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How unique is the expected stress-energy tensor of a massive scalar field?
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We show that the set of ambiguities in the renormalized expected stress-energy tensor allowed by the Wald
axioms is much larger for a massive scalar fi@dd infinite number of free parametgthan for a massless
scalar field(two free parametefsWe also use the closed-time-path effective action formalism of Schwinger to
calculate the expected value of the stress-energy tensor in the incoming vacuum state, for a massive scalar
field, on any spacetime which is a linear perturbation off Minkowski spacetime. This result generalizes an
earlier result of Horowitz and also Jordan in the massless case, and can be used as a testbed for comparing
different calculational method§S0556-282(198)05622-7

PACS numbegs): 04.62+v, 03.70+k, 04.20.Cv

I. INTRODUCTION AND SUMMARY In the case of a massless scalar field, there is no natural
mass scale in the theory, and the following well-known ar-
gument based on dimensional analysis shows ¢iigg) is

In semiclassical gravity, a classical metric is coupled t0,nique up to a two parameter ambiguity. Let us use units in
quantum fields according to the semiclassical Einstein equaiynichz =c=1. but in whichG 1. Then. there are only two

tion independent conserved local curvature tensors with the ap-
propriate dimensions of (mags)namely

A. Background and motivation

Gap=87G(T ), (1.1

whereG,,, is the Einstein tensor an@ is Newton’s gravita- HD(x)= L

tional constant. This equation is usually postulated rather ab V=g 8g2°(x)
than derived as there is no complete theory of quantum grav-

ity from which it could be derived, although several formal and

derivations have been givefl]. There are several well-

known difficulties associated with the semiclassical theory. 1 S

First, there are difficulties associated with the existence of H3(x)= — s J d*x’ V= gReg(X )RU(X").
unphysical, exponentially growing “runaway” solutions of V=9 89°°(x)

f d*’V=gR(x)2 (1.3

Eq. (1.1), which have not yet been completely resolN@d 1.4
The second difficulty, which is the subject of this paper, iSThus we must have
the non-uniqueness of the expected stress-energy tensor on
the right hand side of Ed1.1).
; o tap=aHLy + BHL (1.5

For a scalar field, several methods have been suggested
for calculating the expected stress energy tensor. These in- . .
clude(i) the “point splitting” algorithm[3], (i) the DeWitt- wherea and 8 are two unknownAd|menS|onIess parameters.
Schwinger expansion methdd], and (iii) the closed-time- Hence, the expected stress tensbyp) is unique up to a two
path or in-in effective action methofb—7]. There is no Parameter ambiguity.
general agreement as to which method is correct. For ex- Consider now a massive scalar field. In this case the
ample, it is claimed in Ref[3] that the DeWitt-Schwinger above argument fails, since there is a preferred mass scale
method is invalid for a massive scalar field since it does noPresent, namely the mass of the field. Using this mass

have a regular limit asn—0, wherem is the mass. scale one can construct local conserved tensors of the form
As is well known, a theorem of Wal@,3] plays a crucial N

role in this field. The theorem states that if one has two 1 1) 4 ,\/_ 4 R(x")

different prescriptions for obtaining stress tensors from met- \/—_g 5g0(x) d*x’y—gm —m2 ; (1.6)

rics and from quantum states, and if these prescriptions obey

a Ce“*’?“”. set of physically-motivated axioms, then the WOy hich have dimension (magshnd are thus possible candi-
prescriptions must agree up to a local conserved tefgor dates fort,,. Heren can be any integer greater than 2.

Thus, if(ﬁp} and(T,p,) are two different such prescriptions Similar terms can be constructed from the Ricci and Rie-
for computing the expected stress-energy tensor, then th@ann tensors. The conventional view has been to exclude

difference such terms as being unphysical, since they divergemas
_ —0 (see, e.g., p. 90 of Ref3]). Thus, the conventional view
tab={Tan) — (Tan) (1.2 has been that the allowed ambiguity for a massive field is no
worse than that for a massless field, namely the two param-
must be a conserved local curvature tensor. eter ambiguity(1.5).
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axiom or physical principle, to augment the Wald axioms,
that would further pin down the stress tensor in the massive

The first main point of this paper is that the above con-caSe[14].
ventional view is unfounded. This can be seen as follows.

Consider the local conserved tensor

5
69°°(x)

R(x")

m2

fd“x’\/—_gm“F , (1.7

1
t. . =—
SN

C. Nearly flat spacetimes

Spacetimes which are linear perturbations off Minkowski
spacetime form a useful testbed in which to probe these is-
sues[15]. The second principle purpose of this paper is to

whereF (x) is any dimensionless function of a dimensionlesséxplicitly calculate the renormalized stress tensor of a mas-

argumentx. In order fort,, to be acceptable on physical
grounds as a contribution to the expected stress tensor,
must satisfy the requirements that

t.,—0 as m’—0 (1.8
and

ta,—0 as R—O0. (1.9
Now, the tensof1.7) can be written as
tab=—M’RypF ' (R/M?) + M*F(R/M?)g,ap/2+ F"(RIM?) Y5,

+F3(RIM?)Z,,/m?, (1.10

sive scalar field in such spacetimes, using the closed-time-
path or in-in effective action formalisib—7]. If our calcu-
lation is repeated using the point-splitting or DeWitt-
Schwinger methods, then it will be possible to compare the
predictions of the different methods.

Now the Wald axioms imply that any prescription for
calculating the stress tensor is determined by specifying the
expected value of the stress tensor in the incoming vacuum
state|0,in). The expected value in any other state is then
uniquely determined?2]. Therefore, it suffices to consider
the expected value of the stress tensor in the incoming
vacuum state. In the massless case, calculations of the in-in
expected stress tensor have already been performed using
several different methodgésee Horowitz[16] and Jordan
[17]). The results of of these different calculations agree up

whereY ,, andZ,,, are tensors constructed out of derivativesto the two parameter ambiguit#.5), as they must according

of R, of dimension (masé)and (mass) respectively. Sup-
pose that we choose the functiénto be smooth, to satisfy
F(0)=0, and to satisfyFW(x)x17?—0 as x—o for j
=0,1,2,3, wheré)(x) is thejth derivative ofF. Examples
of functions satisfying these requirements af€x)=
x%exp(—x?) and F(x)=x?/(1+x*. Then, the tensof1.7)
will satisfy the required propertied..8) and (1.9) [10].

Note that when one expands the functfefx) as a power
series to obtain

n

Re) , (1.1)

m2

R(x")

F _
m2

:E ay
n

it can be seen that the tengdr7) contains terms of the form

(1.6), each of which individually has unacceptable behavior

asm— 0. However the sunl.?7) of all these terms does have
acceptable behavior as— 0. Note also that it is not possible
to exclude terms of the forriL.7) by postulating, as an ad-

ditional axiom, that the stress tensor be an analytic functio

of m?, since for example the choicE(x)=x%/(1+x%
yields a local conserved tensy, which is an analytic func-

to Wald’s theorem.
The result we obtain from the in-in effective action for-
malism[5-7] is [cf. Eq. (4.13 below]

(0,in| T 45(x)]0,inY
) . 1
~ a0+ BAG (-~ [ d*x
XIHG (X Ty (x=x)+HD (X ) To(x—x")]. (1.12

Here it is assumed that the metric tensor is of the form

(1.13

Gab= Mabt Nap,

there Map IS a flat, Minkowski metric, and that the coordi-

natesx? and x 2are Lorentzian coordinates with respect to
Nap - AlSO @ andB are arbitrary dimensionless constants, the

tion of m? in an open neighborhood of the real axis in the distributionsT;(x—x") and T,(x—x") are defined by Egs.

complexm? plane[11].

