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We study the conditions under which an overdamped regime can be attained in the dynamic evolution of a
quantum field configuration. Using a real-time formulation of finite temperature field theory, we compute the
effective evolution equation of a scalar field configuration, quadratically interacting with a given set of other
scalar fields. We then show that, in the overdamped regime, the dissipative kernel in the field equation of
motion is closely related to the shear viscosity coefficient, as computed in scalar field theory at finite tempera-
ture. The effective dynamics is equivalent to a time-dependent Ginzburg-Landau description of the approach to
equilibrium in phenomenological theories of phase transitions. Applications of our results, including a recently
proposed inflationary scenario called “warm inflation,” are discus§88556-282(98)04424-5

PACS numbsgfs): 98.80.Cq, 05.70.Ln, 11.10.Wx

I. INTRODUCTION Here we are interested in examining under which circum-
stances physical variables whose microscopic dynamics is
Kinetic equations describe the time evolution of a certainsecond order in time, as for example, the Higgs order param-
chosen set of physical variables. The choice of physical varieter of spontaneous symmetry breaking, may have a dynam-
ables in principle is arbitrary, but often in practice is gov-ics which is effectively first order in time as in Ginzburg-
erned by the measurement of interest. Typical examples aleandau phenomenological models.
the order parameter of a complex system or the coordinate of Qualitatively it is not difficult to argue the plausibility of
a Brownian particle in a heat reservoir. The kinetic approachnis standard picture for the Higgs symmetry breaking sce-
is usually implemented through a proper separation of theyario. A single variable, the Higgs order parameter, is mod-
microscopic equations of motion of the chosen physical varigeq to control the release of energy to all the modes that
ables into regular and random parts. An averaging over theq, e 19 jt. By basic notions of equipartition, one anticipates
random part then generates thg eff_ectlve partition functmqhat some portion of the order parameter’s energy will flow
for the regular part. This averaging is often referred to as E?rreversibly to any given mode. Provided the Higgs order

coarse-graining. -
One %ypicalgapplication of the kinetic approach is Whenparameter couples to a sufﬂqent number of modes, the mo-
flon of the order parameter will be overdamped.

the physical variables of interest possess energy in relativ | ticle phvsi dels. Hi trv breaking i
excess or deficiency to the rest of a large system. Kinetic '" Particie physicS modeis, Riggs symmetlry breaxing 1S

theory then describes the approach to equilibrium of the chodccompanied by mass generation. Thus the rzlatzural couplings
sen physical variables, as for example in the kinetics ofor the Higgs field¢ to bosonic fieldsy; is #“x;, gauge
phase transitions or in Brownian motion. In the former casefields A is ¢2A”’“Aw and fermionic fieldsy; is ¢4, . For
the system is able to release energy to the environment due microscopic realization of time dependent Ginzburg-
to some change in its internal state. Provided the environtandau theory for the Higgs scalar order parameter in a par-
ment is disproportionately large relative to the system, theicle physics setting, these are the most obvious types of
process is irreversible. For a continuous transition, the focusouplings to investigate. In this paper we will examine the
of the present work, this process of equilibration can be deease of purely bosonic couplings in the “symmetry re-
scribed by the monotonic change of an appropriate ordestored” regime. That is, we will study the relaxation of an
parameter, which is the chosen physical variable. Many sysarder parameter which is initially away from the only mini-
tems are known to relax in this manner. Phenomenologicallymum of the free energy density describing the system. Much
they are successfully described by the time-dependerdf the formalism required for this has already been done in
Ginzburg-Landau theorj1]. [2] but we will extend that calculation to the overdamped
regime. In an upcoming paper, we plan to study the symme-
try broken case.

*Email address: berera@vuhep.phy.vanderbilt.edu This paper is a study of overdamping in quantum field
"Email address: gleiser@peterpan.dartmouth.edu. theory with realistic couplings between system and environ-
*Email address: rudnei@symbcomp.uerj.br ment, as inspired by particle physics. Overdamping has been
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studied in quantum mechanical reaction rate theory for a parwide further motivation to seek a microscopic model of the
ticle escaping from a metastable stéter a review, please scenario, which is the goal of the present work.

see[3]). This is sometimes referred to as the Kramer’s prob- The calculational methods used here, based on Schwing-
lem, with the overdamped limit also called the Smolu-er's close-time path formalism, were developed2h There
chowski limit. Quantum mechanical models describing thisare several other works in the literature that apply this for-
problem are commonly of the system-heat bath type. Micromalism to a variety of different situation&See, for example,
scopic quantum mechanical models have been constructdfe Works of Refs[12—-16.) The new feature of the present
along these lines, in which the particystem is coupled to  Paper is to shift focus to a kinematic regime dominated by
a set of otherwise free harmonic oscillat¢ngat bath Such ~ Strong dissipation, in order to establish under which condi-
microscopic system-heat bath models are often referred to QNS this regime leads to overdamped motion. This approach
Caldeira-Leggett models. In many cases they have been e¥!ll allow us to have a unique understanding of the micro-
actly solved[4]. The overdamped limit has been derived in Physical origin of such dynamical behavior, which is in gen-
these models for the case where the coupling is linear witgr@ invoked phenomenologically in applications ranging
respect to the oscillator variables but arbitrary with respect t8®M condensed matter physics to inflationary cosmology.
the particle variabl¢3,5]. The paper is organized as follows. In Sec. Il our model of

A Caldeira-Leggett type model has also been formulatednteracting bosons is presented and the effective action is

for the case where the system is a self interacting scaldfomPuted perturbatively for a homogeneous time dependent

quantum field coupled linearly to a set of otherwise freeP@ckground field configuratios(t). In Sec. Ill the effective
fields and the overdamped limit has been obtaifgidThis ~ L@ngevin-like equation of motion is obtained fgrin the

model does provide a microscopic quantum mechanical reafymmetry-restored phase. In Sec. IV the overdamped limit of

ization of time-dependent Ginzburg-Landau dynamics inthis equation of motion is derived and regions of validity are

scalar quantum field theory. However, since the coupling@iVen- In Sec. V the results of the previous sections, which
between system and environment variables are linear, A€ for Minkowski space, are extrapolated into a cosmologi-
should be considered as a first step toward more realistic® Setting and a preliminary examination is made of the
treatments. More importantly, the calculational method used/@m inflation scenario. In Sec. VI concluding remarks are

in [6] cannot be extended to the case when the system vasdiven. Two Appendixes are included to clarify a few techni-

able couples quadratically to other fields. cal details, like the evaluation of the imaginary part of the

Although the analysis of overdamping in this paper hasself—energies and to stress the importancg of tgki_ng fully—
general applicability, it was motivated by the warm inflation dréssed field propagators to properly describe dissipation in
scenario of the early univer§6,7]. In[7] it was realized that the adiabatic approximation for the field configuration.
the standard Higgs symmetry breaking scenario, when put
into a cosmological setting, provides suitable conditions for  |I. MODEL OF INTERACTING BOSONIC FIELDS
the universe to enter a de Sitter expansion phase and then
smoothly exit into a radiation dominated phase. The over-
damped motion of the order parameter in this scenario may Let us consider the following model of a scalar fieddn
sustain the vacuum energy sufficiently long for de Sitter exinteraction withN scalar fieldsy; :
pansion to solve the horizon and flatness problems. Simulta- L
neously, the relaxational kinetics of the order parameter can _
maintain the temperature of the universe and permit a Lld.xil= 5(0M¢)2—V[¢]
smooth exit from the de Sitter phase into the radiation domi- N
nated phase. Finally, the thermal fluctuations of the order
parameter provide the initial seeds of density perturbations, +j21
which in addition could be scale free under specified condi-
tions[7,8]. An elementary analysis of this scenario, based on (2.7)
Friedmann cosmology for general realizations of order pa-
rameter kinematics, indicated that if the universe’s temperawhere
ture does not fall too much during de Sitter expansion, then
the cosmological expansion factor from the de Sitter phase m? \
should be of the order of the lower bound set by observation V[¢]= 7¢2+ E¢4’ (2.2
[9]. Although this is not a tight constraint of this scenario, it '
is a natural one. An analysis of Cosmic Background Explorer 5

i

A. The effective action

1
E(%XJ)Z—V[XI‘]] —Vind &, i1,

data motivated by this expectation did indicate a slight pref- Vxi]= Hi 2, f_; 4 2.3
erence for a small super-Hubble suppression scale, which Xi 2 XiT g X '
could be interpreted as arising from a de Sitter expansion

