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Acoustic oscillations and viscosity
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Using a simple thermo-hydrodynamic model that respects relativistic causality, we reexamine the analysis of
the qualitative features of acoustic oscillations in the photon-baryon fluid. The growing photon mean free path
introduces transient effects that can be modelled by the causal generalization of relativistic Navier-Stokes-
Fourier theory. Causal thermodynamics provides a more satisfactory hydrodynamic approximation to kinetic
theory than the quasi-stationatgnd non-causalapproximations arising from standard thermodynamics or
from expanding the photon distribution to first order in Thomson scattering time. The causal approach intro-
duces small corrections to the dispersion relation obtained in quasi-stationary treatments. A dissipative contri-
bution to the speed of sound slightly increases the frequency of the oscillations. The diffusion damping scale
is slightly increased by the causal corrections. Thus quasi-stationary approximations tend to over-estimate the
spacing and under-estimate the damping of acoustic peaks. In our simple model, the fractional corrections at
decoupling are=10"2. [S0556-282(98)05224-7

PACS numbg(s): 98.80.Hw, 04.25.Nx, 04.40.Nr, 05.70.Ln

I. INTRODUCTION even beyond first ordesee[3]), cannot take proper account
of the change in the photon mean free time, especially near
Acoustic oscillations in the photon-baryon fluid before decoupling. In other words, tH@( ;) approximation and the
decoupling leave a vital imprint on the cosmic microwaveequivalent Navier-Stokes-Fourier approximation are inher-
background[1] (and possibly also on large-scale structureently quasi-stationary, and provide a limited approximation
[2]). The form of this imprint encodes information on funda- to the Boltzmann equation. An improved hydrodynamic ap-
mental cosmological parameters, and increasingly accurajgroximation to kinetic theory is the causal thermodynamics
and refined numerical integrations are being performed taleveloped by Israel and Stewdf], which generalizes the
produce predictions that can be tested against current ambn-causal Eckart theory by incorporating transient non-
upcoming observations. As a complement to detailed nuguasi-stationary effects. In this paper, we use causal thermo-
merical models, it is also useful to analyze qualitatively anddynamics to refine aspects of the work by Weinbgtpand
analytically the key physical features such as acoustic oscilHu and Sugiyam#l]. Of course, all hydrodynamic approxi-
lations. As pointed out by Hu and Sugiyarfd, numerical mations, which assume that the photon-baryon fluid is close
integrations are sufficient for direct comparison of specificto equilibrium via interactions, will break down when the
models with observations, but do not readily produce a qualiThomson interaction rate becomes too low, i.e. as decoupling
tative and analytic understanding of the physical processes & approached.
play. In[1], acoustic oscillations and their damping due to  In a previous papdi7], we developed a general formalism
photon diffusion are analyzed analytically via expanding thefor incorporating causal thermodynamics into perturbation
integrated Boltzmann multipoles in the Thomson scatteringheory, thus providing a self-consistent approach to density
time 7. To zero order inr, i.e. in the tight-coupling ap- perturbations in dissipative cosmological fluids. Our formal-
proximation, which is valid on scales much larger than theism is based on the covariant perturbation theory of Ellis and
photon mean free path, the oscillations are undampedruni[8,9], and the covariant causal thermodynamics of Is-
Damping arises from the first order approximation, whichrael and Stewait]. Here we apply the general formalism to
introduces a shear viscosity via the radiation quadrupolethe case of viscous damping of density perturbations in the
This approximation is hydrodynamic, in the sense that alphoton-baryon fluid. This effect has been comprehensively
multipoles beyond the quadrupole are neglected, and it ianalyzed via detailed study of the Boltzmann equatisze
effectively equivalen{see[3]) to the non-equilibrium ther- e.g.[5,10-17). Dissipative hydrodynamics provides a sim-
modynamic approach of Weinbefg], which is based on the plified alternative to a full kinetic theory analysis, which can
relativistic Navier-Stokes-Fourier theory developed by Eck-illuminate some of the key physical effects without the same
art. level of detail and complexity. The approaches of Weinberg
As pointed out by Peebles and Y&, expansions inry, [4] and Hu and Sugiyamfl] neglect gravitational effects,
which is not unreasonable on subhorizon scales. We refine
their approach by including metric perturbations. More im-
*Email address: maartens@sms.port.ac.uk portantly, their approach is inherently quasi-stationary, and
TEmail address: pep@ulises.uab.es the main refinement we introduce is to incorporate transient
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effects via the causal generalization of Navier-Stokes-Fouriethan the standard non-causal theory. The differences are