(4.14 and (4.15 below, andH}) and H® are linearized
ab ab

The ambiguityt,, in the stress-energy tensor allowed by versions of the local conserved curvature teng@r8) and
the Wald axioms is therefore much worse in the massive casg.4).
than in the massless case. It is an infinite parameter The stress-energy tens€t.12) is causal, as it must be,
ambiguity—one can specify a free functid®(x)—rather  and reduces to the known result of the massless [d#&7]
than a two parameter ambiguifst2]. Of course, it is still  in the limit m— 0. Furthermore it is not a smooth function of
possible that the various conventional calculational methods? at m?=0. The calculational method we use also auto-
still agree to within the two parameter ambiguity.5) [13]. matically yields two undetermined parametersand 3, so
However, there is no guarantee that this should be the casthe result(1.12 explicitly exhibits the two parameter ambi-
Therefore it would be worthwhile to find some additional guity, just as in the massless cd46].
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D. Organization of this paper B. In-out formalism

Section Il reviews the in-out and in-in effective action We assume that the metny,, is asymptotically static at
formalisms. In Sec. Il we calculate the in-in and in-out ef- early and late times so the incoming and outgoing vacuum
fective actions of a massive scalar field propagating on atateq0,in) and|0,ou} are well defined. In the usual way we
spacetime which is a linear perturbation off Minkowski define the generating functional
spacetime. In Sec. IV we find the expected stress-energy in . )
the incoming vacuum state, and then in Sec. V we discuss its elWie® J1=(0,0ut0,in),, 2.5
properties. Section VI summarizes our results.

Throughout we use units in which=c=1, and use the Where the subscript on the right hand side indicates that a
metric signature and sign conventions of Misner, Thorne angource term
Wheeler[18]. Further notational conventions are given in

Appendix A. (3,)= J A= g0 3(x) (x) 2.6
II. THE IN-OUT AND IN-IN PATH INTEGRAL . g2, 3]
FORMALISMS has been added to the action. It can be showne4¢"

has the path integral representation

In this section we review both the standard in-out path
integral formalism of quantum field theofgee, e.g., Refs.
[19,4]), as applied to curved spacetimes, and the modified
in-in formalism due to Schwingdis]. This in-in or closed
time path method was later adapted to curved spacetimes kand that time-ordered matrix elements are given by
Jordan[6,7], and has been extensively explored by [2d].
Our presentation of the in-in method in Sec. Il C below dif- (0,0ut T ¢(x) ¢(y)|0,in),
fers from that of Refs[6,7] in that all the fundamental defi-

elWIgJl = f D ¢ €/ (Snlg®*.61+(2. ) 2.7

nitions are explicitly coordinate independent. :f D¢d)(x)qs(y)ei(sm[gab‘qﬁ]+<J’¢>). 2.8
A. The classical theory In Egs.(2.7) and(2.8), the usual boundary conditions on the
We consider a massive, minimally coupled scalar figld path integral are assumed, namely tiais purely negative
for which the Einstein-Klein-Gordon action is frequency é€e'“' with @>0) at early times and positive
frequency at late times, or equivalently, that the mass
92, ¢1= Syl 921+ Su[ 9, &1, (21)  squared parameter is understood to have a small negative
imaginary partm’>—m?—ie. From Egs.(2.8) and (2.4) it
Where fO”OWS that
-2 SW[g?",0]
Si[g*1=243 [ V= gRdx 22 g ag®
. ab
and = —ie MWo™0 f D i — 3 50 abSm[gab ¢eiSnls™ ]
0,0ut T 4p|0,in)
ab __ = ab + Ny _ < a
Sul 9%, ¢1= j V=09(g%°V 1V o+ m?p?)d"x {0.oul0,m) (2.9

(2.3
The effective action is defined in the usual way as a Leg-

Herem is the mass of the scalar fielﬂ$=(327rG)‘l is the endre transform of the generating functional:

square of the Planck mass, amé the number of spacetime b= b —
dimensiongwe shall be using the dimensional regularization Lrlg™, ¢1=Wg*J]—(J,¢), (2.10
scheme beloyv The corresponding equations of motion are

4,u,§Gab=Tab and (O—m?)¢=0, where the stress-energy where

tensor is _ 1 5W[gab,J]_ . 104 -
_ng—< oute|0,iny;. (2.1
— — ab
Tab J—g 8g2° Smlg™ 4] Here and henceforth the subscriptn I',, indicates that the

L L classical action from whichl',, is computed[Eq. (2.7
_ ot cp_ - 2,2 abovd includes only the matter pa&,, and not the gravita-
VadVpe zgf"bvcgZSV ¢~ 5 9apM 4" (2.4 tional partSy. Combining Eqs(2.9)—(2.11) we now obtain
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—2 ol [g% ¢] ~(0,0ufT,/0,in) eiW[gi",gi”,J+,J,]:J Daf D¢fe—i<sfn[gib,¢,]+<3,,¢,>,)
ab i
J=g &g P (0,0ut0,in)
(212 Xf D¢+ei(5m[gib,¢+]+(\]+,¢+>+),
Here the right hand side is a functional only of the metric 2.18
g2®, while on the left hand sideb[ g2°] is the solution to Eq. '
(2.17) atJ=0. with the boundary condition that, = ¢ _ = « on the hyper-
Since the actior{2.3) is quadratic in¢, it is straightfor-  surface given bx°=T. Another boundary condition, needed
ward to compute the effective action exactly. The result iso assure convergence of the path integrals, is thatbe
the standard, formal, expressif20] purely negative frequency angl_ be purely negative fre-
quency at early times, or equivalently that be interpreted
asm?—ie in the action(2.3. From now on we assume the

_ — i _
I [g?°,¢]=Sn g% ¢ ]+ SrinA, (213 second of these. We can rewrite the generating functional
(2.18 as
whereA is the operator given bﬁcﬁ: (O-m?+ie€)¢p. The ab _ab

— iW[ge™,0%7,J, 31— R ab
operatorA is the natural operator associated with the qua- e " f D¢.D- expi{Si[gs, -]

dratic formS;,, and with the covariant inner product on func- e ab
tions on spacetime +(Jy,94) s —SH02, -]

~(3_,4.)-}, (219

where the integraf D« is now included in the integration
over ¢, and ¢_, and the boundary condition is thai,
The reason the inner produ@.14) is the appropriate inner = ®- on the hypersurface given by=T. Below we will be
product is that the measuBeg in Eq. (2.7) is determined by ~taking the limitT—cc. From Eq.(2.19 it follows that
the metricg?® [21]. b ab

Finally, we define the quantitl][gab,g] (as opposed to —2 oWlg:.9-.00]
I'[g%°,¢]) to be the effective action obtained when one V=0 5% 20— gab_ gab

+

starts from the full actioi2.1) rather than just the matter part (2.20
(2.3). It is clear that

(f,h)Ef d"xv—g(x)f(x)* h(x). (2.149

= (O,in|'T'ab|0,in>.

