PHYSICAL REVIEW D, VOLUME 58, 124002

Gravitational field and equations of motion of compact binaries to 5/2 post-Newtonian order
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We derive the gravitational field and equations of motion of compact binary systems up to the 5/2 post-
Newtonian approximation of general relativityhere radiation-reaction effects first appedihe approximate
post-Newtonian gravitational field might be used in the problem of initial conditions for the numerical evolu-
tion of binary black-hole space-times. On the other hand, we recover the Damour-Deruelle 2.5PN equations of
motion of compact binary systems. Our method is based on an expression of the post-Newtonian metric valid
for general(continuou$ fluids. We substitute into the fluid metric the standard stress-energy tensor appropriate
for a system of two pointlike particles. We remove systematically the infinite self-field of each particle by
means of the Hadamard finite part regularizati80556-282(98)08820-1

PACS numbd(s): 04.25.Nx

[. INTRODUCTION to 2.5PN order by Damour, Deruelle, and collabora{@s
7], using basically a post-Minkowskian approximation

The two purposes of the present paper @jeto obtain ~ scheme(i.e., G—0).
the gravitational field generated by a system of two pointlike In a first paper by Beét al.[3] (see alsq19]), the gravi-
particles up to the so-called 5/2 post-Newton{@r5PN or-  tational field and the equations of motion are obtained in
der included, i.e., the ordep(c)® wherev denotes a typical algebraically closed form to the second post-Minkowskian
value of the orbital velocity of the system; the 2.5PN field order (G?): the field equations in harmonic coordinates are
may be useful for setting up initial conditions for the numeri- solved at first order by integrating the matter stress-energy
cal study of the coalescence of two compi@eiutron stars or  tensor suitable to pointlike sourc@s., involving delta func-
black holeg objects[1,2]; (2) to derive from the gravitational tions), and then the second-order gravitational field is con-
field the Damour-Deruelld3—7] equations of motion of structed by iteration. The divergences which arise due to the
(compact binary systems at the same 2.5PN order. Becausa@ssumption of pointlike particles are cured by means of a
the 2.5PN term in the equations of motion represents théegularization process based on the Hadamard finitel pajt
dominant contribution of the radiation reaction force, the(see[21] for an introduction to the mathematical literature
Damour-Deruelle equations play a crucial role in theoreti-The equations of motion are obtained equivalently from the
cally accounting for the decreasing of the orbital period ofharmonicity condition to be satisfied by the metric, from the
the binary pulsar PSR 19%316 [9-17). conservation of the(regularized stress-energy tensor, or

In addition, the present paper is motivated by the currenfrom the regularized geodesic equations.
development of the future gravitational-wave observatories In sequential paperf4,5] the post-Minkowskian equa-
such as the Laser Interferometric Gravitational Wave Obsertions of motion are developed up to the ordaf/c®, i.e.,
vatory (LIGO) and VIRGO. Specifically the aim is to derive neglecting any term of the ordercf/whenc—c and any
with sufficient post-Newtonian precision the dynamics of in-term of the ordeG® whenG— 0. However, it is well known
spiralling compact binarie@vhich are among the most inter- [22,23 that in order to obtain the complete equations of
esting sources to be detected by LIGO and VIRGQumer-  motion to the dominant 2.5PN order of the radiation reaction,
ous authord13-1§ have shown that the orbital phase of the latter precision is not sufficient because of the occurrence
inspiralling compact binaries should be computed for appli-of terms coming from the third post-Minkowskian metric
cations in LIGO-VIRGO up to(at least the 3PN relative (G®) which contribute to both 2PN (&%) and 2.5PN (1)
order. Resolving this problem requires particular the bi-  approximations. These terms of orde®s/c* and G3/c®
nary’s equations of motion at 3PN order, since they permihave been added by Damoi6,7], thereby completing the
one to derive the binary’s 3PN energy entering the left-han@®.5PN binary equations of motion. Let us refer to the above
side of the energy balance equation on which rests the derélerivation of the dynamics of a binary system as the “post-
vation of the phase. They are also needed for the computavinkowskian” approach.
tion of the 3PN gravitational flux entering the right-hand side When obtaining the cubic terms within the post-
of the balance equation. Thus the 2.5PN equations of motiolinkowskian approacH6,7] the two objects are not de-
derived in[3—7] and in the present paper are not quite suf-scribed by standard delta functions but rather by a Riesz
ficient for the problem of inspiralling compact binaries, but kernel[24] depending on some complex parameterFor
the method we propose should permit one to tackle in futuré@onzeroA this kernel has an infinite spatial extension, but
work the problem of the generalization to the next 3PN ordereduces to the Dirac distribution wheé¥—0. The metric is
(see[8] for an attempt at solving this problgem defined by complex analytic continuation from the

The dynamics of a binary system of pointlike particles A-dependent post-Minkowskian iteration. The physical equa-
modelling compact objects was investigated successfully ugons of motion corresponding to pointlike particles are ob-
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tained from theA-dependent metric by taking the limit particles. This entails divergences which are cured system-
A—0 at the end of the computation. It has been praed  atically by means of the Hadamard regularizafi@f,21] (in
that the limit exists up to the 2.5PN approximatigm poles this respect we follow3]).
~1/A develop to this ordef25]). By implementing the post-Newtonian approach, we re-
The motion of two particles to the 2PN ordereglecting  cover the Damour-Deruelle equations of motigh-7]. To
the radiation-reaction 2.5PN terinss conservative; i.e., the investigated order we find that the post-Newtonian ap-
there exist ten integrals of motion corresponding to the Newproach is well defined and rather systematic.
tonian notions of energy, linear momentum, angular momen- About the gravitational fieldmetric) generated by the two
tum, and center-of-mass position. It has been shf@7] particles, we obtain an algebraically closed form valid every-
that the constants of motion can be recovered by variation of/here in space-time up to the 2.5PN or{i@]. Indeed, the
a generalized Lagrangian depending on the positions, velocinost difficult term present in the metric at this order is a
ties, and accelerations of the bodigscall that generically, ~cubically nonlinear term which can be explicitly evaluated
i.e., in most coordinate systems, a 2PN Lagrangian depend41.42. This yields the other motivation of the present pa-
upon acceleration§27]). Adding up the radiation-reaction P€r, namely, to provide the metric coefficients at 2.5PN order
terms, one finds that the previously obtained binary’s 2PNin harmonic coordinatesn the form of some explicit, fully
energy decreases with time, and that there is quantitativeeduced functionals of the positions afmbordinate veloci-
agreement with the standard quadrupo|e forniﬁ&?] and ties of the two masses. Let us pOInt out that, very ||ke|y, the
with the observations of the binary puld@—12]. possibility of writing such a closed-form expression of the
Moreover, there have been two other lines of work Whichmetric breaks down at the next 3PN Order, where there re-
led to the complete 2.5PN dynamics of binary systems. On&ain some Poisson-type integrals which probably cannot be
of these alternative approaches is based on the canonic@xPressed in terms of simple functions. _
Hamiltonian formulation of general relativity and the model ~ The plan of the paper is as follows. We start in Sec. I
of pointlike sources. Such a “Hamiltonian” approach was With the expressioriderived in Appendix A of the 2.5PN
developed at the 2PN level in early work29,3( (see also metric valid for general fluid systems. In Sec. Il we explain
[31,32)) but completely understood only latE27] (see[33] ~ Our method for applying the fluid metric to the case of point-
for a reviev\). Schder [34,35 Comp|eted the Hamiltonian like partiqles. The metric potential§ ianlve three types of
approach to include the 2.5PN radiation-reaction termderms which are evaluated respectively in Secs. IV, V, and
(more recently the 3.5PN radiation-reaction terms have alsy! (the most difficult, cubic, term being obtained in Sec).VI
been worked ou36]). The other method gives up the model The results for the potentials are relegated to Appendix B. In
of pointlike sources and assumes from the start that the tw&€C. VIl we present our expression for the binary’s gravita-
bodies are extended, spherically symmetric, and made dfonal field. In Sec. VIl we finally obtain th&¢Damour-
perfect fluid. Within such an “extended-body” approach the Deruellg binary equations of motion.
2.5PN equations of motion were four87,38 to be the
same as obtained within the other treatments dealing with
pointlike particles(in particular the equations depend only  Il. 25PN METRIC FOR GENERAL FLUID SYSTEMS
on the two masses of the bodies, but not on their internal
structure nor compactness
In the present paper, we add what constitutes essentially
fourth approach to the derivation of the 2.5PN motion of
binary systems, which can be qualified as *“post-
Newtonian,” in contrast with the post-Minkowskian, Hamil-
tonian, and extended-body approaches. With respect to t
post-Minkowskian approacf8—7] we have essentially two
differences.

