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Covariant velocity and density perturbations in quasi-Newtonian cosmologies

Roy Maartens
School of Computer Science and Mathematics, Portsmouth University, Portsmouth PO1 2EG, United Kingdom

~Received 2 June 1998; published 13 November 1998!

Recently a covariant approach to cold matter universes in the zero-shear hypersurfaces~or longitudinal!
gauge has been developed. This approach reveals the existence of an integrability condition, which does not
appear in standard non-covariant treatments. A simple derivation and generalization of the integrability con-
dition is given, based on showing that the quasi-Newtonian models are a sub-class of the linearized ‘‘silent’’
models. The solution of the integrability condition implies a propagation equation for the acceleration. It is
shown how the velocity and density perturbations are then obtained via this propagation equation. The density
perturbations acquire a small relative-velocity correction on all scales, arising from the fully covariant general
relativistic analysis.@S0556-2821~98!04622-0#

PACS number~s!: 04.25.Nx, 98.65.Dx, 98.80.Hw
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I. INTRODUCTION

Density and velocity perturbations of cold matter un
verses are crucial to the understanding of structure forma
in cosmology@1#. On scales well below the Hubble lengt
Newtonian theory may be used to analyze gravitational
stability. However, current and upcoming observations a
simulations are probing scales which are a significant fr
tion of the Hubble length, thus requiring a relativistic trea
ment@2#. Bardeen’s gauge-invariant theory@3# is most often
used for relativistic perturbations. Various choices of gau
are possible in the theory. The zero-shear hypersufaces~or
longitudinal! gauge@3,4# sets up a frame of reference whic
emulates that of Eulerian observers in Newtonian theo
thus motivating the term ‘‘quasi-Newtonian.’’ Since th
frame is non-comoving, there are relative-velocity effects
the density perturbations, and subtle issues arise in dea
with these effects, as pointed out recently by van Elst a
Ellis @5#. In order to resolve these problems in a fully gaug
invariant way, a covariant approach may be adopted.

The covariant and gauge-invariant approach to pertu
tions was developed by Ellis and Bruni@6# on the basis of
Hawking’s paper@7#. It has various advantages over the no
covariant gauge-invariant theory~see@8# for further discus-
sion!. One advantage is that all quantities have a direct
immediate physical or geometric meaning, and no nonlo
decomposition into scalar, vector or tensor modes is
quired. A second advantage is that the covariant appro
provides a natural and transparent setting to search for
grability conditions which may arise from constraints. The
general relativistic constraints and the consequences tha
low from their evolution, are often not made explicit. As
result, crucial general relativistic effects can sometimes
obscured or missed.

Covariant consistency analysis of constraints was de
oped by Maartens@9#, building on the methods of Lesam
et al. @10#, in a form applicable to both the nonlinear exa
theory and the case of linearized perturbations.~Further de-
velopments of the approach are given in@11–13#.! Applica-
tions of a covariant approach to ‘‘silent’’ universes@14–16#,
to nonlinear gravitational radiation@17,18#, and to non-
accelerating fluid models@19,20# reveal the existence of cru
cial integrability conditions. The covariant characterizati
0556-2821/98/58~12!/124006~8!/$15.00 58 1240
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of scalar, vector and tensor perturbations also relies on s
an approach@21–25#.

Van Elst and Ellis@5# use a covariant consistency analys
first in nonlinear quasi-Newtonian cosmologies and then
the case of covariant linearization about a Friedma
Lemaitre-Robertson-Walker~FLRW! background. They
show that the nonlinear models are likely in general to
inconsistent, except for special cases such as FLRW s
tions. Inconsistency of the nonlinear models is not surp
ing, since one is demanding for all possible dynamical e
lutions of matter that there exists a shearfree and irrotatio
congruence, which in particular forces the magnetic par
the Weyl curvature to vanish@26#. This rules out gravita-
tional radiation@15#, and thus leads to severe restrictions
the gravitational field@15,27,28#. In the linearized case, on
might expect that all the problematic terms which arise
evolving the constraints would be removed. It is implicitly
effectively assumed in standard non-covariant perturba
theory that there are no integrability conditions arising fro
the zero-shear hypersurfaces gauge.

