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Acoustic oscillations and viscosity
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Using a simple thermo-hydrodynamic model that respects relativistic causality, we reexamine the analysis of
the qualitative features of acoustic oscillations in the photon-baryon fluid. The growing photon mean free path
introduces transient effects that can be modelled by the causal generalization of relativistic Navier-Stokes-
Fourier theory. Causal thermodynamics provides a more satisfactory hydrodynamic approximation to kinetic
theory than the quasi-stationary~and non-causal! approximations arising from standard thermodynamics or
from expanding the photon distribution to first order in Thomson scattering time. The causal approach intro-
duces small corrections to the dispersion relation obtained in quasi-stationary treatments. A dissipative contri-
bution to the speed of sound slightly increases the frequency of the oscillations. The diffusion damping scale
is slightly increased by the causal corrections. Thus quasi-stationary approximations tend to over-estimate the
spacing and under-estimate the damping of acoustic peaks. In our simple model, the fractional corrections at
decoupling are*1022. @S0556-2821~98!05224-2#

PACS number~s!: 98.80.Hw, 04.25.Nx, 04.40.Nr, 05.70.Ln
re
ve
re
a-
ra

a
nu
n
c

ifi
a
s
to

th
in

th
e
ch
ol
a

it

ck

t
ear

er-
on
p-
ics

on-
mo-

i-
ose
e
ling

ion
sity
al-
nd
Is-
o
the
ely

-
n

me
rg

,
fine
-

nd
ient
I. INTRODUCTION

Acoustic oscillations in the photon-baryon fluid befo
decoupling leave a vital imprint on the cosmic microwa
background@1# ~and possibly also on large-scale structu
@2#!. The form of this imprint encodes information on fund
mental cosmological parameters, and increasingly accu
and refined numerical integrations are being performed
produce predictions that can be tested against current
upcoming observations. As a complement to detailed
merical models, it is also useful to analyze qualitatively a
analytically the key physical features such as acoustic os
lations. As pointed out by Hu and Sugiyama@1#, numerical
integrations are sufficient for direct comparison of spec
models with observations, but do not readily produce a qu
tative and analytic understanding of the physical processe
play. In @1#, acoustic oscillations and their damping due
photon diffusion are analyzed analytically via expanding
integrated Boltzmann multipoles in the Thomson scatter
time tT . To zero order intT , i.e. in the tight-coupling ap-
proximation, which is valid on scales much larger than
photon mean free path, the oscillations are undamp
Damping arises from the first order approximation, whi
introduces a shear viscosity via the radiation quadrup
This approximation is hydrodynamic, in the sense that
multipoles beyond the quadrupole are neglected, and
effectively equivalent~see@3#! to the non-equilibrium ther-
modynamic approach of Weinberg@4#, which is based on the
relativistic Navier-Stokes-Fourier theory developed by E
art.

As pointed out by Peebles and Yu@5#, expansions intT ,
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even beyond first order~see@3#!, cannot take proper accoun
of the change in the photon mean free time, especially n
decoupling. In other words, theO(tT) approximation and the
equivalent Navier-Stokes-Fourier approximation are inh
ently quasi-stationary, and provide a limited approximati
to the Boltzmann equation. An improved hydrodynamic a
proximation to kinetic theory is the causal thermodynam
developed by Israel and Stewart@6#, which generalizes the
non-causal Eckart theory by incorporating transient n
quasi-stationary effects. In this paper, we use causal ther
dynamics to refine aspects of the work by Weinberg@4# and
Hu and Sugiyama@1#. Of course, all hydrodynamic approx
mations, which assume that the photon-baryon fluid is cl
to equilibrium via interactions, will break down when th
Thomson interaction rate becomes too low, i.e. as decoup
is approached.

