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How the universe got its spots
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The universe displays a three-dimensional pattern of hot and cold spots in the radiation remnant from the big
bang. The global geometry of the universe can be revealed in the spatial distribution of these spots. In a
topologically compact universe, distinctive patterns are especially prominent in spatial correlations of the
radiation temperature. Whereas these patterns are usually washed out in statistical averages, we propose a
scheme which uses the universe’s spots to observe global geometry in a manner analogous to the use of
multiple images of a gravitationally lensed quasar to study the geometry of the lens. To demonstrate how the
geometry of space forms patterns, we develop a simple real-space approximation to estimate temperature
correlations for any set of cosmological parameters and any global geometry. We present correlated spheres
which clearly show topological pattern formation for compact flat universes as well as for the compact
negatively curved space introduced by Weeks and another discovered by Best. These examples illustrate how
future satellite-based observations of the microwave background can determine the full geometry of the
universe.@S0556-2821~98!02124-9#

PACS number~s!: 98.70.Vc, 98.80.Hw
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From the zebra’s stripes to the leopard’s spots, the ani
kingdom displays a diversity of coat patterns. Following t
innovative ideas of Turing@1#, mathematical biologists hav
posed and partly answered the question of how the leop
got its spots. The fluctuation of enzymes diffusing throu
the developing embryo can lead to the spatial pattern for
tion displayed by animal coats. Both the geometry and s
of the animal exert a strong influence on differentiating p
terns. For instance, the broad cylindrical shape of the le
ard’s body favors spots while the tapered tail induces stri
@2#. Remarkably, these diverse features can arise from
properties of simple solutions to second-order partial diff
ential equations on the geometry and topology appropr
for animal limbs, tails, or bodies.1

Similarly, the global geometry of the universe can lead
distinctive pattern formation by the normal modes of vib
tion of the universe in the microwave sky, or even in t
distribution of luminous galaxies. Unobscured by comp
cated evolutionary effects, the cosmic microwave ba
ground radiation~CMB! offers the best site to seek out pa
terning. When light last scattered off hot matter, sm
temperature fluctuations left birthmarks in the radiatio
These hot and cold spots in the primordial radiation may
randomly distributed in an infinite universe, but if the un
verse possesses a compact topology then distinctive pat

1For example, the two-dimensional Helmholtz equation

¹2f1k2f50,
with (n•¹)f50 on the boundary, has solutions which descr
different geometric tessellations of alternating regions withf.0
and f,0, @3#. For example, an infinite line of one-dimension
stripes is described by the solutionsf5coskx, with k5np for n
561,62,.., whereas a solutionf5

1
2 @coskx1cosky#, with k5p

or 2p describes a checker-board tessellation of space with alte
ing square spots, withf.0 andf,0, inclined at 45°.
0556-2821/98/58~12!/123006~14!/$15.00 58 1230
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can be generated. Such topologically induced pattern for
tion has already been seen in simulated maps of the mi
wave sky@4,5#.

The diffusive processes in biological systems actua
simplify an animal’s coat by singling out a particular mod
and hence a particular pattern. By contrast, the universe
tains many competing modes. While some simple large s
patterns are clearly evident in sky maps of the CMB te
perature fluctuations@4,5#, subtler patterns can be extracte
from the observations. In particular, a correlation in tempe
ture between pairs of points can scan the map and selec
geometric features. Maps of correlations for different topo
gies populate the cosmic zoo of possibilities displayed
Secs. II and III.

CMB observations of the universe’s hot and cold sp
could be used as real-space pictures of geometry. With
related maps we could observe topologically lensed ima
of the horizon at the time of last scattering. The number a
pattern of lensed images of the horizon provide informat
about the geometry of the universe. A nice analogy is p
vided by observations of gravitationally lensed images o
quasar, the pattern and number of which reveal the geom
of the intervening lens. The universe’s spots are too sma
angular scale to have been detected by the Cosmic B
ground Explorer~COBE! but will be visible by the future
satellite missions, MAP~Microwave Anisotropy Probe! and
Planck Surveyor.

The fluctuations in the CMB can be described by deco
posing the relative temperature fluctuations,dT(xW )/T
5*d3kW f̂kWckW , into a series of eigenmodesckW each of which
is a solution of Laplace’s equation on the curved space of
universe, (¹21k2)ckW50. The f̂kW are primordially seeded
amplitudes that on average define a spectrum of pertu
tions. Topology introduces boundary conditions which cre
a discretized set of wave vectors and complex relations
tween thef̂kW @6#. This problem is tractable in the case of
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JANNA LEVIN et al. PHYSICAL REVIEW D 58 123006
flat universe but, for a compact hyperbolic space, the ide
fication rules lead to such intricate boundary conditions
the modes that they cannot be decomposed analytically@7#.
This is a symptom of the chaotic hyperbolic flow of geod
sics induced on these spaces. Microwave photons movin
compact hyperbolic manifolds thus demand more indir
methods of analysis. Cosmological observations favo
negative curvature and mathematics favors compact hy
bolic manifolds by providing an infinite number of cand
dates. The resistance encountered when subjecting t
manifolds to conventional eigenmode treatments has spa
recent interest and produced several different approache
the search for observational probes of the universe’s glo
topology. Three strategies have emerged: a search for ci
in the microwave sky@8#, a search for spatial pattern forma
tion @4,6#, and a direct attack via the method of images@9#.
All three approaches are necessarily related. We will
aspects of each emerge in our zoo of topological examp

For reviews and other interesting papers on cosmic to
ogy see Refs.@10–13#.