thermodynamics. greatest for high frequency phenomena, on scales compa-
It turns out that the relaxational effects which are incor-rable to the mean free time or path, when the Chapman-

porated into the causal transport equation, but which are nd=nskog approximation breaks down, while the Grad approxi-

glected in the non-causal theory, have a small but interestinmation remains valid.

impact. The sound speed, which determines the frequency of We follow the notation of 7]. Units are such that=1

acoustic oscillations for each mode, acquires a positive dis=8=G, except where numerical values are given in speci-

sipative correction. This produces a small increase in thdied units. The present Hubble rateHg=100h km/s/Mpc.

frequency of acoustic oscillations on each scale. The viscous

damping rate found in quasi-stationary approximatighd] Il. CAUSAL VISCOUS PERTURBATIONS

also acquires a positive correction, leading to a small in- ) ) .

crease in the diffusion cutoff scale. A rough estimate based Reference[7] contains a general discussion and general

on our simplified model is that the fractional corrections arecovariant perturbation equations for causal dissipative hydro-

=102 by decoupling. dynamics in cosmology.. In _the interest o_f brevny, we will
For simplicity, since we are interested in qualitative fea-"Ot repeat here the derivations and motivationg f but

tures rather than specific numerical predictions, and since walMPIy quote the results as they are needed.

wish to focus on relaxational corrections to quasi-stationary N the era between matter-radiation equality and decou-
models, we assume a flat background universe with negliP!ing, the mixture of photons, baryons and electrons is
gible non-baryonic content. We treat the mixture of baryonic'€ated as a single dissipative fluid, with dissipation due to
matter and radiation as a single dissipative fluid, with dissiPhoton Silk diffusion[15]. The baryons and electrons are
pation arising from the growing mean free path of photons irfightly coupled, cglmlnatlng in _the|r recombination, while
their Thomson scattering off electrons. We consider the erf1® Photon coupling to baryonic matter through Thomson
between matter-radiation equality and decoupling, negIectingcatt_e””_g weakens as the mean free path grows. We assume
the matter pressure. Dissipative effects are expected to H&' Simplicity that there is no non-baryonic cold dark matter.
greatest near decoupling. We will also neglect thermal conYV€ @IS0 assume negligible thermal conduction and particle
duction for simplicity, while the bulk viscous stress is nec- flux, S0 that the particle and energy frames coin¢fle and
essarily negligible since the fluid is in the non-relativistic We can choose the fluid four-velocity® (whereu®u,=—1)
regime. Thus the dissipative effect of photon diffusion is@S the four-velocity of this frame. The bulk viscous stress is

reduced(within a radiative hydrodynamic modefo a shear Negligible, since the fluid is non-relativistic.