with duration near its lower bounfilO]. Furthermore, the gng

overdamped limit required by warm inflation, when ex-

pressed in different terms, was notgd] to be an adiabatic N gz

limit, for which known methods from dissipative quantum ) 1= 2 42 2

field theory[2,11,14 are presumed valid. These facts pro- Vind #.x;] 12::1 2 PN 24
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For the most part, we will consider all coupling constants It seems reasonable to expect that dissipation effects are
positive: A, f; and ng>0. Writing ¢— ¢+ 7 in Eqg. (2.1),  closely related to the effect of collisions which dress the field
where ¢ is a background field configuration angare small ~ propagators. Take for example the case of a bare propagator
fluctuations arouncp, we obtain the expression for the one- expressed in terms of the spectral denpifp), where there
loop effective actiod[¢], valid to second order in the fluc- is a one to one correspondence between the energy and the
tuations, by performing the function@Gaussiah integra- momentum of a given state. This completely neglects the
tions in » and y; : spreading of possible energy states due to interactions. In a
full “dressing” of propagators, this is accounted for through
1 " the introduction of a lifetime(decay width for single-
Ilel=Se]+ 51 Trin[L+V(¢)] particle states, such that the fuiressedl spectral density
N p(p) is smeared out. In particular, particle lifetimes are cru-
. 2, 2 2 cial in the study of relaxation time-scales in quantum many-
'jzl Trin[L+ui+gie%], (2.9 pody theory[17,18.
Also, the reason why we can get dissipation within our
whereS ¢]= [d*xL[ ¢,0],V"(¢)=(d?/d¢?)V[¢]| , and approach can be traced back to the very way that transport
ome coefficients are derived in quantum field theory. As we will
1 1 N show later, the assumption of a slowly moving field is con-
Ei Tr In[O+V"(¢)]+ Eiz Tr |I’][D+,ujz+gjz(p2] sistent with overdamping in a strong dissipative environ-
=1 ment, justifying the adiabatic approximation we adopted. In
i this regime, there is a close relation between the dissipation
=—jln f D 7,1__[ Dx; exp{ 3 nO8+V"'(e)]n we compute and the shear viscosity computed from the Kubo
] formula[19-27. As explained if 20,21, diagrams contrib-
i uting to the shear viscosity have near on-shell singularities
- —Xj[D+Mj2+ gj2<P2]Xj)- (2.6)  for free bare propagators. Full resummed propagators regu-
2 late these singularities through an explicit thermal lifetime of
single particle excitations. Analogous singularities are exhib-
ited by our expressions for dissipation terms if bare propa-
gators are used. Additional issues concerning the relation of
our dissipation terms with the shear viscosity will be dis-
cussed in the following two sections.

+

N| -

Neglecting contributions to Eq2.5 which are indepen-
dent of ¢, we can expand the logarithms in E.5) in
powers ofe, obtaining, in the graphic representation:

¢ ¢ i Xi
M= SO+ SOK + L)+ XCX 1+000+ 006,
é X

2.7 From the above discussion, we rewrite the Lagrangian
where we have identified the propagators in the internaflensity in Eq.(2.2) as
lines. External lines ark?/2 for the ¢-graphs angj¢? for

C. Self-energies and dressed propagators

the y-graphs. _ E 2_ E 2 2_ i 4 E 2
B. Single-particle excitations and dissipation: N 1 1
Dressing the propagators + Zl 5(%)(1)2_ E(“JZ+2X1)X12
Before presenting our derivation of the effective nonequi- =
librium equation of motion forp, we contrast our approach gjz J. 1
with earlier works in the literature. We closely follow the - ?qﬁzxf— EX?+ EEXJ'XI? , (2.8

method of Ref[2] in the derivation of the evolution equation

for ¢. In particular, it was shown if2] that for slowly

changing fields, dissipative terms vanish if they are comwhereZ, andX, are the self-energies for the and ;
puted perturbatively with bare propagators. There are severfields, respectively. This way we can work with full
issues related to this result. Boyanovsityal. in Ref. [13]  (dressedl propagators for thep and x; fields (note the im-
argue, in the context of a toy model, that dissipative effectslicit resummation of diagrams involved in this operajion
cannot be studied within perturbation theory: perturbatiorand at the same time keep consistency by considering
theory breaks down before dissipative effects can be ob¢a/41) ¢*—(1/2)3 ¢¢2 and also {;/4!) le"—(l/z)zxj ij as

served. This shows that dissipation is a nonperturbative efteraction terms. This method has already been adopted be-
fect in quantum field theory. 12] it was shown that dissi- fore in many different contextsee, for exampld2,22,23).

pative terms can be derived once a consistent "dressing” Ofy, tgrms of the self-energies the field propagators are written
propagators is used. This is an explicit way of considerin

the effect of quasiparticle®r single-particle stat¢sn the

evolution of the system, described byin interaction with a

thermal bath which represents fluctuationsgoind of other 1 - 1

fields to which it may be coupled. g’—m’+ie g’P-m?—3(q)+tie’

(2.9
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For both¢ andy; fields, a finite lifetime of single particle A2T2 _ -
excitations, given in terms of the imaginary part of the self- I'4(q)s¢0m;)~ oy Q) Lio(1—e™F™)
energies, first appear at the two-loop order. We thus restrict, ¢

for simplicity, the evaluation ok 4 and EXJ_ up to the two- 1 N giT?
loop level. Diagrammatically, the self-energies are given by 1 2 5¢,Xj)j§=:l 257%0,4(q)
¢ ¢ X X ) m [ 1—e AM
¢ X 8 8 8 8 X|Liy(1—e T)—Li, W
2¢=O+O+¢ o xOx , xOx , #(0)¢
? X (2.14

+ m + higher loop terms

£
Y

+

and

(2.10

and f].2T2 . .
FX].(Q)|2|XJ'(0,MJ-(T))~ W Lip(1—e Axi(h)

X ¢ ¢ X
SITOINE e Do NC DS
2X=O+O+x x ,oxOx ()¢, ¢ N
4

X

g;T?
1+-68, | e —
2 ‘/”Xl) 257T3wXJ(Q)

+ m + m + higher loop terms.
-/ . BT
X X L|2(1_e B’uJ( ))
2.1
(21D (1-e P
The setting sur(non-loca) diagrams in Egs(2.10 and —L'2<—1_eng ) - (219

(2.1 [the two last terms in Eq$2.10 and(2.11)] contrib-

ute imaginary terms to the self-energies, from which we can

write the decay widthd'y,,T',, for the ¢ andx; fields, re-  |n the above expressionsy; and ©i(T) are the thermal
spectively, in terms of the on-shell expressidil—23 masses for¢ and x;, respectively. 5¢,Xj:1 for my

(2y=Im2): =p(T) and 8, , =0 otherwise. Li(2) is the dilogarithm
function?!
()= 3P0, 04) ) This approximation for the decay widths, in terms of the
p(A)= 2wy (2.12 zero space-momentum expression for the imaginary part of

the self-energies, is common to computations of transport
coefficients and contrast densities in field theft$,19,20Q.
However, Wang, Heinz, and Zhari@2] showed that this
i approximation may lead to errors in the calculation of the
D '(q=‘”xj) contrast density in tha ¢* model. In fact, the expressions
ij(q I PR (2.13 for Im 3 can be fast changing for some momentum range
Xj . .
and values of the masses. For example, in Fig. 1 we plot the
value of (the on-she)l Im 3(qg), obtained numerically, as a
function of the momentum, normalized by {t§=0 expres-
+ReX(q,w). sion (for f;<g?). Even though InE(q) can depart consider-
Explicit expressions fo(g) in the A¢* model have aply from its|g|=0 value, we will show later that, for a range
been obtained if21] and[22]. We follow [21] to compute  of small thermal masses, this approximation results in a
r, andl“Xj. A straightforward extension of the computation small error £10%) in the expression for the dissipation
can be applied to our model of interacting— x; fields.  coefficient, when compared with the computation using the
Some of the details are shown in Appendix A, where wecomplete|q|+0 expressions for Ik (q).
evaluate the imaginary contribution coming from the mixed In the analysis presented in the next sections, it will also
setting sun diagrams B, andEXj [the last diagrams in Eqgs. be sufficient to use the leading-order high temperature ex-
(2.10 and (2.1D]. Even though in general there are no Pressions for the finite temperature effectivenormalized
simple ways of expressing the results, if we adopt the zero
space momentuniig|=0) approximation for the imaginary
part of the self-energies, we can find simple approximate e follow the convention in Ref24] for the definition of the
expressions for both Eqg$2.12 and (2.13, respectively, dilogarithm function: Ly(z)= — fZ[In t/(t—1)]dt. Some useful ap-
given at finite temperature S=1/T) by [for m;  proximations for Ly(z) are Li(z)~ 7%/6+[In(2)—1]z+O(2?), for
~O(ui(T))] z<1, and Li(2) ~ — w2/6— (1/2)Ii¥(2) + O(1/z), for z>1.

and

where wg, ) is given by the solution ofw?=q?+m?
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integration is along a contowr from —o to +o and then

1 iy = 5 (T) = 0.05 ggj:k to—co. For reviews please see, for example, REZ6—
""" My =5 (1) =0.5 In the CTP formalism the field propagators are given by
] (N=25) [2] (with analogous expressions f@ij)i
Gy (xx)=i(T, () B(x")),
5
R Gy (xX)=I(T_d()b(x")),
o
e, ) _ ,
£ G, (xx)=i(p(X") (X)),
g G, (X)) =i{p(0) p(X)), (218
W
E where T, and T_ indicate chronological and anti-
2 chronological ordering, respectivegz.;j+ is the usual physi-
cal (causal propagator. The other three propagators come as
. a consequence of the time contour and are considered as
auxiliary (unphysical propagators. The expressions for
G’(};'(x,x’) in terms of its momentum-space Fourier trans-
0 , L , L . L — forms are given by
0 5 10 15 20
I/ T 5 . ,
q G(/)(X,X'):if (27:;3e|q.(xfx)
FIG. 1. Im2 (q,®,(q)) normalized by it§q|=0 value, for dif-
ferent values of masses and space momentum. ( G, (at—t') G, (g,t—t’)
G, (gqt—t") G, (qt—t"))’
massesiny andu;(T), appearing in Eqg2.12—(2.15), [ob- o (@ ) o (@ )

tained from the one-loop diagrams in E¢®.10 and(2.12), (219
respectively, given by

where
T>m T2 N T ++ i > Y Y
(2_1@ +Gy(a.t—t)e(t' - ),
- N\ =" _ 4! r_
and Gy (at=t")=Gy(q,t—t")o(t' —t)
+Gg(at—t)at—t'),
T> 2 -|—2
pi(T)=pf+ReX, (M) ~ i+ +0f 5 1 G, (at—t)=G(g,t—t'),
(2.1 —+ ' > '
G, (qt—t) =G (a,t—t"). (220
D. Real-time full field propagators In terms of the decay widtl',, the expression for the

