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Covariant velocity and density perturbations in quasi-Newtonian cosmologies
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Recently a covariant approach to cold matter universes in the zero-shear hypers(ofaoegitudina)
gauge has been developed. This approach reveals the existence of an integrability condition, which does not
appear in standard non-covariant treatments. A simple derivation and generalization of the integrability con-
dition is given, based on showing that the quasi-Newtonian models are a sub-class of the linearized “silent”
models. The solution of the integrability condition implies a propagation equation for the acceleration. It is
shown how the velocity and density perturbations are then obtained via this propagation equation. The density
perturbations acquire a small relative-velocity correction on all scales, arising from the fully covariant general
relativistic analysis[S0556-282(98)04622-0

PACS numbd(s): 04.25.Nx, 98.65.Dx, 98.80.Hw

I. INTRODUCTION of scalar, vector and tensor perturbations also relies on such
an approach21-25.

Density and velocity perturbations of cold matter uni- Van Elst and Elli§5] use a covariant consistency analysis
verses are crucial to the understanding of structure formatiofist in nonlinear quasi-Newtonian cosmologies and then in
in cosmology[1]. On scales well below the Hubble length, the case of covariant linearization about a Friedmann-
Newtonian theory may be used to analyze gravitational in-€maitre-Robertson-Walker(FLRW) ~background. They

stability. However, current and upcoming observations angoW that the nonlinear models are likely in general to be
simulations are probing scales which are a significant fraclnconsistent, except for special cases such as FLRW solu-
tion of the Hubble length, thus requiring a relativistic treat- 10nS: Inconsistency of the nonlinear models is not surpris-
ment[2]. Bardeen’s gauge-invariant thedi] is most often  INg: Since one is demanding for all possible dynar_nlcal evo-
used for relativistic perturbations. Various choices of gaugéutlons of matter that there exists a shearfree and irrotational
are possible in the theory. The zero-shear hypersufames Ccongruence, which in partigular forcgs the magnetic part of
longitudina) gauge[3,4] sets up a frame of reference which the Weyl curvature to vanisf26]. This rules out gravita-

emulates that of Eulerian observers in Newtonian theorytional radiation[15], and thus leads to severe restrictions on

thus motivating the term “quasi-Newtonian.” Since the the gravitational field15,27,28. In the linearized case, one

frame is non-comoving, there are relative-velocity effects orfM9Nt expect that all the problematic terms which arise in
the density perturbations, and subtle issues arise in dealifg0!ving the constraints would be removed. It is implicitly or
with these effects, as pointed out recently by van Elst ang'ectively assumed in standard non-covariant perturbation
Ellis [5]. In order to resolve these problems in a fully gauge_theory that there are no integrability conditions arising from
invariant way, a covariant approach may be adopted. the zero-shear hypersurfaces gauge. _
The covariant and gauge-invariant approach to perturba- However, it turns out that the linearized models are not in
tions was developed by Ellis and Brufé] on the basis of general consistent. Van Elst and Ellis introduce an ansatz for

Hawking’s papef7]. It has various advantages over the non-the evolutioln of th_e gravitational pptential, \{vhich they moti—
covariant gauge-invariant theotgee[8] for further discus- V&€ by a discussion of the lapse in Arnowitt-Deser-Misner-
sion). One advantage is that all quantities have a direct an&ADM'_)pre approaphes. L_Jsmg'th|s ansatz, they.fmd an in-
immediate physical or geometric meaning, and no nonlocaﬁegrab'“_ty co_ndmo_n in the Ilnearlz_ed models. The integrabil-
decomposition into scalar, vector or tensor modes is relty condltlon is satisfied by a particular value of_ the constant
quired. A second advantage is that the covariant approadp@rameter in the ansatzThe reason that the integrability
provides a natural and transparent setting to search for int&2ndition is not revealed in some non-covariant treatments is
grability conditions which may arise from constraints. ThesgProbably either an implicit assumption that only evolution
general relativistic constraints and the consequences that fgfduations need be considered, or a gauge-dependent approxi-
low from their evolution, are often not made explicit. As a mation that effectively neglects the velocity and removes the

result, crucial general relativistic effects can sometimes b&onstraints(see[S] for further discussion of this point

obscured or missed. In_thls paper, extensions of the resultd 6f on Ilnearlzgd
Covariant consistency analysis of constraints was devefduasi-Newtonian models are given. The main result is the

oped by Maarten§9], building on the methods of Lesame dete_rmlnatlon of the velo_C|ty and denS|_ty perturbations. A

et al.[10], in a form applicable to both the nonlinear exact ¢Tucial part of the analysis is the combined use of the co-

theory and the case of linearized perturbatidffsirther de- MoVing (“Lagrangian”) and quasi-Newtoniafi‘Eulerian”)

velopments of the approach are giveri1—13.) Applica-  rames.