The effective action is defined to be a Legendre transform
T[g?, ¢]=T,[g%, ¢]+Sg[gab]_ (2.19 of the generating functional as before:

Fm[gibvgibing !gf]E\N[giblgafbv‘]Jr !‘]7]
C. In-in formalism

We introduce the generating functional ~eb)eH (- )
(2.21
eWigT 0% 0. 01— f Da(0,infe,T); (., T|0,in); , where
(2.16
-\ ab ab J J [ &N[gib,gib,J+’J7]
which depends on two independent sourckg(x) and ¢+107,0= 04 I ]== Jg. 83 ’
J_(x), as well as two metricg®” andg®”. Equation(2.16 - (2.22

includes an integration over a complete set of state) on
the hypersurfacaoz'r at some future timd. We assume and where we use the shorthand notat(ﬁrﬁ) Note that

thatg3°=g?" for xX°=T. Each of the matrix elements in Eq. When 9%°=g" andJ. =J_, we find from Egs(2.19 and
(2.16) can be expressed as path integrals in the usual way:(2.21) that

¢.[97°,g%°,3,3]1=(0,in$|0,in);. (2.23

From Egs.(2.20 and(2.21) we obtain the expected stress-
(2.17) energy tensor in the in-coming vacuum state:

(a,T[Oin), = f D¢te‘<%lgib,¢t1+<3t b))

where the measur® ¢, and inner product .. .), are de- R -2 o,
termined by the metrigib, the measur® ¢_ and the inner  Tap in-in=1{0,in[ T4/ 0,in) = \/: b .
product( . ..)_ by the metricg®®. Combining Eqs(2.16 ~9+ 0% $.=d[g30],g3P=gab

and (2.17) yields (2.29
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Here ¢[g2"] is given by Eq.(2.22 atJ,=J_=0 andg?®®  natural operator associated with the quadratic fqen27)
= gab= gab: and with the covariant inner product on pairs of functions

(f.,f_) given by
#Lg*"1=¢,[9*",g*°,0,0]. (229
N ()= 3 [ dx=.00100% 00,
From Eq.(2.23 it can be seen thap[g2"] is the expected ST

value of the field in the incoming vacuum state. Equation (233
(2.24) is the formula we will use below to compute the stressThe reason the inner produ(@.33 is the appropriate inner

tensor. product is that the measurBsp, andD ¢_ in Eq.(2.19 are
We introduce the shorthand notatign=(¢, ,¢-), determined by the metriag®® and g° respectively.
In our perturbative computations below, we shall derive
A s an expression for the effective action in terms of a series of
Js=| —3_ | (2.29 products of operators. For that purpose, it will be convenient
to use the Hilbert space structure associated with the coordi-
nate dependent inner product
and
Su02° 6] =Sl 0% 6.1~ SHe. 6], (220 (e f b= 3 [ dutioth,
where the indexs takes the values- and—. The generating (2.34
functional(2.19 can be rewritten using this notation as  jnstead of that associated with the covariant inner product
(2.33. We will always choose the coordinate systgfap-
eiW[ggb,jS]:J' D¢rei(sm[g§b,¢s] +Qtd00), (2.28 pearing in Eq.(2.34 to be a Lorentzian coordinate system
associated with the flat metrig,y, .

o Finally, we define the quantity[g3®,9%°,¢. .¢_] (as
where a sum over the repeated indgs understood, opposed td" ) to be the effective action obtained when one

Next, we _de_rlve thg a”a'99 of the formal EXPIESSIONGa ts from the full actiori2.2) rather than just the matter part
(2.13 for the in-in effective action. We define the operafor (5 3 |t is clear that

on pairs of functionsps= (¢, ,¢_) by o
o F[gibigibv¢+ 1(7{)7]
(A¢)S(X)=f d y V_gt(y)ASt(le)¢t(y)! (229 :Fm[gib,ga_b,g.;. ,E_]_’_Sg[gib]_sg[gib]

where (2.35

The semiclassical equations of motion are given by

— &Sl 93", 1]
Asl(X,y)= =, (230
Vas(X)gi(y) 69s(X)(y) or _or _o. (2.3
ab S Y e
which can be written using Eqé2.3) and(2.27) as 09 ¢.=¢,g3P=gab 0%+ ¢.=¢.g30=g2P
O, ,—mP+ie The second_of_these equations is automatically solved when
? 0 we choosep= ¢[g°], cf. Eq.(2.25 above, corresponding
A (x,y)=8"(x—y) 9+ (x) to the incoming vacuum state. Thus the equation of motion
o 0 —O_ +mP+ie]| reduces to
v —g,(x) BN
2.3 =0. 2.3
(2.3) poe (2.3

- - ¢ = p[gab],g3P=gab
Here [0, , denotes the wave operator associated with the * e

metricg®® acting on the coordinates=x2, and similarly for
O_ .. Using Egs(2.21), (2.28 and(2.30, we then find the Ill. THE EFFECTIVE ACTION FOR NEARLY FLAT
following analog of Eq.(2.13: SPACETIMES

i In this section we specialize to almost flat spacetimes of
T 020 &.]= ab 414 Trin(Ayy), 23 the form (1.13, and calculate the in-out effective action
w0 Sl =Snlgr" b ]+ 5TrIN(A), - (232 (2.15 and the in-in effective actiof2.35 as series expan-
) ~ sions in powers of the metric perturbatibg,. We use the
where Tr denotes the appropriate trace over both spacetinfiethods of Hartle and Horowit23] and of Jordari6,17],
variables and over the indicest. The operatorA is the  who performed similar calculations in the massless case.
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We start by further simplifying Eq2.32. Note that grals and the fact that the mass squared parameter is assumed
to have a small negative imaginary p&ste Appendix €

6 — —,15Krt We also define a coordinate dependent opel@tgto be the
an T IN[AS]=Tr| Ag, 59 (3D jnverse of the operatok,;: its kermnelG(x,y) with respect
* * to the inner product2.34 is given by

o A1 00
TR g ) 3.2 | A Gax = - 0x-y)50. 38
+

since in the sum over in Eq. (3.1), only A, , depends on From Egs.(3.9), (3.7) and (3.8) it follows that G(x,y)
g2°. Here tr denotes a trace over the spacetime variables =G,s(X,y), that is, the above two kernels coincide.
only, not including a sum over thgt indices. Combining

EQs.(2.32 and(3.2) we now obtain A. Perturbation expansion for the in-in effective action

ab = ab o — ab We now expand the operatéy; as
I‘m[gr v¢r]zsrn[gr ]+ EtrlnA+++ FioZ],

(3.3 Ars(X,X") =A% (X,X") + V,s(X,X), (3.9
whereF,[g2"] is some functional 0§2°. This termF,[g3®]  Where
will not contribute to the functional derivative in E(R.24 , " , ) ,
and hence will not contribute to the in-in expected stress Vis(X,X") =Vig' (x,x") + Vi (x,x") + -+ (3.10
tensor.
Next, we define the coordinate dependent operator HereAY, is the Minkowski spacetime operator, and the terms
= A, acting on pairs of functionsd ,é_) by V) and V) are the pieces ol that are linear and qua-
- dratic in the metric perturbatioh,,, respectivelysee Egs.
(Ad) (X)=V—=0g;(X)(Ad),(X). (3.4  (3.27 and(3.28 below]. Note that from Eqgs(2.31), (3.5

and (3.9 it follows that the operatoW, is diagonal in the
Then from Egs(2.29 and (2.3) the kernelA,s(x,y) of A indicesr ands and is of the form
with respect to the coordinate dependent inner protig)

is given by Vis[93°,0%°]
Ars(%Y) = V= (V= GV As(xy). (3.5 V., [93.9%] V+[9‘1'”9”1}

o _ V. ab' ab V_ ab, ab
[HereA<(x,y) is the kernel of the operatd with respect to +9+.0%] [0%7.0%]

the inner produc{2.33), given by Eg.(2.31)]. Combining V[g?P] 0
Egs.(2.31) and(3.3—(3.5 now yields = 0 —V[g"ib]*}' (3.11)
Folg?® 6] for some fgnctionaVzV[gab].
=Sm[gfb,$r]+ S IitrInA+++ F.[detg. )], We similarly expand the propagat@y; as
Ge=G2+ GV +G2+.. .. (3.12

