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Strong dissipative behavior in quantum field theory
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We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a
quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the
effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other
scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of
motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite tempera-
ture. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to
equilibrium in phenomenological theories of phase transitions. Applications of our results, including a recently
proposed inflationary scenario called ‘‘warm inflation,’’ are discussed.@S0556-2821~98!04424-5#

PACS number~s!: 98.80.Cq, 05.70.Ln, 11.10.Wx
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I. INTRODUCTION

Kinetic equations describe the time evolution of a cert
chosen set of physical variables. The choice of physical v
ables in principle is arbitrary, but often in practice is go
erned by the measurement of interest. Typical examples
the order parameter of a complex system or the coordinat
a Brownian particle in a heat reservoir. The kinetic approa
is usually implemented through a proper separation of
microscopic equations of motion of the chosen physical v
ables into regular and random parts. An averaging over
random part then generates the effective partition func
for the regular part. This averaging is often referred to a
coarse-graining.

One typical application of the kinetic approach is wh
the physical variables of interest possess energy in rela
excess or deficiency to the rest of a large system. Kin
theory then describes the approach to equilibrium of the c
sen physical variables, as for example in the kinetics
phase transitions or in Brownian motion. In the former ca
the system is able to release energy to the environment
to some change in its internal state. Provided the envir
ment is disproportionately large relative to the system,
process is irreversible. For a continuous transition, the fo
of the present work, this process of equilibration can be
scribed by the monotonic change of an appropriate or
parameter, which is the chosen physical variable. Many s
tems are known to relax in this manner. Phenomenologica
they are successfully described by the time-depend
Ginzburg-Landau theory@1#.
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Here we are interested in examining under which circu
stances physical variables whose microscopic dynamic
second order in time, as for example, the Higgs order par
eter of spontaneous symmetry breaking, may have a dyn
ics which is effectively first order in time as in Ginzburg
Landau phenomenological models.

Qualitatively it is not difficult to argue the plausibility o
this standard picture for the Higgs symmetry breaking s
nario. A single variable, the Higgs order parameter, is m
eled to control the release of energy to all the modes
couple to it. By basic notions of equipartition, one anticipa
that some portion of the order parameter’s energy will flo
irreversibly to any given mode. Provided the Higgs ord
parameter couples to a sufficient number of modes, the
tion of the order parameter will be overdamped.

In particle physics models, Higgs symmetry breaking
accompanied by mass generation. Thus the natural coup
for the Higgs fieldf to bosonic fieldsx i is f2x i

2 , gauge

fieldsAi
m is f2AimAim and fermionic fieldsc i is fc̄ ic i . For

a microscopic realization of time dependent Ginzbu
Landau theory for the Higgs scalar order parameter in a p
ticle physics setting, these are the most obvious types
couplings to investigate. In this paper we will examine t
case of purely bosonic couplings in the ‘‘symmetry r
stored’’ regime. That is, we will study the relaxation of a
order parameter which is initially away from the only min
mum of the free energy density describing the system. M
of the formalism required for this has already been done
@2# but we will extend that calculation to the overdamp
regime. In an upcoming paper, we plan to study the symm
try broken case.

This paper is a study of overdamping in quantum fie
theory with realistic couplings between system and envir
ment, as inspired by particle physics. Overdamping has b
©1998 The American Physical Society08-1
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studied in quantum mechanical reaction rate theory for a
ticle escaping from a metastable state~for a review, please
see@3#!. This is sometimes referred to as the Kramer’s pro
lem, with the overdamped limit also called the Smo
chowski limit. Quantum mechanical models describing t
problem are commonly of the system-heat bath type. Mic
scopic quantum mechanical models have been constru
along these lines, in which the particle~system! is coupled to
a set of otherwise free harmonic oscillators~heat bath!. Such
microscopic system-heat bath models are often referred t
Caldeira-Leggett models. In many cases they have been
actly solved@4#. The overdamped limit has been derived
these models for the case where the coupling is linear w
respect to the oscillator variables but arbitrary with respec
the particle variable@3,5#.

A Caldeira-Leggett type model has also been formula
for the case where the system is a self interacting sc
quantum field coupled linearly to a set of otherwise fr
fields and the overdamped limit has been obtained@6#. This
model does provide a microscopic quantum mechanical r
ization of time-dependent Ginzburg-Landau dynamics
scalar quantum field theory. However, since the coupli
between system and environment variables are linea
should be considered as a first step toward more real
treatments. More importantly, the calculational method u
in @6# cannot be extended to the case when the system
able couples quadratically to other fields.

Although the analysis of overdamping in this paper h
general applicability, it was motivated by the warm inflatio
scenario of the early universe@6,7#. In @7# it was realized that
the standard Higgs symmetry breaking scenario, when
into a cosmological setting, provides suitable conditions
the universe to enter a de Sitter expansion phase and
smoothly exit into a radiation dominated phase. The ov
damped motion of the order parameter in this scenario m
sustain the vacuum energy sufficiently long for de Sitter
pansion to solve the horizon and flatness problems. Simu
neously, the relaxational kinetics of the order parameter
maintain the temperature of the universe and permi
smooth exit from the de Sitter phase into the radiation do
nated phase. Finally, the thermal fluctuations of the or
parameter provide the initial seeds of density perturbatio
which in addition could be scale free under specified con
tions @7,8#. An elementary analysis of this scenario, based
Friedmann cosmology for general realizations of order
rameter kinematics, indicated that if the universe’s tempe
ture does not fall too much during de Sitter expansion, th
the cosmological expansion factor from the de Sitter ph
should be of the order of the lower bound set by observa
@9#. Although this is not a tight constraint of this scenario,
is a natural one. An analysis of Cosmic Background Explo
data motivated by this expectation did indicate a slight pr
erence for a small super-Hubble suppression scale, w
could be interpreted as arising from a de Sitter expans
with duration near its lower bound@10#. Furthermore, the
overdamped limit required by warm inflation, when e
pressed in different terms, was noted@6# to be an adiabatic
limit, for which known methods from dissipative quantu
field theory @2,11,14# are presumed valid. These facts pr
12350
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vide further motivation to seek a microscopic model of t
scenario, which is the goal of the present work.

The calculational methods used here, based on Schw
er’s close-time path formalism, were developed in@2#. There
are several other works in the literature that apply this f
malism to a variety of different situations.~See, for example,
the works of Refs.@12–16#.! The new feature of the presen
paper is to shift focus to a kinematic regime dominated
strong dissipation, in order to establish under which con
tions this regime leads to overdamped motion. This appro
will allow us to have a unique understanding of the micr
physical origin of such dynamical behavior, which is in ge
eral invoked phenomenologically in applications rangi
from condensed matter physics to inflationary cosmology

The paper is organized as follows. In Sec. II our model
interacting bosons is presented and the effective actio
computed perturbatively for a homogeneous time depend
background field configurationf(t). In Sec. III the effective
Langevin-like equation of motion is obtained forf in the
symmetry-restored phase. In Sec. IV the overdamped limi
this equation of motion is derived and regions of validity a
given. In Sec. V the results of the previous sections, wh
are for Minkowski space, are extrapolated into a cosmolo
cal setting and a preliminary examination is made of
warm inflation scenario. In Sec. VI concluding remarks a
given. Two Appendixes are included to clarify a few techn
cal details, like the evaluation of the imaginary part of t
self-energies and to stress the importance of taking fu
dressed field propagators to properly describe dissipatio
the adiabatic approximation for the field configuration.

II. MODEL OF INTERACTING BOSONIC FIELDS

A. The effective action

Let us consider the following model of a scalar fieldf in
interaction withN scalar fieldsx j :

L@f,x j #5
1

2
~]mf!22V@f#

1(
j 51

N H 1

2
~]mx j !

22V@x j #J 2Vint@f,x j #,

~2.1!

where

V@f#5
m2

2
f21

l

4!
f4, ~2.2!

V@x j #5
m j

2

2
x j

21
f j

4!
x j

4 , ~2.3!

and

Vint@f,x j #5(
j 51

N gj
2

2
f2x j

2 . ~2.4!
8-2
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For the most part, we will consider all coupling constan
positive: l, f j and gj

2.0. Writing f→w1h in Eq. ~2.1!,
wherew is a background field configuration andh are small
fluctuations aroundw, we obtain the expression for the on
loop effective actionG@w#, valid to second order in the fluc
tuations, by performing the functional~Gaussian! integra-
tions in h andx j :

G@w#5S@w#1
1

2
i Tr ln@h1V9~w!#

1
1

2
i (

j 51

N

Tr ln@h1m j
21gj

2w2#, ~2.5!

whereS@w#5*d4xL@w,0#,V9(w)5(d2/df2)V@f#u
f5w

, and

1

2
i Tr ln@h1V9~w!#1

1

2
i (

j 51

N

Tr ln@h1m j
21gj

2w2#

52 i ln E Dh)
j

Dx j expH 2
i

2
h@h1V9~w!#h

2
i

2
x j@h1m j

21gj
2w2#x j J . ~2.6!

Neglecting contributions to Eq.~2.5! which are indepen-
dent of w, we can expand the logarithms in Eq.~2.5! in
powers ofw, obtaining, in the graphic representation:

~2.7!

where we have identified the propagators in the inter
lines. External lines arelw2/2 for thef-graphs andgj

2w2 for
the x-graphs.