tions of a covariant approach to “silent” universgii—18,

to nonlinear gravitational radiatiofl7,18, and to non-

accelerating fluid modeldl9,2Q reveal the existence of cru-  For other values of the parameter, only very special models ap-

cial integrability conditions. The covariant characterizationpear to be consistef§].
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Section Il summarizes the necessary covariant equatiorfacilitates such investigations, especially by making explicit
and methods, with some details given in appendices. Sectidhe irreducible quantities and derivatives, which significantly
lIl uses a transformation to the comoving frame in order tosimplifies the equations, and by developing the covariant
show that the quasi-Newtonian models are a sub-class of thidentities which these quantities and derivatives obey.
linearized silent models. This is the basis for a simple and The projection tensoh,,=g,,+ U,U,, Whereg,, is the
direct approach to deriving the integrability condition in gen-spacetime metric, and the projected alternating tesggg
eral, i.e., without introducing any ansatz for the gravitational= 7,,.u%, where 7,pc=—]9[6%.6%6%8%; is the
potential. The general integrability condition reduces to thespacetime alternating tensor, are the basis for covariant irre-
special form given ir}5] when one imposes their ansatz for ducible splitting of tensors and derivatives. Projected rank-2
the gravitational potential. Their ansatz is also generalizectensorssab are split into a scalar trace, a projected vector
Furthermore, another integrability condition is derived byspatially dual to the skew part, and a projected symmetric
considering spatial consistency of the constraints. The vatracefree part:

Elst-Ellis solution of the first integrability condition is shown
to reduce the second condition to an identity.

The main result however, follows from the fact that the
van E_Ist-EII|s solution itself _|mpI|es_a crucial propagation \ynare Saz%sabcslbc]=5<a)5habsb and S(ab>E[h(achb)d
equation for the 4-acceleration. This propagation equatlon_%hcdh ,1S.q. Covariant time and spatial derivatives are
then leads to an equation determining the velocity perturbagafined aby ¢
tions. The equation is scale-independent, so that velocity per-
turbations have an effect on all scales. The velocity pertur-

Sap= %Scdthhab+ EabcS + S(ab) )

bation equation is readily solved analytically for a flat S =UV S
background.
In Sec. 1V, the density perturbations are found by a direct DSy .. =h 'hdy - hy& VS8

and simple approach. The complicated calculationb]jrof

the energy flumomentum densifysource term in the den- g then the covariant spatial divergence and cur[@28]
sity perturbation equation are by-passed by considering the

density perturbations in the comoving frame. Furthermore,

- ) v\ = ; _nb
the equation is solved for a flat background. The covariant div V=D%,, (divS);=D"Sy, (1)
correction to density perturbations that arises from relative-

velocity effects is a simple comoving divergence term, which curl Vy= g4, DPVC,  curl Syp= Scd(aDCSb)d- )

can be found from the velocity perturbations. This correction

affects all scales, although it is rapidly dominated by theThe dynamic quantities are the energy dengitthe pressure

usual solution. The correction to the growing mode is cony, the energy fluxg,= O¢ay» and the anisotropic stress,y,
sistent with the result of Takada and Futamg®e who use  — T(any, SO that

non-covariant theory, but not in the zero-shear hypersurfaces
gauge.