In order to obtain the evolution equation for the field con- full dressed propagators at finite temperature were obtained
figuration ¢, we use the real-time Schwinger's closed-time [2], from which we have
path (CTP) formalism[25]. In the CTP formalism the time

1 _ I
G;(q,t—t’)=2—%{[1+n(w¢—|l“¢)]e i{wg=ilg)(t=t")

2The divergences in Eqg2.10 and (2.11), as in the effective
action, can be dealt with by the usual introduction of the appropriate
renormalization counterterms in the initial Lagrangian, for the
masses, coupling constants and the wave function. In particular, we ¢(q,t—t’)=G;(q,t’—t), (2.2
note that the imaginary terms in the self-energies expressions, com-
ing from the setting-sun diagrams, are finite, u, g, f andx in ~ Where n(w)=(e#*—1)"* is the Bose distribution and
Egs.(2.16 and(2.17 and in our later results are to be interpreted as=@(d) is the particle’s energy, or dispersion relation,

the corrected and not as bare quantities. o 4(0) = Vo2 + mT2 ForGX ; @y ()= g+ ,ulz(T

123508-5
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I1l. DISSIPATION IN THE ADIABATIC REGIME 1
== +d_ =¢,—_. 2
A. The effective equation of motion e 2(¢+ $-) Pr=di—¢ (32
With fields in the forward and backward segments of the |n terms of these new variables the equation of motion is
CTP time contour identified ag. ,x+ and¢_,x_, respec-  obtained by[2,14]
tively, the classical action can be written as
5Seff[€0Aa(PCa§j]

o= [ dX{Llo. I L6 T B Sea im0

) ) ) ) where¢; are stochastic fields, related to each distinct dissi-
The evaluation of the effective action at real time can bepative kernel appearing in E¢3.3.

done exactly as il2]. There are also a number of other = At one-loop order, the leading contributions to the dissi-

works using Schwinger’s closed-time path formalism to ob-pative terms in the equation of motion come from the dia-
tain the real-time effective action for field configurations. grams:

(See, e.g., Refd13-16.) Here we will concentrate on the

=0, (3.3

evaluation of the effective equation of motion in the strong P i
dissipative regime. In the evaluation of the effective action SO +Ea (X (3.4)
there appear several imaginary terms, oncejthields and ¢ X;

the fluctuations around the background are integrated out.

These imaginary terms can be interpreted as coming from The explicit expression corresponding to these terms ap-
functional integrations over Gaussian stochastic fields, as cgoearing in the effective equation of motion, Eg.3), is (as

be visualized by introducing the new field variables: obtained in[2] for a similar casg

A2 N
Pe(X) f d“x'«aé(x')[; Im[G;*Jiwg 2g; Im[G;*]i,x/} o(t—t")

d®g  ng4(l+ny) +§ g d3q an(1+an)} ( 2&)

NS
~¢>§(t)soc(t){§ﬁ f (

2m)® W3 (QT4(q) =1 2 (2m)* wy ()T, (9) gy
F. t d3 )\2 N
4 XJ 3 ’ q + 4+ Y 4 ++ Y
Hol9g, “"“”J,wd‘J <zw>3|?'m[6¢ Q=) +22, gfmlG, " (at ”]Z}’ &9

where in the left-hand sidéhs) of the above equation, we used the compact notation

d3k d3
[eg;j];x,:f —(Zw)3ex;{ik.(x—x’)]f (2:)3G;;j(q,t—t')G;;j(q—k,t—t’), (3.6

with G**(qg,t—t’) obtained from Eqgs(2.20 and(2.21). In the rhs of Eq.3.5), we have taken the limit of homogeneous
fields, for details see Appendix B. We have also made use of the approximation for slowly moving gt%ﬂtzls:— (,og(t)
~2¢(t) pc(t)(t'—1). In the next section we show that this approximation is consistent with strong dissipation. After per-
forming the time integration and retaining the leading terms in the coupling constants, we obtain the result give3.1).Eq.
The last term, proportional t@ﬁ, will correspond to the finite temperature correction to the quafteelf-interaction(see
Appendix B.

The final equation of motion, at leading order in the coupling constants, at high tempefaty(&s,m:<T] and in the
adiabatic limit, can then be written as

. 2 )\T 3 2 .
Gt Mrec(t)+ §¢c(t)+ 7106(1) @c(t) = (1) §1(1), (3.7

wherem; is given by Eq.(2.16), At is the temperature-dependent effectivenormalizedl quartic coupling constarit:

3The terms linear in the temperature come from the two-vertex diagrams if8Bg. The apparent instability from these terms for high
is only an artifact of the loop expansion. As showr]29] for the ¢* model, once higher order corrections are accounted\pis always
positive even in théT — o limit. Using full dressed propagators we are automatically taking into account these higher order corrections,
through the appearance of thermal masses in(E8). However, in the multi-field case there is the possibility of vacuum instability due to
the ¢ couplings to they; fields. This appears as a constraint in our estimates below.
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AN (T 1 | my o m
)\T_)\_T 871'mT+87Tz N amT T T
LI I W V(A #(T) 3 o44f \2q2 o6
_62 (sm M 82" [' ( 4nT +7}+@< T TONgAg%87), 3.8

In Eq. (3.7), &, is a stochastic field associated with the imaginary terms in the effective action coming from the real-time
evaluation of the diagram@.4). Its two-point correlation function is given Hy]

N

(£ (X’ >>— - Re[G Tl t22 of RAGTT (3.9
Note that since we are considering homogeneous field configuratfpris,a space uncorrelated stochastic field, but it is

colored(time dependentand Gaussian distributed, with probability distribution given(bly is a normalization constant

2
REG, 12, + 2; g/ RG[G;];X,

-1
§1(X’)]- (3.10

P[§1]=N1_1exp{ ! fd“xd“x’gl(x) A

As shown in[2], the dissipative coefficient in E@3.7), written explicitly in Eq.(3.12 below, and the noise correlation
function Eq.(3.9) (in the homogeneous limitare related by a fluctuation-dissipation expression valid within our approxima-
tions (one-loop order alxz,gf1 and forl'/ w<<1,dd’/T<1):

1
M=o f d*%/(£1(X) E1(X)). (3.1)

In [2] it was also shown that 86—, F(,,'Xjaoo, and the integrand in E¢3.9) becomes sharply peaked|&t-t'|~0. In this

limit, we can obtain an approximate Markovian limit for £§.9).
We can read the dissipation coefficiempt, which appears in Eq3.7), from (3.5),%

RS ny(l+ny) N g dq Ny (1+ny)
ﬁf <2w)3 AT Ha) Bf 2m)° o’ (q)r (q)m

T r,
N—2 gf ], (3.12
¢ jo

For the model we are interested in, with Lagrangian density given byZEt), with a large number of fields coupled to
¢, and forf; <gJ2 and\=g;, we can use the obtained expressiondfgrandrl’, , X to show thaﬂ“¢>l“ Since the dissipation

coefficient, Eq.(3.12, goes as 17, I', will give the dominant contribution to;. An explicit expressmn forp,, can be
obtained by using thég|=0 apprOX|mat|on for In® 4(g) and ImX,, (q) or, equivalently, Eqs(2.14 and(2.19 for I' ; and

FX, respectively, in Eq(3.12. At the high temperature I|m|tT>mT,,u](T) and for my~O(u;(T)), we then obtain the
foIIowmg approximate expression fay, [using Li(z) ~ 7%/6, for z<1]:
T 96 A2 2T
= - In(—)
n 8N+ = g1~ (6/m)Lilmr/ (T}
N
4g] ( 2T )
+ . 31
1'21 +894{1 (6/772)|—|2[M,(T)/mT]} wi(T) (313

In order to test the validity of the above approximate expressionyfgr we have computed it numerically. The two
expressions are shown in Fig. 2, ftq%gjz, A=g;, andN=25, where, for simplicity, we have also consideed=x and
gj=g for all x; fields[m;~5u;(T)]. We see that the above approximation fgrfits reasonably well the full expression for
the dissipation coefficient in the high temperature region, havisgl@% discrepancy fom;/T=<0.4.

“4In [2] an extra contribution to the decay rate coming from thé— y interaction was left out. Here we give the correct expressions for
I'y, I', and for the dissipation.
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FIG. 2. The dissipation coefficieny,; computed(for N=25)
with Im > (9,,(q)) and with the approximationq|=0 for the
imaginary part of the self-energy.

