!#

1aḢab
~1!~x!1bḢab

~2!~x!. ~4.5!

In writing this tensor we have also introduced the lineariz
versionsḢab

(1)(x) andḢab
(2)(x) @see Eqs.~B14! and~B15! be-

low# of the conserved local curvature tensors

Hab
~1!~x!5

1

A2g

d

dgab~x!
E d4x8A2gR~x8!R~x8!

52gabhR22¹a¹bR2
1

2
gabR

212RRab

~4.6!

and

Hab
~2!~x!5

1

A2g

d

dgab~x!
E d4x8A2gRcd~x8!Rcd~x8!

5
1

2
gabhR1hRab22¹c¹aRc

b12Rc
aRcb

2
1

2
gabRcdR

cd. ~4.7!

As is well known, Eq.~4.4! is not a physically realistic
equation for semiclassical gravity since the right hand sid
complex and not real@6,17#.

B. The in-in expected stress-energy tensor

By combining Eqs.~2.25!, ~2.37!, ~3.30!, ~3.40!, ~4.1! and
~4.4! we obtain the equations of motion in the in-in forma
ism

Gab~x!1Lgab~x!5
1

4mp
2 @Tab~x! in-out1Tab8 ~x!#, ~4.8!
12400
n-

d

is

whereTab(x) in-out is given by Eq.~4.5!, and where the addi-
tional termTab8 (x) due to the termU in Eq. ~3.30! is given by

Tab8 ~x!5
22

A2g

dU@hab1 ,hab2#

dg1
ab U

g
1
ab5g

2
ab5gab

5
21

256p2E d4x8E d4k

~2p!4
eik~x2x8!@Ḣab

~1!~x8!Q̃18~k!

1Ḣab
~2!~x8!Q̃28~k!#. ~4.9!

Here we used Eq.~E8! from Appendix E below, and have
defined

Q̃18~k!524F ~k214m2!2

30k4
2

2m2~k214m2!

3k4
1

2m4

k4 G
3A11

4m2

k2
2p iQ~2k224m2!Q~2k0!

~4.10!

and

Q̃28~k!528F ~k214m2!2

30k4 GA11
4m2

k2

32p iQ~2k224m2!Q~2k0!. ~4.11!

The in-in expected stress-energy tensor

Tab~x! in-in[
^0,inuT̂abu0,in&

^0,inu0,in&
~4.12!

is therefore given by

Tab~x! in-in5Tab~x! in-out1Tab8 ~x!

5
21

256p2E d4x8E d4k

~2p!4
eik~x2x8!@Ḣab

~1!~x8!T̃1~k!

1Ḣab
~2!~x8!T̃2~k!#1aḢab

~1!~x!1bḢab
~2!~x!.

~4.13!

Here we have defined
7-12
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T̃1~k!5Q̃1~k!1Q̃18~k!545 2
4

15

m4

k4
2

37

45

m2

k2

2
1

30
ln

m22 i e

m2
2F ~k214m2!2

30k4

2
2m2~k214m2!

3k4
1

2m4

k4 GA11
4~m22 i e!

k2

3 lnSA11
4~m22 i eSgnk0!

k2
11

A11
4~m22 i eSgnk0!

k2
21

D 6 ~4.14!

and

T̃2~k!5Q̃2~k!1Q̃28~k!

58F 16

15

m4

k4
1

28

45

m2

k2
2

1

30
ln

m22 i e

m2
2

~k214m2!2

30k4

3A11
4~m22 i e!

k2

3 lnSA11
4~m22 i eSgnk0!

k2
11

A11
4~m22 i eSgnk0!

k2
21

D G . ~4.15!

It is easy to see thatT̃1(k) andT̃2(k) are finite atk250 ~for
mÞ0), and that they are sufficiently regular that their Fo
rier transformsT1(x) andT2(x) exist as distributions.

V. PROPERTIES OF THE IN-IN EXPECTED
STRESS-ENERGY TENSOR

The stress-energy tensor given in Eq.~4.13! is determined
by the Green functionsT̃1(k) and T̃2(k) in Eqs. ~4.14! and
~4.15!. In this section we show that in the limitm→0, these
Green functions reduce to the previously obtained Gr
functions for a massless field. We also show that they
causal, i.e., that their Fourier transformsT1(x) and T2(x)
have support only inside the past light cone. These prope
12400
-

n
re

es

serve as a check of our calculation.