(3.9

The Minkowski spacetime propagal@@t can be obtained by
combining Eqgs(2.31), (3.5 and (3.8 and usingg,p= 7ap-
In Appendix C we show that this yields

where F,[det(g.)] is some functional of the determinant
de(gib(x)]. When we take the variational derivative bf,

in Eq. (2.29 to calculate the stress tensor, the tefmwill
contribute a term proportional to the metgg, and hence

0 0
will contribute only to the renormalization of the cosmologi- Go(x,y)= Grrlxy) Gi(xy)
cal constant. B st G%.(xy) G°_(xy)

We de_fine the propagatdbs; to be the inverse of the G(x—y) A*(x—y)
operatorAg;. Its kernelGg(x,y) with respect to the inner = N . « | (313
product(2.33 is given by —AT(x=y)" —G(x—y)

o S(x—y) where
dn I ! A , ! G /, :_—5 .
f XVTOLOAGACY) —G(y) (r; 600 f dp e 510
) X)= .
K ( (2m)" p?+m?—ie

Note that the operation of taking the inverse is unique by
virtue of the boundary conditions imposed on the path inteis the free Feynman propagator and
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dp whereG?(x,y) =G(x—vy) is the usual free Feynman propa-
At (X)=27i f -eP*5(p?+m*)@(—p°) gator(3.14), andV") andV(®) are the pieces of the operator
(2m) V defined in Eq(3.11) that are linear and quadratic .

(3.19 Comparing Eq(3.18 with the in-in effective action3.17)
and using Egs(3.11) and(3.13), we see that the only differ-
is the positive Wightman function. ence is the term involvings® _ (x,y), sinceG% , =G° and
Next, by combining the expansior8.9) and (3.12 to- v, =V. Hence we can write
gether with the definitiori3.8), we find the following expres-
sion for the logarithmic term appearing in the effective ac—rm[gib,gib,$+ ,g_]in_in
tion (3.3) (see Appendix D

=T'w[0%°, b+ Jinourt Falg®1+U[g%°,0%°, ¢, 001,

IN[G,.]1=In[G% . ]1+V".GY, (3.19
1 where
+VEGLL + VG VT GE
- i
VDGO VGO, +o(hd). (316 UlgP.0% ¢ - ]=— St VLG VG2, ]

(3.20
The products on the right hand side of E8.16) are operator b . _
products, where the kernels are understood to refer to thandFs[g2°] is a term which does not depend gff or ¢, .
inner product (2.34, so that, for example,
[V G2 Jxy)=Sd"y' V) (x,y)G° ., (y',y). Combin- C. Explicit calculations
ing Egs.(3.16 and (3.3) we finally obtain the perturbation

. o . ) We write the spacetime metric as
expansion of the in-in effective action

Jab= Mabt Nap, (3.21)

— — i : : . . -
Co[02°, ¢ 1=Su[ 92, &b, ]1— Etrln G°, where 77,;, is a flat Minkowski metric. From now on indices
are raised and lowered with,,,, and derivatives denoted by
a comma are coordinate derivatives in a Lorentzian coordi-

i
— =t vV, G, +Vv. G, nate system associated with the metsig,. Expanding the

2 action (2.1) to second order i, yields (see Appendix A
1 . .
+5 VG VLGS, S[9*, 1= S hap] + Sl hap, ¢1+0O(h®),  (3.22
where the guadratic actior®, andS,, are given b
V.62V GO |+ Fyfg] | " &ndSn are given by
? 52 ,ab_
+ Fz[de‘(g+)]+0(h3) (317) Sg[hab]_zlupj (haba h,aa)dnx (323)

and
B. Perturbation expansion for the in-out effective action

Consider now the corresponding calculation in the in-outSmlNab. ¢]
formalism. If we compare the generating function@s’) of

the in-out formalism and2.19 of the in-in formalism, we . Ef ab 2 2 _f 1
see that the terms i and in ¢, in these equations coin- 2 (77 a¢ ot Mg7)d"x 2 2h7’ $.ab
cide. Hence, from the definition®.10 and (2.21) of the 1
effective actions in terms of the generating functionals, it _pab L= 2| 4n
follows that the in-out propagator and effective action can be h¢.adp 2 hie |
obtained from the corresponding in-in quantities simply by
replacing ¢, with ¢, J, with J, and dropping all terms _EJ [(}hZ_lhabh b) 722 b o
generated bys_ andJ_ . The resulting in-out action is 2)|\8 4= @ ar
ab - ab - i 0 + Eh2— 1habh m2¢2
Io[g® ¢1=Sg* ¢] - 5trInG g 2" Nan
i 1
- Iztr VGO+VGO+ %V“)GOV“)GO} — 5hh®¢ 2+ 0™ 1 b d"x. (3.24
+F,[de(g)]+0O(h?), (3.18  Herehis the traceh=7"hy,.
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Next, we find from Eqgs(2.31) and(3.5) the formula for
the operatoA |

A (%Y)=8"(X=y)(7*°dady—M?+V), (3.29
where[cf. Eq. (3.11) abovd
V=V +Vv@+0(h?) (3.26
with
1 1
V<1)=§aahaa— 9;h3Pg, — Emzh
hab 1
=—9,h* 9+ ﬁm h (3.27
and
(2) ‘hacpb 1 ‘hedp  ab
V =¢9ah h c&b—zaah hcd77 &b
i 1 _
_ ab 2, ab
n_zﬁahh ﬂb+ 4(n_2) (9ah n ab
m? 1
thhcd— —hz} (3.29

Here for simplicity we have writterh,,, simply ash,y.

PHYSICAL REVIEW D 58 124007

and its traceh= 52°h,,. Note thath,, is the trace-reversal
of the metric perturbatiorh,, when the dimensiom of
spacetime is 4, but not otherwise.