Concluding remarks are made in Sec. V. Tap=pUalp+ Phapt 2q(aUp) + ap-

The kinematic quantities are given by
Il. COVARIANT EQUATIONS

Given a choice of 4-velocity fieldi® (with udu,=—1), VpUa=DpUa=Aalp, Dplla=30Nap+ ap+ apce’,
the Ehlers-Ellis approadt?9,30 employs only fully covari- . _ . _
ant quantities and equations with transparent physical anffhere © =D is the expansionA,=Us=A, is the 4-
geometric meaning. The quantities are split into spacetim@CCeleration, wa=—;curlu,=w, is the vorticity, and
scalars and spatially projected tensors, while the equatior€ab=DUny IS the shear.  Finally, the gravito-
split into evolution equations along® and constraint equa- ©'ectromagnetic fields are
tions involving only spatial covariant derivatives. These
equations arise from the Ricci identity fof and the Bianchi Eab= Cacpduiu= E(ap), Hap= 2 €2cdCC%eus= Haby»
identities, with Einstein’s field equations incorporated via al-
gebraic replacement of the Einstein tensor by the energywhere C,,.q is the Weyl tensor, which represents the
momentum tensofl,,. The covariant linearization of the locally free gravitational field [30,23. The FLRW
equations is the basis for the Ellis-Bruni perturbation theorybackground is then covariantly and gauge-invariantly
[6]. Integrability conditions, at both the nonlinear and linearcharacterized by: dynamics—p=0=D,p,q,=0,7,,=0;
levels, arise from investigating the derivatives of constrainkinematics—R® =0,A,=0=w,,0,,=0; gravito-electro-
equations(including additional conditions that may be im- magnetic field—E,,=0=H,,.
posed by physical or geometric assumptjonssing covari- In this paper only the linearized quasi-Newtonian cos-
ant differential identities and the evolution equations. Themologies are considered, since the main focus here is on
streamlined and developed version of the Ehlers-Ellis forperturbations and structure formation. The covariant linear-
malism given by Maarteng9] (see alsd23,31,33) greatly ized evolution equations in the general case[3&3
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p=—(p+p)®—div q, 3 wherev? is the nonrelativistic relative velocity, which van-
ishes in the background. The models are thus defined in the
quasi-Newtonian frame by

O=—-30%-3(p+3p)+div A, (4)

(dynamicg p=0, 0a=pva, map=0, 17)
0a=—4Hda—(p+P)Aa—Dap—(div m),, ©)

(kinematic$ w,=0, o,,=0, (18
w,=—2Hw,— 3curl A,, (6)

as shown by the linearized form of equatiofi&3)—(B10).
Thus quasi-Newtonian cosmologies are irrotational,
Tap=—2H0p—Eapt 3 7apt D(aAby » (7) shearfree dust spacetimes with energy flekomentum den-
sity) arising purely from a particle flux in the quasi-
Newtonian frame relative to the comoving frame. Note that

Eab=—3HEa,+curl Hay— 3ap— 3(p+P)oap the isotropic and anisotropic stresses that arise from relative
. X ) Eqs(B
_%D<aqb)_%H7Tabv ®) Egcitg)).n are second order in,, as given by Eqs(B8) and
The gravito-magnetic constraint equati¢h?), together
H.,= —3HH,—curl Eg,+ scurl 7y, (9)  with Eq. (18), shows that
and the linearized constraint equations are Hop=0. (19)
Cl=div w=0, (10) Thus there is no gravitational radiati¢ta5], which further

justifies the term “quasi-Newtonian.” In addition, the di
constraint(14), together with Eq(18), shows that, is irro-

C?=(div 0),—curl w,—5D,0 +0,=0, (1) tational, and thus so is,:

CsabECUrl OapT D<awb>— Hab: 0, (12) curl UaZOZCUrl (o (20)
. _ L ) Since the vorticity vanishes, it followssee [4]) that v,

Ca=(div E)q+3(div 7)a— 35Dap+Hq,=0, 13 =D,y, where the velocity potential is determined below.

lIl. INTEGRABILITY CONDITIONS

Ca=(div H)a+2curl ga=(p+p)wa=0, (14 In irrotational dust models with vanishing energy flux and

anisotropic stress, the constraint equatiaghfs=0 evolve
consistently with the evolution equations, even at the nonlin-
ear level, in the sense thid] (see alsd11-13)

whereH =4a/a is the background Hubble rate, related to the
background values g# andp by

K\ . :
p=3|H*+ 5|, H+H?=—3(p+3p), (19 CA=FAgCB+G"g,DCE,

_ i _ o .. whereF andG depend only on the kinematic, dynamic and
with =0,=1 the curvature index. The differential identities gravito-electromagnetic quantitiéand not their derivatives
that are needed for investigating consistency and deriving one imposes the “silent” constrairtL9), then the nonlin-
perturbation equations are collected in Appendix A.  ear models are generically inconsistent, but the linearized