B. Single-particle excitations and dissipation:
Dressing the propagators

Before presenting our derivation of the effective noneq
librium equation of motion forw, we contrast our approac
with earlier works in the literature. We closely follow th
method of Ref.@2# in the derivation of the evolution equatio
for w. In particular, it was shown in@2# that for slowly
changing fields, dissipative terms vanish if they are co
puted perturbatively with bare propagators. There are sev
issues related to this result. Boyanovskyet al. in Ref. @13#
argue, in the context of a toy model, that dissipative effe
cannot be studied within perturbation theory: perturbat
theory breaks down before dissipative effects can be
served. This shows that dissipation is a nonperturbative
fect in quantum field theory. In@2# it was shown that dissi-
pative terms can be derived once a consistent ‘‘dressing’
propagators is used. This is an explicit way of consider
the effect of quasiparticles~or single-particle states! in the
evolution of the system, described byw, in interaction with a
thermal bath which represents fluctuations off and of other
fields to which it may be coupled.
12350
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It seems reasonable to expect that dissipation effects
closely related to the effect of collisions which dress the fi
propagators. Take for example the case of a bare propag
expressed in terms of the spectral densityr0(p), where there
is a one to one correspondence between the energy an
momentum of a given state. This completely neglects
spreading of possible energy states due to interactions.
full ‘‘dressing’’ of propagators, this is accounted for throug
the introduction of a lifetime~decay width! for single-
particle states, such that the full~dressed! spectral density
r(p) is smeared out. In particular, particle lifetimes are c
cial in the study of relaxation time-scales in quantum ma
body theory@17,18#.

Also, the reason why we can get dissipation within o
approach can be traced back to the very way that trans
coefficients are derived in quantum field theory. As we w
show later, the assumption of a slowly moving field is co
sistent with overdamping in a strong dissipative enviro
ment, justifying the adiabatic approximation we adopted.
this regime, there is a close relation between the dissipa
we compute and the shear viscosity computed from the K
formula @19–22#. As explained in@20,21#, diagrams contrib-
uting to the shear viscosity have near on-shell singulari
for free bare propagators. Full resummed propagators re
late these singularities through an explicit thermal lifetime
single particle excitations. Analogous singularities are exh
ited by our expressions for dissipation terms if bare pro
gators are used. Additional issues concerning the relatio
our dissipation terms with the shear viscosity will be d
cussed in the following two sections.

C. Self-energies and dressed propagators

From the above discussion, we rewrite the Lagrang
density in Eq.~2.1! as

L5
1

2
~]mf!22

1

2
~m21Sf!f22

l

4!
f41

1

2
Sff2

1(
j 51

N H 1

2
~]mx j !

22
1

2
~m j

21Sx j
!x j

2

2
gj

2

2
f2x j

22
f j

4!
x j

41
1

2
Sx j

x j
2J , ~2.8!

where Sf and Sx j
are the self-energies for thef and x j

fields, respectively. This way we can work with fu
~dressed! propagators for thef and x j fields ~note the im-
plicit resummation of diagrams involved in this operatio!
and at the same time keep consistency by conside
(l/4!)f42(1/2)Sff2 and also (f j /4!)x j

42(1/2)Sx j
x j

2 as
interaction terms. This method has already been adopted
fore in many different contexts~see, for example,@2,22,23#!.
In terms of the self-energies the field propagators are wri
as

1

q22m21 i e
→

1

q22m22S~q!1 i e
. ~2.9!
8-3
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For bothf andx j fields, a finite lifetime of single particle
excitations, given in terms of the imaginary part of the se
energies, first appear at the two-loop order. We thus rest
for simplicity, the evaluation ofSf andSx j

up to the two-
loop level. Diagrammatically, the self-energies are given

~2.10!

and

~2.11!

The setting sun~non-local! diagrams in Eqs.~2.10! and
~2.11! @the two last terms in Eqs.~2.10! and~2.11!# contrib-
ute imaginary terms to the self-energies, from which we c
write the decay widthsGf ,Gx j

, for the f andx j fields, re-
spectively, in terms of the on-shell expressions@21–23#
(S I[Im S):

Gf~q!5
S I

f~q,vf!

2vf
~2.12!

and

Gx j
~q!5

S I
x j~q,vx j

!

2vx j

, ~2.13!

where vf(x j )
is given by the solution ofv25q21m2

1ReS(q,v).
Explicit expressions forG(q) in the lf4 model have

been obtained in@21# and @22#. We follow @21# to compute
Gf andGx j

. A straightforward extension of the computatio

can be applied to our model of interactingf2x j fields.
Some of the details are shown in Appendix A, where
evaluate the imaginary contribution coming from the mix
setting sun diagrams inSf andSx j

@the last diagrams in Eqs
~2.10! and ~2.11!#. Even though in general there are n
simple ways of expressing the results, if we adopt the z
space momentum~uqu50! approximation for the imaginary
part of the self-energies, we can find simple approxim
expressions for both Eqs.~2.12! and ~2.13!, respectively,
given at finite temperature (b51/T) by @for mT
;O„m j (T)…]
12350
-
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n

e
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e

Gf~q!uS
I
f~0,mT!;

l2T2

28p3vf~q!
Li2~12e2bmT!

1S 11
1

2
df,x j D (j 51

N gj
4T2

25p3vf~q!

3FLi2~12e2bmT!2Li2S 12e2bmT

12e2bm j ~T!D G
~2.14!

and

Gx j
~q!uS

I

x j
„0,m j ~T!…;

f j
2T2

28p3vx j
~q!

Li2~12e2bm j ~T!!

1S 11
1

2
df,x j D gj

4T2

25p3vx j
~q!

3FLi2~12e2bm j ~T!!

2Li2S 12e2bm j ~T!

12e2bmT D G . ~2.15!

In the above expressions,mT and m j (T) are the thermal
masses for f and x j , respectively. df,x j

51 for mT

5m j (T) and df,x j
50 otherwise. Li2(z) is the dilogarithm

function.1

This approximation for the decay widths, in terms of t
zero space-momentum expression for the imaginary par
the self-energies, is common to computations of transp
coefficients and contrast densities in field theory@11,19,20#.
However, Wang, Heinz, and Zhang@22# showed that this
approximation may lead to errors in the calculation of t
contrast density in thelf4 model. In fact, the expression
for Im S can be fast changing for some momentum ran
and values of the masses. For example, in Fig. 1 we plot
value of ~the on-shell! Im S(q), obtained numerically, as a
function of the momentum, normalized by itsuqu50 expres-
sion ~for f j!gj

2!. Even though ImS(q) can depart consider
ably from itsuqu50 value, we will show later that, for a rang
of small thermal masses, this approximation results in
small error (&10%) in the expression for the dissipatio
coefficient, when compared with the computation using
completeuquÞ0 expressions for ImS(q).

In the analysis presented in the next sections, it will a
be sufficient to use the leading-order high temperature
pressions for the finite temperature effective~renormalized!

1We follow the convention in Ref.@24# for the definition of the
dilogarithm function: Li2(z)52*1

z@ ln t/(t21)#dt. Some useful ap-
proximations for Li2(z) are Li2(z);p2/61@ ln(z)21#z1O(z2), for
z!1, and Li2(z);2p2/62(1/2)ln2(z)1O(1/z), for z@1.
8-4
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masses,mT andm j (T), appearing in Eqs.~2.12!–~2.15!, @ob-
tained from the one-loop diagrams in Eqs.~2.10! and~2.11!,
respectively#, given by2

mT
25m21Re Sf~mT! ;

T@m

m21
lT2

24
1(

j 51

N

gj
2 T2

12
~2.16!

and

m j
2~T!5m j

21Re Sx j
„m j~T!… ;

T@m j

m j
21

f jT
2

24
1gj

2 T2

12
.

~2.17!

D. Real-time full field propagators

In order to obtain the evolution equation for the field co
figuration w, we use the real-time Schwinger’s closed-tim
path ~CTP! formalism @25#. In the CTP formalism the time

2The divergences in Eqs.~2.10! and ~2.11!, as in the effective
action, can be dealt with by the usual introduction of the appropr
renormalization counterterms in the initial Lagrangian, for t
masses, coupling constants and the wave function. In particular
note that the imaginary terms in the self-energies expressions, c
ing from the setting-sun diagrams, are finite.m, m, g, f and l in
Eqs.~2.16! and~2.17! and in our later results are to be interpreted
the corrected and not as bare quantities.

FIG. 1. ImSx„q,vx(q)… normalized by itsuqu50 value, for dif-
ferent values of masses and space momentum.
12350
-

integration is along a contourc from 2` to 1` and then
back to2`. For reviews please see, for example, Refs.@26–
28#.

In the CTP formalism the field propagators are given
@2# ~with analogous expressions forGx j

!:

Gf
11~x,x8!5 i ^T1f~x!f~x8!&,

Gf
22~x,x8!5 i ^T2f~x!f~x8!&,

Gf
12~x,x8!5 i ^f~x8!f~x!&,

Gf
21~x,x8!5 i ^f~x!f~x8!&, ~2.18!

where T1 and T2 indicate chronological and anti
chronological ordering, respectively.Gf

11 is the usual physi-
cal ~causal! propagator. The other three propagators come
a consequence of the time contour and are considere
auxiliary ~unphysical! propagators. The expressions f
Gf

n,l(x,x8) in terms of its momentum-space Fourier tran
forms are given by

Gf~x,x8!5 i E d3q

~2p!3 eiq.~x2x8!

3S Gf
11~q,t2t8! Gf

12~q,t2t8!

Gf
21~q,t2t8! Gf

22~q,t2t8!
D ,

~2.19!

where

Gf
11~q,t2t8!5Gf

.~q,t2t8!u~ t2t8!

1Gf
,~q,t2t8!u~ t82t !,

Gf
22~q,t2t8!5Gf

.~q,t2t8!u~ t82t !

1Gf
,~q,t2t8!u~ t2t8!,

Gf
12~q,t2t8!5Gf

,~q,t2t8!,

Gf
21~q,t2t8!5Gf

.~q,t2t8!. ~2.20!

In terms of the decay widthGf , the expression for the
full dressed propagators at finite temperature were obta
in @2#, from which we have

Gf
.~q,t2t8!5

1

2vf
$@11n~vf2 iGf!#e2 i ~vf2 iGf!~ t2t8!