At the basis of our investigation is the expression of the
rgetric generated by an arbitrary matter distribution described
by the stress-energy tenseér” [43]. We assume that*”
has a spatially compact support, and physically corresponds
to a slowly moving, weakly stressed, and self-gravitating

stem, in the sense, respectively, th@t®/T%~e¢,

/7% ~¢2, andU/c?~ &2, whereU denotes the Newton-
ian potential and represents a small post-Newtonian param-

(1) Instead of implementing a post-Minkowskian algo- eter going to zero when the speed of light tends to infinity

rithm to the third order and performing afterwards the post- s~1/c)_. Throughout th'ﬁ paper we denote a post-
Newtonian reexpansion, we start directly from a post-Newtonian term of order™ by means of the shorthand
Newtonian metric developed to 2.5PN order and which i<O(n). , o _ , .
valid for any continuous matter stress-energy distribution ollowing[44] itis convenient to define a mass density
(“fluid” ). Note, however, that our post-Newtonian metric iSWhICh agrees |n.the case of stat|onar_y systems V\_/lth the _ToI—
defined in terms ofetarded (Minkowskian potentials, and Man mass density to 1PN order. As it turns out, introducing
most importantly matches a far-zone metric satisfying the®UCh @ mass densitand in addition the associated retarded
correct boundary conditions at infinity, in particular the no-Potentia) permits one to formulate the 2.5PN metric in a
incoming radiation conditiofi3g]. rathe_r.3|mple fashion. Defining also some current and stress
(2) Instead of assuming a fictitious stress-energy tensof€nsities we pose
defined by means of analytic continuation using the Riesz
kernel and letting the analytic-continuation factor go to zero

. . K 00 i
at the end of the computatidi®,7], we substitute directly _ T+ T
. vy ) S o=———, (2.19
into the “fluid” metric the stress-energy tensor of pointlike c
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TOI With these definitions the 2.5PN metric in harmonic co-
o= (2.1D  ordinates takes the form
i 2 2 ., 8], V3
o =TI (219 Joo=— 1+ ZV= V2 5 | X+ViVi+ | +0(8),
The covariant conservation of the matter stress-energy tensor (2.5a

(V,T#"=0) entails the equations of motion and continuity,

Whic_h rgad(with relative 1PN preci_sipn in the equatipn of Joi= — isVi— 35 R+0(7), (2.5b
continuity but only Newtonian precision in the equation of c c
motion)
2 2 )\ 4.
ho+0i0i= (0 —o4U)+0(4), (2.29 (2.50
oo+ oy = odU+0(2), (2.2b For the sake of completeness, this rather simple result is

proved in Appendix A. The simplicity in the formulation is
where U is given by the standard Poisson integral:  due to our introduction of the mass densityas well as the
—A Y- 47Go). use of retarded potentiald4,39.

Actually, it is advantageous to use, rather than the instan- " the form (2.5 the metric contains only “even” terms
taneous potentiall, a correspondingetarded potentialy ~ eXplicitly (using the standard post-Newtonian terminology

given by the retarded integral of the same source which are terms with even powers olih goo andg;; , and
odd powers ingg; . Indeed the “odd” terms, which are re-
d3z sponsible for radiation-reaction forces, are all hidden into the
V(xt)= DEI{—4WGU}EGJ HU(ZJ— |x—2|/c). definitions of the retarded potentig8.3) and(2.4), and can

2.3 be made explicit by expanding the retarded arguments with
' Taylor's formula. It is important in this respect to recall from
To Newtonian order we have=U +0(2) [45]. Similarly ~ [39] that Egs.(2.5 come from the post-Newtonian expan-

let us introduce the following other retarded potentfaig]:  Sion (valid only in the near zoneof some radiative metric
defined globally in space-time and satisfying the no-

Vi:ggl{_mregi}, (2.43 incoming radiation condition at past null infinity. Hence the
“odd” terms in the post-Newtonian metri2.5) correspond
I e T s Y physically to the radiation-reaction forces acting on an iso-
Wi =Dp { = 47G (o = o) = VoV 249 ated systenfwith no source located at infinity
3 At 2.5PN order the harmonic-coordinate conditions are
R = Dgl[ —47G(Va,—V,a) = 20NV — §f9tV(9iV}' equivalent to the following differential identities:
(2.40 1[1 . ) 2 .
‘?t V+?§W“+2V +(9i Vi+?[Ri+VVi] 20(4),
K= D,;l[ — 4G Vo + 2V, 0,0,V + VIRV (2.68
- 1 .
3 - Vi + 3 W--——5~Wkk}=0(2). (2.6b
- E(atV)Z—zaivjajvierij-afjv]. (2.40 T 2

» ) _ These relations are in turn equivalent to the 1PN continuity
In addition, we shall often consider the trace of the potentiabqyation and Newtonian equation of motion given by Egs.

Wi, e, (2.2.
. . The potentialsvV and V,; are generated by the compact-
Wii=DOg{87Gaii— 3V, V}. (248 supported source densitiesand o;. Similarly W;; and R,

] ) involve a part generated by a compact-supported source, but
~ We are now able to express the usual covariant mgflic  also a part whose source is a sum of quadratic products of
in terms of these retarded potentials to order 2.5PN, bytentialsv or V; and their space-time derivatives. We shall
which we mean neglectmg all the terms of orda(8) N refer to the former part dﬁ/ij andR, as the compadt‘C” )

Joo, O(7) ingo;, andO(6) in gy; . We impose the harmonic part and to the latter as thesVdV” or, sometimes, “qua-
or De Donder coordinate conditions, i.€,[v—gg“*]=0, - 5 . .
whereg andg#” are the determinant and the inverse of thedratlc part.AAs for?(, it conS|st§ of C anwva\( parts like
matrix gMV . Actua”y, since we are Working with an approxi_ for W” and Ri , but it also ContaIrJS a term of different struc-
mate post-Newtonian metric, the harmonic conditions needure, generated by the product \bf; and aﬁv [last term in
only to be satisfied approximately. To 2.5PN order we haveEq. (2.4d]. This term itself can be split into two contribu-
a,[\—9g°"1=0(7) anda,[ V—gg"]1=0(6). tions arising, respectively, from the C am¥/JV parts of
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Wij . Since the C part Owij is a Compact_supported poten- In_ our notation the Symbol 42 means the same term but
tial similar to V andV;, the corresponding term iX has W_'th th? Iabels 1 ar)d 2 exchanged, dpnotgs the three-
actually the same structure ag\ddV potential. On the other dimensional Dirac distribution; the trajectories of the two

A o massegin harmonic coordinatg¢sare denoted by,(t) and
hand, thedVdV part of W;; generates an intrinsically more < ¢ YY)

] R yo(t); the two coordinate velocities ang (t)=dy,(t)/dt,
complicated term inX we shall refer to as the noncompact v, (t)=dy,(t)/dt and v“=(c,v;), v4=(c,Vv,); u, repre-

(“NC” ) or “cubic” part of the potentialX. Precisely, our sents an effective time-dependent mass of body 1 defined by
definitions are
my

Wi =WE + WYY (273 )= ———\ . 3.2
vivy
Ri=R©+RNMV (2.7b V9% =
1
X=X(© 4 X (VN 4 K(NO), m, being the(constant Schwarzschild mass, witg,, the

(2.79  metric andg its determinanf47]. Another useful notation is

The compact parts are linear and quadratic functionals of the N vi
matter variable$2.1). They read as pa(t)=pq(t)| 1+ 2| (3.3
WO =04~ 47G(0j;— 8 : 2.8 ~
! R~ 4TG0y~ &y owd} 283 wherev?=v3. Both u; andu, reduce to the Schwarszchild
ARKC):D§1{_47TG(VO'i—ViO')}, mass at Newtonian orderju;=m;+0(2) and u;
' (2.8 =m;+0(2). Then the mass, current, and stress densities
(2.1) for two particles read
XO=0Y-47GVo;}. 2.8 -
@ A ameVei) (289 o= B(x—yy) +12, (3.4
The gVaV or “quadratic” parts involve both quadratic and i
cubic contributions. They are 0= p1v10(X—yy) +12, (3.4b
WV =0 Y~ aVa, V), (2.93 ij= u1v v S(X—yp) + 12,
(3.409
RIVV) = Dp_el[ —20,VaV — §¢9tV¢9iV], (2.9 The stress-energy tensor of point masses depends on the
2 values of the metric coefficients at the very location of the

3 particles. However, the metric coefficients there become in-
KV ==Y 2V, 9,0,V + VIV + = (3,V)?2 finite and, consequently, we must s_upplemen'g t_he model of
2 stress-energy tens@©8.1) by a prescription for giving sense
to the notion of the field sitting on the particle. In other
—Z&iVj&jVi+\7\/.(jC)(9ﬁV . (2.99 words, we nggd a reg_ularization procedure in order to re-
move the infinite self-field of pointlike sources. The choice
) ) . . ~of one or another regularization procedure represenfwi-
Finally the only noncompact part is a cubic functional givengyi) an integral part of the choice of physical model for de-
by scribing the particles. In the present paper we shall employ
- - the Hadamard regularizatig20,21] based on the finite part
_rmM-1 ViV) 2 . e . .
XNO=0pg {Vvi(jﬁ ’ )0ijV}- (2.10 of functions admitting a speciéftempered”) type of singu-
larity. For a discussion and justification of the use of the