B. Dissipation coefficient and shear viscosity

PHYSICAL REVIEW B8 123508

T>meMj(T)B d3k
Nshear = 30 mg“(l4
ng(1+ny) Ny(1+ny,)
2—+2 . (3.16
w¢r¢ i joTXj

Compare the above expression with E8.12. The evalua-
tion of Eqg. (3.16 leads to the standard result for the shear
viscosity being proportional t&° and inversely proportional

to the coupling constants. However, Eg.16), as shown by
Jeon in[21], does not represent the unique contribution to
Nshear@lt this order of coupling constants. Because of the near
on-shell singularities and the way they are regulated by the
thermal width, there is an entire class of diagrams, called
ladder diagramg$diagrams with insertions of loops between
the two propagators in E@3.4)], contributing tongpeaat the
same order. By using a formal resummation of vertices, Jeon
was able to perform the summation of the whole set of ladder
diagrams in the simpla ¢* theory, showing that the true
value of the shear viscosity is about four times larger than
the one loop result in the high temperature limit. Since our
expression for the dissipation coefficient exhibits the same
properties ofpgnean We expect that these higher loop ladder
diagrams will also give a significant contribution to the value
of n, in Eqg. (3.12. However, as we are dealing with the
more complicated situation of several interacting fields, we
will not attempt here to evaluate these contributions. From
the example of the shear viscosity calculation in the single
field case, these ladder contributions will only add to the
one-loop result for the dissipation coefficient, not changing

It is interesting to note the close relation of the abovequalitatively our results. Thus, E(.12 represents, at least,
expression for the dissipation coefficient with that obtaineda lower boundfor the dissipation, applicable in the strong
for the shear viscosity evaluated, e.g., from a Kubo formuladissipation regime, as we will show next.

[19-21):

0 t
roneari | @[t dt(ma(0) moxtD),
(3.19

IV. ADIABATIC APPROXIMATION
AND STRONG DISSIPATION

We now investigate the validity and limits of applicability
of our main approximations, in particular the adiabatic ap-
proximation. In order to arrive at the expression for the dis-

where Wk|=(5r5f—%5r5f)Ti ~ with T} the space compo- sipation, Eq.(3.12, and to write the equatio_n of motion for
nents of the energy-momentum tensor. In our case, with th€c @S in Eq.(3.7), we assumed that the field. changes

Lagrangian given by Eq2.1),

aL
D>

9.9 ,- — 5L, (3.19

£ J
a(3,xp)

In order to compute the shear viscosity in Eg.14) to
lowest order, we must evaluate the diagra®4), which, as

adiabatically{see Eq(3.5]:

P2(t") = @2(1)=2(t" — 1) @(t) (1)

+higher time derivative terms. 4.0
This approximation for the field configuration has recently
been the focus of some attention in the literatLkB]. The
authors in'15], working with soft field modes set by a coarse
graining scalek., showed that the adiabatic approximation

shown in[20,21], have near on-shell singularities coming breaks down once the field configuratiofs®ft mode$ os-
from the product of(bare propagators. These singularities cillate with the same time scale as the dissipative kernels
are softened once explicit lifetimes for excitations are in-(with time scale given by-k_ *). However, here we work in
cluded through dressed propagators. Taking this into aca very different context. We are mainly concerned with the
count, we obtain the following expression for the shear vis-overdamped motion of the homogeneous field configuration

COSity 7ghear(in @analogy with the evaluation ofgpeqin the
A ¢* single field casg

¢c, i.e., when its oscillatory motion is suppressed. There-
fore, the dynamic time-scale fgr, must be much larger than
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the typical collision time-scale~I"~1). Note that this is a A. Results for three different cases

much stronger condition than the simple requirement that the \y/e || examine the condition for strong dissipation with

field should change slowly in time, with time scalg set by theoverdamped motion for three particular choices of param-

frequencyw(k) = Vk?+m¢. Thus, we must examine when eters, showing that there is a region of parameter space con-

the condition sistent with this regime. Using Ed4.4), we can write the
equivalent expression for E¢4.2):

Pols -1 4.2 A,
Pc mT+€‘Pc
——| <T, . 4.7
is satisfied. 771<P§ X

We choosel” as the smallest of the two thermal decay
widthsF¢,FXj, as it will set the largest time-scale for colli-
sions for the system in interaction with the thermal bath.

Note that in the evaluation of the dissipation coefficient in
Eq. (3.5, the leading contribution to the first time derivative

In the estimates below, we evaluated both [from Eq.
(3.12], andT',, (computed atq|=T) numerically. The three
cases analyzed are

Case 1:A~g?: In this case we obtain that

of ¢, is of orderI' 1. As discussed earlier in connection 2

with the shear viscosity coefficient, the dependence of the m$~(1+2N)922—4, (4.8
dissipation coefficient on the decay widthcomes from us-

ing it as the regulator of on-shell singularities present in Eq. 3v3Ng

(3.4) at first order in the time derivative. In Appendix B we )\ng2( 1— 5 ) 4.9

present an argument justifying the need of regulating with
the decay width and also compute the next order contribution
in the adiabatic approximation, showing the consistency o{

the r_esults. L . =25, we obtain the results shown in Figa where we
Since the stronger the dissipation the more efficient th%ave plotted both sides of E¢4.7). The region of param-

adiabatic approximation, the parameter range where Eoe. . L . .
g . . ters satisfying Eq(4.7) is given by the intersection of the
(4.2) is valid leads naturally o the regime whegg under- region below the solid lineghe functionl’, ) with the region

goes overdamped motigim the sense of Eq4.4) below]. If »y .
we consider the ensemble average of the equation of motio"flwbove the dashed lirlép./ oc| computed for different values

(3.7): of @c)-
o Case 2:A~g: As above, this is shown in Fig.(®. The

Note that the last condition is written as a constraint for
he positivity of \;. With these values and for the calSe

region satisfying Eq(4.7) is given again by the intersecting
> -0 4.3 region below the solid line and above the dashed lines.
pp=0

In both Figs. 8a) and 3b), the results are shown up to the
value ofm; satisfying the constraint for the positivity af;.

Case 3:\;~g* This case follows a slightly different
rthiIosophy, of fixing the corrected coupling as opposed to
the bare coupling. We have

5Seff[ PAPc ng]
Sea

where( . ..) means average over the stochastic fields, the
we define the overdamped regime when (@eeragetiback-
ground configurationp. satisfies

.. 3V3Ng®
A A~=g'+ =\(g,N), (4.10
2. 2 T 3 2
7@t Mreet 5 ¢c=0. 4.9
2 [N\(g,N)+2Ng?] r (4.19)
mas~ , =, .
We also restrict our study to the high-temperature and T g 9 24

ultra-relativistic region:T~|q|>mr,u;(T). We take the

couplingsg; ,f; such thatg’>f;. Also, for simplicity, as with the additional constraint

before, we take al;=g. At high temperatures we can then N)<1 a1
write for Egs.(2.16 and (2.17) (T?=24m?/\,12u?/g?) the Mg.N)<1. (4.12
expressions The results for this case are shown in Figr)3with the same
interpretation as in cases 1 and 2: the region satisfying Eq.
) ) T? (4.7) is given by the intersecting region below the solid line
my~ (N +2Ng°) 24 (4.5 and above the dashed lines. The results are shown up to the

value formy satisfying the conditiori4.12).
We note that the case;~g* is the one with the broadest
range of validity in parameter space, as seen in Fig), 3
) followed by the casé.~g, shown in Fig. 8b). For \=g?,
2 2T_ (4.6) the condition for adiabaticity is only possible for fairly large
#1~9 12 ' field amplitudes, which may be beyond the validity of a per-

whereN is the number of fields coupled 9, and
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FIG. 3. Results for the adiabatic condition, E4.7). The dashed lines correspond|ta./ ¢.|, for different values fok. . The solid line
corresponds td',(q), evaluated alg|=T. All cases shown are fdi=25. The region satisfying the adiabatic condition is the intersection
of the region above the dashed lines with the region below the solid(Bihés for A=g?2, (b) is for \=g, and(c) is for A;=g*.

turbative evaluation of the effective action. We will come the adiabatic approximation. This is consistent with the intu-
back to this issue in the next section. In any case, we stresgon that dissipation is caused by the decay of thdield
that there are several regimes where the adiabatic approxinto y fields and is more efficient the larger the number of
mation is valid. decay channels available. We also obtain thatis always

In all cases, the smalléd the smaller the region of pa- somewhat largex2T) for the range of physical parameters
rameters that satisfies El.2). In particular, forN<2, we  satisfying Eq.(4.2), for both cases analyzed, being even
find no parameter range satisfying E4.2) and therefore, higher for case 1.
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If in Eq. (4.7) we usel’ instead ofl“Xj, the region of
parameters improves considerably; sirftpl“xj for large

N, it allows much smaller values @f./T. It should be re-
called thatl" , determines the relaxation time scale for the
field.

PHYSICAL REVIEW D 58 123508

B. Summing up the whole one-loop series:
The effective potential

The fact that overdamping in E¢3.7) for much of the
parameter space demands large field amplitudes, at least
within the approximation scheme used here, is a direct

Finally, as discussed earlier, the expression we quoted fotonsequence of having a field dependent dissipation
71 gives only a lower bound for the dissipation coefficient. 7(¢)~ ¢ Since in Eq(2.7) we are considering a perturba-

As in the case studied by Jeon [i81], higher loop ladder
diagrams can lead to a considerably higher valueyfar For

tive expansion for the one-loop effective action in the field
amplitudes(that is, in powers ok ¢2/2 andg’¢?), the need

several interacting fields, simple estimates show that thester large field amplitudes may place doubts on the validity of

ladder diagrams scale at mostNisTherefore, they may well

our calculations for a considerable portion of the parameter

be of the same order as the leading order one-loop contribispace. Below we address this issue in two different ways;

tion to the dissipation coefficient, given by tlyesector. We

first by comparing our results with an improved one-loop

leave a more detailed analysis of the contributions comingpproximation and then by using the subcritical bubbles
from ladder diagrams to a future work. Additional contribu- method[30] to test the validity of the effective potential for

tions to the dissipation coefficient in E@.12 only improve

large-amplitude fluctuations.