1n~vf1 iGf!ei ~vf1 iGf!~ t2t8!%,

Gf
,~q,t2t8!5Gf

.~q,t82t !, ~2.21!

where n(v)5(ebv21)21 is the Bose distribution andv
[v(q) is the particle’s energy, or dispersion relatio
vf(q)5Aq21mT

2. For Gx j
, vx j

(q)5Aq21m j
2(T).

te

e
m-

s
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III. DISSIPATION IN THE ADIABATIC REGIME

A. The effective equation of motion

With fields in the forward and backward segments of
CTP time contour identified asf1 ,x1 andf2 ,x2 , respec-
tively, the classical action can be written as

S@f,x#5E d4x$L@f1 ,x1#2L@f2 ,x2#%, ~3.1!

The evaluation of the effective action at real time can
done exactly as in@2#. There are also a number of oth
works using Schwinger’s closed-time path formalism to o
tain the real-time effective action for field configuration
~See, e.g., Refs.@13–16#.! Here we will concentrate on th
evaluation of the effective equation of motion in the stro
dissipative regime. In the evaluation of the effective act
there appear several imaginary terms, once thex fields and
the fluctuations around thew background are integrated ou
These imaginary terms can be interpreted as coming f
functional integrations over Gaussian stochastic fields, as
be visualized by introducing the new field variables:
12350
e

e

-
.

n

m
an

wc5
1

2
~f11f2!, wD5f12f2 . ~3.2!

In terms of these new variables the equation of motion
obtained by@2,14#

dSeff@wD ,wc ,j j #

dwD
U

wD50

50, ~3.3!

wherej j are stochastic fields, related to each distinct dis
pative kernel appearing in Eq.~3.3!.

At one-loop order, the leading contributions to the dis
pative terms in the equation of motion come from the d
grams:

~3.4!

The explicit expression corresponding to these terms
pearing in the effective equation of motion, Eq.~3.3!, is ~as
obtained in@2# for a similar case!
s

r per-
q.

ctions,
e to
wc~x!E d4x8wc
2~x8!H l2

2
Im@Gf

11#x,x8
2

1(
j 51

N

2gj
4 Im@Gx j

11#x,x8
2 J u~ t2t8!

;wc
2~ t !ẇc~ t !H l2

8
bE d3q

~2p!3

nf~11nf!

vf
2 ~q!Gf~q!

1(
j 51

N gj
4

2
bE d3q

~2p!3

nx j
~11nx j

!

vx j

2 ~q!Gx j
~q!J 1OS l2

Gf

vf
D

1OS gj
4

Gx j

vx j

D 1wc
3~ t !E

2`

t

dt8E d3q

~2p!3 H l2

2
Im@Gf

11~q,t2t8!#212(
j 51

N

gj
4 Im@Gx j

11~q,t2t8!#2J , ~3.5!

where in the left-hand side~lhs! of the above equation, we used the compact notation

@Gf,x j

11 #x,x8
2

5E d3k

~2p!3 exp@ ik.~x2x8!#E d3q

~2p!3 Gf,x j

11 ~q,t2t8!Gf,x j

11 ~q2k,t2t8!, ~3.6!

with G11(q,t2t8) obtained from Eqs.~2.20! and ~2.21!. In the rhs of Eq.~3.5!, we have taken the limit of homogeneou
fields, for details see Appendix B. We have also made use of the approximation for slowly moving fields:wc

2(t8)2wc
2(t)

;2wc(t)ẇc(t)(t82t). In the next section we show that this approximation is consistent with strong dissipation. Afte
forming the time integration and retaining the leading terms in the coupling constants, we obtain the result given in E~3.5!.
The last term, proportional towc

3 , will correspond to the finite temperature correction to the quarticf self-interaction~see
Appendix B!.

The final equation of motion, at leading order in the coupling constants, at high temperatures@m j (T),mT!T# and in the
adiabatic limit, can then be written as

ẅc1mT
2wc~ t !1

lT

3!
wc

3~ t !1h1wc
2~ t !ẇc~ t !5wc~ t !j1~ t !, ~3.7!

wheremT is given by Eq.~2.16!, lT is the temperature-dependent effective~renormalized! quartic coupling constant:3

3The terms linear in the temperature come from the two-vertex diagrams in Eq.~3.4!. The apparent instability from these terms for highT
is only an artifact of the loop expansion. As shown in@29# for thef4 model, once higher order corrections are accounted for,lT is always
positive even in theT→` limit. Using full dressed propagators we are automatically taking into account these higher order corre
through the appearance of thermal masses in Eq.~3.8!. However, in the multi-field case there is the possibility of vacuum instability du
the f couplings to thex j fields. This appears as a constraint in our estimates below.
8-6
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lT.l2
3l2

2 H T

8pmT
1

1

8p2 F lnS mT

4pTD1gG1OS m

T D J
26(

j 51

N

gj
4H T

8pm j~T!
1

1

8p2 F lnS m j~T!

4pT D1gG1OS m j~T!

T D J 1O~l3,g4f ,l2g2,g6!, ~3.8!

In Eq. ~3.7!, j1 is a stochastic field associated with the imaginary terms in the effective action coming from the rea
evaluation of the diagrams~3.4!. Its two-point correlation function is given by@2#

^j1~x!j1~x8!&5
l2

2
Re@Gf

11#x,x8
2

12(
j 51

N

gj
4 Re@Gx j

11#x,x8
2 . ~3.9!

Note that since we are considering homogeneous field configurations,j1 is a space uncorrelated stochastic field, but it
colored~time dependent! and Gaussian distributed, with probability distribution given by~N1 is a normalization constant!

P@j1#5N1
21 expH 2

1

2 E d4xd4x8j1~x!Fl2

2
Re@Gf

11#x,x8
2

12(
j

gj
4 Re@Gx j

11#x,x8
2 G21

j1~x8!J . ~3.10!

As shown in@2#, the dissipative coefficient in Eq.~3.7!, written explicitly in Eq.~3.12! below, and the noise correlatio
function Eq.~3.9! ~in the homogeneous limit!, are related by a fluctuation-dissipation expression valid within our approx
tions ~one-loop order atl2,gj

4 and forG/v!1,drG/T!1!:

h15
1

2T E d4x8^j1~x!j1~x8!&. ~3.11!

In @2# it was also shown that asT→`, Gf,x j
→`, and the integrand in Eq.~3.9! becomes sharply peaked atut2t8u;0. In this

limit, we can obtain an approximate Markovian limit for Eq.~3.9!.
We can read the dissipation coefficienth1 , which appears in Eq.~3.7!, from ~3.5!,4

h15
l2

8
bE d3q

~2p!3

nf~11nf!

vf
2 ~q!Gf~q!

1(
j 51

N gj
4

2
bE d3q

~2p!3

nx j
~11nx j

!

vx j

2 ~q!Gx j
~q!

1OS l2
Gf

vf
,gj

4
Gx j

vx j

D . ~3.12!

For the model we are interested in, with Lagrangian density given by Eq.~2.1!, with a large number ofx fields coupled to
f, and forf j!gj

2 andl&gj , we can use the obtained expressions forGf andGx j
, to show thatGf@Gx j

. Since the dissipation

coefficient, Eq.~3.12!, goes as 1/G, Gx j
will give the dominant contribution toh1 . An explicit expression forh1 , can be

obtained by using theuqu50 approximation for ImSf(q) and ImSxj
(q), or, equivalently, Eqs.~2.14! and ~2.15! for Gf and

Gx j
, respectively, in Eq.~3.12!. At the high temperature limit,T@mT ,m j (T) and for mT;O„m j (T)…, we then obtain the

following approximate expression forh1 @using Li2(z);p2/6, for z!1#:

h1 .
T@mT ,m j ~T! 96

pT H l2

8l21( j 51
N gj

4$12~6/p2!Li2@mT /m j~T!#%
lnS 2T

mT
D

1(
j 51

N 4gj
4

f j
218gj

4$12~6/p2!Li2@m j~T!/mT#%
lnS 2T

m j~T! D J . ~3.13!

In order to test the validity of the above approximate expression forh1 , we have computed it numerically. The tw
expressions are shown in Fig. 2, forf j!gj

2 , l&gj , andN525, where, for simplicity, we have also consideredm j5m and
gj5g for all x j fields @mT;5m j (T)#. We see that the above approximation forh1 fits reasonably well the full expression fo
the dissipation coefficient in the high temperature region, having a&10% discrepancy formT /T&0.4.

4In @2# an extra contribution to thef decay rate coming from thef2x interaction was left out. Here we give the correct expressions
Gf , Gx and for the dissipation.
123508-7
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B. Dissipation coefficient and shear viscosity

It is interesting to note the close relation of the abo
expression for the dissipation coefficient with that obtain
for the shear viscosity evaluated, e.g., from a Kubo form
@19–21#:

hshear5 i E d3xE
2`

0

dtE
2`

t

dt8^@pkl~0!,pkl~x,t8!#&,

~3.14!

where pkl5(d i
kd l

j2 1
3 d l

kd i
j )Tj

i , with Tj
i the space compo

nents of the energy-momentum tensor. In our case, with
Lagrangian given by Eq.~2.1!,

Tn
m5

]L
]~]mf!

]nf1(
j

]L
]~]mx j !

]nx j2dn
mL. ~3.15!

In order to compute the shear viscosity in Eq.~3.14! to
lowest order, we must evaluate the diagrams~3.4!, which, as
shown in @20,21#, have near on-shell singularities comin
from the product of~bare! propagators. These singularitie
are softened once explicit lifetimes for excitations are
cluded through dressed propagators. Taking this into
count, we obtain the following expression for the shear v
cosity hshear~in analogy with the evaluation ofhshear in the
lf4 single field case!,

FIG. 2. The dissipation coefficienth1 computed~for N525!
with Im Sx„q,vx(q)… and with the approximationuqu50 for the
imaginary part of the self-energy.
12350
d
a

e

-
c-
-

hshear .
T@mT ,m j ~T! b

30 E d3k

~2p!3 uku4

3Fnf~11nf!

vf
2 Gf

1(
j

nx j
~11nx j

!

vx j

2 Gx j

G . ~3.16!