Using Egs.(2.39, (3.11), (3.17), (3.27, and (3.28), we
now find that the in-in effective action is

I'[haps shap- b+ -]

=S Naps Nap— b+ b1+ Ulhaps ,hap- 1+ K[ hapy ]

+ Kol Naps 1+ L[ oy 1+ F4[g2°, det g )]
+0(h®), (3.30
where
S[hab+ 1habf 1$+ 157]
=4 g[hab+]+sm[hab+ o
— Syl Nap-1— Sk Nap—  #_1. (3.3)

In Eqg. (3.30, we have absorbed the constant ©h, and

Also we are using a notational convention where, for ex-the termsF; andF, into the functionalF ,[ g2°, det(g. )].

ample, ¢,hd®) e=4d,(hé?¢p). We have also introduced the As before this term is a quantity which depends on the metric
g+ only through its determinant, and which thus affects the

quantity

Nap=hap— 5h7ap (3.29

Ulhap ,Nap-1=— sz d”Xf d"™' V[ hap: (001G - (x=x )=V *[hgp (x)}G? (X' =x),

in-in equation of motion only via a renormalization of the
cosmological constant. The termsU[hg,. ,hap-1,
Ki[hap+ ], Ko[haps ] andL[hgpy. ] in Eq.(3.30 are given by

Kl[hab]z—lzf d“xf d™’ 8"(x—x" )V (x)G(x—x")

i
=— EJ d”xf d"x’ 8"(x—x")

‘hab 1 2 ’
—d,h®Pa,+ mm h|G(x—x"),

Kz[hab]=—'§f d”xf d"’ 8"(x—x" )V (x)G(x—x")

[
=— ff d”xf d"x’ 8"(x—x")

+m2
4

el nn
cd n_2

G(x—x"),

(3.32
(3.33
8RR 3 — ., 7%y — LRt hh730
a cb 472 cd b n—27% b 4(n_2) a b
(3.39
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and

L[hab]z—;—j d“xf d"x’ VB (x)G(x—x" )V (x')

X G(x'—x)
=La[hap]+Lalhap]+ La[hap] +Lalhgp]. (3.39
We have also defined
i _
Li[hgpl=— Zf d”xf d”x'h(x)abG(x—x’),bC,
Xh(x" )Y G(X' =X) gra, (3.39

H 2
i mé _
Lo[hapl=— Zf d”xf d”x’mh(x)G(x—x’),c/

Xh(x")¢' " G(X' =) g/ (3.37
Lothal=— 5 | @ [ R0 x)
2
xn_zﬁ(x')e(x'—x),a, (3.39
and
i m? _
Lo hapl=— Zf d”xf d”x’mh(x)G(x—x’)
m? _
xﬁh(x’)G(x’—x). (3.39

In Egs. (3.32 and (3.35), the differential operators in each
factor of V(*) act only on the propagator immediately to the

right of such factors.

PHYSICAL REVIEW3B 124007

d"q
(2m)" (p?+m?—ie)(g®>+m?—ie)

pbqaei(p_Q)(X_X,)

i n ny/phab m? — ’
L3[hab]:_z d"x [ d"x"h®®(x) mh(x )
2

k=
m2 _

=—H d”xf d™’h(x)**——h(x’)

WL L
(2m)" (2m)"

Ja(Kpt0p)
(k+q)2+m2—ie)(g?+mP—ie)

(3.41

We can drop thé, in the term k,+q;,), since we are work-
ing in the Lorentz gauge. This yields

i n Ny’ h(y)ab m? ’
L3[hab]=—zjd xjd x"h(x) mh(x)

d"k ik(x—x")
Xf (277)”e I ap(K) (3.42
where
d"q dadb
(k)= .
ab(K) j(Zﬂ')” (k+q)2+m?—ie)(g?+m’—ie)
(3.43

In order to perform this integral, we analytically continue to

Euclidean signature. Defining, (k% k))=1,,(—ik°kl) and

using the transformations
q°——-iq® and k°——ik®

(3.49

It is straightforward to obtain the in-out effective action in Eq. (3.43, we obtain

from the in-in effective action(3.30 using the method of
Sec. Il B above. Using Eq$3.19 and(3.30 we obtain

[[Nap, &1=S[hap, ¢1+ Kalhap]
+Ky[hapl+L[hap] +Foldetg)]+0(h?).
(3.40
As already mentionedcf. Eq. (3.19 abovdg the term

Ulhaps ,hap—] In EqQ. (3.32 contains the differences be-
tween the in-in and in-out formalisms, and has to be added t6

the in-out effective actiorf[hab,g] to obtain the in-in ef-
fective actionI'[h,py , &4 ,hap— 1.

Next, we insert the expressiof3.14) for the Feynman
propagatoiG(x—x') into Egs.(3.33—(3.39 to evaluate the
quantitiesU, K4, K, andL. To simplify the calculations, we
work in the Lorentz gauge whehé® ,=0, and we regularize

the results using dimensional regularization. The results are
written in terms of curvature invariants using Appendix B,

and are listed in Appendix E.
As an example, we show how to compute the t€8139):

156(K)

L[ id'g (1)%" %010
B fo dxf (2m)" [+ m?+ 2qk(1—x) + k2(1—x) ]2
(3.45

In Eq. (3.45 we have also introduced the Feynman param-

eterx, and dropped thée. The integral ovelg can now be
evaluatedsee, e.g., Ramon@4]). The result is

|E(k)=fld [kkf(kx)
ab 0 afb )

(4m"r(2)

(i)%2+ %5, (1—n/2)/2
[m2+ k2(1_x) _ k2(1_x)2]lfn/2 '
(3.46

Next, the termk k,f(k,x) can be dropped, since it will not

contribute toLg[h,,] as we are working in the Lorentz
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gauge. Also, when we analytically continue back to Lorent-

. . . 0 .:0 . 89+ 80
zian signature using”—ik®, we find ()%™ °05,,— 7ap -
Thus we obtain

77ab[
(41)? 2—n[4—n

Iab(k): _’y+|n47T

1
X f dx[m?+k2(1—x)x]
0

X{1—(2—n/2)In[m2+k3(1—x)x]}
+0O[(4—n)], (3.4

where vy is Euler’s constant. The integration owecan now
be performed with the result
k
—In—+ = —|-=-z

1(k2+4m2)
47 3 6 3 3

[k2 -+ 4m? S
X ———arctan P
k2 K2+ 4m?

+0O[(4—n)].

2
4—n

[ 77ab[
(4m)?22-n|

m? 5

lan(k) = Y

2

2

m2+

(3.48

Below we will write the function arctaniq) = In[(1+K)/(1
—K))/2 appearing in Eq(3.48 in terms of a logarithm.
When thei e from the mass-term is included this will lead to
logarithms of the form
In(K—ie)=

In|K|—i7®(—K), (3.49

where O (K) is the Heavyside step function. Henceforth

when we write In we shall mean the logarithm defined in Eq.

(3.49, which has a branchcut along the negative real axis.
When the remaining terms in E¢3.30 are evaluated in

the same fashion, and written in terms of curvature invariants

(see Appendix B we find the results listed in Appendix E.
The effective action(3.40 then becomes

T[Nap, #1= S hap, d1+W, (3.50
with
f d*x| 8m*A..\/— 8—B V-9gR
" 51272
C. D.
+ 5oV = 08RpRP+ ==\ — g4R? |+ W,
30 30
+F,[det(g)]. (3.51)
Here

PHYSICAL REVIEW D 58 124007

dk
4 4,1 ik(x—x")
512774 d Xf ax f(zw)“e
X[R(X)R(x")Q1(k)
+ Rap(X)RZP(x")Q2(k) ] (352

is the non-local part of the effective action. Furthermore we
have defined the functions

W=

_ 4m* 37Tm?> 1 m’-ie
Quk) =4 ———————— n
1544 4542 30 2
(k2+4m2)2 2m2(k2+4m2) 2m*

/ m’—ie)
/ 4(m —|e)

(3.53
4(m?—ie)
\/1+ —-
k2
and
5 16 m* 28m 1 m’—ie (k®+4m?)?
Qa(k)=8| — — = -
15 4542 30 2 30kt
A(m2—ie)
X \[1+ ——m—
k2
A(m—ie) ]
1+ ——+1
k2
xIn (3.59
4(m2—ie)
14—
k2

The logarithm used here is the one defined in B@9. The
constants appearing in E(.51) are

+In4 |2+3|Irnz
4_nn7ryn,u2n2,

Aoc

(3.59
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HOW UNIQUE IS THE EXPECTED STRESS-ENERGY ...