If another 4-velocityli® is chosen, the corresponding ki- models are consistefit4,15. A very simple approach to the
nematic, dynamic and gravito-electromagnetic quantities Unmtegrability conditions for quasi-Newtonian cosmologies
dergo transformations. For completeness, and since they dgjiows from showing that these models are in fact a sub-
not appear elsewhere, the exact nonlinear form of thesgass of the linearized silent models. This can be seen by
transformations is given in Appendix B. Only the linearized transforming to the comoving frame.
form of the expressions is required below. _ Linearizing the expressions in appendix B for the case

The covariant characterization of quasi-Newtonian coSyhere u? andi? are any frames in nonrelativistic relative
mologies is as follow$5]: they are almost-FLRW dust uni- motion, one finds for the kinematic quantities
verses, with a congruence of observers whose 4-velocity
field u? is irrotational, shearfree and nonrelativistic relative O=0+div v, (21
to comoving observers. The comoving 4-velodifyis given

by the linearized form of EqB1): A =A.+0.+Ho (22)
a a a a?

Te=u+p?, (16) Wa=wa—3curl vy, (23
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Tab= 0apt Diavyy, (24
for the dynamic quantities
P=p, P=P. TGa=0a—(ptP)Va, Tap=Tap;
(25)
and for the gravito-electromagnetic field
Eap=Eap, Hap=Hap. (26)

For u? the quasi-Newtonian frame ariif the comoving
frame, it follows from the Eqs(17)—(26) that

~p:O, aa: 0: %ab: Ov (27)
AA‘a=0, H)a=0, a'ab= D(avb> ) (28)
Eap=Eap, Hap=0. (29

Equations(27)—(29) constitute a covariant characterization

of linearized silent universes, except that the shear takes

PHYSICAL REVIEW D 58 124006

Eab=—3HEap—3D(aC%,— (& +H)D(2Dpy

—D(aDpy (¢ +30), (32
on using Eq(11). Thus&,, evolves consistently if
D(aDpy(¢+30)+($+30)D(Dpye=0. (33

This is the first integrability condition in quasi-Newtonian
cosmologies. It represents an extension of the condition de-
rived in [5], since there a particular ansatz is assumed
priori for ¢, i.e.,

o=a0,
wherea is a constant parameter. Choosing — 3, i.e.
p+30=0, (34

it is clear that the integrability conditio{83) is reduced to an
identity.

Equation(34) will be adopted here, since it is covariant,
has a clear geometric motivati¢as given in[5]), and guar-

special form. Thus quasi-Newtonian models are linearize@ntees consistent evolution of the gravito-electric constraint.
silent models with a special form of shear, and integrabilityB€fore proceeding with the van Elst-Ellis solution, it is in-

conditions arise only from the restriction on the shear.

teresting to ask whether it may be generalized. The integra-

It is now convenient to return to the quasi-Newtonian Pility condition (33) may be rewritten as

frame, where the restriction on the shear is that it vanishes.
Integrability conditions arise directly from the fact that the

shear propagation equati¢r is turned into a constraint, i.e.
Eab=D(aApy. This can be simplified, using cud,=0,
which follows from the vorticity propagation equatidf),
and identity(Al). Thus
A,=D,o, (30
where ¢ is the covariant relativistic generalization of the
Newtonian potential. Then the shear constraint becomes

Eab=Eap— D(an)‘P =0. (3D

D(.Dpy{€*(p+40)}=0. (39
This shows clearly how the van Elst—Ellis solution may be
generalized to
pt30=pe¢, (36)

where DB=0, i.e. B is an arbitrary background scalar.
There does not appear to be any advantage in adopting the
generalized solutiori36). It is not clear whether more gen-
eral solutions of the condition may be found.

What are the immediate consequences of the van Elst-
Ellis solution to the integrability condition? First, the time
evolution of Eq.(34) itself leads to the covariant modified

In summary, the only independent new constraint is Eqpgisson equation

(31), and any conditions that follow from its derivatives.

What is happening here is that the consistent evolution of the

basic constraint€” (A=1,2,..,5) is not affected by intro-
ducing a new constraint. It is the new constrathtvhich

leads to integrability conditions. The freedom in the gravito-

D?p=3p—(39+0¢), 37

after using the Raychaudhuri equatiof). This equation
governs the relativistic gravitational potential for a given en-

electric field is clearly central to the consistency of the silentergy density.

models, and conversely, it is the longitudinal conditi@4)

Secondly, one can get a crucial evolution equation for the

on that field which produces integrability conditions in the 4-acceleratiori5]. Such an evolution equation is not present

guasi-Newtonian subcase.