our estimates, enlarging the region of parameter space satis- We start by computing the analog of E¢.4) in the con-

fying the adiabatic approximation; the ratig /T decreases,

broadening the conditions under which the field undergoeand gjchﬁ

overdamped motioiistrong dissipative regime
It is worth mentioning that the— x coupling constant in

text of the whole one-loop approximation, i.e., wh)e(aﬁlz

in Eq. (2.6) are taken as part of field-dependent
masses. For this, let us give an alternative computation of the
evolution equation fok. in terms of the tadpole method of

Eg. (2.1) can be negative and this also leads to interestingVeinberg[13,33,34: in the shifting of the scalar fieldg
results. As an illustrative example, consider an even numbes ¢+ 5, the requiremen¢,)=0 leads, at the one-loop or-

of y-fields with the sign of thep— y coupling distributed so
that

2k
Vin= 2, (~1)/g%¢%x] (4.13

andf;=f,j=1... 2. In order that the potential be strictly
positive, it requires
AN Nf Ng? 0 i1
2420 2 |70 (414

which for largeN implies g?<f/6. In the alternating sign
regime (ASR) the thermal masses are

A
m3~ 2—4T2 (4.15
and
2 f 2

der, to the evolution equation fop. (for homogeneous
fields)

) Y
et mipct Foc+ 5 o 772>+; gec(x)=0, (417

where(7?) and(x?

i) are given in terms of the coincidence
limit of the (causall two-point Green'’s function§ , " (x,x")
and G;j*(x,x’), respectively, which satisfy, in the fully

dressed propagator matrix for(eee, e.g., Ringwald if34])

D+m2+§ 21G 4(x x')+fd4zz (X,2)G 4(z,x")
Z(PC d\ Ny ) ’ d\ &

=i6(x,x") (4.18

and

[O+puf+ gjz(pg]GXj(X,X’)-i‘ f d4ZEXJ_(x,z)GXJ_(z,x’)

=i8(x,x"), (4.19

Following an analysis similar to above and for case 3 _
(A+~g*, we find a solution regime within the perturba- where, in Eqs(4.18 and (4.19, % ,(x,x") and %, (x,x’)

tive amplitude expansion,g¢<ut \Np<T, for g2

<f32|n(2\24f)/46 andN~1/g*. For example, these con-
ditions are satisfied fof<1.0g?<1/20. In this examplex

are the (causal self-energies for the¢ and y; fields,
respectively. By expressingy(x) and x;(x) in terms of
mode functions, we can then evaluate the averages in Eq.

~g?, but this can be modified in several ways. In general(4.17). An explicit expression can be obtained in the approxi-

when the¢— x couplings are distributed between positive mation (equivalent

and negative strengths, it controls the growthnef due to
the cancelation of thermal mass contributions from the
fields. Restricting the magnitude of;, in turn, increases the

to the adiabatic approximation
w4(@c) w5(e)<1l and & (@) wi(e)<1, for which
there is a WKB solution for the mode functions of the fields.
In this paper, however, we will not carry out this calculation.

parameter regime and duration of overdamped motion. Thig detailed study of this, in the context of an expanding back-
example demonstrates another regime of overdamped motiground and along the proposals made in the next section, will

in our model for small field amplitudeg?o2< u?.

be presented in a forthcoming paper.
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For now, we can present the result of this calculation, byThe subcritical bubbles method models these fluctuations as
using the simplest formulation proposed[itl], based on a unstable spherically symmetric configurations with a distri-
relaxation-time approximation of the kinetic equation, for thebution of sizes and amplitudes. For details see Raf3,31].
calculation of the averages in E@.17). We can then show Using a distribution function for these configurations, it is
that the (ensemble averaggavolution equation forp.(t) possible to compute the rms amplitude of the fluctuations
can be expressed, in the quasi-adiabatic approximabgn  [31],
drodynamical regime df11]), by

() =V(e?r—(0), (4.23

et Vel 00) T m10eoc=0, (4.20
¢ Temre Lrere where( . . .) is the thermal average defined in Rg1]. For
where V(¢ =Nei(@d)lde., is the field derivative of the the effective potential of E¢4.4), we obtain
one-loop effective potential,

AT ! T 4.2
, , N, A d*q 1+2n(w,) e (T)=gmrT. (4.24
Verll ¢c) =M @et+ g oct 7 ¢c 2 w

¢ Since the perturbative approach for the computation of the

2 d3q 1+2n(w,) effective potential relies on a saddle-point approximation to

g] q Xj . . . . .
+> o, 3 , (4.2) the partition function, it will only be valid for small-
T2 (2m) @y, amplitude fluctuations about the perturbative vacuum. For

2 o o ) s o 2 - potentials which exhibit spontaneous symmetry breaking, it
where wy =g+ mr+(M2)¢: and ), =a"+uj(T)+gj¢c s customary to choose the maximum amplitude to be at the
are the field dependent frequencies, with masses given imflection point,¢.,=¢ins. Here, since we have a potential
terms of the thermal on@sEqgs.(2.16) and(2.17. Also, ;  With positive-definite curvature, we will conservatively as-
in Eq. (4.20 is the same as in Eq43.12), but now with the  sume that the perturbative expansion is valid for fluctuations
masses replaced by the field dependent ones. dominated by the quadratic term of the effective potential,

In terms of Eq(4.20), in the overdamping approximation, that is, for
the condition(4.2) becomes 2
. 0l= 12)\—:. (4.29
4| <T. (4.22
N1Pc

The condition for the validity of the one-loop approxima-

Using Eq.(4.22, in the high temperature approximation for tion for the effective potential is then written as
the fields,m(b(T)/T,ij(T)/T« 1, we can show that the re-

2(T)< 02
sults obtained earlier, in terms of the amplitude expansion ¢ (T)= Pinax (426
for the effective action, for instance, the results expressed in It is straightforward to apply this condition to the three
Fig. 3 [with m; replaced with the field dependent masscases analyzed above. Since case 3 is the one with a larger
m,(T)], remain approximately the same, for the cases whereange of parameters satisfying the adiabatic condition, we
¢.=2T. Thus, at least for these values of the field ampli-use it as an illustration. From Eqgt.10 and(4.11), we can
tude, higher order corrections do not add to the effectivayrite Eq.(4.26), after dividing byT?, as the inequality
potential. In other words, at leading order in the high-
temperature expansion, the field derivative/gf can be just 1o g*
expressed as in E¢4.4), V.~mPo.+ /602 . [f(g,N)]7*> 14406’ (4.27)

We can also address the issue of high-amplitude fluctua-

tions by adopting a method suggested in R81], where it \yhere, f(g,N)=24m2/T2. This condition is easily satisfied

was applied to test the validity of the one-loop approxima-to; 4 |arge range of parameters. In particular, for 0.5g
tion to the electroweak effective potential. We note that the_ 0.3N=25, which are values inside the region of param-

results from this approach are entirely consistent with NON%tars allowed for overdamping shown in FigcBfor ¢,

perturbative computations based on lattice gauge theories 51 1 optain $=0.3T and ¢r=16T, well within the
. . ~ ] [ . max 1
pe;f‘r’]rmed by Kajantﬁt] alf._ [|32]' ith a th | . range of validity of the small-amplitude approximation. We
i e |ntera<}tl|ons of the fielg W('jt r?t ermabeny|ronment thus conclude that it is possible to attain the adiabatic limit of
will promote fluctuations around the perturbative vacuum.gionq dissipation within the one-loop approximation scheme
adopted here.

SNote that this will lead to the daisy corrected effective potential. V. APPLYING STRONG DISSIPATION
In particular, once the thermal masses are being introduced in the TO WARM INELATION
derivative of the effective potential, expressed in terms of one-loop
tadpole graphs in the Weinberg method, it is well known that this The calculation in Secs. II-IV presented a microscopic
method leads to a consistent finite temperature effective potentigluantum field theory model of strong dissipation in
[35], with daisy graphs incorporated. Minkowski spacetime. This section addresses the application
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of this calculation to the cosmological warm inflation sce- dr?

nario. Although we will not present a detailed extension of ds’=dt?—R(t) mszasz sin? 6d¢?|. (5.1
our previous results to an expanding spacetime, we will ar-

gue that most of the modifications are quite straightforward

up to the requirements for the warm inflation scenario. e restrict our analysis to flat spades 0, and quasistatic de

Sitter expansion,H=R/R~const. For notational conve-
nience, the origin of cosmic time is defined as the beginning

Consider the standard Friedmann cosmology withof our treatment. For this metric, the minimally coupled La-
Robertson-Walker metric grangian for the model in Ed2.1) is

A. Formulation

L= fvd3xe3“t[%[(ao¢(x,t))2—(e‘“tw(x,t))z—m2¢>2(x,t)]—V(¢(x,t))

1 f, ?
+2 5{(aoxmx,t))Z—(e-“‘wx,t))Z—u?x?(x,w—1—2xr‘<x,t> -2 %x?(x.tW(x,t) . (62

There exists an alternative derivation of the ensemble av- The exact operator equations of motion from the Lagrang-
erage of Eq(3.7), which was presented for a single scalarian Eq.(5.2) are
field, as an intuitive argument ifil1]. In the context of a
single scalar field, the method is to work directly with the B, )+ 3HB(X, 1) — e M2 (x,t) + m2h(x,1)
operator equation of motion fo$(x,t). The operatorg is

re-expressed as the sum otanumbere (t), representing oV ) )
the classical displacement, plus a shifted operaiost), T Sex) +§i: g e(x DX (x,)=0, (5.4
d(X,1) = @c(t) + n(X,t) (5.3  and

with (p(x,1)) 5= @c(t). A thermal average is taken of this Xi(x,t)+3Hx;(x,t)
equation of motion, in which thermal expectation values in-

volving 7(x,t) are computed such thai(t) is treated as an —e M2y, (x,1) + gl xi (X, 1) d2(X, 1) + udxi (X, 1)
adiabatic parameter. To the order of perturbation theory con- £
sidered in the previous sections, for the single scalar field the + gIXi(X,t)3= 0. (5.5

intuitive derivation in[11] gives the same effective equation
of motion as the ensemble average of E}7) as shown in