In practice the latter term is the most delicate to evaluate, . - regularization in the context of equations of mo-

Our terminology is slightly improper, as the so-call@&doV tion in general relativity sef3,5,34,42,8,48
or guadratic potentials are, as well as the NC potential, ge P

. N° | et us consider the class of functiorsdepending on the
erated by noncompact-supported sources, and involve some,q pointx as well as on two source poings andy,, and

cgrtrlbutlons which are actually cubic in the matter vari- admitting, when the field point approaches one of the source
aples. points (r;=|x—y;|—0 for instancg an expansion of the

type
Ill. APPLICATION TO POINTLIKE PARTICLES P

To apply the general 2.5PN metric presented in the pre- F(X;yl’VZ)szgk o rif(niy,y2) +0(ry) (3.5
vious section to the case of a point-mass binary we use the °
matter stress-energy tendd7] (wherek e Z). We define the value of the functidh at the
source point Iand similarly at the source poin) o be the
T (X, 1) = (Do (Do () d(x—yy (1) +1-2. (3.)  spo-called Hadamard finite part, which is the average, with

=
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respect to the direction;=(x—y,)/r,, of the approach to dv‘1 Gm, 1 Gmy Gm, 2
point 1, of the term with zeroth power af, in Eq. (3.5). Gt 7 M| It | TS A ot 2
Namely[49], 12 c 12 12

s S
dQ(ny) (v1v2) E(n12U2)

(F)le(yl;Y1aY2)Ef Tfo(nli)ﬁ,yz)- (3.6 om
+ 704N ~3(n1) ] +0(4), (311

. . V)
Furthermore, we use the Hadamard finite part to give a sense

to the spatial integral of the product Bfand the Dirac delta ., n1o=|Yy1—Ys|/r 1, andvy,=Vv,—V,: scalar products are
function at point 1(sinceF is singular on the support of the denoted with parentheses, e.q141) =ny,.v,. The accel-

Dirac function). Indeed, we define eration of body 2 is obtained by exchanging the labels 1 and
2 (remembering thah,, andv;, change sign in this opera-
tion).

f d3XF(X;Y1,Y2) 8(x—y1)=(F)y, 3.7

IV. COMPACT PARTS OF POTENTIALS
where ), is given by Eq.(3.6).
As a (trivial) example of the use of the Hadamard regu-
larization, consider the potentialé and V; to Newtonian
order, given by

In this section we derive the compact-supported potentials

V andV;, and the compact-supported parts of the other po-
tentials, W, R(®, andX(©) defined by Eqs(2.8), for a
binary system described by the stress-energy tef@sbrand
om the regularization(3.6). We needV to relative 2.5PN order,

_ 1 V; to 1.5PN order, and the other compact potentials to 0.5PN
v rq +OR2)+1=2, (3.89 order only. The main task is the computation\gfto which
we focus mainly our attention. By Taylor expanding at
2.5PN order the retardation inside the integ@B) and us-

V= Gmlvil+ 0(2)+12. (3.8p  ing the mass density in the form(3.43, we get
M
s . . ;‘1 ~ 1 2.~ 1 3.~ 2
They are infinite at point 1, but after applying the r86) V=G| =~ calr)+ 520(kal) — gadi(pary)
we find !
1 4.~ .3 L 5~ .4
Gm, +mat(ﬂlrl)_mat(ﬂlrl) +0(6)+12.
(V)1= +0(2), (3.99
M2 (4.9
Gm, . We recall that the effective mags; given by Eqs(3.2) and
(Vi)1= n v+ 0(2), (39D (3.3 is a function of time only.

We start by derivingu; to 2.5PN order. Inserting the
metric coefficientg2.5) into the expressiong3.2) and(3.3),

where r,=|y;—Y,| is the distance between the particleswe obtain

[50]. Of course ¥); agrees with the standard Newtonian
result. Applying the rulg3.7) we have, for instance,

- 1 3,
M1=my 1+? _(V)l+§vl
1 Gmym,
: f PxaV = +0(2), (3.10 1 1 1
2 r12 I n - 2 - 2
+ A 2(Wii)1+ 2(V )1t 2(V)101

also in agreement with the Newtonian result. 7
We shall derive the binary equations of motion in the —4(V)) v+ gv‘l1

so-called order-reduced form, by which we mean that in the

final result all accelerationénd time derivatives of accel- ) )

erations are replaced consistently with the approximation bywhere all the potentials are to be evalu_ated at the Iocat_lon of

the explicit functionals of the positions and velocities asPody 1, using the rul€3.6). We proceed iteratively. The first

given by the(lower-ordej equations. So in order to derive Step consists in inserting into E¢4.2) the potentialV at

the 2.5PN equations of motigand also the metricwe use Pody 1 to Newtonian ordefor, rather, 0.5PN ordgrwhich

the less accurate 1.5PN equations, given in harmonic coofs simply the Newtonian resulf3.99. This yields u, to

dinates by 1.5PN order:

+0(6), 4.2
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~ 1 Gm, 2
Mmq=Mmy 1+07 —I’_+§vl +O(4) (43)
12

Since the time derivative gk, starts at 1PN order, namely,

G mlmz

m1= 27, [—2(nwq) —(Nw5) [+ 0(4), (4.4

we see that the first odd power ofclih V arises at 1.5PN

PHYSICAL REVIEW D58 124002

on the acceleration and its time derivatives, which we reduce
order by order by means of the binary 1.5PN equations of
motion (since an acceleration already arises in the 1PN term
of V). Once fully reduced, the result for is still lengthy,
and so we relegate (together with all the relevant results for
the potentialsto Appendix B.

The potentialV; to 1.5PN order and the other compact

potentialsW(®, R{¥, andX(“) to 0.5PN order are obtained
in the same way. As an example we give

order. Furthermore, using the constancy of the center-of-
mass velocity, one can check that the first odd term in the

gradient ofV arises at 2.5PN orde(it contributes to the
dominant radiation-reaction force=rom Eqgs(4.1) and(4.3
we deduce the value oM), up to 1.5PN order:

Gmy( 1] 3Gm 1
(V)1=r—[1+? " or, 1"'21)2 (n1202)2H
4G? m;m,
T(n12012)+0(4) (4.9

In addition to (/),, we need V¥;), already given by Eq.
(3.9b), and the value at point 1 of the trace\?}iJ to 0.5PN

o Gmy i 2, G°mam H_ s
= ; (Ulvl 5'1)1)4‘—[”121112_5 (n12012)]
1 Cl’lz
+0(2)+ 12, (4.9

V. QUADRATIC PARTS OF POTENTIALS

By the definition(2.9) the quadratic o¥VdJV potentials
have their sources made of quadratic product@efivatives
of) the compact-supported potentials V;, and W?. All
the gVgV potentials are to be computed to 0.5PN order,

order. The trac&V;; is much simpler than the potential itself, which means in particular that we can replace in the sources

and from Eq.(2.4e we derive the expression

1
_Ty\2
|2

" 1
Wii:Al[87TG(O'ii_§O'V

2G d

1
+T§fd3x(a“—§av +0(2).

(4.6

Under this form all integrals are compact supported; at this

order, we can inselWW=U+ O(2). The oddterm O(1) is a
mere function of time. From Ed4.6) we get immediately

A Gm, Gmy Gm, 2G2m;m,

(Wii); = BT 2} oz, (M)
Fi2 | 2 12
+0(2). 4.7

The effective masgu; at 2.5PN order is readily obtained

from the previous relations:

1

Gm, 3
1+ 5| - —2+ 20?

M1=My
ro, 2

11Gm

v
BV

1
c (2 —4(vqvg) + 205+ 5 (nlzvz)

1Gm
2 1y,

3Gm2) 7.,

— +=v
2 I g1

8G%m;m,

+ 57— (N1 1))

+
3cry, o(®).