Compare the above expression with Eq.~3.12!. The evalua-
tion of Eq. ~3.16! leads to the standard result for the she
viscosity being proportional toT3 and inversely proportiona
to the coupling constants. However, Eq.~3.16!, as shown by
Jeon in@21#, does not represent the unique contribution
hshearat this order of coupling constants. Because of the n
on-shell singularities and the way they are regulated by
thermal width, there is an entire class of diagrams, ca
ladder diagrams@diagrams with insertions of loops betwee
the two propagators in Eq.~3.4!#, contributing tohshearat the
same order. By using a formal resummation of vertices, J
was able to perform the summation of the whole set of lad
diagrams in the simplelf4 theory, showing that the true
value of the shear viscosity is about four times larger th
the one loop result in the high temperature limit. Since o
expression for the dissipation coefficient exhibits the sa
properties ofhshear, we expect that these higher loop ladd
diagrams will also give a significant contribution to the val
of h1 in Eq. ~3.12!. However, as we are dealing with th
more complicated situation of several interacting fields,
will not attempt here to evaluate these contributions. Fr
the example of the shear viscosity calculation in the sin
field case, these ladder contributions will only add to t
one-loop result for the dissipation coefficient, not chang
qualitatively our results. Thus, Eq.~3.12! represents, at leas
a lower boundfor the dissipation, applicable in the stron
dissipation regime, as we will show next.

IV. ADIABATIC APPROXIMATION
AND STRONG DISSIPATION

We now investigate the validity and limits of applicabilit
of our main approximations, in particular the adiabatic a
proximation. In order to arrive at the expression for the d
sipation, Eq.~3.12!, and to write the equation of motion fo
wc as in Eq.~3.7!, we assumed that the fieldwc changes
adiabatically@see Eq.~3.5!#:

wc
2~ t8!2wc

2~ t !.2~ t82t !wc~ t !ẇc~ t !

1higher time derivative terms. ~4.1!

This approximation for the field configuration has recen
been the focus of some attention in the literature@15#. The
authors in@15#, working with soft field modes set by a coars
graining scalekc , showed that the adiabatic approximatio
breaks down once the field configurations~soft modes! os-
cillate with the same time scale as the dissipative kern
~with time scale given by;kc

21!. However, here we work in
a very different context. We are mainly concerned with t
overdamped motion of the homogeneous field configura
wc , i.e., when its oscillatory motion is suppressed. The
fore, the dynamic time-scale forwc must be much larger than
8-8
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the typical collision time-scale (;G21). Note that this is a
much stronger condition than the simple requirement that
field should change slowly in time, with time scale set by t
frequencyv(k)5Ak21mT

2. Thus, we must examine whe
the condition

Uwc

ẇc
U@G21 ~4.2!

is satisfied.
We chooseG as the smallest of the two thermal dec

widths Gf ,Gx j
, as it will set the largest time-scale for coll

sions for the system in interaction with the thermal bath.
Note that in the evaluation of the dissipation coefficient

Eq. ~3.5!, the leading contribution to the first time derivativ
of wc is of order G21. As discussed earlier in connectio
with the shear viscosity coefficient, the dependence of
dissipation coefficient on the decay widthG comes from us-
ing it as the regulator of on-shell singularities present in E
~3.4! at first order in the time derivative. In Appendix B w
present an argument justifying the need of regulating w
the decay width and also compute the next order contribu
in the adiabatic approximation, showing the consistency
the results.

Since the stronger the dissipation the more efficient
adiabatic approximation, the parameter range where
~4.2! is valid leads naturally to the regime wherewc under-
goes overdamped motion@in the sense of Eq.~4.4! below#. If
we consider the ensemble average of the equation of mo
~3.7!:

K dSeff@wD ,wc ,j j #

dwD
U

wD50
L 50, ~4.3!

where^ . . . & means average over the stochastic fields, t
we define the overdamped regime when the~averaged! back-
ground configurationwc satisfies

h1wc
2ẇc1mT

2wc1
lT

6
wc

350. ~4.4!

We also restrict our study to the high-temperature a
ultra-relativistic region:T;uqu@mT ,m j (T). We take the
couplingsgj , f j such thatgj

2@ f j . Also, for simplicity, as
before, we take allgj5g. At high temperatures we can the
write for Eqs.~2.16! and ~2.17! ~T2*24m2/l,12m2/g2! the
expressions

mT
2;~l12Ng2!

T2

24
, ~4.5!

whereN is the number of fields coupled tof, and

mT
2;g2

T2

12
. ~4.6!
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A. Results for three different cases

We will examine the condition for strong dissipation wi
overdamped motion for three particular choices of para
eters, showing that there is a region of parameter space
sistent with this regime. Using Eq.~4.4!, we can write the
equivalent expression for Eq.~4.2!:

UmT
21

lT

6
wc

2

h1wc
2

U!Gx . ~4.7!

In the estimates below, we evaluated bothh1 @from Eq.
~3.12!#, andGx ~computed atuqu5T! numerically. The three
cases analyzed are

Case 1:l;g2: In this case we obtain that

mT
2;~112N!g2

T2

24
, ~4.8!

lT*g2S 12
3)Ng

2p D . ~4.9!

Note that the last condition is written as a constraint
the positivity of lT . With these values and for the caseN
525, we obtain the results shown in Fig. 3~a!, where we
have plotted both sides of Eq.~4.7!. The region of param-
eters satisfying Eq.~4.7! is given by the intersection of the
region below the solid lines~the functionGx! with the region
above the dashed line~uẇc /wcu computed for different values
of wc!.

Case 2:l;g: As above, this is shown in Fig. 3~b!. The
region satisfying Eq.~4.7! is given again by the intersectin
region below the solid line and above the dashed lines.

In both Figs. 3~a! and 3~b!, the results are shown up to th
value ofmT satisfying the constraint for the positivity oflT .

Case 3: lT'g4: This case follows a slightly differen
philosophy, of fixing the corrected coupling as opposed
the bare coupling. We have

l'g41
3)Ng3

2p
[l~g,N!, ~4.10!

mT
2;@l~g,N!12Ng2#

T2

24
, ~4.11!

with the additional constraint

l~g,N!,1. ~4.12!

The results for this case are shown in Fig. 3~c!, with the same
interpretation as in cases 1 and 2: the region satisfying
~4.7! is given by the intersecting region below the solid lin
and above the dashed lines. The results are shown up to
value formT satisfying the condition~4.12!.

We note that the caselT'g4 is the one with the broades
range of validity in parameter space, as seen in Fig. 3~c!,
followed by the casel'g, shown in Fig. 3~b!. For l5g2,
the condition for adiabaticity is only possible for fairly larg
field amplitudes, which may be beyond the validity of a pe
8-9
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FIG. 3. Results for the adiabatic condition, Eq.~4.7!. The dashed lines correspond touẇc /wcu, for different values forwc . The solid line
corresponds toGx(q), evaluated atuqu5T. All cases shown are forN525. The region satisfying the adiabatic condition is the intersec
of the region above the dashed lines with the region below the solid line.~a! is for l5g2, ~b! is for l5g, and~c! is for lT5g4.
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turbative evaluation of the effective action. We will com
back to this issue in the next section. In any case, we st
that there are several regimes where the adiabatic app
mation is valid.

In all cases, the smallerN the smaller the region of pa
rameters that satisfies Eq.~4.2!. In particular, forN,2, we
find no parameter range satisfying Eq.~4.2! and therefore,
12350
ss
xi-

the adiabatic approximation. This is consistent with the in
ition that dissipation is caused by the decay of thef field
into x fields and is more efficient the larger the number
decay channels available. We also obtain thatwc is always
somewhat large (*2T) for the range of physical paramete
satisfying Eq. ~4.2!, for both cases analyzed, being ev
higher for case 1.
8-10
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If in Eq. ~4.7! we useGf instead ofGx j
, the region of

parameters improves considerably; sinceGf@Gx j
for large

N, it allows much smaller values ofwc /T. It should be re-
called thatGf determines the relaxation time scale for thef
field.

Finally, as discussed earlier, the expression we quoted
h1 gives only a lower bound for the dissipation coefficie
As in the case studied by Jeon in@21#, higher loop ladder
diagrams can lead to a considerably higher value forh1 . For
several interacting fields, simple estimates show that th
ladder diagrams scale at most asN. Therefore, they may wel
be of the same order as the leading order one-loop contr
tion to the dissipation coefficient, given by thex-sector. We
leave a more detailed analysis of the contributions com
from ladder diagrams to a future work. Additional contrib
tions to the dissipation coefficient in Eq.~3.12! only improve
our estimates, enlarging the region of parameter space s
fying the adiabatic approximation; the ratiowc /T decreases
broadening the conditions under which the field underg
overdamped motion~strong dissipative regime!.