In a previous paper@7#, we developed a general formalism
for incorporating causal thermodynamics into perturbat
theory, thus providing a self-consistent approach to den
perturbations in dissipative cosmological fluids. Our form
ism is based on the covariant perturbation theory of Ellis a
Bruni @8,9#, and the covariant causal thermodynamics of
rael and Stewart@6#. Here we apply the general formalism t
the case of viscous damping of density perturbations in
photon-baryon fluid. This effect has been comprehensiv
analyzed via detailed study of the Boltzmann equation~see
e.g. @5,10–12#!. Dissipative hydrodynamics provides a sim
plified alternative to a full kinetic theory analysis, which ca
illuminate some of the key physical effects without the sa
level of detail and complexity. The approaches of Weinbe
@4# and Hu and Sugiyama@1# neglect gravitational effects
which is not unreasonable on subhorizon scales. We re
their approach by including metric perturbations. More im
portantly, their approach is inherently quasi-stationary, a
the main refinement we introduce is to incorporate trans
©1998 The American Physical Society07-1
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ROY MAARTENS AND JOSEP TRIGINER PHYSICAL REVIEW D58 123507
effects via the causal generalization of Navier-Stokes-Fou
thermodynamics.

It turns out that the relaxational effects which are inc
porated into the causal transport equation, but which are
glected in the non-causal theory, have a small but interes
impact. The sound speed, which determines the frequenc
acoustic oscillations for each mode, acquires a positive
sipative correction. This produces a small increase in
frequency of acoustic oscillations on each scale. The visc
damping rate found in quasi-stationary approximations@1,4#
also acquires a positive correction, leading to a small
crease in the diffusion cutoff scale. A rough estimate ba
on our simplified model is that the fractional corrections a
*1022 by decoupling.

For simplicity, since we are interested in qualitative fe
tures rather than specific numerical predictions, and since
wish to focus on relaxational corrections to quasi-station
models, we assume a flat background universe with ne
gible non-baryonic content. We treat the mixture of baryo
matter and radiation as a single dissipative fluid, with dis
pation arising from the growing mean free path of photons
their Thomson scattering off electrons. We consider the
between matter-radiation equality and decoupling, neglec
the matter pressure. Dissipative effects are expected to
greatest near decoupling. We will also neglect thermal c
duction for simplicity, while the bulk viscous stress is ne
essarily negligible since the fluid is in the non-relativis
regime. Thus the dissipative effect of photon diffusion
reduced~within a radiative hydrodynamic model! to a shear
viscous stresspab .

In non-causal thermodynamics@and in anO(tT) expan-
sion of the the Boltzmann multipoles#, this shear viscous
stress is algebraically determined by the shearsab via @4#

pab522hsab , ~1!

whereh is the viscosity. The implicit instantaneous relatio
between the cause~shear, i.e. anisotropic expansion rate! and
the effect~anisotropic stress! is what underlies the patholo
gies of the theory, i.e. that it admits dissipative signals w
infinite wavefront speeds and that its equilibrium states
generically unstable@13#. In the causal theory, the stress
no longer algebraically and ‘‘instantaneously’’ determin
by the shear, but satisfies an evolution equation in wh
there is a time-lag between cause and effect@6#:

tṗab1pab522hsab , ~2!

where t is the relaxation time-scale. This causal transp
leads to a subluminal speed of viscous pulses, and introd
small but interesting corrections to the quasi-stationary
persion relation.

Causal thermodynamics has a solid kinetic theory moti
tion via the relativistic Grad 14-moment approximation
the Boltzmann equation@6#. This approximation effectively
restores second-order non-equilibrium terms in the entr
that are neglected in the relativistic Chapman-Enskog
proximation@14#, which leads to the non-causal theory. Th
causal thermodynamics provides a more satisfactory and
incomplete hydrodynamic approximation to kinetic theo
12350
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than the standard non-causal theory. The differences
greatest for high frequency phenomena, on scales com
rable to the mean free time or path, when the Chapm
Enskog approximation breaks down, while the Grad appro
mation remains valid.

We follow the notation of@7#. Units are such thatc51
58pG, except where numerical values are given in spe
fied units. The present Hubble rate isH05100h km/s/Mpc.

II. CAUSAL VISCOUS PERTURBATIONS

Reference@7# contains a general discussion and gene
covariant perturbation equations for causal dissipative hyd
dynamics in cosmology. In the interest of brevity, we w
not repeat here the derivations and motivations of@7#, but
simply quote the results as they are needed.