viscous stressryy,. The fundamental quantity in the covariant approach to
In non-causal thermodynamigand in anO(r;) expan-  density perturbationts] is
sion of the the Boltzmann multipolgsthis shear viscous D2p
stress is algebraically determined by the shegy via [4] 5= aDaga:aZT, (3)
Tab= — 270 ap, 1)

where D, is the covariant spatial derivative, is the back-

where 7 is the viscosity. The implicit instantaneous relation 9round scale factor, and
between the caugshear, i.e. anisotropic expansion jedad

the effect(anisotropic stregsis what underlies the patholo- S,=a
gies of the theory, i.e. that it admits dissipative signals with

infinite wavefront speeds and that its equilibrium states ar

Dap

fs the comoving fractional energy density gradient, which is

genlerlcally lfnsf)ab!élﬁ’]' In ;h?. catusrill theoryl, ,t,hg ?tres_s 'Saa covariant measure of density inhomogeneity. The total en-
no longer algebraically and “instantaneously” determine ergy densityp=pg -+ pg is made up of baryonic and radia-

by the_ she_ar, but satisfies an evolution equation in Whlcr{ion parts, andé is the density fluctuation scalar for the
there is a time-lag between cause and eff6¢t photon-baryon system, considered as a combined single
Covariant entropy perturbations in a single dissipative
where 7 is the relaxation time-scale. This causal transporfluid model (as opposed to a 2-component modere
leads to a subluminal speed of viscous pulses, and introducé§urced by heat flux and bulk viscous stress, and shear vis-
small but interesting corrections to the quasi-stationary discOUs stress has no effect to linear orfigq. (18) of [7]]. If,
persion relation. as we assume, the initial entropy perturbation is zero, there
Causal thermodynamics has a solid kinetic theory motiva@re therefore no entropy perturbatidnghen & satisfies the
tion via the relativistic Grad 14-moment approximation to €volution equatiodEq. (28) of [7]]
the Boltzmann equatiof6]. This approximation effectively
restores second-order non-equilibrium terms in the entropy
that are neglected in the relativistic Chapman-Enskog ap-1in any case, the entropy perturbations are decoupled from the
proximation[14], which leads to the non-causal theory. Thusdensity perturbations, because the non-barotropic indetag),,
causal thermodynamics provides a more satisfactory and lesanishes in the background, so that the entropy source term in the
incomplete hydrodynamic approximation to kinetic theorydensity perturbation equation is z€iq. (28) of [7]].

T apT Tap™ — 2790 p,
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. 3 L),
6+2H 1—3W+ECS o

3
- §H2(1+ 8w—3w?—6¢2) 6—c2D?6=S[ 7],

(4)

where an overdot denotes the covariant derivative aldhg
H=ala,w=p/p, with p=pg+ pgr the total isotropic pres-
sure, andc§=p/jo is the adiabatic sound speed. The shea
viscous source term is given Bq. (32) of [7]]

S[w]=3HS—3H?(1+6w—3c2)S+D3S, (5)
where the covariant shear viscous stress scalar is
, DDy,

p

S=a

The viscous transport equatid@) leads to the following
evolution equation foS [Eq. (46) of [7]]:?

. 47
7S8+|1—H 3(1+W)T—m S
_ 4y .
= m[ﬁ—:gWH(S]. (6)

Equations(4)—(6) form a coupled system that governs the
evolution of density perturbations with causal viscosity.
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Here o is the Thomson cross section ands the free elec-
tron number density. Perturbations on scales belquwill
be wiped out by photon streamiri@nd the hydrodynamic
model breaks down on these scal€sausal thermodynamics
applies down to the Thomson scale, but the non-causal
theory requiresA\>A;. The damping effect of photon
streaming operates beyond the Thomson mean free scale,
since photon diffusion out of over-dense regions rapidly de-
stroys perturbations below a critical scale, as shown by Silk
15]. The critical cutoff scale is the diffusion scale,,

hich is considerably greater than the Thomson mean free
scale, as we will confirm below.