4.9

from which we straightforwardly deducé to 2.5PN order.
The only point is to compute the numerowp to five time

derivatives ofr,. This gives rise to many terms depending

V andV; by the Newtonian-like potentiald andU; [but we

must beware of the fact thi{* given by Eq.(4.9) involves

a 1k correction. For all the 9V4V potentials we proceed
similarly. We work out the sources using E¢3.8) and(4.9)

and obtain some “self’-terms, proportional 3 and m3,
together with some “interaction” terms, proportional to
m;m,. Time derivatives are changed to spatial derivatives
thanks tod,(1/r1)= vlall(llrl) and &t () =a’d4i(L/ry)
+U101(91u(1/r1) a) denoting the acceleration and; the
partial derivative with respect 1yil In the interaction terms,

we leave the spatial derivatives unexpanded, whereas, in the
self-terms, they are developed and “factorized” out in front
of the terms. In the latter operation, we should remember that
within the standard distribution theory the second spatial de-
rivative of 1f, involves a distributional term51,21,48:

1

A(r_) =—475(X—Y1), (5.13
1

,(1) 3ninj—4' )

I\ —|=—F—— 5 8 ax=y1). (5.1b
rq rl 3

Two examples of such a treatment of sources are

2m?2 ) 1
ﬁiVaJV:T(aiij_l—a”Al)(r_i)
1
+G m1m261|(92]< +O(2)+1<—>2 (523
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1

2
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Egs. (5.6): g=In(2r)+[—(ny)—(ny,)+ri,]/2r + O(1/r?).
Neglecting the terms which die out in the linfflRt—«, we
get

AT ﬂC‘)\(X_)/l) +GPmymy(al dy+ vl o5;)) 1 d*x 12 1
31, ! - —=—R+—+0(|=]|. (5.9
4 Jix=r 12 2 R
X\ = +0(2)+1<2. (5.20  As we can see, the divergent part of the integral is simply a
12

constant, which will therefore vanish after application of the

We apply the Poisson integral on the source terms treatespatial derivatives,; d; in front of the term. This shows that

in the previous manner. Consider first the distributional
terms, such as the one in the self-parvéfV. Although this
term is ill defined, because involving the product of the Dirac
distribution 6(x—y,) by 1k, which is singular whenx

we are allowed to use in this computation the finite coeffi-
cient on the right-hand side of E¢b.8), which is nothing but
the finite part in the sense of Hadamard of the initially diver-
gent integral53]. Settingy; =Y, in Eq. (5.8), we infer that

.y, the Poisson integral is computed unambiguously withthe divergent integral of 1 can be replaced by zero. Then,

the help of the Hadamard regularizati7), yielding zero
in this case:

3

4 _ d°z
o= | g

AL —8(z—
|Z_Y1|( v

Eq. (5.8 together with the last fact leads to

G2m;m, i i
r—lz(nlz_ts )+0(2).
(5.9

1 3
~an d°xd;Va;V=

( 1 ) 5.3 Gathering those results, we thereby obtain the looked-for po-
== =0. (5.3 i
Ix—2]|z—y,] - tential as
. G?m? 5

For the computation of all nondistributional terms in the =~ W{V*)=— 5 (&ﬁ In i+ — | —G2mymyg;
dVaV potentials, we take the example of M

. ~ Gmm,[ . . 1 .

Wi =0 =3V v} oz, | Mt 3 3ndm (i)

1 d
=AY _ Vs - NI RVEY +0(2)+1-2, 5.1
ATH=aVoVH+ — dtfd x{— &Va;V} (2) (5.10

+0(2), (5.9
whose “source” is given by Eq(5.23. The Poisson integral
of the self-terms can be readily deduced frak{inr,)
=1/r3; on the other hand, that of the interaction terms is
obtained by solving the elementary Poisson equation

where we have;g;=d,;d,;g. The first two terms are in
agreement with a result $#2]. All the V4V potentials are
calculated in this way to obtain the complete expressions of
potentials presented in Appendix B.

Ending this section we list some formulas which are use-
ful in the derivation of theyVdV potentials, and even else-
where. The first-order spatial derivativesgfead

1 . :
Ag=—— 5. _nl +n|
TP 59 i9=01i0= 1T12 (5.113
A solution is known[52]: S
—ny—nj,
g=|n S, SEr1+r2+r12. (56) giEaZig:Ti (511[:)
The computation of the &/term in Eq.(5.4) involves ni+n
essentially the spatial integral ofrlf,. Since it is divergent 9g=—ig—g;= 1 2, (5.110
due to the bound at infinityi.e., whenr =|x|—®), we first S
compute the finite integral defined by integration over a ball , o NN
of constant finite radiusR. By writing the integrand as @nd second-order spatial derivatives @réth ni,=n;,ni,)

1/rqr,=Ag and using the Gauss theorem, we transform the

n?z_ s nilj -5l (ni12_ nil)(njlz_ n

j
integral into a surface integral over the sphere of radus Lg=d% g=— v
1) 1] rS r,S S ’
d3x 5.12
[ | wag-| daerg. 57 (5129
R R r L, =8 -8 () (nfytnd)
9ij=7%;9= — - - ;

with d,=n'9, . Into the latter surface integral we can replace
the functiong by its expansion at infinity computed from

rS r,S s

(5.12b
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ni— 81 (nl,—ni)(nl+nb) VI. NONCOMPACT POTENTIAL

9= %1i%2i9 r.S s? The so-called noncompact potential is defined by Eg.

(5.129 (2.10 as the retarded integral of a source composed of the

Contracting with the Kronecked!, the relationg5.12 be- ~ Product of av-type potential andv" ™) , the latter poten-
come; g=A,9="1/f 115, gii=A,g= 1/ ,r 1,, and, more in- tial being itself given as the retarded integral of a source
1 ’ I ’ [}

terestingly, made of a quadratic product &dfs. Because of this purely
cubic structure, one would expegtpriori that the computa-
1/ 1 1 1 tion of the noncompact term represents a nontrivial task, and
9= |\ T : (5.13 even that it is not at all guaranteed that this term can be
2\rqrp  Talgp Tl

expressible with the help of simple algebraic functigak
This simple result is a straightforward consequence of th@ebraically closed form Rather surprisingly, the NC poten-
helpful formulas tial turns out to accept an algebraically closed form up to

0.5PN order. As a result, one can find its explicit expression,

1+(niny)  rytra—ryp valid for any source point (the value when the source point

S 2, (5.143 sits on a particley, , following from the regularization pro-
cess. To Newtonian order the closed-form expression of the
1-(ninyp) ry+rypo—ry NC term has already been obtained 41,42 by combining
S 2rr, (5.14b  some technical results derived earlief5#,31,59. We shall
present here a slightly different but totally equivalent form of
1+(Nyngp)  Fo+rp—ryg X(N®) at Newtonian order, and add to this the 0.5PN correc-
S 21,0y, (5140 4ion. Very likely the 1PN and higher corrections 4N do

not admit any algebraically closed form all over space-time,
Finally, we find the values of and its derivatives at the but the regularized values at the location of the two bodies
location of body 1(say according to the Hadamard regular- can probably be carried out explicitithese values are
ization (3.6): (g)1=In(2ry,), together with needed when investigating the equations of motion
. . To 0.5PN order the noncompact potential reads

| 1
Ny, N,

S = 12
(ig)l_ 2r121 (gl)l r121 (5153
S(NC) — 1= Lp\RA(AVaV) 52
— 5l +2nl, XMNO =D YW a5 v}
(9)1= ——=2— (9)1=— 5=, 1 d
2ri, 2ri, — A —1p\Rf(AVaV) 52 _f 3y NAAVIV) 12
5,158 ATHWYV GV o | WYY vy
5ij_3ni£2 5ij_2ni£2 +O(2), (61)
(i91=—F—=— (Gj)1=——=—
4rg EP)
(5.1509

where to this ordeV can be replaced by Eq3.89 and

These formulas are extensively used when getting the poterWi(fV"V) by Eq. (5.10. The cubic source is easily obtained
tials at body 1(see Appendix B thanks to Eqs(3.88 and(5.10. Hence we arrive at

Af(IVIV) 92\ _
WM ahv =

Gmi[1 477'5
> E+§E (X—Yy1)

T d(X—yy) 1 1 1
+G3mfm2[§?—§3ﬁ- E o'?izj In rl—Zﬁﬁ a i9j

G3mim,
-1 +0(2)+1-2. (6.2

o 1 . .