In the era between matter-radiation equality and dec
pling, the mixture of photons, baryons and electrons
treated as a single dissipative fluid, with dissipation due
photon Silk diffusion@15#. The baryons and electrons a
tightly coupled, culminating in their recombination, whi
the photon coupling to baryonic matter through Thoms
scattering weakens as the mean free path grows. We ass
for simplicity that there is no non-baryonic cold dark matte
We also assume negligible thermal conduction and part
flux, so that the particle and energy frames coincide@6#, and
we can choose the fluid four-velocityua ~whereuaua521!
as the four-velocity of this frame. The bulk viscous stress
negligible, since the fluid is non-relativistic.

The fundamental quantity in the covariant approach
density perturbations@8# is

d5aDada5a2
D2r

r
, ~3!

where Da is the covariant spatial derivative,a is the back-
ground scale factor, and

da5a
Dar

r

is the comoving fractional energy density gradient, which
a covariant measure of density inhomogeneity. The total
ergy densityr5rB1rR is made up of baryonic and radia
tion parts, andd is the density fluctuation scalar for th
photon-baryon system, considered as a combined si
fluid.

Covariant entropy perturbations in a single dissipat
fluid model ~as opposed to a 2-component model! are
sourced by heat flux and bulk viscous stress, and shear
cous stress has no effect to linear order@Eq. ~18! of @7##. If,
as we assume, the initial entropy perturbation is zero, th
are therefore no entropy perturbations.1 Thend satisfies the
evolution equation@Eq. ~28! of @7##

1In any case, the entropy perturbations are decoupled from
density perturbations, because the non-barotropic index (]p/]s)r

vanishes in the background, so that the entropy source term in
density perturbation equation is zero@Eq. ~28! of @7##.
7-2
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d̈12HS 123w1
3

2
cs

2D ḋ

2
3

2
H2~118w23w226cs

2!d2cs
2D2d5S@p#,

~4!

where an overdot denotes the covariant derivative alongua,
H5ȧ/a,w5p/r, with p5pB1pR the total isotropic pres-
sure, andcs

25 ṗ/ ṙ is the adiabatic sound speed. The sh
viscous source term is given by@Eq. ~32! of @7##

S@p#53HṠ23H2~116w23cs
2!S1D2S, ~5!

where the covariant shear viscous stress scalar is

S5a2
DaDbpab

r
.

The viscous transport equation~2! leads to the following
evolution equation forS @Eq. ~46! of @7##:2

tṠ1F12HH 3~11w!t2
4h

r~11w!J GS
5

4h

3r~11w!
@ ḋ23wHd#. ~6!

Equations~4!–~6! form a coupled system that governs t
evolution of density perturbations with causal viscosity.

The thermal energy of matter is much less than the
mass energy after the epochte of matter-radiation equality
so thatpB'0, and thenp' 1

3 rR . Takinga51 at the presen
epoch, we have, in the background~where matter and radia
tion are non-interacting!,

w5
1

3 F S a

ae
D11G21

,
1

6
,cs

25
4

3 F3S a

ae
D14G21

,
4

21
, ~7!

for a.ae. To a reasonable approximation~sufficient for the
purposes of our simple model!, we can neglect these quant
ties relative to 1 in the parentheses in Eqs.~4!–~6!. Further-
more, sincew!1 andhH/r!1, we can neglect the last term
on the right of Eq.~6!.

We decompose into Fourier modesd(t,xW )→D(t,kW ) and
S(t,xW )→S(t,kW ), wherek is the comoving wave number, s
that the proper wave number isK5k/a. The proper wave-
length l52p/K is constrained bylT,l,lH , wherelH
5H21 is the Hubble scale ~above which thermo-
hydrodynamic effects do not operate!, and the minimum
scalelT is the photon mean free path for Thomson scat
ing:

lT5
1

nsT
. ~8!