However, it turns out that the linearized models are no
general consistent. Van Elst and Ellis introduce an ansatz
the evolution of the gravitational potential, which they mo
vate by a discussion of the lapse in Arnowitt-Deser-Misn
~ADM- !type approaches. Using this ansatz, they find an
tegrability condition in the linearized models. The integrab
ity condition is satisfied by a particular value of the consta
parameter in the ansatz.1 The reason that the integrabilit
condition is not revealed in some non-covariant treatment
probably either an implicit assumption that only evolutio
equations need be considered, or a gauge-dependent app
mation that effectively neglects the velocity and removes
constraints~see@5# for further discussion of this point!.

In this paper, extensions of the results of@5# on linearized
quasi-Newtonian models are given. The main result is
determination of the velocity and density perturbations.
crucial part of the analysis is the combined use of the
moving ~‘‘Lagrangian’’! and quasi-Newtonian~‘‘Eulerian’’ !
frames.

1For other values of the parameter, only very special models
pear to be consistent@5#.
©1998 The American Physical Society06-1
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Section II summarizes the necessary covariant equat
and methods, with some details given in appendices. Sec
III uses a transformation to the comoving frame in order
show that the quasi-Newtonian models are a sub-class o
linearized silent models. This is the basis for a simple a
direct approach to deriving the integrability condition in ge
eral, i.e., without introducing any ansatz for the gravitatio
potential. The general integrability condition reduces to
special form given in@5# when one imposes their ansatz f
the gravitational potential. Their ansatz is also generaliz
Furthermore, another integrability condition is derived
considering spatial consistency of the constraints. The
Elst-Ellis solution of the first integrability condition is show
to reduce the second condition to an identity.

The main result however, follows from the fact that t
van Elst-Ellis solution itself implies a crucial propagatio
equation for the 4-acceleration. This propagation equa
then leads to an equation determining the velocity pertur
tions. The equation is scale-independent, so that velocity
turbations have an effect on all scales. The velocity per
bation equation is readily solved analytically for a fl
background.

In Sec. IV, the density perturbations are found by a dir
and simple approach. The complicated calculations in@5# of
the energy flux~momentum density! source term in the den
sity perturbation equation are by-passed by considering
density perturbations in the comoving frame. Furthermo
the equation is solved for a flat background. The covari
correction to density perturbations that arises from relati
velocity effects is a simple comoving divergence term, wh
can be found from the velocity perturbations. This correct
affects all scales, although it is rapidly dominated by t
usual solution. The correction to the growing mode is co
sistent with the result of Takada and Futamase@2#, who use
non-covariant theory, but not in the zero-shear hypersurfa
gauge.

Concluding remarks are made in Sec. V.

II. COVARIANT EQUATIONS

Given a choice of 4-velocity fieldua ~with uaua521!,
the Ehlers-Ellis approach@29,30# employs only fully covari-
ant quantities and equations with transparent physical
geometric meaning. The quantities are split into spacet
scalars and spatially projected tensors, while the equat
split into evolution equations alongua and constraint equa
tions involving only spatial covariant derivatives. The
equations arise from the Ricci identity forua and the Bianchi
identities, with Einstein’s field equations incorporated via
gebraic replacement of the Einstein tensor by the ene
momentum tensorTab . The covariant linearization of the
equations is the basis for the Ellis-Bruni perturbation the
@6#. Integrability conditions, at both the nonlinear and line
levels, arise from investigating the derivatives of constra
equations~including additional conditions that may be im
posed by physical or geometric assumptions!, using covari-
ant differential identities and the evolution equations. T
streamlined and developed version of the Ehlers-Ellis f
malism given by Maartens@9# ~see also@23,31,32#! greatly
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facilitates such investigations, especially by making expl
the irreducible quantities and derivatives, which significan
simplifies the equations, and by developing the covari
identities which these quantities and derivatives obey.