[ R 1] _ sij 2 | =
7| M (3nf,— & )(nlzvlz)}ﬁ ij
o1, 12012 5(3N1, il v,

We compute the Poisson integral of E§.2). The (ill- from the fact thatA (1/r3)=6/r5 andA(r;)=2/r,. The dif-
defined distributional term in the self-part{m3) of Eq. ficult point is to find the solutions of the two Poisson equa-
(6.2) is treated unambiguously using the r(87) and does tions
not contribute to the Poisson integral. On the contrary the
distributional term in the interaction parbc(nimz) is well AK :202(i> 2inr (6.39
defined and gives a net contribution. Easy terms are obtained ) T T '
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1
(6.3b d®xa7 (

)

_,2[ 1 5 2 1

27 Jier
We use the same notation as[#2] except that we add a As we can see, the integral is finite in the lirftt—o, with
subscript 1 to distinguish a function from its image obtainedthe value
by the exchange of bodies 1 and 2. Remarkably, the solu-

tions of Eqs.(6.3) can be written down everywhere in space-

time under an explicit fornj41,42,58:

K—(lA A A)Inrl+l Inry, ry, 1
1712 1=2 277 r, 2rirs riry’
(6.439
1 g Inrg r{+rq rq
Hl_zAl[ 1 T2 oo 2 g_z
Inri, Inry| 1
+ 3;5; | = — 3l (6i9)1]— s7=-
192i rl 2r rl 21( |g)l] 2fir§2
(6.4b

They are equivalent to the expressions given by Eg€l8
and(3.49 in [42]. By expanding all derivatives, we come to
the completely developed forms

< 1 1 1 ry rs r2
= — [ _J’_ ,
YUord el rir,  2rirs, 2rirs  2rird,
(6.539
2
H 1 1 1 ro rp 3r5
Yooordoard, arfr, 2riri, 2rdr, 4,

2 3
LI (650
2riry, 2rirs, '
(K, andH, are obtained by exchanging andr, on the
right-hand sides With the solutiong6.4) and(6.5), we con-
trol the NC potential at the Newtonian approximation.
Next, we compute the spatial integral of £6.2) entering

the 0.5PN correction in the NC potential. We must evaluate
essentially the spatial integrals of the two source terms on

the right-hand sides of Eq$6.3). We proceed as for the
integral of 1f4r, in Egs.(5.7) and(5.8. Namely, we inte-

! fd3 52(1)a2| 2 6.8
- 2l 152 Inry=—. .
2 X%ij ro) " 1 rs, ©.8

The same method applied td, leads, sinceH,=0(1/r?),

to
1 1
_ 3,52 =
27_rfdxﬁ”(rl

We must compute now the spatial integral ofil[see the
first term in Eq.(6.2)]. It is clearly infinite because of the
divergence at the bound—y,. By integrating 11/? from
r1=e up to infinity, we obtainf, - .d*/ri=2m/€? which
is a pure constanf57], cancelled after applying the time
derivative in front of the I term in Eq.(6.1). The second
term in Eq.(6.1) is therefore

1 d .
el 3y \VAAIVAV) 22
4mc dt J AWV
G3mim,
:_—Zcr3 (n12012)+0(2)+1<—>2.
12

(6.10

By summing the various contributions, we find the nhoncom-
pact potential at 0.5PN order:

G®m3 1 1
XNO = — = — G3mZm +—Ky+H
13 1 2[8r2r§2 16+t
Gmim,[ . 1
cr’, n'12v112—§(3n22— ") (N0 12) 0"%;;"1
G3mim,
T el (N1012) +O(2) +12. (6.12)
Cri,

grate over a ball of constant radil& and use the function  aAqding the other contributions iX we end up with the
K to transform the volume integral into a surface integralcomplete expression reported in Appendix B.

over the sphere="R:

1
2f d3xaﬁ<—) 5 In r1=f d®xAK,
Ix|<R ) IX<R

f dQ(r2o,K,).
r=R

(6.6)

From the developed expression Kf given by Eq.(6.53,
we getK,=2/rr2,+O(1/r?), which, when substituted into
the surface integral in Ed6.6), yields

Finally, we give the value of the noncompact potential
(6.11) at the location of body 1. From the Hadamard recipe
(3.6) we find, for the functionK, , andH, , at point 1,

2
(Kl)l:?"j—‘}za (KZ)lzol (6123
1
(Hy)1= 3_ri‘2’ (Hy)1=— r_g_’
(6.12b

so that the noncompact potential at point 1 is
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o (NO) G3m,[ 1 ) 1, coordinate positiorx and a functional of the coordinate po-
(X )1=—rr - §m1+ m;m,+ 122 sitions and velocities of the particlgs At),v, (t) (wheret
12 =const is the harmonic-coordinate slic)ng
G3mym,

+Tr12( m;+my) (N1 +0(2). (6.13

g;.w(x!t) = g;w[X,yl(t),Y2(t),V1(t),V2(t)] (71)

VIIl. 2.5PN METRIC OF BINARY SYSTEMS
From the results of the previous sections, we are in the Jhe metric is given by Eqsi2.5) in which we insert the
position to write down the 2.5PN harmonic-coordinate met- expressions of the potentials as listed in Appendix B. After
ric generated by two pointlike particles as a function of theCombining together identical terms we obt458]

+1 26m, | 1 Gml +4v2]-2 2m§+62 2N +_r§ >
= — n mym,| — - -
Yoo c’r, c* [ (nw1)*+4vi] = 2 PR, 2r3, 2, 2rory,
2 2 3,3
4G%m;m, 1 Gml 3 4 2 2 4 mj s 2 1
+3ﬁ( 12012)+_6 4(n101) —3(nvq)vi+4v] +T[3(n101) _Ul]+ZT
1 1
3rd 3r?r, 3rirz 33 37 r2  3r, 2r3 6 5 8r 16
T et B A I

8 3r3 3rir, 13; 2r2 6 16 12
twy)| ——— 5+ 3 T3 s r.s
rifp  4r3, 4r3, A4ry, 13, rifp 1S I

o) _15r§+15r§r2+15rlr§_15r§+57r1_ 3r? 33, 7 16 16

1201 8ro, 8r:, = 8r:, 8ry, 8r3, 4ryd, 8rd, 4rr, S ryS
2 i 3r3 7 8 8
r{S

—+—
raifp  4ry, 4rors, 4rirg, S°

2
+(n n ———F——3tot+t——
(N0 1)( 12U2)(4r§>2 4rs 4r3 2 r,S

. r1+16+16 28+8 . 3r§+3r§+ 3+l6
(Nw1)(Nqv5) 2t eTis (Nv) Frs (N1v1)(Nqv 1) gttty
16(n1v2)(n201)+ 3r? 3r§+ 13 40\ 12(nv;)(Now»)

2 (N1v2)(Nqv 1) r‘1‘2 2r‘1‘2 erz 2 2

) ri+4 . —3r3 3,16 . 4.1 09 rs
(N1 1)(Nqv5) Z % 82 (N1v2)(Nqv5) or 4 r%z I m1m2 ri 2r§ Zrirz 4r(152

3r1  r¥r, rga3 3 5ry; 232 4%, 513 3 3ry 1, 513 ar3

t——F -t t—a— -+ + -
6 5 5 6 Z Z Z Z 3 3 3 2.3 3,3
16rory, 8ry, 4ry, 16y, A4ry, 8rary, 8ryp; 2riry, i, ol il Firy riryp

. 3 ra . 3 15r,  4r3 5 . 5 ar, 13, )]
2rirs, ArsrZ, 16rri, Arirf, rirg, rirg, rqfofip r3rp  4Arirs
[, . r3 16r1 8r¥ b5r,
+ 71 G"mimy| (N0 12)“(Nw4)| — - + (N0 12)%(No) | =5+ =3~
¢ I 2 I
( 2)3( 7ry 7r¥s 1?37 ( v )2 Ori 1 a o p)? ri
t(N)’| 55t 56 ——7 — 52 T(Nw)(Npvg - N12012) (N0 1) 7
2ry, 21y, r12 4"12 r12 2r12 F12
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2
r ry r r
+4(N1012) (N0 1)(NqV2) rT+(n12vl)2(nlvl) r_3‘+22(n1201)(n12012)(n101) r_3__(n12vl)2(n102) P
12 12 12 12

M 2 1 2 8"? 2r1
+4(N101) (N0 12) (N1v2) =3+ 1A(N10 1) (N1 1) 5 +(Nw)vT —
N o[ 87 11, 2[4, 5 2 s
(Nw1)vi, 5r§2 3?1_2 (1w 1)V rzltz 521‘2 (nlzvlz)vl riz Elfz

, (31 3riry 7} . : 1
+(n e ——t gt n +(n +5(n
(N0 121, 2r?2 2r<152 r‘112 4r12 i 101)013 3+ ( 102)01ri,2 ( 1201)01r12
12r2 3
(M) (V)| —7=+ = +8(n101)(01U2) = +2(”102)(1111)2) _5(n12U1)(0102) v
o I ro 3 Mo

8r3 8ryr5 16r, 8 85 8

(n1012)<— st s St 3 3tz —
15y, 15 3ry; i rifip rifa

4r? 42 20
+G®mim, . 2

+ —+
2.5 5 3
3ri, 3ri, 3ry,

+(n12v1)(

3 4?2 682 3r, 6r2 3r2 76 2 6ra
! 2 ! 2 2 —— ||l +O(8)+1-2,
1

3
1r

+8(nyv4) 4+(n12v12)( 55 togst 7 7tz za 53t =
3r r1 3ri; 133, rip il rirp 3rp r1r12 rri

(7.28

Gml o1 [ G&'mi G2m;m,
90i= — ni| —

3, 3, U1t &5 (nvy)+ T[_16(”1201)+12(n1202)—16(”201)+12(n202)]>
1

1

. r 1 1 1 11
i 2 _ 1 el - el ol B
+n3,6 mlmz[ 6(N1012) riz 4(nqvq) ri2+12(n101) 82 16(nyvy) ? +4(nyv4) S (S"’ ”

|

Jem , 5. G'mi 3rl 2r, ) rs 3 8 4
+v3|—[2(nw) —4vi]+ G2 mmy| —— —5 | + G mmy| — ——=— + -—
N r ri, i riry, rif1p Talip 1155