2

m

= N 21— e
B.. 4_n+|n47-r y=Inp+1 InMZ, (3.56
C.= +In4 | 2+46 35
=Tg—p  MATTYTINKATT I (3.57

and

D.= +In4 | 2+1 35
E— nNaT—vy—Inu 15" ( 8)

Note that bothQ, (k) andQ,(k) are finite atk’=0 and that
they reduce to

k2—ie

PE

~ ~ 4
Qa(k)=2Q4(k) =~ 7zIn

al (k2| )
2—1—|n;—l77®(—k) (3.59)

if m=0. Note also that the constapt’® appearing in Egs.
(3.53—(3.58 drops out when these equations are inserted i
Egs.(3.51) and(3.52 in them#0 case. The constapt’ has
dimension (mas$)and has been inserted to yield the correct
dimensions in the logarithms of Eq®R.53 and(3.54).

Now the functionalF,[det(g)] in Eq. (3.51) must be a
coordinate invariant, sincE,, and the rest of the terms in
that equation are. It follows that

Fz[de(g)]“f d"xy—g(x). (3.60
D. Renormalization of the in-out effective action

We now rewrite the classical acti@B.1) in terms of some
bare coupling constanpsgb, Ap, ap and By :

_ 1 - _
S0, $1= 5 | 4GV M)
+f d“xJ—_g{z,Lgb(R—zAb)

1
asz

3 (3.61

1 ab
- EIBbRabR
From Egs.(3.50, (3.51) and(3.61) we then find
_ 1 _ _
Plhap. @1=— 5 | d(/=gIVa37% g+ n7g7)
+f d4xJ—_g[2Mg(R—2A)

1
EQRZ

1
-3 BR,,RP— +W,. (3.62

PHYSICAL REVIEW3B 124007

Here ,ug A, a and B are the renormalized values of the
parameters, given by

1
2__ 2 2
/-Lp_:u“pb_ 384772m B.., (363
270 _ 2 4 4
/.LpA—/.LpbAb e SMAL+A, (3.69
— (3.65
=qp— o .
® 192072
and
B=8 ! C (3.66
® 960m2 '

In the usual way, the renormalized values of the parameters
are finite when we choose the bare parameters suitably. In
Eq. (3.64), the quantityA is the (uncalculated contribution

to the renormalization of the cosmological constant due to

Bhe term(3.60. Note also that the parametersand 8 which

appear in the local part of the renormalized effective action
and the parametgr which appears in the non-local past,
are not all independent: from Eq8.52—(3.54) and(3.62) it
can be seen that a changegncan be compensated for by
changes i and 3.

Finally, the renormalized in-in effective action is given by
combining Eqs(3.19, (3.62, and Eq.(E8) from Appendix
E below.

IV. THE STRESS ENERGY TENSOR

A. Equations of motion in the in-out formalism

The semiclassical equations of motion are obtained from

) _
——= a1 [hea, ¢]=0, 4.1
\/_—g 5gab [ d (;b] ( )

and

1) —
—_Fh =VU. .
5% [hed,#]=0 (4.2

Equation(4.2) is automatically solved when we choose

¢=p[g*"], 4.3
the functional given by Eq2.11) above atl=0. When we
insert Egs.(3.62 and (4.3 into Eq. (4.1), the functional
derivative of the first term on the right hand side of Eq.
(3.62 can be dropped since it is of ordéx(h?) [as ¢ from
Eqg.(2.11 for J=0 is of orderO(h)]. The resulting equation
of motion is
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whereT ,(X)in-out IS given by Eq.(4.5), and where the addi-

1
Gab(X) + AQap(X) = 12 Tab(X)in-outs (4.4 tional termT.,(x) due to the ternt in Eq. (3.30) is given by

'“p

where we have defined the in-out expected stress-energy ten-
or P v 2 8U[ Mg Nap-]

Tap(X) =
WO s

g3P=g3P=g,,
(0,0ut T 4p|0,in)

ab(X)m out= <0,0U10,II’]> 256”-2 4 ’ (2 Ik(x X )[H b(X )Ql(k)
f 4 /f |k(x x! +H(£(X')(~Qé(k)] (49)
" 25672 (277)4
X[HIP(x)Q1(k)+HE (x")Qu(K)] Here we used Eq(E8) from Appendix E below, and have
_ _ defined
+aHH(x) + BHE (X). (4.5

~, (K2+4m?? 2m?(k®*+4m?) 2m*
In writing this tensor we have also introduced the linearized Qi(k)=—4 - +

N 2 30k* 3k* k*
versionsH{Y(x) andH?)(x) [see Eqs(B14) and(B15) be-
low] of the conserved local curvature tensors 4m?
X 1+?2ﬂ-i®(—k2—4m2)®(—k°)
(4.10
X'V —gR(X")R(x
800 = J_ 59*°(x )f DO
1 and
=202s0R~2V,VpR— 5 02sR*+ 2RRyp
(4.6) B0= 8 (k?+4m?)? 4m?
2 30k4 k2

and X2mO(—k?>—4m?)O(—k%.  (4.1)

0=

1)
d4XI\/__ X/)Rcd X/
J_ e gR.4(x RO(X")

The in-in expected stress-energy tensor

1
= EgabD R+0OR,p— 2V . V,R%+2R%,R,;,

(0,in|T,|0,in)
1 ab(X)ln in= <0'm|0'm> (4-12)
- EgabRcdRCd- (47)
is therefore given by
As is well known, Eq.(4.4) is not a physically realistic
equation for semiclassical gravity since the right hand side is
Comp|ex and not redB ]_7] ab(X)ln ln_Tab(X)m outt Tab(x)
B. The in-in expected stress-energy tensor 256772 d*x’ 2m) ek ITHD ()T, (k)
By combining Eqs(2.25), (2.37), (3.30, (3.40, (4.2) and _ _ _
(4.4 we obtain the equations of motion in the in-in formal- +HB(x)To(k) 1+ aHY (x)+ BHE)(X).
ism

(4.13
1 !
Gan(X) + Agan(X) :_Z[Tab(x)in—out+ Tan(¥)], (4.8 )
4rp Here we have defined
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( serve as a check of our calculation.
_ _ _ 4 m* 37m? A. The massless limit
T1(K)=Quk)+Q(k) =4 — ———— — - -
! ! ' 15 k4 45 k2 The Green function3 (k) and T,(k) in Egs.(4.14 and
(4.15 reduce to
\
- - 4 [ k2—ieSgn(k®)
1 mP—ie |(K*+4m?)? To(k)=2T(k)=— 1—5In —
T y #
30k
’ __ 4 In M —im®(—k?»Sgnk%| (5.1
2m?(k*+4m?) 2m* 4(m’—ie) 1 u? ‘
- ” + . 1+ .
3K k k if m=0. This Green function together with E@.13 yields
> . 0 3 exactly the same the stress-energy tensor as found by
\/1 4(m”—ieSgrk )+ 1 Horowitz [16] and Jordar17].
K2 Note that the Green functions are not smoothmhnear
xIn \ (4.14 m=0. Fork’>0 we find
\/ A(M2—i eSgrk?)
14— —1 i -
4ie
k? ) _ 4\[1-—
aT, 28 1 k?
and i -8 +

om?| 45k? die 15k2
T A ~N/ m#=0
T2(k)=Qa(k) +Qx(k) 152\ [ 1— F

4ie ]
16m* 28m?> 1 m’—ie (k®+4m?)?2 \/1-—+1
-8 +————In - K2

15+ 452 30 42 30k? %In , (5.2
die
L 1-—-1
k2
4(m>—ie)
X 1+ -, which diverges in the limit—0. Hence the first derivative
k of the stress tensor with respect i does not exist ain
- =0.
\/ A(m2—i eSgrk©)
1+ ———+1
k2 B. Causality
xIn > . o - (419 It is difficult to find the Fourier transformd;(x), j
1+ 4(m°—ieSgrk )_1 =1,2, of the Green functiongh.14 and(4.15. However, it
K2 is not necessary to explicitly perform these Fourier trans-