A. Time evolution

The time derivative of Eq(31) follows from the gravito-
electric propagation equatig8) and the identity

{D(aDpya}"=D(aDpyp+ (¢ —2H) DDy o,

which is proved using identitiegg\3) and(A4) and Eq.(30).
It follows that

in the set of general evolution equations. It arises via the
shearfree condition, as a consequence of(84). Taking the
gradient of Eq.(34), and using identitfA3) and the divo
constraint(11), one get$

A +2HA,=— (39

1
2PVa-

°Note that the same evolution equati@®B) is obtained if the
generalized solutio36) is used, with3+0=D,S.
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Now there is also an evolution equation oy [5]: curl E;p=0 by the gravito-magnetic propagation equation
(9) and constraint equatio12), and since curl Dy, ¢ van-
ishes identically. This follows from using identiti€s1) and
(AB):

VatHu,=—A,, (39

as follows from the conservation equatiof® and (5), or
from the comoving frame equatior{22) and (28). This is

: L A ; . curl D;zDpy¢=curl DDy ¢=curl D,D
just the relativistic generalization of the Newtonian equation (a=b)® (a=b)® a=b®

for relative acceleration: = &.4aD!°DYDpy
do R
d_l::_V(P_ =(H?~3p)&cqahs)D°e=0.

The divergence however gives a nontrivial condition.
The coupled evolution equatiori88) and (39) may be de- First, one needs an identity for the divergence of the distor-
coupled to produce second order equations in either quantityion:
Forv,:
D°DyaApy = 3D?A,+ & D,(div A) +3(p—3H?)A,,
(46)

, 2K
H™ 27

Uat3Hu,— v,=0, (40
which holds for any projected vectéy,, and follows from

on using Eq(15), while for A, : identity (A6). Using Egs.(30) and(A2), it follows that

D°D(.Dpy¢=5Da(D’¢) +3(p—3H*)Dap.  (47)

. . 1 5K
A,+6HA,+ = | TH?— —|A,=0. 41
a a’ 2 a2> a “Y) Now use Eqs(47), (13) and(11) to get
These equations may be solved to find the velocity perturba- (div £),=C*,—HC?,+ iD,p— 2HD,O®

tionsv, and the 4-acceleratiofy, . Since there are no spatial

derivatives in Eq.(40), the velocity perturbations are inde-

pendent of scale. Thus there is a second integrability condition arising from
For a flat background, withC=0 andHx=a~*?, Eq. (40) Eq. (31), i.e 9 y g

is readily solved analytically: ' e

—2Da(D%) — 5(p—3H?)D,e.

D,p—2HD,® —2D,(D%p)—2(p—3H?)D,¢=0.
b= Aal24 A)a 2, (42) aP a 2(Dp)—2(p )Da¢ .

where(+) and(—) denote the growing and decaying modes, In general, this appears to be independent of the first integra-
and Agi)zo. Using Eq.(39), the solution for the accelera- bility condition (33). However, if one uses the van Elst—Ellis

tion follows as solution(34) of the first condition, then the second condition
is identically satisfied. This can be seen as follows. Taking
A=—APa 1+ 2A)a 72 (43)  the gradient of Eq(37) and using Eq(34), one finds that the

second integrability conditiof48) becomes
Finally, one can derive another equation fousing Eqg.

(34), which implies, together with Eq11), that 2[D,p+3HD,p—3(p—3H?)DLe]=0, (49
2 which is identically satisfied by virtue of E¢45).
Ua=— ; Dae. (44

IV. DENSITY PERTURBATIONS

Then using Eq(44) in Eq. (40), it follows that In [5] the density perturbation equation is found in the

D,p+3HDap— 2 (p—3H2)D,o=0. (45  Quasi-Newtonian frame, which requires incorporating a com-
plicated energy flux source term. A simple alternative is to

Note that the background energy conservation equation andork in the comoving frame, which leads directly to solu-

Eq. (44) determine the velocity potential in terms of the tions of the density perturbation equation in terms of the

gravitational potential: velocity perturbations.