The projection tensorhab5gab1uaub , wheregab is the
spacetime metric, and the projected alternating tensor«abc

5habcdu
d, where habcd52Augud0

[ad1
bd2

cd
3

d] is the
spacetime alternating tensor, are the basis for covariant
ducible splitting of tensors and derivatives. Projected ran
tensorsSab are split into a scalar trace, a projected vec
spatially dual to the skew part, and a projected symme
tracefree part:

Sab5 1
3 Scdh

cdhab1«abcS
c1S^ab& ,

where Sa5 1
2 «abcS

[bc]5S^a&[habS
b and S^ab&[@h(a

chb)
d

2 1
3 hcdhab#Scd . Covariant time and spatial derivatives a

defined by

Ṡa¯
b¯5uc¹cS

a¯
b¯ ,

DcS
a¯

b¯5hc
fha

d¯hb
e
¯¹ fS

d¯
e¯ ,

and then the covariant spatial divergence and curl are@9,23#

div V5DaVa , ~div S!a5DbSab , ~1!

curl Va5«abcD
bVc, curl Sab5«cd(aDcSb)

d. ~2!

The dynamic quantities are the energy densityr, the pressure
p, the energy fluxqa5q^a& , and the anisotropic stresspab
5p^ab& , so that

Tab5ruaub1phab12q(aub)1pab .

The kinematic quantities are given by

¹bua5Dbua2Aaub , Dbua5 1
3 Qhab1sab1«abcv

c,

where Q5Daua is the expansion,Aa5u̇a5A^a& is the 4-
acceleration,va52 1

2 curl ua5v^a& is the vorticity, and
sab5D^aub& is the shear. Finally, the gravito
electromagnetic fields are

Eab5Cacbdu
cud5E^ab& , Hab5 1

2 «acdC
cd

beu
e5H ^ab& ,

where Cabcd is the Weyl tensor, which represents th
locally free gravitational field @30,23#. The FLRW
background is then covariantly and gauge-invarian
characterized by: dynamics—Dar505Dap,qa50,pab50;
kinematics—DaQ50, Aa505va,sab50 ; gravito-electro-
magnetic field—Eab505Hab .

In this paper only the linearized quasi-Newtonian co
mologies are considered, since the main focus here is
perturbations and structure formation. The covariant line
ized evolution equations in the general case are@32#
6-2
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COVARIANT VELOCITY AND DENSITY . . . PHYSICAL REVIEW D 58 124006
ṙ52~r1p!Q2div q, ~3!

Q̇52 1
3 Q22 1

2 ~r13p!1div A, ~4!

q̇a524Hqa2~r1p!Aa2Dap2~div p!a , ~5!

v̇a522Hva2 1
2 curl Aa , ~6!

ṡab522Hsab2Eab1 1
2 pab1D^aAb& , ~7!

Ėab523HEab1curl Hab2 1
2 ṗab2 1

2 ~r1p!sab

2 1
2 D^aqb&2

1
2 Hpab , ~8!

Ḣab523HHab2curl Eab1 1
2 curl pab , ~9!

and the linearized constraint equations are

C 1[div v50, ~10!

C 2
a[~div s!a2curl va2 2

3 DaQ1qa50, ~11!

C 3
ab[curl sab1D^avb&2Hab50, ~12!

C 4
a[~div E!a1 1

2 ~div p!a2 1
3 Dar1Hqa50,

~13!

C 5
a[~div H !a1 1

2 curl qa2~r1p!va50, ~14!

whereH5ȧ/a is the background Hubble rate, related to t
background values ofr andp by

r53S H21
K
a2D , Ḣ1H252 1

6 ~r13p!, ~15!

with K50,61 the curvature index. The differential identitie
that are needed for investigating consistency and deriv
perturbation equations are collected in Appendix A.

If another 4-velocityũa is chosen, the corresponding k
nematic, dynamic and gravito-electromagnetic quantities
dergo transformations. For completeness, and since the
not appear elsewhere, the exact nonlinear form of th
transformations is given in Appendix B. Only the lineariz
form of the expressions is required below.

The covariant characterization of quasi-Newtonian c
mologies is as follows@5#: they are almost-FLRW dust uni
verses, with a congruence of observers whose 4-velo
field ua is irrotational, shearfree and nonrelativistic relati
to comoving observers. The comoving 4-velocityũa is given
by the linearized form of Eq.~B1!:

ũa5ua1va, ~16!
12400
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whereva is the nonrelativistic relative velocity, which van
ishes in the background. The models are thus defined in
quasi-Newtonian frame by

~dynamics! p50, qa5rva , pab50, ~17!