[2]. The objective is to displace the operat@r(x,t) by a
No new considerations are needed to apply this intuitivex-independent ¢ number at time t=0(¢(x,t=0))z
derivation to the model in Eq2.1). The y;(x,t) fields are = ¢c(0), andthen determine the evolution of the expectation

treated as quantum fluctuations similar#¢x,t). From the  value($(x,t))z=¢.(t) by solving Eqs(5.4) and(5.5) per-
treatment in(11], it follows that the expressions fon;, A turbatively. Thus¢(x,t) is re-expressed as E¢5.3). With
and #n, in Eq. (3.7 will arise from the thermal averages, this definition of ¢ (t), for flat, k=0, nonexpandingH
(nz(x,t)>5 and<Xi2(X!t)>ﬁi taken with respect to the instan- =0, spacetime, the resulting equation of motion is the same
taneous backgroung(t). as the ensemble average of the equation of motion(Ed.
Although the approach ifil1] immediately isolates the ~ For the case of expanding spacetinke# 0, in order to
dissipative term and the finite temperature renormalizationgbtain the equation of motion fap.(t), thermal expectation
at the level of the equation of motion, it is not systematic tovalues must be taken of Eqé.4) and (5.5). Provided the
all orders. Furthermore, it cannot treat noise and it is validemperature, 13, of the thermal bath is time independent,
only in the adiabatic approximation. These limitations can bei.€., rapid equilibration time scalgsthermal expectation
accounted for in the closed-time-path formalism used in thigalues of terms linear iRp(x,t) can be replaced by(t),
paper. A recent work36] has discussed some of the diffi- just as for the nonexpanding case. In evaluating(x,t)) s
culties associated with extending this formalism to an exand(xiz(x,t»ﬁ, if the characteristic time scale for the quan-
panding background in order to treat noise and dissipatiorium fluctuations is much faster than the expansion time
Our goal at present is more modest. As an easier first stegcale, 14, the calculation is no different from the
the intuitive derivation of11] is extended to an expanding Minkowski space situation. This criteria is self-consistently
background. satisfied provided
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r,.I'y>H, (5.6 aT>H. (5.10

where the left-hand side is given in Eq8.14) and(2.15 for ~ This problem will not be considered further here. Equation
our model. (5.6) will be our only criteria for thermalization. This is
These arguments suggest that at leading nontrivial ordegquivalent to assuming that the thermalization rate is at least
the effective equation of motion fas.(t) in an expanding de as fast as the energy transfer rate.
Sitter spacetime, under the same conditions required for Eq. Once Eq.(5.7) is accepted as the macroscopic equation
(3.7) plus the additional condition Ed5.6) is governing the evolution of the order paramegg(t), it can
be used as a given input to construct warm inflation sce-
B ) ) ) At o, narios as inf7,9]. The microscopic origin of the equation can
ec(t) F[710c() +3H] () +Mrec(t) + 5 oc(t) =0. be forgotten up to restrictions on parameters and the self-
(5.7) consistency condition Eq5.6). For a general equation like
Eq. (5.7, the warm inflation scenario requires the strong
Further justification that E¢5.7) is the appropriate replace- dissipative regimé7]:
ment of Eq.(3.7), for expanding de Sitter space, can be ob-

tained from[6], where an effective equation of motion simi- [7(¢c) +3H]e> ¢, (5.1
lar to Eq. (5.7) was obtained for a model like Ed5.2). ) ) S
However, the coupling between fields was linedry;,  With 7(ec) = 71 for our model. For the derivation in Secs.
which is analytically much more tractable than the present/—IV, where H=0, this condition is sufficient to satisfy the
case of quadratic couplings®y?. adiabatic condition, Eq4.2), which is required for the con-

The entire discussion above assumes that the temperatuttstency of the microscopic calculation. As such, this model
has a well defined meaning in an expanding backgroundrovides an example of a general point conveyefbinthat
Furthermore, Eq(5.7) has been motivated under the restric- Warm inflation defines a good regime for application of finite
tion Eq.(5.6). As will be discussed next, conditids.6) is a ~ temperature dissipative quantum field theory methods. The
specific example of a general microscopic property argued iftudy of warm inflation ir(6,7,9 also found that to satisfy
when Eq.(5.7) is applied to the warm inflation scenario,
condition (5.6) imposes no additional restriction. 7(@c)>3H. (5.12

The warm inflation picture requires that an order param- . L .
eter, in a strongly dissipative regime, slowly rolls down a Thus, warm inflation is an extreme example of dissipative

potential, liberating vacuum energy into radiation energy,dynam'c_dL_mng_J de_ Sitter expansion. As der_non_strate_d in
p, - The nonisentropic expansion which underlies warm inl8’39]' dissipation is generally prevalent during inflation.

flation imposes that the rate of radiation production is sufﬁ-?rhe microscopic model in this paper COUld. be used to exam-
ne the general case, but then the condit{érll2) can be

cient to compensate for redshift losses due to cosmologicé - : : ;
expansion relaxed. Here, only the warm inflation regime will be further

examined. Thus in the limit given by E¢.12 and based on
the remaining discussion in this section, the equation of mo-
(5.8  tion for the order parameter.(t) in our model for the warm
Pr inflation scenario turns out to be E@.4) but with the addi-

To give meaning to temperature, the newly liberated radia'—[ional constraint Eq(5.6).
9 9 P ' y The other input for constructing warm inflation scenarios

tion must thermalize at a scal&,4 which is faster than the is the free energy in the expanding environment for the

expansion scale, model (5.2). It already has been argued above that tempera-
T, H (5.9 ture is a good parameter for describing the state of the radia-
e ' ' tion in the warm inflation regime. It also follows from the

Minimally this requires an energy transfer rate from vacuum@Pove that the change in temperature can be treated adiabati-

to radiation that is faster than the expansion rate, which ifally n the thermodynamp funcuopsi since this requires
our model implies the conditiot5.6). Thus, Eq.(5.9) is  !'ra® T/T, which is automatically satisfied due to H§.9).
necessary to Jus“fy a temperature paraméﬁ;ewvhich, com- Therefore, the free energy density should be well represented
bined with condition(5.6), are sufficient to justify the argu- bBY the Minkowski space expression, with temperature treated
ments leading to Eq5.7). To completely justify a tempera- @S an adiabatic parameter. For the model in Secs. II-1V, the
ture parameter for an expanding background spacetime, it €€ energy density is

required studying the thermalization of the radiation, once it

Hs |Pr|.

is liberated. General arguments, as well as specific calcula- Floo,T)= m_% 2 M o4 (N+1)772T4 (5.13
tions[37,3§ at high temperature, indicate that this rate is set Pe 2 PcT 2% 90 ' '

by the temperaturé’,,,~aT, for some appropriate, model-

dependent, coefficiente. This minimally requiresT>H. where the factoN+ 1, in the last term, comes from the func-
However,a may be very small, as for example in E¢®.14) tional integration over thg fields and thegp-field’s fluctua-
and(2.195. Thus the correct constraint is tions. Having established this to be the free energy density
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for the warm inflation scenario, the other thermodynamicradiation energy. Simultaneously, the scale factor will un-
functions such as pressure, energy density and entropy dedergo inflation-like expansion. During the roll-down period,
sity can be easily obtained. the vacuum energy first dominates until at some point it is
With the free energy5.13 and the order parameter equa- superseded by the radiation energy. At this point the universe
tion of motion, Eq.(5.7), determined, the time evolution of smoothly exits the inflation-like regime into the radiation
the three unknowns: temperaturét), scale factoR(t) and dominated regime.
order parametep (t), can be obtained from E@5.7) plus From our model in the previous sections, we will consider
any two independent equations from Friedmann cosmologthe case ofN’ y-bosons §') with g;=g>f;,j=1...N’
along with a self-consistency check for adiabaticity, Eq.and N—N' x-bosons(y) with g;<f;=f,j=N"+1...N.
(5.11). At this point the procedure ifi9] can be followed. For this model, the dissipative dynamics @f, expressed
However due to the microscopic origin of this model, addi-throughmy, A\ and #,, is controlled by theN’ x-bosons.
tional self consistency checks are necessary for adiabaticityf;he otherN—N’ y-bosons only serve as additional fields in
given by Eq.(4.2) and thermalization, Eq5.6). Observa- the radiation bath. For this purpose, from Eg.15), for f
tionally interesting expansion factors will requike>¢/¢, =9 the xy and x’ bosons will be equally effective in ther-
in which case the conditio5.6) immediately implies the malizing the radiation energy.

microscopic adiabatic conditiof.2). In this paper we will examine this scenario in the regime
Nree  Mie;
B. Results >4 > > (5.19

Up to this point, the formulation of warm inflation in
conjunction with a microscopic dynamics has been generaknd in the high temperature limit>my,ut. Also, for ease
In the remainder of this section, some demonstrative calcuef presentation, we will write the expression fbi(q) at
lations of this cosmology will be presented based on ouig=0. Although with these simplifications the results will not
microscopic model. An exhaustive analysis of the parametelbe cosmologically interesting, it is a good example to dem-
space will not be performed. In this first examination, theonstrate the general procedure. In this regime, the effective
emphasis is to understand the interplay between the micrequation of motion fok., from Eq.(4.4), is
scopic and macroscopic physics of warm inflation for ge-
neric potentials, which in particular, have a curvature scale do. B,
of the order of the temperature scale. For such potentials, dt 2 %o (5.19
thermal fluctuations that displace.(0) substantially from
the origin are exponentially suppressed. However, it is Sucovhere
fluctuations that allow enough time, during the roll down

back to the origin, for the universe to inflate sufficiently. As
. . . g . 2)\1— WTBI)\T
such, this elementary fact, in any case, quells significant in- = - . (5.16
terest in comparing the cases we will examine to observa- 37 1N 'n(ZTBI/MTsl)
tion.