Collecting the above points, and using the background
Friedmann equatiop=3H?, the coupled system becomes

iy .3 2
A+2HA—§H2 1—§c§K§)A
< 2 1.2
=3HI —3H 1+ 2 K |3, 9

3HS+3H(1+ 7, —3HD)S=7,A, (10)

where we have defined the dimensionless expansion-
normalized shear viscosity

47

The thermal energy of matter is much less than the reséind proper wave number

mass energy after the epothof matter-radiation equality,
so thatpg~0, and themp~ %pr. Takinga=1 at the present
epoch, we have, in the backgroutwhere matter and radia-

tion are non-interacting
-1 -1
<

a

.2

1
W= — +1 <€ = +4

2 ™

4 a
= (3= —,
ae 3 ae 21
for a>a,. To a reasonable approximatigsufficient for the

purposes of our simple modelve can neglect these quanti-
ties relative to 1 in the parentheses in E@b—(6). Further-

more, sincev<1 andnH/p<1, we can neglect the last term

on the right of Eq.(6).

We decompose into Fourier modé(;t,i)—>A(t,IZ) and
8(t,>2)—>2(t,|2), wherek is the comoving wave number, so
that the proper wave number is=k/a. The proper wave-
length A =2#/K is constrained by\ ;<A<\, wherehy
=H ! is the Hubble scale(above which thermo-
hydrodynamic effects do not operateand the minimum

7% =34 (1)
K, =g 12
The relevant scales constrai, by
Ay
27T<K*<27T)\—. (13

T

Radiative shear viscosity due to Thomson scattering is
given by (see[4], and[16-18 for refinements using kinetic
theory)

=15 4

r 0T4 7T,

wherer is the blackbody radiation constaiit,s the photon
temperature andr=\y is the photon mean free time for
Thomson scattering. The causal relaxation time-seédeby

_scale)\T is the photon mean free path for Thomson scatterEq. (2) the characteristic time taken for the fluid to relax

ing:

8)

°The p factors are mistakenly omitted in Eqg6) and(54) of [7].

toward equilibrium if the viscous “driving force” were to be

3Note that[16] claims a correction factor of? in Weinberg’s
expression fom. This arises from anisotropic scattering effects, and
a further small correction is also induced by polarization effgtts
These corrections are not important for our simple model.
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“switched off.” Thus we expectr is of the order of a few

Thomson interaction times, and below the characteristic dif-

fusion time:

m=7<7p, (15

PHYSICAL REVIEW [38 123507

112
: (20)

a

7% = (74 )d ag

wherel >0 encodes the growing effects of recombination on

the number density of free electrons, the details of which are
not important for our simple model. Using the standard nu-
merical values[19] of t;~3x10'%h~* sec, redshiftz,~2
x10*h?, and present baryon number densitpg
~10°h® cm™3, with the present baryoni@ark and lumines-

whererp=N\p.

In the era we are consideringl decays approximately
like a=%?2 n decays faster thaa ° because of recombina-
tion effects, andl' decays as~ 1. Thus, to lowest order,

1/2 cend density fractionQlg~1, we find that
Ke=(Ky)e a_ ) (16)
¢ / (M) e~1.5X10P%~4 cm, (A 1)e~10%h~8 cm,
3/2
MN=Ne| | 17
HAH/e a, (74)e~1.5%10 ®h~4, (21)
a 3+1
Ar=(N\7)¢ = (18 Equations(9) and (10) govern the evolution of density
€ perturbation modes within a simplified causal viscous fluid
A a 32t model. The system may be decoupled to produce a third-
rH= ()\—T o , (19 order equation in\. In practice we analyze the coupled sys-
H €

tem, but for completeness, the decoupled equation is

) 3 1, 15 _ L .
TA+ A+H|2+ E+§K* ﬂ*—?TH'f'ZT—(TH) {77, +F(n,—27H)}|A

1
1+ S7H++F

_EHZ

2 (22)

2 2 .
1- —c§|<§> —tH- = 7K2(c2) |A=0,

7
1+79,—s7H+7+F 3 3

2

where

FE—T[|I’]|TH(6_K,2\-)_3(1+77*)'] ) J

and we used the background field equatfd)rfr —32H?2. In the non-causal case=0, Eq.(22) reduces to the second order
equation