It is worth mentioning that thef2x coupling constant in
Eq. ~2.1! can be negative and this also leads to interes
results. As an illustrative example, consider an even num
of x-fields with the sign of thef2x coupling distributed so
that

Vint5(
j 51

2k

~21! jg2f2x j
2 ~4.13!

and f j5 f , j 51 . . . 2k. In order that the potential be strictl
positive, it requires

S l

24
1

N f

24
2

Ng2

4 D.0, ~4.14!

which for largeN implies g2, f /6. In the alternating sign
regime~ASR! the thermal masses are

mT
2'

l

24
T2 ~4.15!

and

mT
2'

f

24
T2. ~4.16!

Following an analysis similar to above and for case
(lT;g4), we find a solution regime within the perturba
tive amplitude expansion, gf,mT ,lf,T, for g2

, f 3/2 ln(2A24/f )/46 andN;1/g4. For example, these con
ditions are satisfied forf &1.0,g2&1/20. In this examplel
;g2, but this can be modified in several ways. In gene
when thef2x couplings are distributed between positi
and negative strengths, it controls the growth ofmT due to
the cancelation of thermal mass contributions from thex-
fields. Restricting the magnitude ofmT , in turn, increases the
parameter regime and duration of overdamped motion. T
example demonstrates another regime of overdamped mo
in our model for small field amplitudesg2wc

2,mT
2 .
12350
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B. Summing up the whole one-loop series:
The effective potential

The fact that overdamping in Eq.~3.7! for much of the
parameter space demands large field amplitudes, at
within the approximation scheme used here, is a dir
consequence of having a field dependent dissipa
h(w);w2. Since in Eq.~2.7! we are considering a perturba
tive expansion for the one-loop effective action in the fie
amplitudes~that is, in powers oflwc

2/2 andgj
2wc

2!, the need
for large field amplitudes may place doubts on the validity
our calculations for a considerable portion of the parame
space. Below we address this issue in two different wa
first by comparing our results with an improved one-lo
approximation and then by using the subcritical bubb
method@30# to test the validity of the effective potential fo
large-amplitude fluctuations.

We start by computing the analog of Eq.~4.4! in the con-
text of the whole one-loop approximation, i.e., whenlwc

2/2
and gj

2wc
2 in Eq. ~2.6! are taken as part of field-depende

masses. For this, let us give an alternative computation of
evolution equation forwc in terms of the tadpole method o
Weinberg @13,33,34#: in the shifting of the scalar field,f
5wc1h, the requirement̂h&50 leads, at the one-loop or
der, to the evolution equation forwc ~for homogeneous
fields!

ẅc1m2wc1
l

6
wc

31
l

2
wc^h

2&1(
j

gj
2wc^x j

2&50, ~4.17!

where^h2& and ^x j
2& are given in terms of the coincidenc

limit of the ~causal! two-point Green’s functionsGf
11(x,x8)

and Gx j

11(x,x8), respectively, which satisfy, in the fully

dressed propagator matrix form~see, e.g., Ringwald in@34#!

Fh1m21
l

2
wc

2GGf~x,x8!1E d4zSf~x,z!Gf~z,x8!

5 id~x,x8! ~4.18!

and

@h1m j
21gj

2wc
2#Gx j

~x,x8!1E d4zSx j
~x,z!Gx j

~z,x8!

5 id~x,x8!, ~4.19!

where, in Eqs.~4.18! and ~4.19!, Sf(x,x8) and Sx j
(x,x8)

are the ~causal! self-energies for thef and x j fields,
respectively. By expressingh(x) and x j (x) in terms of
mode functions, we can then evaluate the averages in
~4.17!. An explicit expression can be obtained in the appro
mation ~equivalent to the adiabatic approximatio!
v̇f(wc)/vf

2 (wc)!1 and v̇x(wc)/vx
2(wc)!1, for which

there is a WKB solution for the mode functions of the field
In this paper, however, we will not carry out this calculatio
A detailed study of this, in the context of an expanding ba
ground and along the proposals made in the next section,
be presented in a forthcoming paper.
8-11
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For now, we can present the result of this calculation,
using the simplest formulation proposed in@11#, based on a
relaxation-time approximation of the kinetic equation, for t
calculation of the averages in Eq.~4.17!. We can then show
that the ~ensemble averaged! evolution equation forwc(t)
can be expressed, in the quasi-adiabatic approximation~hy-
drodynamical regime of@11#!, by

ẅc1Veff8 ~wc!1h1wc
2ẇc50, ~4.20!

where Veff8 (wc)5]Veff(wc)/]wc , is the field derivative of the
one-loop effective potential,

Veff8 ~wc!5m2wc1
l

6
wc

31
l

4
wcE d3q

~2p!3

112n~vf!

vf

1(
j

gj
2

2
wcE d3q

~2p!3

112n~vx j
!

vx j

, ~4.21!

where vf
2 5q21mT

21(l/2)wc
2 and vx j

2 5q21m j
2(T)1gj

2wc
2

are the field dependent frequencies, with masses give
terms of the thermal ones,5 Eqs.~2.16! and ~2.17!. Also, h1
in Eq. ~4.20! is the same as in Eq.~3.12!, but now with the
masses replaced by the field dependent ones.

In terms of Eq.~4.20!, in the overdamping approximation
the condition~4.2! becomes

U Veff8

h1wc
3U!G. ~4.22!

Using Eq.~4.22!, in the high temperature approximation fo
the fields,mf(T)/T,mx j

(T)/T!1, we can show that the re
sults obtained earlier, in terms of the amplitude expans
for the effective action, for instance, the results expresse
Fig. 3 @with mT replaced with the field dependent ma
mf(T)#, remain approximately the same, for the cases wh
wc&2T. Thus, at least for these values of the field amp
tude, higher order corrections do not add to the effect
potential. In other words, at leading order in the hig
temperature expansion, the field derivative ofVeff can be just
expressed as in Eq.~4.4!, Veff8 ;mT

2wc1lT/6wc
3 .

We can also address the issue of high-amplitude fluc
tions by adopting a method suggested in Ref.@31#, where it
was applied to test the validity of the one-loop approxim
tion to the electroweak effective potential. We note that
results from this approach are entirely consistent with n
perturbative computations based on lattice gauge theo
performed by Kajantieet al. @32#.

The interactions of the fieldw with a thermal environmen
will promote fluctuations around the perturbative vacuu

5Note that this will lead to the daisy corrected effective potent
In particular, once the thermal masses are being introduced in
derivative of the effective potential, expressed in terms of one-l
tadpole graphs in the Weinberg method, it is well known that t
method leads to a consistent finite temperature effective pote
@35#, with daisy graphs incorporated.
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The subcritical bubbles method models these fluctuation
unstable spherically symmetric configurations with a dis
bution of sizes and amplitudes. For details see Refs.@30,31#.
Using a distribution function for these configurations, it
possible to compute the rms amplitude of the fluctuatio
@31#,

w̄~T!5A^w2&T2^w&T
2, ~4.23!

where^ . . . & is the thermal average defined in Ref.@31#. For
the effective potential of Eq.~4.4!, we obtain

w̄2~T!.
1

6
mTT. ~4.24!

Since the perturbative approach for the computation of
effective potential relies on a saddle-point approximation
the partition function, it will only be valid for small-
amplitude fluctuations about the perturbative vacuum.
potentials which exhibit spontaneous symmetry breaking
is customary to choose the maximum amplitude to be at
inflection point,wmax&winf . Here, since we have a potenti
with positive-definite curvature, we will conservatively a
sume that the perturbative expansion is valid for fluctuatio
dominated by the quadratic term of the effective potent
that is, for

wmax
2 &12

mT
2

lT
. ~4.25!

The condition for the validity of the one-loop approxim
tion for the effective potential is then written as

w̄2~T!<wmax
2 . ~4.26!

It is straightforward to apply this condition to the thre
cases analyzed above. Since case 3 is the one with a la
range of parameters satisfying the adiabatic condition,
use it as an illustration. From Eqs.~4.10! and~4.11!, we can
write Eq. ~4.26!, after dividing byT2, as the inequality

@ f ~g,N!#1/2.
g4

144A6
, ~4.27!

where, f (g,N)[24mT
2/T2. This condition is easily satisfied

for a large range of parameters. In particular, forl50.5,g
50.3,N525, which are values inside the region of para
eters allowed for overdamping shown in Fig. 3~c! for wc
*2T, we obtain,w̄.0.3T and wmax.16T, well within the
range of validity of the small-amplitude approximation. W
thus conclude that it is possible to attain the adiabatic limit
strong dissipation within the one-loop approximation sche
adopted here.

V. APPLYING STRONG DISSIPATION
TO WARM INFLATION

The calculation in Secs. II–IV presented a microsco
quantum field theory model of strong dissipation
Minkowski spacetime. This section addresses the applica
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p
s
ial
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of this calculation to the cosmological warm inflation sc
nario. Although we will not present a detailed extension
our previous results to an expanding spacetime, we will
gue that most of the modifications are quite straightforw
up to the requirements for the warm inflation scenario.

A. Formulation

Consider the standard Friedmann cosmology w
Robertson-Walker metric
a
la

e

s
in

o
th
n

iv

,
-

on
to
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th
-
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te
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12350
-
f
r-
d

h

ds25dt22R2~ t !F dr2

12kr2 1r 2du21r 2 sin2 udf2G . ~5.1!

We restrict our analysis to flat space,k50, and quasistatic de
Sitter expansion,H[Ṙ/R'const. For notational conve
nience, the origin of cosmic time is defined as the beginn
of our treatment. For this metric, the minimally coupled L
grangian for the model in Eq.~2.1! is
L5E
V
d3xe3HtH 1

2
@„]0f~x,t !…22„e2Ht

“f~x,t !…22m2f2~x,t !#2V„f~x,t !…

1(
i

1

2 F „]0x i~x,t !…22„e2Ht
“x i~x,t !…22m i

2x i
2~x,t !2

f i

12
x i

4~x,t !G2(
i

gi
2

2
x i

2~x,t !f2~x,t !J . ~5.2!
ng-

on

me

t,

n-
me

tly
There exists an alternative derivation of the ensemble
erage of Eq.~3.7!, which was presented for a single sca
field, as an intuitive argument in@11#. In the context of a
single scalar field, the method is to work directly with th
operator equation of motion forf(x,t). The operatorf is
re-expressed as the sum of ac numberwc(t), representing
the classical displacement, plus a shifted operatorh(x,t),

f~x,t !5wc~ t !1h~x,t ! ~5.3!

with ^f(x,t)&b5wc(t). A thermal average is taken of thi
equation of motion, in which thermal expectation values
volving h(x,t) are computed such thatwc(t) is treated as an
adiabatic parameter. To the order of perturbation theory c
sidered in the previous sections, for the single scalar field
intuitive derivation in@11# gives the same effective equatio
of motion as the ensemble average of Eq.~3.7! as shown in
@2#.