~kinematics! va50, sab50, ~18!

as shown by the linearized form of equations~B3!–~B10!.
Thus quasi-Newtonian cosmologies are irrotation
shearfree dust spacetimes with energy flux~momentum den-
sity! arising purely from a particle flux in the quas
Newtonian frame relative to the comoving frame. Note th
the isotropic and anisotropic stresses that arise from rela
motion are second order inva , as given by Eqs.~B8! and
~B10!.

The gravito-magnetic constraint equation~12!, together
with Eq. ~18!, shows that

Hab50. ~19!

Thus there is no gravitational radiation@15#, which further
justifies the term ‘‘quasi-Newtonian.’’ In addition, the divH
constraint~14!, together with Eq.~18!, shows thatqa is irro-
tational, and thus so isva :

curl va505curl qa . ~20!

Since the vorticity vanishes, it follows~see @4#! that va
5Dac, where the velocity potentialc is determined below.

III. INTEGRABILITY CONDITIONS

In irrotational dust models with vanishing energy flux a
anisotropic stress, the constraint equationsC A50 evolve
consistently with the evolution equations, even at the non
ear level, in the sense that@9# ~see also@11–13#!

ĊA5FA
BC B1GA

BaD
aC B,

whereF andG depend only on the kinematic, dynamic an
gravito-electromagnetic quantities~and not their derivatives!.
If one imposes the ‘‘silent’’ constraint~19!, then the nonlin-
ear models are generically inconsistent, but the lineari
models are consistent@14,15#. A very simple approach to the
integrability conditions for quasi-Newtonian cosmologi
follows from showing that these models are in fact a su
class of the linearized silent models. This can be seen
transforming to the comoving frame.

Linearizing the expressions in appendix B for the ca
where ua and ũa are any frames in nonrelativistic relativ
motion, one finds for the kinematic quantities

Q̃5Q1div v, ~21!

Ãa5Aa1 v̇a1Hva , ~22!

ṽa5va2 1
2 curl va , ~23!
6-3



n
es
ze
lit

an
e
e
.

e

Eq
s.
th

to
en

he

n
de-

t,

int.
-
ra-

be

r.
the

-

lst-
e
d

n-

the
nt
the

ROY MAARTENS PHYSICAL REVIEW D 58 124006
s̃ab5sab1D^avb& , ~24!

for the dynamic quantities

r̃5r, p̃5p, q̃a5qa2~r1p!va , p̃ab5pab ,
~25!

and for the gravito-electromagnetic field

Ẽab5Eab , H̃ab5Hab . ~26!

For ua the quasi-Newtonian frame andũa the comoving
frame, it follows from the Eqs.~17!–~26! that

p̃50, q̃a50, p̃ab50, ~27!

Ãa50, ṽa50, s̃ab5D^avb& , ~28!

Ẽab5Eab , H̃ab50. ~29!

Equations~27!–~29! constitute a covariant characterizatio
of linearized silent universes, except that the shear tak
special form. Thus quasi-Newtonian models are lineari
silent models with a special form of shear, and integrabi
conditions arise only from the restriction on the shear.

It is now convenient to return to the quasi-Newtoni
frame, where the restriction on the shear is that it vanish
Integrability conditions arise directly from the fact that th
shear propagation equation~7! is turned into a constraint, i.e
Eab5D^aAb& . This can be simplified, using curlAa50,
which follows from the vorticity propagation equation~6!,
and identity~A1!. Thus

Aa5Daw, ~30!

where w is the covariant relativistic generalization of th
Newtonian potential. Then the shear constraint becomes

Eab[Eab2D^aDb&w50. ~31!

In summary, the only independent new constraint is
~31!, and any conditions that follow from its derivative
What is happening here is that the consistent evolution of
basic constraintsC A (A51,2,...,5) is not affected by intro-
ducing a new constraint. It is the new constraintE which
leads to integrability conditions. The freedom in the gravi
electric field is clearly central to the consistency of the sil
models, and conversely, it is the longitudinal condition~31!
on that field which produces integrability conditions in t
quasi-Newtonian subcase.