- forms in order to demonstrate causality. By Lorentz invari-

It is easy to see thak,(k) andT,(k) are finite ak?=0 (for 2 '°° itis sufficient to show that

m#0), and that they are sufficiently regular that their Fou- T,(t,0,00=0 for t<0 (5.3
rier transformsT;(x) andT,(x) exist as distributions.

and
V. PROPERTIES OF THE IN-IN EXPECTED
STRESS-ENERGY TENSOR T;(0r,0,00=0 for r+0, (5.9

The stress-energy tensor given in 413 is determined for j=1,2. In other words, the Green functioiig(x) must

by the Green fungtion?l(k) andT’z(_k) in Egs.(4.14 and  pe zero inside the past light cone and outside the light cone.
(4.15. In this section we show that in the limit—0, these  Tq check the conditior5.3) we write

Green functions reduce to the previously obtained Green

functions for a massless field. We also show that they are 1

causal, i.e., that their Fourier transforrig(x) and T,(x) T:(t,0,0,0= fdskf dkoe—ikotfr_(k)_ (5.5)
have support only inside the past light cone. These properties . (2m)* !
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Now from Egs.(4.14 and(4.195 we see that the logarithmic Throughout we use the same sign conventions for metric and
terms in bothT (k) andT,(k) have branchcuts in the lower Curvature tensors as in the book of Misner, Thorne, and
complexk® plane, but no poles elsewhere. It is thereforeWheeler[18]. Specifically the metrig,;, has signature,
possible to deform the contour of thé integration into the ~+.+,+). Indicesi,j.k, ... run over the spatial indices
usual semi-circle with infinite radius in the upper compkdx ~ 1,2,3 while indicesa,b,c, ... run over 0,1,2,3.
plane. Sincet<0 the integral vanishes. This immediately ~\We introduce the metric perturbation
shows thafT;(t,0,0,0)=0 for t<0. A similar argument can

be used to show tha;(0,r,0,0)=0. PNab=0ab~ 7an (A2)
and its traceh=h,,7*°, where 7, is a flat metric. In ex-
VI. CONCLUSIONS pressions involvindy,,, indices are raised and lowered with

We have shown that the Wald axioms determine thethe flat spacetime metrig?°. The coordinate derivative of a

stress-energy tenséup to two parametefnly in the case tensorTap in a_Lorentzian .coordinate system with respect to
of a massless field. In the case of a massive scalar field, tH8€ Metric7ay is denoted in the usual way:

Wald axioms allow for a much larger ambiguity. We have
calculated the expectation value of the stress-energy tensor in
the incoming vacuum state for a massive scalar field on anye £ yrier transform of any functiofi(x) on Minkowski
spacetime which is a linear perturbation off Minkowski spacetime is defined as

spacetime, generalizing an earlier formula of Horovjit8]

and Jordan17] in the massless case. In our calculation we _ _

used the in-in effective action formalisfi—7]. As expected, F(k)= j d*x e ™MF(x). (A4)
the resulting stress-energy tensor is causal and reduces to the

known result in the massless case in the limit-0. As in Throughout we use

the massless case, we find a two parameter ambiguity in the

stress-energy tensor, even though this is not guaranteed by kX= 7,,k?x? (A5)
the Wald axioms.

After this paper was submitted for publication, we be-to denote the dot product of two 4-vectok8 and x* in
came aware of related work by Dalvit and Mazzit¢®5]. Minkowski spacetime. We ug8 (x) to denote the step func-
Dalvit and Mazzitelli calculate an in-in effective action using tion, ®(x)=1 for x>0 and O otherwise.
the method of expanding in powers of curvature pioneered Products of operatord,B are defined as
by Vilkovisky and collaborator$26]. Our result(1.12 can
be derived from Eq938) and(41) of Ref.[25] by evaluating
the integrals ovet, by specializing to linear perturbations
about flat spacetime, and by representating the
d’Alembertian operators in Fourier space. Our derivation ofThus, factors of/—g are not implicit in expressions such as
the result(1.12 has the advantage that it is more direct andGV in our calculations. We show such factors explicitly
simple than that of Ref[25], since it does not rely on the When they are required, with the exception of the notation for

Tab,c: acTab . (A3)

(AB)(x,Z)=f d*yA(X,y)B(Y,2). (A6)

Vilkovisky expansion formalism. products of functions

We conclude by listing some open questions. First, are
there additional axioms which would reduce the ambiguity in fof Ef A%\ = a0 F+(X)* Fo(X A7
the stress-energy tensor? Second, will the same stress-energy (f1.f2) 900007 12(%). (A7)

tensor(1.12 be predictedup to the two parameter ambigu-
ity) by the point splitting method3] or by the DeWitt- APPENDIX B: EXPRESSIONS FOR CURVATURE
Schwinger method4]? There is no a-priori guarantee that INVARIANTS

this will be the case.
In this appendix we expand the various possible local

counterterms in the effective action to second order in the

metric perturbation, and write them in terms of the quantity
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Nap=hap— Eh"'?ab’ (B1)
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APPENDIX A: NOTATION AND CONVENTIONS ) ) ]
o ] ) ) whereh= %3"h,,. In n dimensions we then find
We use units in whiclh=c=1, but in whichG#1, so

that the Planck mass is given by 2

h=———=h (B2)
[ 1
o= N 327G’ (A1) and thus
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_ 1
Nab= e~ 5 7. By | axeg

In our calculation of the effective action, when we expand

guantities such ag—g, Ror R,, in terms ofﬁab andh, we
find terms of orde©(n—4). Such terms must sometimes be

_ j d'x(8— 4h— 2h. H¥+ hh) + ~ 5 f d*x(4h—hh)
ab 2

kept and not discarded, since they can give rise to finite ~ +0O(8%), (B10)
contributions when multiplied by infinite terms of the form
1/(n—4). J nva [
We find for the determinant of the metric tensor d™8v-gR
T il 1 o3 = f 4 (2P, RO )+ =6 f d*xh Sh+0(8?)
VT=Im T g et gy O e e : |
(B4) (B11)
The curvature scalar becomes
d"x4\—gR?
R=RM+R?+0(h%), (B5) f g
_ 1 _
where :f d4xh’aah'bb—§5J’ d*x2h ,%h ,°+0(8%), (B12
1 -
R =——2h 22+ hyy (B6)  and
and J d"x8\/— gR?°R,,