No new considerations are needed to apply this intuit
derivation to the model in Eq.~2.1!. The x i(x,t) fields are
treated as quantum fluctuations similar toh(x,t). From the
treatment in@11#, it follows that the expressions formT , lT
and h1 in Eq. ~3.7! will arise from the thermal averages
^h2(x,t)&b and^x i

2(x,t)&b , taken with respect to the instan
taneous backgroundwc(t).

Although the approach in@11# immediately isolates the
dissipative term and the finite temperature renormalizati
at the level of the equation of motion, it is not systematic
all orders. Furthermore, it cannot treat noise and it is va
only in the adiabatic approximation. These limitations can
accounted for in the closed-time-path formalism used in
paper. A recent work@36# has discussed some of the diffi
culties associated with extending this formalism to an
panding background in order to treat noise and dissipat
Our goal at present is more modest. As an easier first s
the intuitive derivation of@11# is extended to an expandin
background.
v-
r

-

n-
e

e

s

d
e
is

-
n.
p,

The exact operator equations of motion from the Lagra
ian Eq.~5.2! are

f̈~x,t !13Hḟ~x,t !2e22Ht¹2f~x,t !1m2f~x,t !

1
dV

df~x,t !
1(

i
gi

2f~x,t !x2~x,t !50, ~5.4!

and

ẍ i~x,t !13Hẋ i~x,t !

2e22Ht¹2x i~x,t !1gi
2x i~x,t !f2~x,t !1m i

2x i~x,t !

1
f i

6
x i~x,t !350. ~5.5!

The objective is to displace the operatorf(x,t) by a
x-independent c number at time t50,̂ f(x,t50)&b
5wc(0), andthen determine the evolution of the expectati
value^f(x,t)&b[wc(t) by solving Eqs.~5.4! and ~5.5! per-
turbatively. Thusf(x,t) is re-expressed as Eq.~5.3!. With
this definition of wc(t), for flat, k50, nonexpanding,H
50, spacetime, the resulting equation of motion is the sa
as the ensemble average of the equation of motion, Eq.~3.7!.

For the case of expanding spacetime,HÞ0, in order to
obtain the equation of motion forwc(t), thermal expectation
values must be taken of Eqs.~5.4! and ~5.5!. Provided the
temperature, 1/b, of the thermal bath is time independen
~i.e., rapid equilibration time scales!, thermal expectation
values of terms linear inf(x,t) can be replaced bywc(t),
just as for the nonexpanding case. In evaluating^h2(x,t)&b

and^x i
2(x,t)&b , if the characteristic time scale for the qua

tum fluctuations is much faster than the expansion ti
scale, 1/H, the calculation is no different from the
Minkowski space situation. This criteria is self-consisten
satisfied provided
8-13
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Gx ,Gf@H, ~5.6!

where the left-hand side is given in Eqs.~2.14! and~2.15! for
our model.

These arguments suggest that at leading nontrivial or
the effective equation of motion forwc(t) in an expanding de
Sitter spacetime, under the same conditions required for
~3.7! plus the additional condition Eq.~5.6! is

ẅc~ t !1@h1wc
2~ t !13H#ẇc~ t !1mT

2wc~ t !1
lT

6
wc

3~ t !50.

~5.7!

Further justification that Eq.~5.7! is the appropriate replace
ment of Eq.~3.7!, for expanding de Sitter space, can be o
tained from@6#, where an effective equation of motion sim
lar to Eq. ~5.7! was obtained for a model like Eq.~5.2!.
However, the coupling between fields was linear,fx i ,
which is analytically much more tractable than the pres
case of quadratic coupling,f2x i

2 .
The entire discussion above assumes that the temper

has a well defined meaning in an expanding backgrou
Furthermore, Eq.~5.7! has been motivated under the restr
tion Eq. ~5.6!. As will be discussed next, condition~5.6! is a
specific example of a general microscopic property argue
@6# to be a necessary condition for warm inflation. As su
when Eq. ~5.7! is applied to the warm inflation scenario
condition ~5.6! imposes no additional restriction.

The warm inflation picture requires that an order para
eter, in a strongly dissipative regime, slowly rolls down
potential, liberating vacuum energy into radiation ener
r r . The nonisentropic expansion which underlies warm
flation imposes that the rate of radiation production is su
cient to compensate for redshift losses due to cosmolog
expansion,

H@
uṙ r u
r r

. ~5.8!

To give meaning to temperature, the newly liberated rad
tion must thermalize at a scaleG rad which is faster than the
expansion scale,

G rad@H. ~5.9!

Minimally this requires an energy transfer rate from vacu
to radiation that is faster than the expansion rate, which
our model implies the condition~5.6!. Thus, Eq.~5.9! is
necessary to justify a temperature parameterT, which, com-
bined with condition~5.6!, are sufficient to justify the argu
ments leading to Eq.~5.7!. To completely justify a tempera
ture parameter for an expanding background spacetime,
required studying the thermalization of the radiation, onc
is liberated. General arguments, as well as specific calc
tions @37,38# at high temperature, indicate that this rate is
by the temperatureG rad;aT, for some appropriate, mode
dependent, coefficienta. This minimally requiresT@H.
However,a may be very small, as for example in Eqs.~2.14!
and ~2.15!. Thus the correct constraint is
12350
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aT@H. ~5.10!

This problem will not be considered further here. Equati
~5.6! will be our only criteria for thermalization. This is
equivalent to assuming that the thermalization rate is at le
as fast as the energy transfer rate.

Once Eq.~5.7! is accepted as the macroscopic equat
governing the evolution of the order parameterwc(t), it can
be used as a given input to construct warm inflation s
narios as in@7,9#. The microscopic origin of the equation ca
be forgotten up to restrictions on parameters and the s
consistency condition Eq.~5.6!. For a general equation like
Eq. ~5.7!, the warm inflation scenario requires the stro
dissipative regime@7#:

@h~wc!13H#ẇc@ẅc , ~5.11!

with h(wc)5h1wc
2 for our model. For the derivation in Sec

II–IV, where H50, this condition is sufficient to satisfy th
adiabatic condition, Eq.~4.2!, which is required for the con-
sistency of the microscopic calculation. As such, this mo
provides an example of a general point conveyed in@6#, that
warm inflation defines a good regime for application of fin
temperature dissipative quantum field theory methods.
study of warm inflation in@6,7,9# also found that to satisfy
observational constraints on the expansion factor, it requ

h~wc!@3H. ~5.12!

Thus, warm inflation is an extreme example of dissipat
dynamic during de Sitter expansion. As demonstrated
@8,39#, dissipation is generally prevalent during inflatio
The microscopic model in this paper could be used to exa
ine the general case, but then the condition~5.12! can be
relaxed. Here, only the warm inflation regime will be furth
examined. Thus in the limit given by Eq.~5.12! and based on
the remaining discussion in this section, the equation of m
tion for the order parameterwc(t) in our model for the warm
inflation scenario turns out to be Eq.~4.4! but with the addi-
tional constraint Eq.~5.6!.

The other input for constructing warm inflation scenari
is the free energy in the expanding environment for
model ~5.2!. It already has been argued above that tempe
ture is a good parameter for describing the state of the ra
tion in the warm inflation regime. It also follows from th
above that the change in temperature can be treated adia
cally in the thermodynamic functions, since this requir
G rad@Ṫ/T, which is automatically satisfied due to Eq.~5.9!.
Therefore, the free energy density should be well represe
by the Minkowski space expression, with temperature trea
as an adiabatic parameter. For the model in Secs. II–IV,
free energy density is

F~wc ,T!5
mT

2

2
wc

21
lT

24
wc

42
~N11!p2

90
T4, ~5.13!

where the factorN11, in the last term, comes from the func
tional integration over thex fields and thef-field’s fluctua-
tions. Having established this to be the free energy den
8-14
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for the warm inflation scenario, the other thermodynam
functions such as pressure, energy density and entropy
sity can be easily obtained.

With the free energy~5.13! and the order parameter equ
tion of motion, Eq.~5.7!, determined, the time evolution o
the three unknowns: temperatureT(t), scale factorR(t) and
order parameterwc(t), can be obtained from Eq.~5.7! plus
any two independent equations from Friedmann cosmol
along with a self-consistency check for adiabaticity, E
~5.11!. At this point the procedure in@9# can be followed.
However due to the microscopic origin of this model, ad
tional self consistency checks are necessary for adiabati
given by Eq.~4.2! and thermalization, Eq.~5.6!. Observa-
tionally interesting expansion factors will requireH.ḟ/f,
in which case the condition~5.6! immediately implies the
microscopic adiabatic condition~4.2!.

B. Results

Up to this point, the formulation of warm inflation in
conjunction with a microscopic dynamics has been gene
In the remainder of this section, some demonstrative ca
lations of this cosmology will be presented based on
microscopic model. An exhaustive analysis of the param
space will not be performed. In this first examination, t
emphasis is to understand the interplay between the mi
scopic and macroscopic physics of warm inflation for g
neric potentials, which in particular, have a curvature sc
of the order of the temperature scale. For such potent
thermal fluctuations that displacewc(0) substantially from
the origin are exponentially suppressed. However, it is s
fluctuations that allow enough time, during the roll dow
back to the origin, for the universe to inflate sufficiently. A
such, this elementary fact, in any case, quells significant
terest in comparing the cases we will examine to obse
tion.

It should be noted that the order parameter in this sy
metry restored warm inflation regime is configured similar
those in the chaotic inflation scenario@40#. However, in the
chaotic inflation scenario the potentials are ultra-flat. Su
potentials permit large fluctuations of the order parame
and in fact prefer them. The dissipative model in this pa
could be studied for the case of ultra-flat potentials, perh
motivated by supersymmetric model building. This wou
extend the pure quantum mechanical, new-inflation type
namics of chaotic inflation into the intermediate regime d
cussed in@8,39#. This will not be examined here.