A. The massless limit

The Green functionsT̃1(k) and T̃2(k) in Eqs.~4.14! and
~4.15! reduce to

T̃2~k!52T̃1~k!52
4

15
lnS k22 i eSgn~k0!

m2 D
52

4

15F lnS uk2u

m2 D 2 ipQ~2k2!Sgn~k0!G ~5.1!

if m50. This Green function together with Eq.~4.13! yields
exactly the same the stress-energy tensor as found
Horowitz @16# and Jordan@17#.

Note that the Green functions are not smooth inm2 near
m50. Fork0.0 we find

]T̃2

]m2U
m250

58F 28

45k2
2S 1

15k2A12
4i e

k2

1

4A12
4i e

k2

15k2 D
3 lnSA12

4i e

k2
11

A12
4i e

k2
21

D G , ~5.2!

which diverges in the limite→0. Hence the first derivative
of the stress tensor with respect tom2 does not exist atm
50.

B. Causality

It is difficult to find the Fourier transformsTj (x), j
51,2, of the Green functions~4.14! and ~4.15!. However, it
is not necessary to explicitly perform these Fourier tra
forms in order to demonstrate causality. By Lorentz inva
ance it is sufficient to show that

Tj~ t,0,0,0!50 for t,0 ~5.3!

and

Tj~0,r ,0,0!50 for rÞ0, ~5.4!

for j 51,2. In other words, the Green functionsTj (x) must
be zero inside the past light cone and outside the light co
To check the condition~5.3! we write

Tj~ t,0,0,0!5
1

~2p!4E d3kE dk0e2 ik0tT̃ j~k!. ~5.5!
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Now from Eqs.~4.14! and~4.15! we see that the logarithmi
terms in bothT̃1(k) andT̃2(k) have branchcuts in the lowe
complex k0 plane, but no poles elsewhere. It is therefo
possible to deform the contour of thek0 integration into the
usual semi-circle with infinite radius in the upper complexk0

plane. Sincet,0 the integral vanishes. This immediate
shows thatTj (t,0,0,0)50 for t,0. A similar argument can
be used to show thatTj (0,r ,0,0)50.

VI. CONCLUSIONS

We have shown that the Wald axioms determine
stress-energy tensor~up to two parameters! only in the case
of a massless field. In the case of a massive scalar field
Wald axioms allow for a much larger ambiguity. We ha
calculated the expectation value of the stress-energy tens
the incoming vacuum state for a massive scalar field on
spacetime which is a linear perturbation off Minkows
spacetime, generalizing an earlier formula of Horowitz@16#
and Jordan@17# in the massless case. In our calculation
used the in-in effective action formalism@5–7#. As expected,
the resulting stress-energy tensor is causal and reduces t
known result in the massless case in the limitm→0. As in
the massless case, we find a two parameter ambiguity in
stress-energy tensor, even though this is not guarantee
the Wald axioms.

After this paper was submitted for publication, we b
came aware of related work by Dalvit and Mazzitelli@25#.
Dalvit and Mazzitelli calculate an in-in effective action usin
the method of expanding in powers of curvature pionee
by Vilkovisky and collaborators@26#. Our result~1.12! can
be derived from Eqs.~38! and~41! of Ref. @25# by evaluating
the integrals overt, by specializing to linear perturbation
about flat spacetime, and by representating
d’Alembertian operators in Fourier space. Our derivation
the result~1.12! has the advantage that it is more direct a
simple than that of Ref.@25#, since it does not rely on the
Vilkovisky expansion formalism.

We conclude by listing some open questions. First,
there additional axioms which would reduce the ambiguity
the stress-energy tensor? Second, will the same stress-e
tensor~1.12! be predicted~up to the two parameter ambigu
ity! by the point splitting method@3# or by the DeWitt-
Schwinger method@4#? There is no a-priori guarantee th
this will be the case.
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APPENDIX A: NOTATION AND CONVENTIONS

We use units in which\5c51, but in whichGÞ1, so
that the Planck mass is given by

mp5A 1

32pG
. ~A1!
12400
e

he

in
y

the

he
by
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d

e
f

e

rgy

9

Throughout we use the same sign conventions for metric
curvature tensors as in the book of Misner, Thorne, a
Wheeler@18#. Specifically the metricgab has signature (2,
1,1,1). Indices i , j ,k, . . . run over the spatial indice
1,2,3 while indicesa,b,c, . . . run over 0,1,2,3.