A. Time evolution

The time derivative of Eq.~31! follows from the gravito-
electric propagation equation~8! and the identity

$D^aDb&s%•5D^aDb&ẇ1~ ẇ22H !D^aDb&w,

which is proved using identities~A3! and~A4! and Eq.~30!.
It follows that
12400
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Ėab523HEab2 1
2 D^aC 2

b&2~ ẇ1H !D^aDb&w

2D^aDb&~ ẇ1 1
3 Q!, ~32!

on using Eq.~11!. ThusEab evolves consistently if

D^aDb&~ ẇ1 1
3 Q!1~ ẇ1 1

3 Q!D^aDb&w50. ~33!

This is the first integrability condition in quasi-Newtonia
cosmologies. It represents an extension of the condition
rived in @5#, since there a particular ansatz is assumeda
priori for ẇ, i.e.,

ẇ5aQ,

wherea is a constant parameter. Choosinga52 1
3 , i.e.

ẇ1 1
3 Q50, ~34!

it is clear that the integrability condition~33! is reduced to an
identity.

Equation~34! will be adopted here, since it is covarian
has a clear geometric motivation~as given in@5#!, and guar-
antees consistent evolution of the gravito-electric constra
Before proceeding with the van Elst-Ellis solution, it is in
teresting to ask whether it may be generalized. The integ
bility condition ~33! may be rewritten as

D^aDb&$e
w~ẇ1 1

3 Q!%50. ~35!

This shows clearly how the van Elst–Ellis solution may
generalized to

ẇ1 1
3 Q5be2w, ~36!

where Dab50, i.e. b is an arbitrary background scala
There does not appear to be any advantage in adopting
generalized solution~36!. It is not clear whether more gen
eral solutions of the condition may be found.

What are the immediate consequences of the van E
Ellis solution to the integrability condition? First, the tim
evolution of Eq.~34! itself leads to the covariant modifie
Poisson equation

D2w5 1
2 r2~3ẅ1Qẇ!, ~37!

after using the Raychaudhuri equation~4!. This equation
governs the relativistic gravitational potential for a given e
ergy density.

Secondly, one can get a crucial evolution equation for
4-acceleration@5#. Such an evolution equation is not prese
in the set of general evolution equations. It arises via
shearfree condition, as a consequence of Eq.~34!. Taking the
gradient of Eq.~34!, and using identity~A3! and the divs
constraint~11!, one gets2

Ȧa12HAa52 1
2 rva . ~38!

2Note that the same evolution equation~38! is obtained if the
generalized solution~36! is used, withbÞ05Dab.
6-4
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COVARIANT VELOCITY AND DENSITY . . . PHYSICAL REVIEW D 58 124006
Now there is also an evolution equation forva @5#:

v̇a1Hva52Aa , ~39!

as follows from the conservation equations~3! and ~5!, or
from the comoving frame equations~22! and ~28!. This is
just the relativistic generalization of the Newtonian equat
for relative acceleration:

dvW
dt

52¹W w.

The coupled evolution equations~38! and ~39! may be de-
coupled to produce second order equations in either quan
For va :

v̈a13H v̇a2S H21
2K
a2 D va50, ~40!

on using Eq.~15!, while for Aa :

Äa16HȦa1
1

2 S 7H22
5K
a2 DAa50. ~41!

These equations may be solved to find the velocity pertu
tionsva and the 4-accelerationAa . Since there are no spatia
derivatives in Eq.~40!, the velocity perturbations are inde
pendent of scale.

For a flat background, withK50 andH}a23/2, Eq. ~40!
is readily solved analytically:

va5La
~1 !a1/21La

~2 !a22, ~42!

where~1! and~2! denote the growing and decaying mode
and L̇a

(6)50. Using Eq.~39!, the solution for the accelera
tion follows as

Aa52La
~1 !a211 2

3 La
~2 !a27/2. ~43!

Finally, one can derive another equation forw using Eq.
~34!, which implies, together with Eq.~11!, that

va52
2

r
Daẇ. ~44!