It should be noted that the order parameter in this symFormally the Friedmann cosmology for the warm inflation
metry restored warm inflation regime is configured similar toscenario associated with the above equation was called the
those in the chaotic inflation scenafi40]. However, in the quadratic limit in[9].
chaotic inflation scenario the potentials are ultra-flat. Such The macroscopic and microscopic requirements of warm
potentials permit large fluctuations of the order parametemflation will imply various parametric constraints which are
and in fact prefer them. The dissipative model in this papers follows. Equatior{5.14) will be satisfied by requiring:
could be studied for the case of ultra-flat potentials, perhaps
motivated by supersymmetric model building. This would Arop  M3e3,
extend the pure quantum mechanical, new-inflation type dy- oa T (5.17
namics of chaotic inflation into the intermediate regime dis-

Cuslssri?:elre[gilr?q;/v-:;wsomI:Jlg(ri;{oaest?;?\gliir?q?r:gﬁon of war where the parametebrl has been introduced. As shown in
9 m[9], throughout the inflation-like period until just before it

inflation, let the origin of time be the beginning of the X
: I i - ~ ends, the temperature drops slightly faster tiiarAs such,
inflation-like regime(BI) and also the beginning of our treat the thermal mass termy2e2/2~T2¢2, will continue to sat-

ment. The basic picture of the particular warm inflation sce- . - .
nario studied here is as follows. & 0 the initial conditions isfy Eq. (5.14 given that initially '.t does. .

are arranged so that the field is displaced from the origin The number ok-folds, N obtained during the roll-down
(#(0))=¢pg,, the temperature of the universe Tg, and is, from[9],

since the universe is at the onset of the inflation-like regime,

by definition this means the vacuum energy density equals N.~ 2_H (5.18
the radiation energy density;,(0)=p,(0). Fort>0 the ¢ By’ '
field will relax back to the origin within a strongly dissipa-

tive regime and in the process liberate vacuum energy intwhere
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=Pmps respectively. Thus it helps thﬁ‘c‘ term to drive infla-

8mNTeg
H=N 572 (519 tion. Secondly, recall that the dissipative coefficient
P ~1/T. In the above analysis, we fixel=Tg,. However,

with m, the Planck mass. The microscopic condition, Eq.during the roll-down, temperature does fall by a factor of the

(5.6), requires order of ten, which in turn would increasg,. Finally the
parameter regime could be extended to include both positive
g*T \/WATQDZB, and negative¢— y couplings, such as the ASR case de-
190> 3m, (5.20  scribed in Sec. IV A. As noted there, in this regime the du-

ration of overdamped motion can be increased significantly
The threshold condition for inflatiom, (0)=p,(0), implies ~ Within the perturbative amplitude expansion. This directly
corresponds to increasing tleefolds N, .
(N+1)72 4 )\Tcpé| A more elementary modification is to extend the region of
—30 BT o1 - (5.2 validity to larger displacements af.. The extension to this
larger regime can be treated by a summation of the complete
Finally, the validity of the perturbative derivation in the pre- one-loop series as outlined in Sec. IV B. Overdamped mo-
vious sections will require tion for much larger displacements @f can also be attained
by a modification to thep— y interaction in Eq(2.1) as

m
—L <1, (5.2 N o

2
T S oG- Femnt 627
wheremZ~ (\ +2N’g?) T?/24 and\t~\ — (3v3/2m)N'g>.

Equation(5.20 can be turned into an equality, in which In this distributed mass model, a givgp-field is thermally
case, along with Eq€5.17), (5.18, and (5.21), they deter-  excited when its effective magg(@,—M;)*<T?. The con-
mine the boundary of the allowed parameter space. Thutibution from the thermally exciteg-fields to the effective
there are six constraining equations for the 11 quantkies dynamics ofe is similar to our calculations in Secs. lI-IV.
g, Nr, My, My, @, N, N’, Ng, 1, andTg,. We will let As such, an effective equation of motion similar to E414)

Tg, set the overall scale and will fiX',Ng,r,g. Then, based can be obtained for this modified model. Given an appropri-
on the constraint equations, this determines the remainingte distribution of mass coefficienit4; along the path ob.,

gv)\a

parameters. In particular, we have fof: from an arbitrarily large initial displacemengg,,¢(t)
could undergo overdamped motion along its entire path. De-
3N’g* In(212/g) tails will be presented elsewhere on the warm inflation sce-
LI AN 2 : (5.23  nario which considers these various cases.

For this “symmetry restored” case, initial fluctuations

This expression is suggestive of case 3 analyzed in Sec. \2f ¢c(t), ¢, are strongly sup%ressezd Vllith probability exp
For such, taking themm2~(3gv3/2m+2)N'g?T%/24, we (—volumep/Tg))~exd—(192m)°NNer?/g*’], where the

get the additional parameters: volume ~1/H3. The most optimistic initial conditions have
probability ~exd —1x10°]. Thus, unless a viable mecha-
27Ty, (3gV3/2m+ 2)Nr nism is found to justify a large enough initial value @f,
o1~ , (5.249  the regime investigated here may not be very relevant for
9 6 In(2\/12/g) practical applications of warm inflation. In any case, the mi-
croscopic dynamics of the symmetry restored regime inves-
5N’ N, 3v3 2 tigated here is similar to more realistic scenarios in the sym-
+1~W\/1—2/91) (ﬁg ) ' metry broken regime, where the field has an average initial

(5.25 value close or identical to zero. An important difference be-
ing that the initial state in the latter case has no
and Boltzmann suppression.
This section has made an initial examination of treating
19272y, (33 37N'N, strong dissipation from first princip_les during a de Sitter ex-
my~ “od® (2—g+2) ——— (5.26 pansion regime. Further results will be presented elsewhere
9 i |”(2\/1_2/9) as well as a calculation similar to this one, for the symmetry

. o - . broken case.
Based on these equations, it is not difficult to find para-

metric regimes in which the warm inflation scenario is real-
ized, but it is only forN.<<1. As such, this simple case has
no observational relevance. There are a few improvements |n this paper a microscopic quantum field theory model
that could be made to our analysis that would incrddse  has been presented, describing overdamped motion of a sca-
Firstly our estimates above ignore the effects of the thermakr field. Commonly, such behavior is treated phenomeno-
mass termm#2/2, on the dynamics. Its contribution to the logically by Ginzburg-Landau order parameter kinetics. Our
energy density and pressure PR, = —m$¢§/2 and Pm, model provides a first-principles explanation of how kinetics

VI. CONCLUSION
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equivalent to the Ginzburg-Landau type, which is first orderence Foundation through Grant No. PHY-9453431 and by
in time, arise for inherently second order dynamical systemshe National Aeronautics and Space Administration Grant
The microscopic treatment of this problem, in principle, No. NAGW-4270. M.G. thanks both Fermilab and the Os-
should be well controlled, due to its fundamental reliance orservatorio di Roma for their kind hospitality during the
the adiabatic limit, and our model exemplifies this expectacompletion of this work. R.O.R. was partially supported by
tion. Funda@o de Amparo aPesquisa no Estado do Rio de
The calculational method for treating dissipation in thisJaneiro—FAPERJ and by Conselho Nacional de Desenvolvi-
paper has one distinct difference from several other relatethento Cienfiico e Tecnolgico—CNPq.
works. In our calculation, we consider the effect of particle

lifetimes in the effective equation of motion. To our knowl- APPENDIX A
edge, this effect has been discussed in only a few works in ] ] ] )
the pas{2,11,14. We now give a brief overview of the calculation of the

Sections 11—V presented a general, flat-space treatmengnaginary part of the two-loop, setting sun, self-energy terms
which offers a microscopic justification to the often usedin Egs.(2.10 and (2.11). Let us express generically those
limit of diffusive Ginzburg-Landau scalar field dynamics. diagrams in terms of field propagators with massgsand
We have shown how it is possible to obtain an effective™ and external lines of type. For an interaction betwees
evolution for the scalar field which is first-order in time, due andt fields of the formgZ /2 s?t? [for s=t=¢(x;), 95,
to its own thermal dissipation effects, interpreted micro-=\/12 (f;/12) and fors=¢,t=; ,ggtzgjz] the imaginary
scopically as its decay into many quanta. In a sense, the fielgart of the two-loop sunset diagram for tkefield can be
acts as its own brakes, the slowing of its dynamics beingxpressed bysee for example, in Ref21], Appendix G and
attributed to the highly viscous medium where it propagatesalso Wang and Heinz if22]):

a densely populated sea of its own decay products.