We introduce the metric perturbation

hab5gab2hab ~A2!

and its traceh5habh
ab, wherehab is a flat metric. In ex-

pressions involvinghab , indices are raised and lowered wit
the flat spacetime metrichab. The coordinate derivative of a
tensorTa

b in a Lorentzian coordinate system with respect
the metrichab is denoted in the usual way:

Ta
b,c5]cT

a
b . ~A3!

The Fourier transform of any functionF(x) on Minkowski
spacetime is defined as

F̃~k!5E d4x e2 ikxF~x!. ~A4!

Throughout we use

kx5habk
axb ~A5!

to denote the dot product of two 4-vectorska and xa in
Minkowski spacetime. We useQ(x) to denote the step func
tion, Q(x)51 for x.0 and 0 otherwise.

Products of operatorsA,B are defined as

~AB!~x,z!5E d4yA~x,y!B~y,z!. ~A6!

Thus, factors ofA2g are not implicit in expressions such a
GV in our calculations. We show such factors explicit
when they are required, with the exception of the notation
products of functions

^ f 1 , f 2&[E dnxA2g~x! f 1~x!* f 2~x!. ~A7!

APPENDIX B: EXPRESSIONS FOR CURVATURE
INVARIANTS

In this appendix we expand the various possible lo
counterterms in the effective action to second order in
metric perturbation, and write them in terms of the quant
h̄ab . We define

h̄ab[hab2
1

2
hhab , ~B1!

whereh5habhab . In n dimensions we then find

h52
2

n22
h̄ ~B2!

and thus
7-14
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hab5h̄ab2
1

n22
h̄hab . ~B3!

In our calculation of the effective action, when we expa
quantities such asA2g, R or Rab in terms ofh̄ab andh̄, we
find terms of orderO(n24). Such terms must sometimes b
kept and not discarded, since they can give rise to fin
contributions when multiplied by infinite terms of the for
1/(n24).

We find for the determinant of the metric tensor

A2g512
1

n22
h̄2

1

4
h̄cdh̄cd1

1

4~n22!
h̄h̄1O~h3!.

~B4!

The curvature scalar becomes

R5R~1!1R~2!1O~h3!, ~B5!

where

R~1!5
1

n22
h̄,a

a1h̄ab
,ab ~B6!

and

R~2!5
3

4
h̄ab,ch̄

ab,c1h̄abh̄
ab

,c
c

2
3n210

4~n22!2
h̄,ch̄

,c2
~n24!

~n22!2
h̄,c

ch̄2
1

2
h̄ca,bh̄cb,a

1
1

n22
~2h̄h̄ab

,ab1h̄,ah̄ab
,b!22h̄abh̄ac,b

c

2h̄ab
,bh̄ac

,c. ~B7!

Other useful scalars are

R25
1

~n22!2
h̄,a

ah̄,b
b1S 2

n22
h̄,c

c1h̄cd
,cdD h̄ab

,ab1O~h3!

~B8!

and

RabR
ab5

1

4F h̄ab
,c

ch̄
ab

,d
d2

~n24!

~n22!2
h̄,a

ah̄,b
bG

1
1

4S 22h̄ab,c
c1

2

n22
h̄,c

chab

1h̄ca,b
c1h̄cb,a

cD ~ h̄c
a,bc1h̄c

b,ac!1O~h3!.

~B9!

Note that many of the terms vanish if the Lorentz gau
h̄ab

,b50 is used. In the Lorentz gauge we find that~discard-
ing surface terms!
12400
e

e

E dnx8A2g

5E d4x~824h̄22h̄abh̄
ab1h̄h̄!1

1

2
dE d4x~4h̄2h̄h̄!

1O~d2!, ~B10!

E dnx8A2gR

5E d4x~2h̄ab,c
ch̄ab2h̄,c

ch̄!1
1

2
dE d4xh̄,c

ch̄1O~d2!,

~B11!