I. TOPOLOGY AND THE ANGULAR CORRELATION
FUNCTION

Compact spaces are specified byM5U/G whereU is the
geometry of the infinite space before any compactificati
are made.U is also known as the universal covering spa
The generators$gk% of the groupG provide the set of instruc
tions for gluing together points inU in order to render the
space finite and multiconnected. The elements ofG form a
discrete subgroup of the full isometry group of the cover
space. A finite geometry has the same curvature asU. The
universal covering space is usually assumed to be a spa
constant curvature, either the flatE3, the negatively curved
H3, or the positively curvedS3. The real universe does no
have perfectly constant curvature over the entire manifo
its true topologies will then be a deformation of perfect po
hedra. The statement that the universe looks homogen
and isotropic on average indicates that constant curva
will be a reasonable first assumption for finite manifol
which are comparable to or smaller than the Hubble scal
the visible universe. We limit ourselves to the subset of
servationally viable manifolds with covering spaces of eith
the flatE3 or hyperbolicH3 variety.

In order to scan the sky for evidence of compact topolo
we use the correlation function for the temperature at t
different points on the sky,

K dT~ n̂!

T

dT~ n̂8!

T L 5C~ n̂,n̂8!, ~1!

where n̂ is a unit vector pointing from the Earth toward
some location on the sky. The sphere of radiusDhn̂ defines
the surface from which we receive last-scattered photo
The size of the radius,Dh, is the conformal time between th
time of last scattering and the present. The angular brac
denote an average over all possible realizations. In a sim
connected cosmos, the assumption that the hot and cold s
are homogeneously and isotropically distributed ensures
12300
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the correlation function depends on only one parame
namely the angle between the two points on the sky, tha
C(n̂,n̂8)5C(u) where cosu5n̂•n̂8. All of the information in
an homogeneous and isotropic Gaussian field is containe
C(u).

By contrast, topological identifications always break is
ropy ~with the exception of the projective space onS3! and
most break homogeneity as well. The hypertorus onE3 is the
only homogeneous compact space. Consequently, the c
lation function, C(n̂,n̂8), depends fully onn̂ and n̂8 and
would require four dimensions for a full representation. P
dicting C(n̂,n̂8) is also more challenging on compact man
folds, particularly the compact hyperbolic spaces.

We will introduce a real-space approximation which ca
tures all the important features necessary for examining
bal structure. Our approximation is based on two physi
observations. First, two points which appear to be wid
separated may actually be close together, as in Fig. 1: the
not a unique distance between points. Secondly, the corr
tion between two points is strongly peaked around sh
separations. While global topology drastically changes
large scale perturbations, it does not have a strong impac
scales much smaller than the size of the physical sp
Therefore we expect the correlation function between nea
points to be well approximated by the correlation function
a simply connected universe.

Motivated by these two observations, we propose the
lowing real space approximation to the angular correlat
function: we take the correlation in temperature between
points on the surface of last scattering to be the correla
function in a simply connected universe given their min
mum separation, that is,

CM~ n̂,n̂8!'CU@dmin„xW~ n̂!,xW8~ n̂8!…#, ~2!

whereCU is the correlation function on the universal cove
xW (n̂) is the physical location of a point on the surface of la
scattering, anddmin is the minimum distance between th
two points in the topological space. To find the minimu
distance we locate the image points with the generator
the identifications. The pointxW8 has first neighbor images a
locationsyW k5gkxW8 and second neighbor images at locatio
yW k2k1

5gk2
gk1

xW8, etc. More concisely, the images out to ord

m can be written as

yW km ,..,k1
5)

i

m

gki
xW8~ n̂8!. ~3!

FIG. 1. Two points may appear to be far apart but if we ident
opposite sides of the rectangle we see that the same points
actually close together on the compact torus.
6-2
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HOW THE UNIVERSE GOT ITS SPOTS PHYSICAL REVIEW D58 123006
The image point which lands closest toxW (n̂) determines
dmin . Note that all of the effects of topology appear only
the minimization of the separation between the two poin
Thus, the correlation function can be approximated us
only a knowledge of the identifications that compactify t
space: the very relations that are used to specify the to
ogy.