2Ther factors are mistakenly omitted in Eqs.~46! and~54! of @7#.
12350
r

st

r-

HeresT is the Thomson cross section andn is the free elec-
tron number density. Perturbations on scales belowlT will
be wiped out by photon streaming~and the hydrodynamic
model breaks down on these scales!. Causal thermodynamic
applies down to the Thomson scale, but the non-cau
theory requiresl@lT . The damping effect of photon
streaming operates beyond the Thomson mean free s
since photon diffusion out of over-dense regions rapidly
stroys perturbations below a critical scale, as shown by S
@15#. The critical cutoff scale is the diffusion scalelD ,
which is considerably greater than the Thomson mean
scale, as we will confirm below.

Collecting the above points, and using the backgrou
Friedmann equationr53H2, the coupled system becomes

D̈12HḊ2
3

2
H2S 12

2

3
cs

2K
*
2 DD

53HṠ23H2S 11
1

3
K

*
2 DS, ~9!

3HtṠ13H~11h* 23Ht!S5h* Ḋ, ~10!

where we have defined the dimensionless expans
normalized shear viscosity

h* 5
4h

3H
~11!

and proper wave number

K* 5
K

H
52p

lH

l
. ~12!

The relevant scales constrainK* by

2p,K* ,2p
lH

lT
. ~13!

Radiative shear viscosity due to Thomson scattering
given by~see@4#, and@16–18# for refinements using kinetic
theory3!

h5
4

15
r 0T4tT , ~14!

wherer 0 is the blackbody radiation constant,T is the photon
temperature andtT5lT is the photon mean free time fo
Thomson scattering. The causal relaxation time-scalet is by
Eq. ~2! the characteristic time taken for the fluid to rela
toward equilibrium if the viscous ‘‘driving force’’ were to be

3Note that @16# claims a correction factor of10
9 in Weinberg’s

expression forh. This arises from anisotropic scattering effects, a
a further small correction is also induced by polarization effects@1#.
These corrections are not important for our simple model.
7-3
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‘‘switched off.’’ Thus we expectt is of the order of a few
Thomson interaction times, and below the characteristic
fusion time:

tT&t,tD , ~15!

wheretD5lD .
In the era we are considering,H decays approximately

like a23/2, n decays faster thana23 because of recombina
tion effects, andT decays asa21. Thus, to lowest order,

K* 5~K* !eS a

ae
D 1/2

, ~16!

lH5~lH!eS a

ae
D 3/2

, ~17!

lT5~lT!eS a

ae
D 31I

, ~18!

tTH5S lT

lH
D

e
S a

ae
D 3/21I

, ~19!
12350
f- h* 5~h* !eS a

ae
D 1/2

, ~20!

whereI .0 encodes the growing effects of recombination
the number density of free electrons, the details of which
not important for our simple model. Using the standard n
merical values@19# of te'331010h24 sec, redshiftze'2
3104h2, and present baryon number densitynB
'108h8 cm23, with the present baryonic~dark and lumines-
cent! density fractionVB'1, we find that

~lH!e'1.531021h24 cm, ~lT!e'1016h28 cm,

~h* !e'1.531026h24. ~21!

Equations~9! and ~10! govern the evolution of density
perturbation modes within a simplified causal viscous flu
model. The system may be decoupled to produce a th
order equation inD. In practice we analyze the coupled sy
tem, but for completeness, the decoupled equation is
r

that the
WKB
he
neglect
tD̂1F11
1

2
tH1 ṫ1F G D̈1HF21S 3

2
1

1

3
K

*
2 Dh* 2

15

2
tH12ṫ2~tH !21$tḣ* 1F~h* 22tH !%G Ḋ

2
3

2
H2F S 11h* 2

7

2
tH1 ṫ1F D S 12

2

3
cs

2K
*
2 D2tH2

2

3
tK

*
2 ~cs

2!˙GD50, ~22!

where

F[2t@ lnutH~62K
*
2 !23~11h* !u#• ,

and we used the background field equationḢ52 3
2 H2. In the non-causal caset50, Eq. ~22! reduces to the second orde

equation

D̈1HF21S 3

2
1

1

3
K

*
2 Dh* 2

ḣ*
H~11h* !G Ḋ2

3

2
H2F ~11h* !S 12

2

3
cs

2K
*
2 D GD50. ~23!