Then using Eq.~44! in Eq. ~40!, it follows that

Daẅ13HDaẇ2 1
3 ~r23H2!Daw50. ~45!

Note that the background energy conservation equation
Eq. ~44! determine the velocity potential in terms of th
gravitational potential:

va5Dac where c52S 2

r0a0
3Da3ẇ.

B. Spatial consistency

Spatial derivatives of the new constraintE determine
whether it is consistent withC A on an initial spatial surface
Taking the curl of Eq.~31! produces no restrictions, sinc
12400
n

ty.
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curl Eab50 by the gravito-magnetic propagation equati
~9! and constraint equation~12!, and since curl D̂aDb&w van-
ishes identically. This follows from using identities~A1! and
~A6!:

curl D^aDb&w5curl D(aDb)w5curl DaDbw

5«cd(aD[cDd]Db)w

5~H22 1
3 r!«cd(ahd

b)D
cw50.

The divergence however gives a nontrivial conditio
First, one needs an identity for the divergence of the dis
tion:

DbD^aAb&5
1
2 D2Aa1 1

6 Da~div A!1 1
3 ~r23H2!Aa ,

~46!

which holds for any projected vectorAa , and follows from
identity ~A6!. Using Eqs.~30! and ~A2!, it follows that

DbD^aDb&w5 2
3 Da~D2w!1 2

3 ~r23H2!Daw. ~47!

Now use Eqs.~47!, ~13! and ~11! to get

~div E!a5C 4
a2HC 2

a1 1
3 Dar2 2

3 HDaQ

2 2
3 Da~D2w!2 2

3 ~r23H2!Daw.

Thus there is a second integrability condition arising fro
Eq. ~31!, i.e.

Dar22HDaQ22Da~D2w!22~r23H2!Daw50.
~48!

In general, this appears to be independent of the first inte
bility condition ~33!. However, if one uses the van Elst–Ell
solution~34! of the first condition, then the second conditio
is identically satisfied. This can be seen as follows. Tak
the gradient of Eq.~37! and using Eq.~34!, one finds that the
second integrability condition~48! becomes

2@Daẅ13HDaẇ2 1
3 ~r23H2!Daw#50, ~49!

which is identically satisfied by virtue of Eq.~45!.

IV. DENSITY PERTURBATIONS

In @5# the density perturbation equation is found in t
quasi-Newtonian frame, which requires incorporating a co
plicated energy flux source term. A simple alternative is
work in the comoving frame, which leads directly to sol
tions of the density perturbation equation in terms of t
velocity perturbations.

The covariant density perturbation scalar@6# in the co-
moving frame is

d̃5aD̃ad̃a where d̃a5
aD̃ar

r
. ~50!

Using Eq.~50! and the identity

D̃af 5Daf 1 ḟ va ,
6-5
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ROY MAARTENS PHYSICAL REVIEW D 58 124006
it follows that to linear order the density perturbation scal
in the comoving and quasi-Newtonian frames are related

d5 d̃13a2HDava . ~51!

Covariant time derivatives in the comoving and qua
Newtonian frames agree to linear order:ũa¹aS5Ṡ. Thus d̃
satisfies the standard equation~with K50! for dust @6#

~ d̃ !••12H~ d̃ !•2 3
2 H2d̃50. ~52!

Since the solutiond̃ of Eq. ~52! is well known, one can use
Eq. ~51! to write down the density perturbations in the qua
Newtonian frame:

d5D~1 !a1D~2 !a23/21ga21/2V, ~53!

where Ḋ (6)50, and g52a1
3/2 is a constant, witha1

5a/t2/3, and

V5aDava

is the comoving divergence of the peculiar velocity fie
This quantity encodes the scalar contribution of velocity p
turbations to density perturbations. Using the solution~42!
for va , one finds that

V5G~1 !a1/21G~2 !a22 where G~6 !5aDaLa
~6 ! . ~54!

It follows from the identity~A4! that Ġ650. Then using Eq.
~54! in Eq. ~53! gives

d5D~1 !a1D~2 !a23/21gG~1 !1gG~2 !a25/2. ~55!