Proceeding with our demonstrative examination of wa
inflation, let the origin of time be the beginning of th
inflation-like regime~BI! and also the beginning of our trea
ment. The basic picture of the particular warm inflation s
nario studied here is as follows. Att50 the initial conditions
are arranged so that the field is displaced from the or
^f(0)&5fBI , the temperature of the universe isTBI and
since the universe is at the onset of the inflation-like regim
by definition this means the vacuum energy density equ
the radiation energy density,rv(0)5r r(0). For t.0 the
field will relax back to the origin within a strongly dissipa
tive regime and in the process liberate vacuum energy
12350
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radiation energy. Simultaneously, the scale factor will u
dergo inflation-like expansion. During the roll-down perio
the vacuum energy first dominates until at some point i
superseded by the radiation energy. At this point the unive
smoothly exits the inflation-like regime into the radiatio
dominated regime.

From our model in the previous sections, we will consid
the case ofN8 x-bosons (x8) with gj5g@ f j , j 51 . . .N8
and N2N8 x-bosons~x! with gj! f j5 f , j 5N811 . . .N.
For this model, the dissipative dynamics ofwc , expressed
throughmT , lT and h1 , is controlled by theN8 x-bosons.
The otherN2N8 x-bosons only serve as additional fields
the radiation bath. For this purpose, from Eq.~2.15!, for f
>g2 the x and x8 bosons will be equally effective in ther
malizing the radiation energy.

In this paper we will examine this scenario in the regim

lTwc
4

24
@

mT
2wc

2

2
~5.14!

and in the high temperature limitT@mT ,mT . Also, for ease
of presentation, we will write the expression forG(q) at
q50. Although with these simplifications the results will n
be cosmologically interesting, it is a good example to de
onstrate the general procedure. In this regime, the effec
equation of motion forwc , from Eq. ~4.4!, is

dwc

dt
52

B2

4
wc , ~5.15!

where

B2[
2lT

3h1
'

pTBIlT

72N8 ln~2TBI /mTBI
!
. ~5.16!

Formally the Friedmann cosmology for the warm inflatio
scenario associated with the above equation was called
quadratic limit in@9#.

The macroscopic and microscopic requirements of wa
inflation will imply various parametric constraints which a
as follows. Equation~5.14! will be satisfied by requiring:

lTwBI
4

24
5r

mT
2wBI

2

2
, ~5.17!

where the parameter r@1 has been introduced. As shown
@9#, throughout the inflation-like period until just before
ends, the temperature drops slightly faster thanf. As such,
the thermal mass term,mT

2f2/2;T2f2, will continue to sat-
isfy Eq. ~5.14! given that initially it does.

The number ofe-folds, Ne obtained during the roll-down
is, from @9#,

Ne'
2H

B2
, ~5.18!

where
8-15
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H5A8plTwBI
4

72mp
2 , ~5.19!

with mp the Planck mass. The microscopic condition, E
~5.6!, requires

g4T

192p
@

AplTwBI
2

3mp
. ~5.20!

The threshold condition for inflation,rv(0)5r r(0), implies

~N11!p2

30
TBI

4 5
lTwBI

4

24
. ~5.21!

Finally, the validity of the perturbative derivation in the pr
vious sections will require

g,l,
mT

T
,lT,1, ~5.22!

wheremT
2;(l12N8g2)T2/24 andlT'l2(3)/2p)N8g3.

Equation~5.20! can be turned into an equality, in whic
case, along with Eqs.~5.17!, ~5.18!, and ~5.21!, they deter-
mine the boundary of the allowed parameter space. T
there are six constraining equations for the 11 quantitiel,
g, lT , mT , mp , wBI , N, N8, Ne , r, andTBI . We will let
TBI set the overall scale and will fixN8,Ne ,r,g. Then, based
on the constraint equations, this determines the remain
parameters. In particular, we have forlT :

lT'
3N8g4 ln~2A12/g!

4Nep
2 . ~5.23!

This expression is suggestive of case 3 analyzed in Sec
For such, taking thenmT

2;(3g)/2p12)N8g2T2/24, we
get the additional parameters:

wBI'
2pTBI

g
A~3g)/2p12!Ner

6 ln~2A12/g!
, ~5.24!

N11'
5r2N8Ne

12 ln~2A12/g!
S 3)

2p
g12D 2

,

~5.25!

and

mp'
192p2rTBI

9g4 S 3)

2p
g12DA 3pN8Ne

ln~2A12/g!
. ~5.26!

Based on these equations, it is not difficult to find pa
metric regimes in which the warm inflation scenario is re
ized, but it is only forNe,1. As such, this simple case ha
no observational relevance. There are a few improvem
that could be made to our analysis that would increaseNe .
Firstly our estimates above ignore the effects of the ther
mass term,mT

2wc
2/2, on the dynamics. Its contribution to th

energy density and pressure arermT
52mT

2wc
2/2 and pmT
12350
.

us

g

V.

-
-

ts

al

5rmT
, respectively. Thus it helps thewc

4 term to drive infla-

tion. Secondly, recall that the dissipative coefficienth1
;1/T. In the above analysis, we fixedT5TBI . However,
during the roll-down, temperature does fall by a factor of t
order of ten, which in turn would increaseh1 . Finally the
parameter regime could be extended to include both pos
and negativef2x couplings, such as the ASR case d
scribed in Sec. IV A. As noted there, in this regime the d
ration of overdamped motion can be increased significa
within the perturbative amplitude expansion. This direc
corresponds to increasing thee-folds Ne .

A more elementary modification is to extend the region
validity to larger displacements ofwc . The extension to this
larger regime can be treated by a summation of the comp
one-loop series as outlined in Sec. IV B. Overdamped m
tion for much larger displacements ofwc can also be attained
by a modification to thef2x interaction in Eq.~2.1! as

(
j 51

N
g2

2
f2x j

2→(
j 51

N
g2

2
~f2M j !

2x j
2 . ~5.27!

In this distributed mass model, a givenx j -field is thermally
excited when its effective massg2(wc2M j )

2,T2. The con-
tribution from the thermally excitedx-fields to the effective
dynamics ofwc is similar to our calculations in Secs. II–IV
As such, an effective equation of motion similar to Eq.~4.4!
can be obtained for this modified model. Given an approp
ate distribution of mass coefficientsM j along the path ofwc ,
from an arbitrarily large initial displacementwBI ,wc(t)
could undergo overdamped motion along its entire path.
tails will be presented elsewhere on the warm inflation s
nario which considers these various cases.

For this ‘‘symmetry restored’’ case, initial fluctuation
of wc(t),wBI , are strongly suppressed with probability ex
(2volumer/TBI);exp@2(192p)3NNer

2/g12#, where the
volume;1/H3. The most optimistic initial conditions hav
probability ;exp@213107#. Thus, unless a viable mecha
nism is found to justify a large enough initial value ofwc ,
the regime investigated here may not be very relevant
practical applications of warm inflation. In any case, the m
croscopic dynamics of the symmetry restored regime inv
tigated here is similar to more realistic scenarios in the sy
metry broken regime, where the field has an average in
value close or identical to zero. An important difference b
ing that the initial state in the latter case has
Boltzmann suppression.

This section has made an initial examination of treat
strong dissipation from first principles during a de Sitter e
pansion regime. Further results will be presented elsewh
as well as a calculation similar to this one, for the symme
broken case.

VI. CONCLUSION

In this paper a microscopic quantum field theory mod
has been presented, describing overdamped motion of a
lar field. Commonly, such behavior is treated phenome
logically by Ginzburg-Landau order parameter kinetics. O
model provides a first-principles explanation of how kinet
8-16
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equivalent to the Ginzburg-Landau type, which is first ord
in time, arise for inherently second order dynamical syste
The microscopic treatment of this problem, in princip
should be well controlled, due to its fundamental reliance
the adiabatic limit, and our model exemplifies this expec
tion.

The calculational method for treating dissipation in th
paper has one distinct difference from several other rela
works. In our calculation, we consider the effect of partic
lifetimes in the effective equation of motion. To our know
edge, this effect has been discussed in only a few work
the past@2,11,14#.

Sections II–IV presented a general, flat-space treatm
which offers a microscopic justification to the often us
limit of diffusive Ginzburg-Landau scalar field dynamic
We have shown how it is possible to obtain an effect
evolution for the scalar field which is first-order in time, du
to its own thermal dissipation effects, interpreted mic
scopically as its decay into many quanta. In a sense, the
acts as its own brakes, the slowing of its dynamics be
attributed to the highly viscous medium where it propaga
a densely populated sea of its own decay products.

The application that we considered in Sec. V was in
panding spacetime, for the cosmological warm inflation s
nario. Although we did not formally derive the extension
our flat-space model of Secs. II–IV to an expanding ba
ground, we did present heuristic arguments that validate
extension for the special needs of warm inflation. The res
of the simple analysis in Sec. V are strongly dependent
initial conditions and may be difficult to implement for mod
els of observational interest. Nevertheless, these results
provide useful guidance both for modifications of this mod
and for our next study of the symmetry broken regime.