E dnx4A2gR2

5E d4xh̄,a
ah̄,b

b2
1

2
dE d4x2h̄,a

ah̄,b
b1O~d2!, ~B12!

and

E dnx8A2gRabRab

5E d4x2h̄ab
,c

ch̄ab,d
d2

1

2
dE d4xh̄,c

ch̄,d
d1O~d2!,

~B13!

whered5n24.
Using the Lorentz gauge and specializing to four dime

sions, we find for the linearized versions of the local curv
ture tensors~4.6! and ~4.7!

Ḣab
~1!~x!5habh̄,c

c
d

d2h̄,abc
c1O~h2! ~B14!

and

Ḣab
~2!~x!5

1

2
~habh̄,c

c
d

d2h̄,abc
c2h̄ab,c

c
d

d!1O~h2!.

~B15!

APPENDIX C: THE IN-IN PROPAGATOR
IN MINKOWSKI SPACETIME

In this appendix we combine Eqs.~2.31!, ~3.5! and ~3.8!
specialized to Minkowski spacetime to obtain Eqs.~3.13!–
~3.15!. Using Eq.~3.8! and the expansions~3.9! and ~3.12!,
we obtain

E dnx8Ars
0 ~x,x8!Gst

0 ~x8,y!52dn~x2y!d rt . ~C1!

Note that it follows from the form ofArs(x,y) given by Eqs.
~2.31! and ~3.5! that G22

0 (x,y)52G11
0* (x,y) and that

G21
0 (x,y)52G12

0* (x,y).
First, the relation
7-15
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G11
0 ~x,y!5G~x2y!, ~C2!

follows immediately from translational invariance and t
equation

@hx2~m22 i e!#G11
0 ~x,y!52dn~x2y! ~C3!

which follows from Eq.~C1!.
The equation determiningG21

0 (x,y) is, from Eq.~C1!,

@hx2~m21 i e!#G21
0 ~x,y!50, ~C4!

which upon Fourier transforming and using translational
variance becomes

@2p22~m21 i e!#G̃21
0 ~p!50. ~C5!

Any function G̃21
0 (p) which has support only on the hype

surfacep252(m21 i e) will be a solution to this equation
and henceG̃21

0 (p) is not uniquely determined by Eq.~C5!.
What we have not used yet is the boundary condition t
f15f2 on the hypersurface given byx05T, where T
→`. To make use of this boundary condition note that
classical equations forf6 are

E dny Ars
0 ~x,y!fs~y!52 Ĵr~x!, ~C6!

and that the solutions to these equations are

fs~x!5E dny Gst
0 ~x,y!Ĵt~y!. ~C7!

Enforcing the above mentioned boundary condition yield

E dny G1s
0 ~x,y!Ĵs~y!5E dny G2s

0 ~x,y!Ĵs~y! ~C8!

at x5(T,x1,x2,x3), which using Eq.~2.26! simplifies to

E dny@G11
0 ~x,y!2G21

0 ~x,y!#J1~y!1E dny@G12
0 ~x,y!

2G22
0 ~x,y!#J2~y!50. ~C9!

Since the sourcesJ6(y) are completely arbitrary, Eqs.~C2!
and ~C9! imply that

G21
0 ~x,y!5G~x2y! ~C10!

for x5(T,x1,x2,x3). Now the Feynman propagatorG(x)
can be written as

G~x!52Q~x0!D2~x!1Q~2x0!D1~x!, ~C11!

where

D6~x!562p i E dnp

~2p!n
eip~x2y!d~p21m2!Q~7p0!

~C12!
12400
-

at

e

are the positive and negative Wightman functions@19#. From
Eqs.~C10! and ~C11! it follows that

G21
0 ~x,y!52D2~x2y! ~C13!

for largex0. Equation~C13! now implies that the appropriat
solution of Eq.~C5! which fulfills the boundary condition a
x05T corresponds toG21

0 (x,y)52D2(x2y), which
yields Eq.~3.13! above.

APPENDIX D: EXPANSION OF THE PROPAGATOR

In this appendix we obtain the expansion~3.16! for the
operatorG11 . From Eqs.~3.8!, ~3.9!, ~3.12! and ~C1! it
follows that

Grt5Grs
0 @dst1Vss8Gs8t

0
1Vss8Gs8s9

0 Vs9t8Gt8t
0

#1O~V3!.
~D1!