1( . ra r2 v
+E€i”‘12{62m1m2< 10(n1019% = —12(Ng0 1) (Nv 1) —3‘+2012r4 4_2‘
ri 1 T

2r2  2r3 2 ”
+G3*mim ( - =53
ey, 3y, i

- GZmym, r2
Fv——o | —2(Nw1) +6(N1010)
o EP)

v —4(Ny05)r
1 r3 3 (122)12

i szlmz ( 1&”1() 12)I‘1
12

] +0O(7)+ 12,
(7.2b

5 Gm iy 1 5 Gmy +sz2+e 2 . re 5 . 4
9ij~ 9 c?ry c? r rs Y2\ rr, 213, 2103, 2, 1S

Gml, 2m?

| a2 . 4G“mym,
+4 ; v1v1+ —2—n n;—4G“mym;n;oni,
1

1
R (GN)) (i
87+r128)+sf(n ny+2nin 2)]

2
G“mym,
5.2
cri,

2
(_g(”12012)5” 6(N10 12NN+ 8Nl | +0(6)+ 12 (7.20
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(where we recalS=r,+r,+r4,). The harmonic-coordinate r
conditions satisfied by Eqg$7.2) read, with this order of (M) ==X, — (N +O(4) (7.3b
approximation,d,[ (—g)Y¥%g°1=0(7) and 4,[(—g)¥%'"] !
=0(6). (plus the same formulas with bodies 1 and 2 exchahgie

When applied to post-Newtonian initial conditions for the denote byn=x/r andr=|x| the direction and the distance

numerical evolution of two compact objedts,2] (provided  from the center of mass; depends on the two individual
that the initial spatial numerical grid does not extend outsideyistances ; , through the relation

the binary near zongt0Q]), the lengthy expressiond.2) be-

come a little simpler as the orbit can be considered as circu- r2=X1r§+ xzrg—xlx2r§2+ O(4). (7.9

lar with a good approximation. In this case we have

(ny01)=0(5)=(nw>), the remaindelO(5) correspond- The magnitude of the relative velocity is1,=rwopy

ing to radiation-reaction effects. Obviously, all the resulting+O(6), Where w,py denotes the orbital frequency of the
O(5)’s can beneglected since they yield terms falling into Circular motion at 2PN order, and is given by £8§.6) below
the uncontrolled remainders of Eqg.2). If in addition we  [59].

are Working in a mass-centered frame, th?{]: X2y12 We prOVide also the values of the metric COfolClde)
+0(4) and y,= —X,y;+0(4), where X;=m;/m, X, computed at .body Isince thesg might also be needed in the
=m,/m, m=m;+m,. All the remaindersO(4) become Problem of binary coalescence.e.,

negligible after insertion in Eqg.7.2). Thus, for instance, _ . .
v2=X2v2,+0(4), and (940 1(0)=0,,Y1(1);y1(1),Y2(1);vi(1),Vo(t) ], (7.9

where the limitx—y; is understood in the sense of £§.6).
(Nyv 1)=X2L(nv12)+0(4), (7.39  Directly from Eqs.(7.2), or using the expressions of the po-
Fi tentials at body 1 as given in Appendix B, we get

Gm, Gm, ) )
(900)1:_1+2_02r t Ay 4v5—(N1w5)°—3
12 12

Gm Gm
1_2 2)

M2 M2

2

+—TSG M + 3 4_3 2024 404

5 (N1012) (N1v2) (N1v2)“v5+4v;
3c’ry, crpp\4

G’mym,[ 87 , 47 55 , 23, 39

CG—riz _Z(nlzvl) +?(n1201)(n1202)_z(n1202) +ZU1_?(U102)

47 G*'mym, sz[sz G’m? 17 G2mym, szg}
+— v ()% —v5l— ——+ = +

4 b3, "% cbryy r12[ (N1202)" 3] r4, 2 rs, rs,

2
G“m;m,

o7r2 { —20(N301)3+40(N101)2(N1202) = 36(N10 1) (N0 ) 2+ 16(N1 )3
12

296 , 116 , 104 232 56 ,
+1_5(n1201)01_1_5(n1202)01_?(nlzvl)(vlvz)*'1—5(n1202)(0102)+1—5(n1201)02

+

5 , Gmy 64 104
— = (vt ——| — = (N 1) + = (N12)
5 rol 5 5

Gm,| 144 392
' ?(n12vl)+ E(nm‘)z)

+0(8), (7.6a

Gm, . Gmy| . |Gmy Gm,
(g°i)1:_4c3r vyt o5 (”Ilz[r (10(n1201)+2(n1202))_r_(nlzvz)
2 12 12
G Gm, . Gm;, G
5—m2[4—%'1+v'2 2(nyw)?— 4032 1+—m2)]
Cry r EP) EP)
G2mym, | 5 s o , 8Gm 4Gm
—%.2 ) N1zl 10(N1201)“=8(N101)(N1w2) —2(N1w ) —6vi+4(viwy) + 25— 5 ——+ 5
CrlZ 3 r12 3 r12
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. (20 4
—8(Nyw vy tuy ?(”1201)+§(n1202) +0(7), (7.6b
.. m2 . Gml sz sz . Gml sz -
(ij)1= ¢ 4r125”(_(r11202)2+ o T )+c4r12 nip —8 ' o +4v]
4G2m G’m;m,
30572 5' (N1 + 7{ 12n9,(ny010) + 16n{ o+ O(6). (7.60
12 12

Drastic simplifications occur in the case where the orbit is circular.

VIIl. 2.5PN EQUATIONS OF MOTION OF BINARY SYSTEMS

The motion of body 1 under the gravitational influence of body 2 is simply the geodesic motion taking place in the
post-Newtonian space-tim&.2). Now we write the geodesic equation of body 1 in the Newtonian-like form

dPl

5 =i 8.1)

The “linear momentum” vector and “gravitational force{per unit of masgare defined by

i vé.LgilL i 1 v/fv;aig,uv
Pl ———| ., Fi=z| —F/———————| . (8.2
vivy 2 viv]
_gpo7 ) _gp(r?

The above quantities are computed using the regulariz&tid@h which is a crucial ingredient of our point-mass model.
Inserting the 2.5PN metri2.5) into Egs.(8.2), we obtain

) ) 1 ) )
Pi=vi+ | —4(Vi)1+3(V)qwy+ vivh
1 e 3
+g _8(Ri)1+§(v )i T4(Wij)w1—4(VV)+ 5 (V)lvlvl 203(Vi)1— 401U1(V)1 vlvl +0(6),
(8.33
| 1 3, j 1] . a9,
7:1:((9iV)1+Ez —(Va;V) 1+ Evl(ﬁiv)l_‘lvl(f?ivj)l + 7| 4(9;X)1+8(V;4Vj)1—8v1(dR))1 + §U1(Vf9iv)1

+0(6). (8.3b

. . . 7 1 . ‘
+20]05(Wi) 1~ 2030} (0 V)1 + gu‘l‘(aiV)lJr E(vzaiV)l—4u11(vj giV)1— 4l (VaV)),

Next we replace into these expressions all the potentials and their gradients computed at point 1 as given in Appendix B
this order the Hadamard finite part is “distributive’50]), and get bothP; and F} in terms of the relative separation
y12= 12N, and individual velocities'; , [alternatively we can obtai®, and F} directly from Eqs(7.2)]. Then, we compute

the time derivative of?!, and order-reduce all the resulting acceleratiowisich appear at orders 1PN or 2Pby means of

the 1.5PN equations of motion given by H®.11). After insertion in Eq.(8.1) and simplification, we end with the 2.5PN
acceleration of body 1:

dv, Gm, o Gm, ) 3 , _Gm Gm
=T Tz Nt 202 01 4(N101) = 3(Nyw7) [+ Ny —v5=203+4(v1v,) + 5 (N 2)?+5 +4
dt o 1€ 2 2 o
Gm, 3 9 15
+7—n'12[ =205+ 4v5(0102) ~ 2(0102)*+ SUH(N )7+ §v§<n12v2>2—6<v1v2><n12v2)2—§<n12v2>4}

Gm| 15, 5, 5 9 7
- vt 2v2” §(Ulvz)+ 7(”12111) _39(n1201)(n1202)+?(n1202)

rio 4
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2
Gm, 2_ _ 2 o7, o, 69
+ ™ [4v5—8(v1v2) +2(N1w 1) —4(N1w 1) (N1 5) 6(f112112)]+—2—r mi—9mj m;m,
12

4 2

Gm, .
+ 2 C4v'12{vf(nlzvz)+4v§(n12v1)—5v§(n12vz)—4(v1vz)(n12v1)+4(v1vz)(n12vz)—6(n12v1)(n12vz)2
12

9 Gmy 63 55 Gm,
+§(n12v2)3+ p [_Z(nlﬂ)l)—"Z(anUZ) +r_[_2(n1201)_2(n1202)]]
12 12
4G%mym, [ Gm; 52Gm [ Gm G
53 | N Niwin)| —6—— o+ 303, +v} 2 —— 8 T 02,1 +0(6). (8.4
5¢7ry, r 2 g7 Mo

We find perfect agreement with the Damour-Deru@lle 7] o0 4 2 )

equations of motion. To emphasize the strength of this agree- h™=— 2V @ (Wit 4v9)+0(6), (A23q)

ment we recall that the method employed in the present pa-

per differs in many respects from the one originally used in 4

[4_1—7] (see the discussion in the Introductiom the case of h%=— —V,+0(5), (A2b)

circular orbits, the equations reduce to c

dvl, 32G3m3y al. 1 .