The direct significance of the present study to inflation
cosmology would be to the initial state problem@41# in sce-
narios during symmetry breaking. The initial conditions r
quired for warm inflation in the symmetry broken case a
similar to new inflation. The requirement is a thermaliz
inflation field, which at the onset of the warm inflation r
gime is homogeneous with expectation value^f&b50. Al-
though we have made no detailed application of our res
to this problem, some general features are evident from
analysis in Sec. V. In particular, both the suppression
large fluctuations and thermalization are mutually consis
with strong dissipative dynamics. Many of the difficultie
that have been discussed@41,42# in association with the ini-
tial state problem, are eliminated in the strong dissipat
regime. In addition, the damping of fluctuations should si
plify the formal problem of coupling this model to classic
gravity. Thus, the strong dissipative regime appears to h
the correct features both to carry the universe into
inflation-like phase and then to smoothly exit into a hot b
bang regime.
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APPENDIX A

We now give a brief overview of the calculation of th
imaginary part of the two-loop, setting sun, self-energy ter
in Eqs. ~2.10! and ~2.11!. Let us express generically thos
diagrams in terms of field propagators with massesms and
mt and external lines of types. For an interaction betweens
and t fields of the formgs,t

2 /2 s2t2 @for s5t5f(x j ), gs,t
2

5l/12 (f j /12) and fors5f,t5x j ,gs,t
2 5gj

2# the imaginary
part of the two-loop sunset diagram for thes field can be
expressed by~see for example, in Ref.@21#, Appendix G and
also Wang and Heinz in@22#!:

5Ss,tgs,t
4 ~12e2bEq

s
! (
s561

sk1qs lsk1 l

1

8~2p!5

3E d3kd3l

El
tEk1q

s Ek1 l
t @11n~sk1qEk1q

s !#

3@11n~s lEl
t!#@11n~sk1 lEk1 l

t !#d~Eq
s2s lEl

t

2sk1qEk1q
s 2sk1 lEk1 l

t !, ~A1!

whereEk
s5Ak21ms

2,n(E) is the bose-distribution function
and Ss,t is a symmetry factor: fors5t,S512 and forsÞt,
S51. By expanding in the sum ins and retaining only the
on-shell, energy conserving processes~corresponding to the
scattering processesst→st,ts→ts!, we obtain the result

Im Ss~q!5Ss,tgs,t
4

S 11
1

2
ds,tD

4~2p!5 ~12e2bEq
s
!

3E d3kd3l

El
tEk1q

s Ek1 l
t @11n~Ek1q

s !#

3@11n~El
t!#n~Ek1 l

t !

3d~Eq
s2El

t2Ek1q
s 1Ek1 l

t !, ~A2!

with ds,t51 for ms5mt and ds,t50 for msÞmt . Im S(q)
for s5t has been obtained in details in Refs.@21# and @22#.
In particular, Wand and Heinz in@22# have discussed an
obtained in detail the kinematic limits, for thelf4 model,
of the integration on the momenta in Eq.~A2!, implicit in
8-17
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the Diracd function. Here we obtain the results for the ca
of msÞmt . In Eq.~A2!, by defining in the three-dimensiona
momentum integrations the angular differentialsd(cosuk)
5dEk1q

s Ek1q
s /(kq) and d(cosul)5dEk1l

t Ek1l
t /(kl) (k,q,l
f

ne

g
u

12350
5uku,uqu,u lu), we are then able to perform the angular int
grals in Eq.~A2!. From the constraint in the integration lim
its for k and l , which comes from thed function, we obtain
the following result for ImSs(q):
Im Ss~q!5Ss,tgs,t
4

TS 11
1

2
ds,tD

4~2p!3q
~12e2bEq

s
!H E

0

`

dkE
2u~k,q!

u~2k,q! ldl

El
t @11n~Eq

s2El
t!#@11n~El

t!# lnS ebEk1 l
t

21

ebEk1 l
t

2eb~El
t
2Eq

s
!D

1S E
2q

`

dkE
u~k1q,q!

` ldl

El
t 2E

q

`

dkE
u~2k1q,q!

` ldl

El
t D @11n~Eq

s2El
t!#@11n~El

t!# lnS ebEk
s
21

ebEk
s
2eb~Eq

s
2El

t
!D J , ~A3!

where, in the above expressions, the functionu(k,q) is given by

u~k,q!5
1

2 H k2
1

kms
@A~k2q!21ms

22Aq21ms
2#„k2ms

212ms
2mt

212q2mt
222kqmt

212mt
2A~k2q!21ms

2Aq21ms
2
…

1/2J .

~A4!
m
n

ob-
es-
nd

it

m,
la-
are
hat

ge

Eq.
s

id-
ults
der.
ri-

d
y.
n,
In the first term of Eq.~A3!, we can make the change o
integration variablesk1 l 5k8,l 5 l 8, to obtain l 8dl8/El 8

t

5dEl 8
t . Doing the same for the remaining integrals,ldl /El

t

5dEl
t , relabelingl 8 andk8 back to l , k, and performing a

new change of integration variables,y5e2bEl
t
,dy

52be2bEl
t
dEl

t , we are able to compute they integrations.
From this point on, the integrations are equivalent to the o
in @21#, once we change the integration limits in thek and l
integrals, and take into account the functionu(k,q), Eq.
~A4!. The results shown in Sec. II forGf ,Gx j

, Eqs. ~2.14!

and ~2.15!, are obtained once the limit of vanishingq
~uqu50!, is taken in the above equations.

APPENDIX B

Let us now compute the expression on the lhs of Eq.~3.5!
in the adiabatic approximation, stressing the need for re
larizing the propagators with quasi-particle lifetimes. Let
write the lhs of Eq.~3.5! in terms of the adiabatic series:

E d4x8wc
2~x8!Im@G11#x,x8

2 u~ t2t8!

5(
n
E d3x8E d3k

~2p!3 eik.~x2x8!
1

n!

]n~wc
2!

]t8n U
t85t

3E d3q

~2p!3 E
2`

t

dt8~ t82t !n

3Im@G11~q,ut2t8u!G11~q2k,ut2t8u!#, ~B1!

whereG11(q,t2t8) can be read from Eqs.~2.20! and~2.21!
and it refers generically to thef or x j field propagators. The
approximation of considering a homogeneous field,wc
s

u-
s

[wc(t), is equivalent to taking the limitk→0 for the external
momentum inG11(q2k,ut2t8u). In this case thex8 andk
integrations in Eq.~B1! can be done trivially. However, it is
known that taking the limit of zero external momentu
(km→0) @43,44# in self-energy expressions, which are give
in terms of products of non-local propagators, can be pr
lematic. This is related to the non-analyticity of these expr
sions around the origin. In particular, Gross, Pisarski, a
Yaffe in @43# argue that a correct way of taking the lim
km→0, at finite temperatures, is to first takek0→0 and then
k→0. They also argue that the non-analyticity proble
which comes from a failure to do a self-consistent calcu
tion, would be eliminated once fully dressed propagators
taken consistently into account. We note, in particular, t
for fully dressed propagators the decay widthG works as a
regulator.

In Eq. ~B1!, the limit k0→0 is implicit in the adiabatic
approximation, where the fields are required to chan
slowly in time, while the limitk→0 is implemented by ap-
proximating the fields to be homogeneous. In evaluating
~B1!, we will first compute the time integral, expand in term
of the ‘‘regulator’’ G, and then finally take the limitk→0.
This is the opposite of what was done in obtaining Eq.~3.5!.
From this lesson we will see both the importance of cons
ering fully dressed propagators and how consistent res
can be obtained once the limits are taken in the correct or
This will be crucial when evaluating the dissipation cont
bution @n51, in Eq. ~B1!#.

Consider the time integral on the rhs of Eq.~B1! and
expand it to first order in the ‘‘regulator,’’G ~which is of
orderl2,g4!. Higher order terms inG need to be considere
in conjunction with higher order loop terms, for consistenc
For n50, the zeroth-order in the adiabatic approximatio
we obtain
8-18
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E
2`

t

dt8 Im@G11~q,ut2t8u!G11~q2k,ut2t8u!#

.
1

4vqvq2k
F2

1

vq1vq2k
12

vq2kn~vq!2vqn~vq2k!

vq
22vq2k

2 G1OF S Gq1Gq2k

vq1vq2k
D 2G . ~B2!

Taking the limitk→0, we obtain

lim
k→0

E
2`

t

dt8 Im@G11~q,ut2t8u!G11~q2k,ut2t8u!#→2
@112n~vq!#

8vq
3 2b

n~vq!@11n~vq!#

4vq
2 1OS G2

v2D . ~B3!

As expected, Eq.~B3! is recognized to be the usual one-loop correction to the quartic coupling constant.
For n51, the first order in the adiabatic approximation, which will give the dissipation coefficient, we obtain~again

retaining terms up to first order inG!

E
2`

t

dt8~ t82t !Im@G11~q,ut2t8u!G11~q2k,ut2t8u!#

.2@112n~vq!#
3vq

21vq2k
2

vq~vq
22vq2k

2 !2~vq2vq2k!

Gq1Gq2k

vq1vq2k
1~vq
vq2k!

2bGqn~vq!@11n~vq!#
1

~vq
22vq2k

2 !2 1~vq
vq2k!1OF S Gq1Gq2k

vq1vq2k
D 3G . ~B4!

We can see, in contrast with Eq.~B2!, that the limit k→0 is divergent. This divergence is reminiscent of the on-sh
singularity which is present in the integral in Eq.~B4! when bare propagators are used, thus showing the importance ofG as
a regulator. By first taking the homogeneous limitk→0 and then expanding inG, we obtain the result given in the text, whic
is the first term on the rhs in Eq.~3.5!.

The same calculation can be performed for then52 case, the second order in the adiabatic expansion, from which
obtain

lim
k→0

E
2`

t

dt8~ t82t !2Im@G11~q,ut2t8u!G11~q2k,ut2t8u!#→
112n~vq!

16vq
5 1OS G2

v2D . ~B5!

This result is consistent with a recent calculation in Ref.@44#, which addresses the time derivative expansion of the effec
action, for a given scalar field model. The authors of@44# also discuss their work in the context of the non-analyticity probl
in finite temperature QFT. In fact, we note that the second order term in the adiabatic approximation can be associated
first order term in the time derivative expansion of the effective action,;Z(w)(] tw)2 ~for a time-dependent, space
homogeneous field configuration!.
or
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