This implies that

G115G11
0 1G1s

0 Vss8Gs81
0

1G1s
0 Vss8Gs8s9

0 Vs9tGt1
0 1•••

5G11
0 @11V1sGs1

0

1V1sGss8
0 Vs8tGt1

0 1O~V3!#, ~D2!

where we have used the fact thatG11
021

G12
0 5A11

0 G12
0

50. Hence we can write the logarithm of the propagator

ln~G11!5 ln~G11
0 !1V1sGs1

0

1V1sGss8
0 Vs8tGt1

0 2
1

2
V1sGs1

0 V1tGt1
0

1O~V3!. ~D3!

Next we use the fact thatVrs is diagonal@cf. Eq. ~3.11!
above# to obtain

ln~G11!5 ln~G11
0 !1V11G11

0

1
1

2
V11G11

0 V11G11
0 1V11G12

0 V22G21
0

1O~V3!

5 ln~G11
0 !1V11

~1! G11
0 1V11

~2! G11
0

1
1

2
V11

~1! G11
0 V11

~1! G11
0

1V11
~1! G12

0 V22
~1! G21

0 1O~V3!, ~D4!

which yields Eq.~3.16!.

APPENDIX E: TERMS IN THE EFFECTIVE ACTION

In this appendix we list the terms contributing to the e
fective action~3.30! given by Eqs.~3.32!–~3.39!. Through-
out we use the Lorentz gauge. We find
7-16



in-

HOW UNIQUE IS THE EXPECTED STRESS-ENERGY . . . PHYSICAL REVIEW D58 124007
K1@hab#5
1

512p2E d4xh̄~x!~24m2!S Y1
5

2D , ~E1!

K2@hab#5
1

512p2E d4xF h̄~x!h̄~x!~2m4!S Y1
5

2D
12h̄~x!abh̄~x!ab~22m4!S Y1

3

2D G , ~E2!

L1@hab#5
1

512p2E d4xE d4x8H @ h̄~x!h̄~x8!

12h̄ab~x!h̄ab~x8!#E d4k

~2p!4
eik~x2x8!F S Y1

46

15D
3S m41

m2

3
k21

k4

30D2
m4

2
2

m2

15
k2

2
1

15
~k214m2!2F1~k!G J , ~E3!

L2@hab#5L3@hab#

5
1/2

512p2E d4xE d4x8

3H h̄~x!h̄~x8!E d4k

~2p!4
eik~x2x8!

3F S Y1
11

3 D S 24m42
2m2

3
k2D1

4m4

3

1
4

3
m2~k214m2!F1~k!G J ~E4!

and

L4@hab#5
1

512p2E d4xE d4x8

3H h̄~x!h̄~x8!E d4k

~2p!4
eik~x2x8!@~Y14!~2m4!

24m4F1~k!#J . ~E5!
ple

nd
,

12400
Here we have defined the constant

Y5
2

42n
1 ln

4p

m2
2g2 ln

m2

m2
, ~E6!

and the function

F1~k!5Ak214m2

k2
arctanhSA k2

k214m2D . ~E7!

The term which contains the differences between the
out and in-in effective action is

U@hab1 ,hab2#5
1

256p2E d4xE d4x8E d4k

~2p!4
eik~x2x8!

3H h̄1~x!h̄2~x8!F24m4

1
4m2

3
~k214m2!

2
1

15
~k214m2!2GG1~k!12h̄1

ab~x!

3h̄ab2~x8!F2
1

15
~k214m2!2GG1~k!J ,

~E8!

where

G1~k!5 ipAk214m2

k2
Q~2k224m2!Q~2k0!. ~E9!
d,

@1# For a list of some of these formal derivations, see, for exam

Sec. II B of Ref.@2#.
@2# É. É. Flanagan and R. M. Wald, Phys. Rev. D54, 6233~1996!.
@3# R. M. Wald,Quantum Field Theory in Curved Spacetime a

Black Hole Thermodynamics~University of Chicago Press
Chicago, 1994!.
, @4# N. D. Birrell and P. C. W. Davies,Quantum Fields in Curved
Space ~Cambridge University Press, Cambridge, Englan
1982!.

@5# J. Schwinger, J. Math. Phys.2, 407 ~1961!.
@6# R. D. Jordan, Phys. Rev. D33, 444 ~1986!.
@7# A. Campos and E. Verdaguer, Phys. Rev. D49, 1861~1994!.
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@8# R. M. Wald, Commun. Math. Phys.54, 1 ~1977!; Phys. Rev. D
17, 1477~1978!.
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