The correction to the standard solution affects all scales.
growing mode is shifted by an amount that is a comov
constant, which will be dominated by the term that grows
a. A similar feature arises in a non-covariant Lagrang
perturbation analysis~see@2#!. The decaying mode~not con-
sidered in@2#! is corrected by an amount which dies aw
more rapidly, and so becomes negligible.

V. CONCLUDING REMARKS

The covariant approach to quasi-Newtonian models
veloped by van Elst and Ellis@5# has been applied and ex
tended here, in order to derive and solve the equations g
erning density and velocity perturbations. The qua
Newtonian zero-shear hypersurfaces gauge~or longitudinal
gauge! implicitly involves integrability conditions—i.e. it in-
corporates a dynamical condition, and is not pure gau
This has been overlooked in some non-covariant treatme
effectively amounting to gauge-dependent assumptions a
relative-velocity effects. A fully covariant general relativist
treatment has uncovered these integrability conditions
their implication for the perturbations. The perturbatio
have been determined, making explicit the relative-veloc
effects.

The integrability condition found in@5# was generalized
via a simple approach that showed how the quasi-Newton
12400
s
y

-

-

.
-

e
g
s
n

-

v-
i-

e.
ts,
ut

d

y

n

models are in fact a sub-class of the linearized silent mod
The generalized first integrability condition~35! naturally
leads to the generalization~36! of the van Elst-Ellis solution
~34!. Furthermore, a second integrability condition~48! was
found by investigating spatial consistency. The integrabi
conditions were shown to be crucial for determining the p
turbations, since the solution~34! of the integrability condi-
tions implies a propagation equation~38! for the 4-
acceleration. In turn, this propagation equation leads to
velocity perturbation equation~40!, and the solution~42! was
given for a flat background. By transforming to the como
ing frame, a simple relation~51! was derived for the density
perturbations, which were given by Eq.~53! in terms of the
velocity perturbations and the standard dust solution for a
background. The density perturbations were given anal
cally by Eq. ~55!, which showed how relative-velocity ef
fects produce small corrections to both the growing and
caying modes on all scales.

These results underline the importance of general rela
istic constraint equations and the integrability conditions t
can arise from imposing various physical and geometric
sumptions in cosmology. A covariant approach@30,6# avoids
many of the intricate problems arising from gauge-depend
approaches. The improved covariant formalism of@9#, sum-
marized in Sec. II and supplemented by the identities of A
pendix A and the new results in Appendix B on transform
tions of the covariant quantities, has been central to deriv
these results. Similar methods can in principle be applied
investigate the consistency and underlying implications
other gauge choices or of various approximations~such as
the Zel’dovich approximation! in general relativistic cosmo
logical perturbations. This is a subject of further research

APPENDIX A: LINEARIZED IDENTITIES

Useful differential identities@32#:

curl Daf 522 ḟ va , ~A1!

D2~Daf !5Da~D2f !1 2
3 ~r23H2!Daf 12 ḟ curl va ,

~A2!

~Daf !•5Daḟ 2HDaf 1 ḟ Aa , ~A3!

~DaSb¯!•5DaṠb¯2HDaSb¯ , ~A4!

~D2f !•5D2ḟ 22HD2f 1 ḟ div A, ~A5!

D[aDb]Vc5 1
3 ~3H22r!V[ahb]c , ~A6!

D[aDb]S
cd5 2

3 ~3H22r!S[a
(chb]

d), ~A7!

div curl V50 ~A8!

~div curl S!a5 1
2 curl~div S!a , ~A9!

curl curl Va5Da~div V!2D2Va1 2
3 ~r23H2!Va ,

~A10!
6-6
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curl curl Sab5 3
2 D^a~div S!b&2D2Sab1~r23H2!Sab ,

~A11!

where the vectors and tensors vanish in the backgrou
Sab5S^ab& , and all identities except Eq.~A1! are linearized.
~Nonlinear identities are given in@9,11,23#.!

APPENDIX B: TRANSFORMATIONS UNDER CHANGE
OF FRAME

Change in 4-velocity:

ũa5g~ua1va!where vaua50, g5~12v2!21/2.
~B1!