III. VISCOUS ACOUSTIC OSCILLATIONS

The key features of the solutions are readily analyzed qualitatively, given the simplicity of our model. We assume
coefficients in Eqs.~9! and ~10! are slowly varying, which is reasonable for small-scale modes. Then we can try a
solution of the formD(t,k)5a21A(k)exp i*vdt and S(t,k)5a21B(k)exp i*vdt, where the scale factor terms remove t
non-dissipative effects of expansion on small-scale modes, facilitating comparison with Weinberg’s results, which
expansion. This gives

F 2v22
1

2
H2~522cs

2K
*
2 ! 23iHv1~61K

*
2 !H2

2 ih* v1h* H 3i tHv13~11h* 24tH !H
G FABG50.

Non-trivial solutions require a vanishing determinant of the coefficient matrix, leading to the dispersion equation
7-4
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2i tv312~124tH !v2

2 i F2h* S 21
1

3
K

*
2 D1tH~2cs

2K
*
2 25!GHv

1F ~11h* 24tH !~522cs
2K

*
2 !12h* S 11

1

3
K

*
2 D GH2

50. ~24!

In general, the solutions will have the form

v56Kv1 iG, ~25!

wherev is the~real! phase speed of oscillations andG is the
viscous damping rate. Damping will be severe for scalel
,lD , where the diffusion cutoff scale is defined by th
equality of the damping rate and the expansion rate,
G(lD)5H.

In the dispersion relation~24!, we can neglecth* relative
to 1 by Eqs.~20! and~21!. Equations~7!, ~12!, ~17! and~21!
show that for the relevant small scales (l!lH), we have4

cs
2K

*
2 @1. Then the dispersion cubic may be written

i t* v
*
3 1~124t* !v

*
2

2 i S 1

3
h* K

*
2 1t* cs

2K
*
2 Dv* 2~124t* !cs

2K
*
2 50,

~26!

where v* 5v/H and t* 5t/H21 are dimensionless
expansion-normalized variables. For the non-causal the
with t50, Eq. ~26! becomes

3v̄
*
2 2~ ih* K

*
2 !v̄* 23cs

2K
*
2 50, ~27!

where an overbar indicates a quantity in the non-cau
theory. Equation~27! has the solution

v̄25cs
2F12

Ḡ2

cs
2K2G , Ḡ5

1

6
h* K

*
2 H.

Since Ḡ/H,1 for the scales that survive viscous dampin
and cs

2K
*
2 @1 for the relevant sub-horizon scales, we ha

v̄25cs
2 to a good approximation. Thus

v̄5cs, Ḡ5S 2h

3r DK2, ~28!

which agrees~when the isotropic pressure, heat flux and bu
stress are negligible! with Weinberg’s special relativistic
generalization of the non-relativistic Landau-Lifshitz res
@4#.5 The diffusion cutoff scale follows from Eq.~28! as

4Numerical integrations in the special casecs
2K

*
2 !1 are given in

@20#.
5See also@21# for a kinetic theory approach, and@22# for the

inclusion of magnetic fields.
12350
e.
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al
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e
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l̄D5
2p

3
A2h

H
lH . ~29!

By Eqs.~17!, ~18! and~20!, the diffusion scale is well above
the Thomson scale, although the ratio decreases with ex
sion:

l̄D

lT
'500h2S ae

a D 5/41I

. ~30!

Now we consider the causal corrections to Eq.~28!. From
Eqs.~15!, ~19!, ~21! and~29!, it follows thatt* [tH!1. We
write v* 5v̄* (11yt* ), where v̄* satisfies Eq.~27!, and
solve the dispersion cubic equation~26! to first order int* .
This gives

y5
Ḡ

H
F11 i

~ Ḡ14H !

6csK
G ,

on usingcs
2K

*
2 @1. It follows that

v5cs~11tḠ!, ~31!

G5Ḡ@112t~Ḡ12H !#. ~32!