The application that we considered in Sec. V was in ex- ¢

panding spacetime, for the cosmological warm inflation scel™=:(¢) = Im [ @* I=

nario. Although we did not formally derive the extension of i

our flat-space model of Secs. II-IV to an expanding back- 1
ground, we did present heuristic arguments that validate this _ 4 (1—e PEq

extension for the special needs of warm inflation. The results Sssi( )Ug;:l Tk a1k 182775

of the simple analysis in Sec. V are strongly dependent on

initial conditions and may be difficult to implement for mod- f

els of observational interest. Nevertheless, these results will

provide useful guidance both for modifications of this model ¢ ¢ s ¢

and for our next study of the symmetry broken regime. X[1+n(a BN+ N0+ By ) J6(Eq— ol Ey

The direct significance of the present study to inflationary o ES — i ELL ) (A1)

cosmology would be to the initial state problé#i] in sce- kta=ktg Tkt =krl )

nairrlo(sj ?urn\?vg r?%/rrnrﬁettirynbi':?kfmg. r-::r? [[?Itli‘)ll’ lenr?'t'ons rer'where ES=Vk?+mZ n(E) is the bose-distribution function

quired for warm Inviatio © Symmetry broxen case a eandSSt is a symmetry factor: fos=t,S=12 and fors#t,

similar to new inflation. The requirement is a thermalizedo_", >, L ; g

. o X : . S=1. By expanding in the sum imr and retaining only the

inflation field, which at the onset of the warm inflation re- hell . di h
ime is homogeneous with expectation valug) ;=0. Al- on-snetl, Energy conserving processesrres_pon Ing to the

9 ; OB scattering processet— st,ts—ts), we obtain the result

though we have made no detailed application of our results

to this problem, some general features are evident from the

d3kdl

——[1+n E;
EltEﬁ+qE|t<+|[ (0'k+q k+q)]

analysis in Sec. V. In particular, both the suppression of 1

large fluctuations and thermalization are mutually consistent 1+ §5S,t)

with strong dissipative dynamics. Many of the difficulties Ims, — 4 L% 1 1_eBE
that have been discussptil,42 in association with the ini- (=585 4(2m)° ( )

tial state problem, are eliminated in the strong dissipative Bk

regime. In addition, the damping of fluctuations should sim- xf —————[1+N(ES, )]
plify the formal problem of coupling this model to classical EiEx+ qEk+1 d
gravity. Thus, the strong dissipative regime appears to have t ¢
the correct features both to carry the universe into an X[1+n(EDIn(Ey)

|nflat|0n-l!ke phase and then to smoothly exit into a hot big- X 8( EZ_ El- E+q+ EL.), (A2)
bang regime.

with 8,;=1 for mg=m; and 65;=0 for mg#m;. Im (q)
for s=t has been obtained in details in Ref21] and[22].
We thank R. Holman for helpful discussions. A.B. was In particular, Wand and Heinz if22] have discussed and
supported by a Department of Energy grant. M.G. was parebtained in detail the kinematic limits, for theg* model,
tially supported at Dartmouth College by the National Sci-of the integration on the momenta in E@\2), implicit in
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the Diracé function. Here we obtain the results for the case=|k|,|q|,|l|), we are then able to perform the angular inte-
of mg# m;. In Eq.(A2), by defining in the three-dimensional grals in Eq.(A2). From the constraint in the integration lim-
momentum integrations the angular differentialgcos 6,) its for k andl, which comes from thé function, we obtain
=dE, E./(ka) and d(cosé)=dE, E,/(k) (kg  the following result for Im3(q):

1
T 1+ 6.
2 Sv‘) s | (= (u-ka ldl
_ 4 A s_ =t t
Im %4(q) =S 95 —4(27r)3q (1—e BEq)[ fo dkf_u(k’q) —[1+n(E, E,)][1+n(E|)]In(

E|
f‘”dkf” Idl fmdkjw Idl
—q Juk+am El Jq u-k+qq Ei

where, in the above expressions, the funciigk,q) is given by

eﬁE}(+| -1
Pk — @B(EI—E)

ePE—1
+ [1+n(E3—E})][1+n(E})]ln(—)], (A3)

eBEx— eB(Eq—E)

1 1
utk,q)=3 [k— m[\/(k—q)zjL m2— \Jg2+m2](k?m2+ 2m2mZ+ 2g°m? — 2kqnf + 2m?\(k—q) 2+ m2/g?+ mg)l’z].
S

(Ad)

In the first term of Eq.(A3), we can make the change of = (t), is equivalent to taking the limk—0 for the external
integration variablesk + | :k/,l :l,, to obtain |,d|’/E|t, momentum irG++(q_k'|t_t’|)_ In this case the&’ andk
=dE|t, . Doing the same for the remaining integrai$|/E| integrations in Eq(B1) can be done trivially. However, it is
=dE!, relabelingl’” andk’ back tol, k, and performing a known that taking the limit of zero external momentum
new change of integration variablesy=e‘BE},dy .(kM—>O) [43,44) in self-energy expressions, which are given
in terms of products of non-local propagators, can be prob-

— _ e BELy et . .
pe . 'd.E' , W are able to_ compute tbemtegratmns. lematic. This is related to the non-analyticity of these expres-
From this point on, the integrations are equivalent to the ones;

in [21], once we change the integration limits in thend| i'gf?z ia:]ro[zg]d ;:Ieugr;%:;. z;ncg?rréftui/?; (i)rfotsjléirfls'?hr:klli,mailp d
integrals, and take into account the functiafk,q), Eg. 9 y 9

. k,—0, at finite temperatures, is to first takg—0 and then
A4). The results shown in Sec. Il fdr,,I",, Egs.(2.1 u o
(A4) 0Ty, Eds.(2.19 k—0. They also argue that the non-analyticity problem,

which comes from a failure to do a self-consistent calcula-
tion, would be eliminated once fully dressed propagators are
taken consistently into account. We note, in particular, that
for fully dressed propagators the decay widttworks as a

Let us now compute the expression on the |hs of @) ~ regulator. o S S
in the adiabatic approximation, stressing the need for regu- !N EQ. (B1), the limit k,—0 is implicit in the adiabatic
larizing the propagators with quasi-particle lifetimes. Let us@PProximation, where the fields are required to change

write the Ihs of Eq.(3.5) in terms of the adiabatic series: ~ Slowly in time, while the limitk—0 is implemented by ap-
proximating the fields to be homogeneous. In evaluating Eq.

and (2.195, are obtained once the limit of vanishing
(lg|=0), is taken in the above equations.

APPENDIX B

A 20 a2 . (B1), we will first compute the time integral, expand in terms
f d™% @ (X)IMG™ I} ., 6(t—t") of the “regulator” I, and then finally take the limik—O.
) This is the opposite of what was done in obtaining &35).
-y f & ,f d3k ikoex) L "(7) From this lesson we will see both the importance of consid-
T < X We nt oot | ering fully dressed propagators and how consistent results
vt can be obtained once the limits are taken in the correct order.
d3q [t . . This will be crucial when evaluating the dissipation contri-
f 2m)? fﬁwdt (t'—1) bution[n=1, in Eq.(B1)].

Consider the time integral on the rhs of E®1) and
XIm[G**(q,]t—t')G* T (g—k,|t—t’])], (B1)  expand it to first order in the “regulator,T" (which is of
order\?,g%. Higher order terms ifi' need to be considered
whereG* *(qg,t—t’) can be read from Eq$2.20 and(2.2) in conjunction with higher order loop terms, for consistency.
and it refers generically to the or y; field propagators. The For n=0, the zeroth-order in the adiabatic approximation,
approximation of considering a homogeneous field, we obtain
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t
[* v mie* @l-vhe k-t

1 0g—N(wg) — wgN(wq—k) Fg+Tg« 2
doqwq—y wqt wg_k W~ Wy wqtT wq_k
Taking the limitk— 0, we obtain
t 1+2n n 1+n I
Iimj dt’ MG (q,|t—t')G*(q-k [t—t'])]— — o 2n@a] _ pnleglitnlwq] ) —z). (B3)
kesQd — 8wy dwg w

As expected, Eq(B3) is recognized to be the usual one-loop correction to the quartic coupling constant.
For n=1, the first order in the adiabatic approximation, which will give the dissipation coefficient, we dlaigén
retaining terms up to first order in)

t
Ldt'(t'—t)lm[G**(q,|t—t'|>G++<q—k,lt—t’m

2 2
Bwg+ wg_k Fg+Tq-«

2_ 72 2
wg(wg— 05 ) (0~ wg-k) Oqt gk

=—[1+2n(wy)] +(wg=wq-k)

g+ Tgoi)®
wgtogk/ |

1
—qun(wq)[l+ n(wq)] W'F((x)q\:‘wq,k)‘f'o
q

B4
z ) (B4)

We can see, in contrast with E@B2), that the limitk—0 is divergent. This divergence is reminiscent of the on-shell
singularity which is present in the integral in E@®4) when bare propagators are used, thus showing the importadce®of
a regulator. By first taking the homogeneous likit-0 and then expanding i, we obtain the result given in the text, which
is the first term on the rhs in E¢3.5).

The same calculation can be performed for the2 case, the second order in the adiabatic expansion, from which we
obtain

) t 1+2n(wy) (Fz)
ey 2 ++ ’ ++ ’ q

_ — — — . — .

lilllol dt (t t) In [G (q,|t t |)G (q k,|t t |)]—> g O )

(B5)

This result is consistent with a recent calculation in Ré&#l], which addresses the time derivative expansion of the effective
action, for a given scalar field model. The author$4] also discuss their work in the context of the non-analyticity problem

in finite temperature QFT. In fact, we note that the second order term in the adiabatic approximation can be associated with the
first order term in the time derivative expansion of the effective actioiZ(¢)(di¢)? (for a time-dependent, space-
homogeneous field configuratipn
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