The following algebraic relations are needed:

gab5hab2uaub5h̃ab2ũaũb ,

h̃ab5hab1g2@v2uaub12u(avb)1vavb#,

habcd52u[a«b]cd22«ab[cud]52ũ[a«̃b]cd22«̃ab[cũd] ,
12400
d,

«̃abc5g«abc1g$2u[a«b]cd1uc«abd%vd,

Cab
cd54$u[au[c1h[a

[c%Eb]
d]12«abeu

[cHd]e

12u[aHb]e«
cde

54$ũ[aũ[c1h̃[a
[c%Ẽb]

d]12«̃abeũ
[cH̃d]e

12ũ[aH̃b]e«̃
cde,

together with the decomposition@23#

¹bva52ub$v̇ ^a&1Acv
cua%

1ua$
1
3 Qvb1sbcv

c1@v,v#b%1 1
3 ~div v !hab

2 1
2 «abccurl vc1D^avb& , ~B2!

where @W,V#a[«abcW
bVc. Then the following exact non-

linear transformations may be derived.
Kinematic quantities~using¹ag5g3vb¹avb!:
Q̃5gQ1g~div v1Aava!1g3W, ~B3!

Ãa5g2Aa1g2$v̇ ^a&1
1
3 Qva1sabv

b2@v,v#a1~ 1
3 Qv21Abvb1sbcv

bvc!ua1 1
3 ~div v !va

1 1
2 @v,curl v#a1vbD^bva&%1g4W~ua1va!, ~B4!

ṽa5g2$~12 1
2 v2!va2 1

2 curl va1 1
2 vb~2vb2curl vb!ua1 1

2 vbvbva1 1
2 @A,v#a1 1

2 @ v̇,v#a1 1
2 «abcs

b
dvcvd%,

~B5!

s̃ab5gsab1g~11g2!u(asb)cv
c1g2A(a@vb)1v2ub)#1gD^avb&2

1
3 hab@Acv

c1g2~W2 v̇cv
c!#1g3uaub@scdv

cvd

1 2
3 v2Acv

c2vcvdD^cvd&1~g42 1
3 v2g221!W#1g3u(avb)@Acv

c1scdv
cvd2 v̇cv

c12g2~g22 1
3 !W#

1 1
3 g3vavb@div v2Acv

c1g2~3g221!W#1g3v ^av̇b&1v2g3u(av̇ ^b&)1g3v (asb)cv
c2g3@v,v# (a$vb)1v2ub)%

12g3vcD^cv (a&$vb)1ub)%, ~B6!

whereW[ v̇cv
c1 1

3 v2 div v1vcvdD^cvd& .
Dynamic quantities~compare@33#!:

r̃5r1g2@v2~r1p!22qava1pabv
avb#, ~B7!

p̃5p1 1
3 g2@v2~r1p!22qava1pabv

avb#, ~B8!

q̃a5gqa2gpabv
b2g3@~r1p!22qbvb1pbcv

bvc#va2g3@v2~r1p!2~11v2!qbvb1pbcv
bvc#ua , ~B9!

p̃ab5pab12g2vcpc(a$ub)1vb)%22v2g2q(aub)22g2q(avb)2
1
3 g2@v2~r1p!22qcv

c1pcdv
cvd#hab

1 1
3 g4@2v4~r1p!24v2qcv

c1~32v2!pcdv
cvd#uaub1 2

3 g4@2v2~r1p!2~113v2!qcv
c12pcdv

cvd#u(avb)

1 1
3 g4@~32v2!~r1p!24qcv

c12pcdv
cvd#vavb . ~B10!

Gravito-electromagnetic field:

Ẽab5g2$~11v2!Eab1vc@2«cd(aHb)
d12Ec(aub)1~uaub1hab!Ecdv

d22Ec(avb)12u(a«b)cdH
deve#%, ~B11!

H̃ab5g2$~11v2!Hab1vc@22«cd(aEb)
d12Hc(aub)1~uaub1hab!Hcdv

d22Hc(avb)22u(a«b)cdE
deve#%.

~B12!
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