The covariant density perturbation scal& in the co-
moving frame is

va=D, where y=—|—3|a3op.
Pog

abap

‘5=aD¥, where §,= (50)

B. Spatial consistency

Spatial derivatives of the new constraifit determine  Using Eq.(50) and the identity
whether it is consistent witi* on an initial spatial surface. _ _
Taking the curl of Eq.(31) produces no restrictions, since D,f=D,f+fu,,
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it follows that to linear order the density perturbation scalaramodels are in fact a sub-class of the linearized silent models.
in the comoving and quasi-Newtonian frames are related byfhe generalized first integrability conditiof85) naturally
_ leads to the generalizatiq6) of the van Elst-Ellis solution
5=6+3a’HD%,. (52 (34). Furthermore, a second integrability conditi@8) was
found by investigating spatial consistency. The integrability
Covariant time derivatives in the comoving and quasi-conditions were shown to be crucial for determining the per-
Newtonian frames agree to linear ord&?V,S=S. Thusé turbations, since the solutiai34) of the integrability condi-

satisfies the standard equatigmith X=0) for dust[6] tions implies a propagation equatio(88) for the 4-
5 5 acceleration. In turn, this propagation equation leads to the
()" +2H(S) - :H%5=0. (520  velocity perturbation equatio@0), and the solutiori42) was

5 given for a flat background. By transforming to the comov-
Since the solutiors of Eq. (52) is well known, one can use ing frame, a simple relatiofb1) was derived for the density
Eq. (51) to write down the density perturbations in the quasi-perturbations, which were given by EG3) in terms of the

Newtonian frame: velocity perturbations and the standard dust solution for a flat
background. The density perturbations were given analyti-
s=AMa+A a2+ ya~ 12, (53 cally by Eq.(55), which showed how relative-velocity ef-

) fects produce small corrections to both the growing and de-
where A(*)=0, and y=2a¥? is a constant, witha;  caying modes on all scales.
=a/t?® and These results underline the importance of general relativ-
istic constraint equations and the integrability conditions that
V=aD%, can arise from imposing various physical and geometric as-
. ) . . __sumptions in cosmology. A covariant approa8h,6] avoids
is the comoving divergence of the peculiar velocity field. nany of the intricate problems arising from gauge-dependent
This quantity encodes the scalar contribution of velocity Per-approaches. The improved covariant formalisnf@jf sum-
turbations to density perturbations. Using the solutié®)  narized in Sec. Il and supplemented by the identities of Ap-
for v,, one finds that pendix A and the new results in Appendix B on transforma-
. . tions of the covariant quantities, has been central to derivin
V=I"a?+T7a™2 where I'*)=aD’A{™. (54 {hece results, Similar?‘nethods can in principle be applied tg
) ) - _ investigate the consistency and underlying implications of
It foII_ows from th_e identity(A4) thatI'==0. Then using EQ. gther gauge choices or of various approximatiésisch as
(54) in Eq. (53) gives the Zel'dovich approximationin general relativistic cosmo-
5=AFat AC)a=324 L)1 o[ (1a=52 (55 logical perturbations. This is a subject of further research.

The correction to the standard solution affects all scales. The APPENDIX A: LINEARIZED IDENTITIES
growing mode is shifted by an amount that is a comoving | seful differential identitie§32]:

constant, which will be dominated by the term that grows as
a. A similar feature arises in a non-covariant Lagrangian
perturbation analysissee[2]). The decaying modéot con-
sidered in[2]) is corrected by an amount which dies away
more rapidly, and so becomes negligible.

curl Dyf=—2fw,, (A1)

DXD,f )=Dy(D% )+ 2(p—3H?)D,f+2 feurl w,,

(A2)

V. CONCLUDING REMARKS (D,f )= Daf_ HD,f + an, (A3)
The covariant approach to quasi-Newtonian models de-

veloped by van Elst and EIlig5] has been applied and ex- (DsSy...)" =D,S,...—HDsS,..., (A4)
tended here, in order to derive and solve the equations gov-

erning density and velocity perturbations. The quasi- . P
Newtonian zero-shear hypersurfaces gatgelongitudinal (D*f )"=D*f =2HD*f +f div A, (A5)
gauge implicitly involves integrability conditions—i.e. it in-
corporates a dynamical condition, and is not pure gauge. D[an]Vc:%(3H2_P)V[ahblc' (A6)
This has been overlooked in some non-covariant treatments, 42 ) (or d)
effectively amounting to gauge-dependent assumptions about D1aDyy S*°=5(3H"~p) §5"°hy ©, (A7)
relative-velocity effects. A fully covariant general relativistic
treatment has uncovered these integrability conditions and  div curl V=0 (A8)
their implication for the perturbations. The perturbations
have been determined, making explicit the relative-velocity  (div curl S),=3curl(div S),, (A9)
effects.