TP SO I L S A=0 29
237 T H(LH ) e

.3
_ 22
|a- 3

2
(1+77*)(1—§C§Ki)

lll. VISCOUS ACOUSTIC OSCILLATIONS

The key features of the solutions are readily analyzed qualitatively, given the simplicity of our model. We assume that the
coefficients in Egs(9) and (10) are slowly varying, which is reasonable for small-scale modes. Then we can try a WKB
solution of the formA(t,k)=a *A(k)expifwdt and 3 (t,k)=a 'B(k)expifwdt, where the scale factor terms remove the
non-dissipative effects of expansion on small-scale modes, facilitating comparison with Weinberg'’s results, which neglect
expansion. This gives

1
—w?= SHA(5-2c¢K3) —3iHw+(6+KZ%)H? w 0
B ™

—in,0o+7,H iTHo+3(1+ 5, —47H)H

Non-trivial solutions require a vanishing determinant of the coefficient matrix, leading to the dispersion equation
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2it0’+2(1-47H)w?

—i Hw

1 2 212
27, | 2+ 5KE |+ 7H(2cEKE - 5)

+ H?

3
=0. (24)

212 1 2
(1+ 7, —47H)(5—2c2K2) +27, | 1+ 2K2

In general, the solutions will have the form
w=*Kv+il', (25

wherev is the(rea) phase speed of oscillations ahds the
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— 27 |27

No= 3" Vg M-

(29

By Egs.(17), (18) and(20), the diffusion scale is well above
the Thomson scale, although the ratio decreases with expan-
sion:

ae 5/4+1

a (30

\p ,
X, ~ 500

Now we consider the causal corrections to E28). From
Egs.(15), (19), (21) and(29), it follows that7, =7H<1. We
write w, =w, (1+y7,), wherew, satisfies Eq(27), and
solve the dispersion cubic equati@@b) to first order inz, .

viscous damping rate. Damping will be severe for scales ;s gives

<\p, Where the diffusion cutoff scale is defined by the
equality of the damping rate and the expansion rate, i.e. F[

In the dispersion relatiof24), we can neglecy, relative
to 1 by Egs.(20) and(21). Equationd7), (12), (17) and(21)
show that for the relevant small scales<\), we havé
c2K2>1. Then the dispersion cubic may be written

iT*wi+(1—4T*)wi
(1 2 212 2102
—i §7]*K*+T*CSK* w, —(1—47,)cK; =0,

(26)

(T +4H)
*cK

y:ﬁ

on usingc2K2>1. It follows that

v=cg1+I), (3D

[=T[1+27(T+2H)]. (32)

Thus the causal generalization of standard thermodynamics
leads to corrections that increase the effective sound speed
and damping rate. The latter increase leads to an increase in

where o, =w/H and r,=7/H™! are dimensionless the diffusion cutoff scale, which is determined by settﬁg
expansion-normalized variables. For the non-causal theoryyH in Eq. (32):

with 7=0, Eq.(26) becomes

3wz — (i 7, K%)w, —3c2K2 =0, 27)

Ap=MAp(1+37H). (33

In order to estimate the size of the corrections, we need an

where an overbar indicates a quantity in the non-causatxpression for the causal relaxation time-scaltn the case

theory. Equatior(27) has the solution

FZ

1_ [
c2K?

1 5
, =€7]*K*H.

Sincel'/H<1 for the scales that survive viscous damping,
and c2K2>1 for the relevant sub-horizon scales, we have

v2=c? to a good approximation. Thus
_ — (27} ,

of a simple(i.e. single-speciggelativistic gagobeying clas-
sical or quantum statistig;sthe thermodynamic coefficients
such asr and 7 are in principle known via complicated ki-
netic theory formulas involving integrals over energy and
collision cross-sectiongg]. In the radiative transfer context,
where 2 particle species are involved, one treated hydrody-
namically, the shear viscosity is given by E#4), while 7is
implicitly assumed to be zero in quasi-stationary treatments
[4,16,17. If Grad-type moment approximations are used,
then 7 is equal to the mean collision time as a consequence
of the hydrodynamic assumptionl8,23. However, it
seems physically reasonable thatould be greater than;,

if the hydrodynamic assumptions in radiative transfer are

which agree$When the iSOtI’OpiC pressure, heat flux and bulksomewhat relaxed. Thus a Simp'e genera"zation

stress are negligiblewith Weinberg's special relativistic
generalization of the non-relativistic Landau-Lifshitz result