R =, b4 Tt ¢ e N
Nabe abh™e - f d'x2N™ gy o~ 5 8 f d*xh ch g+ 0(8?),

-10— (-4 o,
4n-22°  (n-22° 2 e

(B13)

where §=n—4.

e — Using the Lorentz gauge and specializing to four dimen-
+ E(Zhhab'a +h  h® ) —2h*h,e sions, we find for the linearized versions of the local curva-
ture tensorg4.6) and (4.7)

—h? b_ac’ . . — —
h3b h,° (B7)
' H(l) — cd_ c 2
ab(x)_ 77abh,c d h,abc +0(h%) (B14)
Other useful scalars are
and
e AN P T o
(n-2)> " 7 n=2 HE (0 =5 (7abh 66" 0 ape” — hap,c%) + O(h?).
(B8) (B15)
and
APPENDIX C: THE IN-IN PROPAGATOR
R Rab_l F cab d (n—4)F i b] IN MINKOWSKI SPACETIME
b = Nap’ d , b
: 4 e (n—2)? : In this appendix we combine Eq&.31), (3.5 and (3.8
5 specialized to Minkowski spacetime to obtain E¢3.13—
+ 2 _2Hab,cc+ mﬁ,ccnab (3.15. U;mg Eq.(3.8) and the expansion@.9) and (3.12),
we obtain

T C.h cl/nh abcyh bac 3
+h°a’b+h°b’a)(hc 0T+ 0. | a6l = - ox-y)s.. €

(B9)
Note that it follows from the form o 4(X,y) given by Egs.
Note that many of the terms vanish if the Lorentz gauge2.31) and (3.5 that G° _(x,y)=—G%,(x,y) and that
ha =0 is used. In the Lorentz gauge we find thdiscard- G2 (xy)=—-G% (x,y).
ing surface terms First, the relation
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G, (x,y)=G(x—y), (€2

follows immediately from translational invariance and the

equation
[O,—(m*=ie)]GL ., (x,y)=—8"(x—y)  (C3

which follows from Eq.(C1).
The equation determininG® . (x,y) is, from Eq.(C1),

[Ox—(m?+ie)]G° (x,y)=0, (C4

which upon Fourier transforming and using translational in-

variance becomes

[-p°—(m*+ie)]G2 , (p)=0. (CH

Any function G . (p) which has support only on the hyper-

surfacep®= —(m?+ie€) will be a solution to this equation,
and hencé§9+(p) is not uniquely determined by EC5).

What we have not used yet is the boundary condition that

¢.=d¢_ on the hypersurface given by’=T, where T

—o0, To make use of this boundary condition note that the

classical equations fap.. are

| oy moypom=-30. o
and that the solutions to these equations are
#40= [ a'y Ghxy) I 7

Enforcing the above mentioned boundary condition yields

f dy GS (x,y)Js(y) = J dy G2 (x,y)Js(y) (C8)

atx=(T,x*,x2,x3), which using Eq(2.26) simplifies to

f d“Y[G3+(X.Y)—G9+(X.Y)]J+(Y)+Jd”Y[G(l_(X.Y)

-G%_(x,y)]3_(y)=0.

Since the sourced. (y) are completely arbitrary, Eq$C2)
and (C9) imply that

G2, (x,y)=G(x—Y)

(C9

(C10

for x=(T,x%,x?,x%). Now the Feynman propagatd®(x)
can be written as

G(x)=—0(xXOA"(x)+0(—x%A*(x), (Cl11

where
n

AT (x)= iZWif (jﬂ_p

)n

eP Y 5(p2+m?) 0 (Fp°)

(C12

PHYSICAL REVIEW D 58 124007

are the positive and negative Wightman functipbg]. From
Egs.(C10 and(C1)) it follows that

G2 (xy)=—A"(x—y) (C13
for largex®. Equation(C13 now implies that the appropriate
solution of Eq.(C5) which fulfills the boundary condition at
x°=T corresponds toG° , (x,y)=—A"(x—y), which
yields Eq.(3.13 above.

APPENDIX D: EXPANSION OF THE PROPAGATOR

In this appendix we obtain the expansit®16 for the
operatorG, .. From EQs.(3.8), (3.9), (3.12 and (C1) it
follows that

0 0 0
Grt = GI(’)S[ 5St+ VSS'Gs’t+ VSS’GS VS//t'G[’t] + O(VS) .

rg

(DY)
This implies that
0 0
G, =G, +GVesGy , G Veg G o Ve G, + - - -
= G3+[1+V+SG2+
+V, G2, Ve G2, +O(V3)], (D2)

where we have used the fact thaf ,G% =A% GO _
=0. Hence we can write the logarithm of the propagator as

IN(G.1)=In(GY )+ VG2,
1
2

0
ss'

+V, Gy Ve Gl — =V, G2V, G,

+0(V3). (D3)

Next we use the fact tha¥,. is diagonal[cf. Eq. (3.1])
abovd to obtain

In(G.4)=In(G3)+V, .G,
1 0 0 0 0
+ §V++G++V++G+++V++G+—V77G—+

+0(V®)

=In(GY ) +VILGE L +VIELGL,
1 (1) ~0 /(1) ~O
+§V++G++V++G++
+VH.GL VI G2, +0(vd, (D4)

which yields Eq.(3.16).

APPENDIX E: TERMS IN THE EFFECTIVE ACTION

In this appendix we list the terms contributing to the ef-
fective action(3.30 given by Egs.(3.32—(3.39. Through-
out we use the Lorentz gauge. We find
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K[ha]= 1 f do0(—amd| v+ 5 - Here we have defined the constant
1L''ab 51272 5/
= [ a4 RooR0o2m)| Y+ 2 Y= i+|n4—w—y—lnm—2, (E6)
K[ hapl= 512772f d*x| h(x)h(x)(2m )(Y+ E) a—n "o 2
+2h(X)2(X) ap( —2m*)| Y+ g , (B2 and the function

1 -
Li[hap]= zf d“Xf d“X’[[h(X)h(X’) k24 4m? k2
5127 Fi(k)= \/————arctan —_—
k2 k?+4m?

. (ED
b dk o 46
+2h? (x)hab(x’)]f ek Y —
(2m)* 15 _ _ _ .
The term which contains the differences between the in-
ol it 2k2+ k4) B m* ~ m? 2 out and in-in effective action is
M 3573 2 15
_ L e am?yE, () (E3) 1 i [ gaer [ 9K ke
15 1 ’ U[hab+ 'hab—]: 256”-2 d*x d*x me
Lo[h,,]=Ls[h _
2[ ab] 3[ ab] > h+(X)h_(X’) _4m4
1/2
= 2J d4xf d*x’ a2
512 + T(|<2+4m2)
% F(X)F(X’)J d’k eik(X*X’) 1 o
(2m)% - E(k2+4m2)2}61(k)+2hib(x)
11 2m? 4m?
XY+ =]|| —4m*— —K3| + — - 1 2 212
3 3 3 Xhap—(X") —1—5(k +4m°)= |G (k) ¢,
4
+ §m2(|<2+4m2)F1(k)H (E4) (E9)
and where
L[ h b]:;f d4xf d*x’
' 51202 . k?+4m?
Gy(k)=im T(~)(—|<2—4m2)(~)(—k°). (E9)

4
X[F(X)F(x’)J (‘;Tky‘eik<“’>[(v+4)(2m4)

—4m4F1(k)]] . (ES)
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