The integrability condition found ifi5] was generalized, curl curl V,=D,(div V) —D?V,+ 3(p—3H?)V,,
via a simple approach that showed how the quasi-Newtonian (A10)
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curl curl Sab: %D(a(dlv S)b)_ DZSab+ (p_ 3H2)S(a£i1) Eabc: Y€apcT 7{2U[a8b]cd+ UCSabd}Ud,

cd_ [c [c d] [cyd]e
where the vectors and tensors vanish in the background, Cap™ = AUl *+ hia By ™+ 2e apet™H
Sab=S(any» @nd all identities except E¢A1) are linearized. +2u[aHb]enge
(Nonlinear identities are given if9,11,23.)
= 4{T U+ D[ By T+ 28 p LR e
APPENDIX B: TRANSFORMATIONS UNDER CHANGE
OF FRAME +2u[aﬁb]e’50dev
Change in 4-velocity: . .
9 Y together with the decompositidi23]
TU,=y(uy+va)where v ,ud=0, y=(1-v?) 2

(B1) Vpva=— ub{i}(a>+Acvcua}

The following algebraic relations are needed: +U{30v,+ op v+ [w,v]}+ 3(div v)hgy
Oab=hap— Uan:Flab_TJan, — 3&apcurl UC+D(avb>’ (B2)
hap=hap+ v v2uu,+ 2U(aUp) + U Vb, where[W,V],= &, WPVC. Then the following exact non-

linear transformations may be derived.
Nabcd— 2U[a8 blcd ™ 28ab[cud] = Zﬁ[a'éb]cd— Zgab[c'ud] s Kinematic quantitieilJSing Va’)/: ‘}’30 bVav b):
0 =70+ y(div v +A%,) + y°W, (B3)

Aa= Y2A,+ yz{i)<a>+ 10v,+ 00— [w,0]a+ (302 + APy + o0 v ) Uy + 2 (div v)v,
+ v, curl v]a+UbD<bva>}+ Y*W(u,+v,), (B4)

@a=7Y4{(1— 30> wa—3curl v+ 2vp(20P—curl vP)u+ 20,0 v 4+ A v]at [0, 0]t %sabccrbdvcvd}, -
Tap=YOapt ¥(1+ VZ)U(an)cUC+ ?’ZA(a[U b)+l12ub)] +yDavp)— $Nap[ Acv S+ YA(W—=0 0% ]+ y2uaupl ocqv o
+302A0° 00D g+ (¥ 302 Y2 = W]+ YU p) [ Av S+ e 0= 0+ 292(y2— 5 W]
+397%va0pldiV v = A+ YA(3Y? = D)W+ Y20 (20 5y + 07 YU(ad (b)) + Y20 a0y *— ¥ [ 0,0 ] (af vy + 02Uy}
+2'ysv°D<cv(a>{vb)+ub)}, (B6)
1

whereW=p v °+ 3v? div U+UcUdD<CUd> .
Dynamic quantitiefcompare 33]):

p=p+ ¥ [v2(p+p)—200%+ mapv "], (B7)
P=p+3570v%(p+Pp)—200%+ T "], (B8)
Ga=v9a— 77Tabvb_ 73[(P+ p)— ZQbUb+ 71'bcvbvc]va_ 73[U2(P+ p)— (1+UZ)QbUb+ 71'bcvbvc]uai (B9)

Trab= Tapt 2770 Te(a{Up) + Uby} = 202 ¥ 0(alipy = 27°q(av) — 3 ¥ L0 %(p+ P) = 2qcv+ meqv v Thgp
+3y120%(p+p) — 40200+ (3= v?) v v UaUp + 5 ¥ 20%(p+ p) — (14 302) Qv+ 27 v v Tu v,
+371(8—v?)(p+Pp)—4qw+2meqv v v - (B10)
Gravito-electromagnetic field:

Eap=Y*{(1+0v)Egp+ v 26 ¢qaH b)d+ 2E(aUpy+ (UaUp+hyp) Ecqv®- 2Eavp) t+ 2u(a8b)cdeeve]}v (B1Y)

Hap= v (1+0?)Hap+v — 28cd(aEb)d+ 2H ¢(aUpy+ (UaUp+hyp) Heqv?—2H c(alb)~ 2U(a8b)chdeUe]}- (12
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