Thus the causal generalization of standard thermodynam
leads to corrections that increase the effective sound sp
and damping rate. The latter increase leads to an increa
the diffusion cutoff scale, which is determined by settingḠ
'H in Eq. ~32!:

lD5l̄D~113tH !. ~33!

In order to estimate the size of the corrections, we need
expression for the causal relaxation time-scalet. In the case
of a simple~i.e. single-species! relativistic gas~obeying clas-
sical or quantum statistics!, the thermodynamic coefficient
such ast andh are in principle known via complicated ki
netic theory formulas involving integrals over energy a
collision cross-sections@6#. In the radiative transfer contex
where 2 particle species are involved, one treated hydro
namically, the shear viscosity is given by Eq.~14!, while t is
implicitly assumed to be zero in quasi-stationary treatme
@4,16,17#. If Grad-type moment approximations are use
thent is equal to the mean collision time as a conseque
of the hydrodynamic assumptions@18,23#. However, it
seems physically reasonable thatt could be greater thantT ,
if the hydrodynamic assumptions in radiative transfer
somewhat relaxed. Thus a simple generalization

t5atT , ~34!

wherea*1 is a constant, seems reasonable within the p
nomenology of thermodynamics.

The correction to the diffusion scale and the maximal c
rection to the sound speed~which occurs atḠ5H! are de-
termined bytH. By Eqs.~34!, ~19! and~21!, we find that, in
our simple model,
7-5
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tH5aS lT

lH
D

e
S a

ae
D 3/21I

'7a31026h24S a

ae
D 3/21I

.

~35!

The correction factor grows with expansion, as expec
since the mean free photon path is growing. We takeh
50.6. At matter-radiation equality, the fractional correcti
is then '5a31025*531025. As decoupling is ap-
proached, the ionization parameterI becomes more impor
tant. However, for a rough under-estimate, we can setI 50.
~In any case, all hydrodynamically based models will bre
down near decoupling.! With zdec'1100, we find that the
maximal fractional correction introduced by relaxational
fects is

~tH !max.a31023.1023, ~36!

in our simple model. This is the relevant estimate, since
imprint of acoustic oscillations is frozen in at decoupling.

IV. CONCLUSIONS

Our principal result is the causal generalization and
ward correction of the quasi-stationary sound speed, give
Eq. ~31!, and damping rate, given in Eq.~32!. These correc-
tions are small, at roughly the 1% level, as given in Eq.~36!,
but they show how quasi-stationary approximations tend
under-estimate the frequency and damping of acoustic o
lations, and they indicate the refinements that would a
from a more complete kinetic theory approach, which
volves far greater computational complexity. The qualitat
features of the refinements are~a! a higher threshold for the
survival of density perturbations, i.e. an increased diffus
cutoff scale, given by Eq.~33!, ~b! the appearance of a dis
sipative contribution to the sound speed of the phot
baryon fluid ~consistent with the general theoretical resu
for perturbations of stationary fluids in flat spacetime@6,13#!
. J
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which increases the frequency of oscillations,~c! the scale-
dependence of the corrections to the damping rate and so
speed, and~d! the central role played by the relaxation tim
scalet, which provides a simple scalar encoding for the no
quasi-stationary effects of photon diffusion.

This paper shows that in principle dissipative hydrod
namics with causal transport equations can provide an e
nomical alternative to kinetic theory models, with some a
ditional insights into the nature and source of acous
oscillations. The simplified model used here could be
fined, principally by incorporating thermal conduction,
produce an improved model that nevertheless will still allo
a qualitative and analytic treatment, unlike the full kine
theory approach.

Our model can also be seen as part of a growing body
examples in cosmology~e.g. @24#!, relativistic astrophysics
~e.g. @25#!, and other areas of physics~e.g. @26#!,6 which
show that interesting and sometimes significant physical
ferences can arise from the causal approach to thermodyn
ics. ~A general overview is given in@27#.! Even if the causal
corrections are small, as is the case here, they provide fur
insight into the physics, with the added advantage that
avoids the essentially unsatisfactory features of non-ca
thermodynamics. The predictions of the non-causal the
are readily recovered in the appropriate limit.
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