Wij — 5 6 Wi

W:_wgPNyilz_Trilzvilz—" O(6). (8.9 hl=-— >

. +0(6).

(A20c)
The second term represents the standard damping force, o _ _
while the orbital frequencw,pyis the frequency of the exact Substituting the 1PN metric into the right-hand side of the
circular motion at 2PN order, related to the harmonic-field equation we get
coordinate separation;, by 4 4
gl =1+ ZV+ Z (Wit 2V2)+0(6),  (A3)

2

41 )
wszEr—3 6+ —v+v
12

1+ (=3+v)y+| 6+

'yz}. (8.6)
together with the gravitational source teffags. (2.12 in

Our notation ism=m;+m,, v=m;m,/m? (=X;X, in the  [39]]

notation of the previous sectiprand y=Gm/r ;,c2.

o 14 16 ) 5
A= — _ﬁiV&iV‘f' ? —VatV— 2Vi(9t(9iv+ g(ﬁtV)
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this work. + E(?,VJ((?|VJ +3(9J'Vi)+(9iV(9tVi - EV(?,V(?,V
APPENDIX A: DERIVATION OF THE 2.5PN ~ 1 ~ 2 ~
FLUID METRIC _(Wii - §5ijWkk) gV aiVIiWi +0O(8),  (Add)

The derivation follows almost immediately from the re-

sults established in the Sec. Il A §89]. The Einstein field  oi_ 1—?[8,—V((9iVj—r9jViH gﬁtVﬁiV +0(7), (A4b)
equations in harmonic coordinates are written as c 4
d,h#r=0, (Al 4 1
A= F[ VIV — §5ijakvak\/]
Oher= 16(;G 0| T4+ A#(h), (ALb)
+ =~ 29V Vjy— 3V d;Vi— dVid\V;

where U= »*"d,d, is the flat D’Alembertian operator
[#*’=diag(-1,1,1,1), h*’=\-gg""— »*", and A** de-
notes the gravitational source term which is at least quadratic
in h and its space-time derivativésee[39] for the expres- L
sions of the quadratic and cubic partsAof”). From[39,46,

+ — .. —
we have, to order 1PN, 2 %AV m( IV m™ ImVid)

3
+29GVidiV))~ g O (V)%= 8V 3V

+0(8). (Adc)
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These are the needed equations, which lead, by applicatigithe potentials are defined in the textrom this, we deduce
of the retarded integral on the right-hand side of the fieldthe components of the covariant metgg,, and find the

equations, to
h00+ hii
="

1 3

2

2
c?

4 " ~ R
V—?V — | X+ VW, + 3

—}—1—0(8),

result (2.5). It has been shown in Sec. Il ¢89] that the
post-Newtonian metric matches in the external near zone to a
solution extending up to the radiative zone.

(A5a)

8 .
—@Vim @SR+ VVI+0T), (A5

A 1 .
28| Wij — 5 6ij Wi |+ O(6)

(A5c)

APPENDIX B: COMPLETE RESULTS
b) FOR THE POTENTIALS
We give first all the relevant potentialsalid all over
space-timg which are used in the obtention of the 2.5PN
metric (7.2):

Gml Gml (n1v1)2 201 M

V=

5 rs 2G2mymy(Ny 1)

-

- +—+Gm —
r 2r, r 2\ ard,

Gmy [ 3(nwq)? B 3(nyvq)%0d

4

arqrp

Al

3,2
4rqri, 3c°ry,

3r3 37w, 1 35 rd

C2
3r1

1

8 2

ctry

2

3rqr3 rs

16r3,

+ 3rq
16r3,

3

+
2rqiry

+Uz

2rqri,
153
16r3,

15,13
16r3,

N 57,
16r3,

+(n1201)2< -

153
8r12

151,13
8r3,

9rq

— +(Nnv
T8, (nvq)

+(n1201)(n1202)(
2

ri 2
it
ary, T

3r?

+(n102)(n1201)< +(n101)(n1202)<

r 7 3r3 | (nwy)(n

G?mym
v)+ Cl 2[ %(

+(n1202)2( -

2r12

2
165, 163, o 165, 3)
12 12 Til12 12 Tl

2

3rqr;
L

8ri,

3

3ry
5

8ri,

3

E1EP)

13,
8ri,

rs

d

Fir1o

(Ulvz)(—

2
3r5

:

8riry,

15r,r3
16r3,

2
3r2)
—
ari,

153
16r3,

33r,
16r3,

7
8riryy

2
3r{

—
2ry,

3
4r212

(nlzvl)( -

3
2ri,

2
3r1{
— -
ari,

2
3r5
-
ari,

13
4r§2

l

|

rars

+(n102)(n12U2)( -

wory] Gmim,[ 3 5y, 3 5r2

J+

91 rars

+(n101)2(__3+ - 3 3
8ri, 8rir;, 8rqry, 2ry

G3*m;mj; rv 43,

+

——togt——t——
5 Z 2 5 Z
2 ( 8ri; 8ri, 4riry, 8ry, 4r1r12)

}+
233 3r;

2 3
c* (_3

+ + - -
2r(152 16r112 321&2 16r(152

4
ry

3r3
ag,”
12

—
2ry,

11
8ri,

(k>

2
G mym,
S

[(n12012)3< - a6

2

r{ 5rl
— (N1 (N 1) 4 + (N0 1) (N0 12)

r12

B (N1201)%(N10 1)

EP)

r
+ (N (v1v2) 3 3r (nlzvl)(vlvz) 2
12 1
2r3

5
5r7,

2rqr3
5r3,

5ryq

2
+(Nw1)v 7y 33
12

7r

T
EP)
8r 8
291 2 2
_(”1012)01_3 3 +(n1201)01'3 va +(n12012)v1<—
o EP)

(n101)0123_§ + (N1 12(

2
+(n12v1)v12< -

|

+(nlvlz)(nlzvlz) (

+
16r1r‘1‘2 32r s,

3
2ry

ro

5r,

3
ro

2rqr

1

5
ro

I'12

5 2

+(n1012)(n1201)(n12012)

PN +(n1U1)(n12012)
12 ro

8 3r3
Jf_

a2 T a

3gry, I

3r§ 7

+ (N1 (v1V2) 57

3ri,
2.2
3r1r2)
=2
4ar 3,

r12

3rf 9 9
ars, 10, 8rz,

i 5+r2
rf, 3r2,

2 r12
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2

G3m2m, ar3  8ry  4rgrd 2r2 10 2r3 4r1
+———1{(n - -0+ +(n -+ — n
cs (Nv1) _6_15r12 3r‘1‘2 _6_1312 (N1v1) 3r?2 _3_3r12 3r12 +( 101)
2r2 20 8 34«2 06) 4102, a1
+(n ————t —— + +
(N0 12) 3',?2 3@2 3r1r12 15r (6)+1e (B1la

+0262m+r:zr1 n_lzG Zmymy| (Nyz1) 25r42+(n12012)(n1012) 2%, U%zzrrllz or ;Z+Gm1( 6rrli2+%+%§2”
G:T;ggz:ll GZT§22032< 23rrz11(n12012) 2l 3 (n1012)+(7122i) +0(4)+1-2, (B1b)
—5ii(_GTivi—G:rngiJerrT;sz) Gmill)ilvjl Gzrjjrl]l +sz1m2[s( (i) + 2n0ni)) —nini, Slz+ 128)]