[4].° The diffusion cutoff scale follows from Eq28) as

“Numerical integrations in the special cagi2 <1 are given in
[20].

See also[21] for a kinetic theory approach, af@2] for the
inclusion of magnetic fields.

T=aTr, (39
wherea=1 is a constant, seems reasonable within the phe-
nomenology of thermodynamics.

The correction to the diffusion scale and the maximal cor-
rection to the sound speddhich occurs af’=H) are de-
termined by7H. By Eqgs.(34), (19) and(21), we find that, in
our simple model,
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A\ 3/2+1
TH= a( i

a

a 32t which increases the frequency of oscillatiof®, the scale-
~TaX 10_6h_4(—) dependence of the corrections to the damping rate and sound
€ speed, andd) the central role played by the relaxation time-
(35 scaler, which provides a simple scalar encoding for the non-

The correction factor grows with expansion, as expectedduasi-stationary effects of photon diffusion.

since the mean free photon path is growing. We take  This paper shows that in principle dissipative hydrody-

=0.6. At matter-radiation equality, the fractional correction "@Mics with causal transport equations can provide an eco-
is then ~5ax10°5=5x10"5. As decoupling is ap- nomical alternative to kinetic theory models, with some ad-

proached, the ionization parametebecomes more impor- ditional insights into the nature and source of acoustic
tant. However, for a rough under-estimate, we canl sed. oscillations. The simplified model used here could be re-
(In any case, all hydrodynamically based models will breakin€d, principally by incorporating thermal conduction, to

down near decouplingWith zg.~1100, we find that the produc_e an improved mc_)del that neverthgless will still_allo_w
maximal fractional correction introduced by relaxational ef-& dualitative and analytic treatment, unlike the full kinetic
fects is theory approach.
Our model can also be seen as part of a growing body of
(TH) max> @ X 1073>1073, (36)  examples in cosmologye.g.[24]), relativistic astrophysics
(e.g.[25]), and other areas of physidg.g. [26]),° which
in our simple model. This is the relevant estimate, since thghow that interesting and sometimes significant physical dif-
imprint of acoustic oscillations is frozen in at decoupling. ferences can arise from the causal approach to thermodynam-
ics. (A general overview is given if27].) Even if the causal
IV. CONCLUSIONS corrections are small, as is the case here, they provide further
- . o insight into the physics, with the added advantage that one
Our principal result is the causal generalization and up,,qiqs the essentially unsatisfactory features of non-causal

ward correction of the quasi-stationary sound speed, givVen ify e qynamics. The predictions of the non-causal theory
Eq. (31), and damping rate, given in E(B2). These correc- 5o raadily recovered in the appropriate limit.
tions are small, at roughly the 1% level, as given in &%),

but they show how quasi-stationary approximations tend to

under-estimate the frequency and damping of acoustic oscil- ACKNOWLEDGMENTS
lations, and they indicate the refinements that would arise

from a more complete kinetic theory approach, which in-
volves far greater computational complexity. The qualitative
features of the refinements a@ a higher threshold for the

survival of density perturbations, i.e. an increased diffusio
cutoff scale, given by Eq33), (b) the appearance of a dis-
sipative contribution to the sound speed of the photon-

baryon fluid (consistent with the general theoretical results ©in non-relativistic physics, causal theories are usually called “ex-
for perturbations of stationary fluids in flat spacetif6el3])  tended” or “hyperbolic.”
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