Ny +2nfl, | +0(2) + 12, (Blo

sz1m2< (n12012) ~ 3(Nyv))
+ T2 2

2

§|=G2mlm2ni12[ — %(1 i) 3 2(nyv4) N 3(nyvy) }

S 1y, &? 257
G? ml(nlvl) G2mym, 3(Nyw5) 3(nyv5)
+ |1[ 8r2 2 2(”1201)_T+2(n201)_ >
i G?mj 1 i G*m;m, iszlmZ(n12vl) i G’mim, [ 3(niwy)? i
+Ul 2 +G m1m2 - Ul 2 n12 - + —
8r r1r12 2r 158 rira 2cry, Cri 4 4
+0(2)+12, (B1d)
. Gm? 1 1 1 1
X=—>"((Nw,)?—v] +szmvz(— —+—)+G2mm‘v2(— +—+—>
Sr% (( 1 l) 1) 1112¢1 rl 1 rls 128 1112 2 r1r12 rls rlZS
(Ulvz) < 3 (n12vl)2 E i _(n1202)2 £+i 3(Ny01) (N1 ) £+i
S 2r12 S S ryp S S rp 2S S rp
2(ny)(Nwy)  S(Ny2)(Nwy) (nyv4)? E+ 1 2(nyw5)(N1wy) N 2(n1w1)(Nqvy) E—i— 1
F? ? S S n S S S
B (N12)? £+ i _ 2(Nq02)(Nov1) . 2(nqv5)(Nyv+q) _ 3(Nqvq)(Nyvy) G3mi
S s’ s? s? 28 12r3
e N ra . rs ra 3 15, ra ry rs,
MMz 2rd T aed aerlr, 2, 2rdrd, 323, 16r2r12 3rirs, 2rirs, 2rir;, 323
3 2 2 1 szlmz( 3(Nw)?(Nw1p) | 3(Nw)(Nw12)?  3(Ngaw1p)°
+G'mymy| — o5+ 3~ 2 e + -
2r7, 2riri, 2riri, Cri, 4 4 2

(nlzvl)viz 3(”12012)Ui2 (n12vl)vi (nlzvlz)vi (Nw1)(vve) (N1 (v1v2)
T4 T2 T2 T ~— 2 ° 2
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G3m2m, 3 3rl 3r3 3r; 3 1 3r3 1 r3 1
——{(n -t gt — g | +(n — gt
c ( 12U12) 8r12 4riry, 8ryri, 2ry, 4riri, A4rirg, (N2 r_13_2 riryp,  rir
+0(2)+1<2. (Ble

The values of the potentials at the location of body 1, following from Bd), are

Gm, 1 3Gm , 1 o 4Gmy
(V)1= ™ [1 2 _Er_lz+202_§(n1202) 31,00 —3(N1w1o)
Gmy 116m1 5Gm, 15, 7 25 , , 25 33 ,
+I’12C4 +4 - +tgv —Z(Ulvz)—gvz+ g(n12vl) _Z(n12vl)(n1202)+ g(nlzvz)
3 3 G’mm,( 2Gm 26 Gm, Gm1
T 2Ug_§(n1202)205+§(”1202)4 52, (_g ' (Nq1)— I (nlzvl) 5 (nlzvz)
2 Gm, 32 , 48 122 , 92 ,
+§r_12(n1202)_1—5(n1201)01+ g(nlzvl)(vlvz)_E(nlzvl)vz"' 1_5(n1202)01_ﬁ(n1202)(0102)
34 2 3 2 2 3
+§(n12U2)Uz+2(n1201) —10(n101)“(N102) +12(N10 1) (N1 2)“— 4(N105)° | +O(6), (B2a)
Gm,[ , vy _Gmy , 1 1Gm | Gm1 )3 1 Gm,
(Vi)l:r_lz U2+? _Zr_12+v (n12U2) 2r2(:2v1+r 2 ny _E(n1201)+ (Nvy) [+ r Ul(nlzvl)

Gmy |5 2 Gm | ZGml 1Gm, )
—3_02 (nlzvl)_—(nlzvz) + 3 +vi—(v1v2) = (N1 1) 7| [ +O(4), (B2b)
c°rq 3 rio -3 I
A Gm Gm; ., . Gm N N
(W)= ——1 ol = 81p3+ ——[ —2nl), - il —— (N 1) (3nily+ 81) | +0(2),
j M1 12 Criz
(B20)
. G'mm,[ 3, 5. 1 o1 Gmi[ 1, 1 i
(R)1=—2—| —zv1t 7vo— 5(Nw1)Nip— (nlzvz)nlz +T a2t g(Nwo)ny,
r 4 4 2 8 8
G'mmy| .11 , 1, 3 , 3 o 1 1 i
cr?, ny Zvl_ZUZ_Z(nnUl) +Z(n1202) +§(n1201)01_§(n1202)02 +0(2),
(B2d)
.~ G’mm,[ 3Gm 1 9 11 11 )
(X)1= 2 57 +ZU1 2(vwa)+ 5 Uz (nlzvl)+ (nlzvl)(nlzvz) (anUZ)
12 12
G'mi[1Gm, 1, 1 .| GZmym, , 15 )
r—iz 1_2r_12_§U2+ g(nlzvz) +T§2 —3(Nyv1) +?(n1201) (Ny1v2)
5 2 3 2 O 2 S 2
_E(nlzvl)(nIZUZ) +3(N1w7) +3(n1201)U1_5(”1202)01_5(%2012)(0102)4' E(n12vl)v2
, 3Gm 5Gm,
_3(n1202)02_§r_12(n121112) 2 (nlzvlz) +0(2). (B2¢)

The gradients of the potentials computed at bodydeded for the equations of motjoare
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Gm, | m, . , 3 , Gmy| Gm Gm, . 9, , 15 4
((9‘V)1:__rgn12+r_f?nlz ~2vpF 5(Mawa) "+ ™ —2_(n1202)vz+—2_n12 205+ 502(N102) "~ 5 (N17)
G'mm, [ 3, 3,7 13 ) 1 , 1Gm 1Gm,
Wnu _Zvl_zv2+§(vlv2)_?(n12vl) +7(N01)(N1v2) + E(nlzvz) 277, 27,
m, . ) 3 17 Gml Gmy G’m;m, il 9 9
"‘@02 —3v5(Nwo) + (nlzvz) 7 ("11201)+ - — (N |+ p 2C4 vy — ("11202)+ Z(n12vl)
G’mym, . 3 ) 42 )
+C5—I’32 —10(N101)3+10(N101)2(N120 ) + 10N 1) (N102) 2 — 10N )3+ g(nlzvl)vl
1
22 2 16 18 ) 38 88Gm,
(nlzvz) (nlzvl)(vlv2)_ (nlzvz)(vlvz)—g(nlzvl)vz‘F 5 (N10,)v5+ =2 151, (n12U1)
2 O o)~ S O™ 1+ 22 T2 | S i<10( )2 8(ny1) (Ny0)~ 2y0)?
————=(n —— ——(Nyw — ——(Nyw —a—v n —8(n Niv,)—2(Nyw
15 rq, 12V1 15 14, 12V2 5 1, 12V 2 Csfiz 1 12V1 120 1)(N1202 12V 2
166m1+44Gm2 62 +44 +6 +sz1m2 1. 216 2, 12Gm; 8 Gmy,
15 15, 15 Iy, 101t (0wt g 53, U2 (N1201)"+ 6(N102) "+ 5 === 5 =

+ 142 4 38 +0(6 B3
gvl 15(le2) 151)2 ( ) ( a)
(V) 2wt o2 i S 3 2w |+ o+ — 024 o (M)
iVili 2 MU» r%zcz 12 1 2 12V1 2 12V 2 2r 1, 1201 12”2 2T 5 b2 2r 1,
Gm G’mym, 1Gm 1Gmy
__nlzvz v3(Ny5) +_r iy —5(Nyw19)? +012+§_+§
rlz r12 r12

+0(4), (B3b)

4
+6n(|20 (1012 — 6”12”2(”12012)_§ng

- Gm, L m Gm o 3Gm Gm, ik 2Gm1 sz
(3 Wij) =—(—nk J+8inky — +—+v3|+ by — + x| —— +0(2),
T, 1202 Yo2ry,  2ry Yoo2rp o 2rp) g M1
(B30
Gmy|[ .| 5Gm 1Gmy 1Gm,
(dR)1=—1 8| — 2 (n12vl)+ ——(N2) + 5 ——(N12)
r12 8 r ]_2 8 rlz

1Gm . 5Gmp . 1Gm, .
UJ_ vht = vh
4 1, 1 8 ryp 8 Iy

il L16 1Gm .
nlz_z T(nlﬂjl) Er_lz(anUZ)_ > (”1202) n12
[7Gm; ;, 9Gm , 1Gm, ,

_gr—lzvl—gr—lzvz'i‘zr—vz +0(2), (B3d)

2 9 2, ! 2
_____2+_(n1201) —8(Nyv1)(Ny) + E(nlzvz) +z(0102)_202

5 . .5 -5 .
- E(n12vl)v|1+3(n1202)vll+ Z(nl2vl)vl2_ E(nlzvz)vlz}

G*mmj i
+ Cr—ﬁltz{3”12(n12012) — 201, +0(2)

+sz§[ i[ 1Gm, 1
(B3¢

( )2 L2
—a _____n U + — U
3 1202 2
o 12 4

1 .
+z(n1202)0|2
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