Our approximation is closely related to the method
images employed in Refs.@9#. The correlation function com
puted by the method of images is a sum overall of the copies
of the image points in the simply connected space with
same curvature,

C~ n̂,n̂8!5 lim
r
*
→`

(
g i

CU
„d~ n̂,g i n̂8!…

2
4p

V E
0

r
* dr sinh2rCU~r !, ~4!

where the second term is a regularizer introduced to con
the exponential proliferation of images, particularly onH3,
as the radiusr * increases relative to the volume of the fu
damental domain,V @9#. Theg are composite elements of th
group G. Our approximation amounts to keeping only t
dominant term in the sum over images. Maintaining the fi
term is by far less cumbersome than summing an infin
number of terms and fares well in approximating the ex
correlation function. The approximation is also quite va
able for our purposes since we are able to easily include
essential effects of the smoothing across the horizon at
time of last scattering and the relevant microphysics at w
over small separations. The small-scale physics at the tim
last scattering is important for distinguishing topologica
lensed images from fictitious correlations as explained
Sec. II B. The physical processes operating at last scatte
can in principle be folded into the method of images to refi
our approximation and sharpen the focus on our picture
geometry. The thickness and velocity of the surface of
scatter will also induce additional corrections. A test of o
approximation when applied to the flat geometries is given
detail in Sec. II B.

Given an estimate of the full four-dimension
CM(n̂,n̂8), we could build realizations of a map ofdT(n̂)/T
for any topology, even without the eigenmodes. A given u
verse would be obtained by a random realization o
Gaussian-distributed variable with a mean^dT(n̂)/T&50
and varianceCM(n̂,n̂8). However, we can do better. A
CM(n̂,n̂8) is a function on two copies of the sky, it nece
sarily must be calculated numerically forNpix

2 values, where
Npix is the number of pixels into which the sky is divide
This is cumbersome, if not practically impossible, to ca
out for many topologies on a reasonably finely grided s
map, particularly if we aim at the resolutions expected
future CMB satellite missions. Furthermore, many of t
peaks of this function occur at values wheren̂ and n̂8 are
separated by a small angle on the sky. Since these po
would be close together regardless of global topology, m
of the base space ofCM(n̂,n̂8) is useless in discriminating
between topological properties of cosmological models.
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Instead of building fulldT(n̂)/T maps, we build selective
correlation maps. An illustrative example is the antipod
map constructed by evaluating the correlation function
antipodal points along the sky,

A~ n̂![CM~ n̂,2n̂!. ~5!

In a simply-connected universe A(n̂) would produce on av-
erage nothing more than an overall monopole. Fortuito
correlations may appear at random in a given realization
there would be no defining structure. In a universe with co
pact topology a great deal of structure can be surveyed
means of this one simple correlation. While the best analy
for any particular topology will make use of the full correla
tion function, the antipodal map will prove to be a mo
useful survey tool. To get a feel for the way in which corr
lations reflect global topology, we make a gallery of corr
lated spheres first for all flat topologies and then for a f
choice compact hyperbolic spaces. We also consider co
lations under symmetries other than antipodal as the spe
space demands. In order to represent the correlations a
maps we consider correlations of the form

Cg~ n̂![CM~ n̂,gn̂/ign̂i !, ~6!

where againg is an element of the groupG. For the compact
hyperbolic spaces, we also correlate an arbitrary point w
the rest of the surface of last scatter. In many ways th
point-to-sphere correlations, are the most promising. T
very dramatically reveal geometric patterns and they do
require any foreknowledge of the symmetries of the spac

II. THE COSMIC ZOO

A. Flat topologies

Compact flat spaces have already fallen out of favor
small universes. The first suspect for investigation was
simplest hypertorus@14#. The fundamental domain is a pa
allelepiped with opposite faces identified in pairs. As sho
by Stevens, Scott and Silk@15#, the square hypertorus suffer
a sharp truncation of long wavelength power in temperat
fluctuations, too sharp to be consistent with COBE obser
tions unless the box is larger than about 40% of the obs
able universe. Later, anisotropic tori were studied in Re
@16# using symmetry methods, and were similarly boun
The tightest limits on an equal-sided square hypertorus w
obtained in Ref.@9# using the method of images, placing th
topology scale just beyond the observable universe with
>2.19Dh whereh is the length of the side of the square a
Dh is the conformal time since last scattering.

With the universal covering space ofE3, there are only
five more orientable, compact spaces that can be constru
@18#. Three are built by identifying the faces of a parallelep
ped with relative twist~see Fig. 10!, and two are constructed
by identifying the faces of a hexagonal prism with the pris
faces twisted by 2p/3 or p/3 relative to each other befor
being identified. In Refs.@6,17#, we derived the eigenmod
spectrum explicitly for all twisted cases and showed that
angle-averaged power spectrum is incompatible with CO
for equilateral spaces unless the universe was very larg
6-3
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JANNA LEVIN et al. PHYSICAL REVIEW D 58 123006
not actually infinite ~i.e. topological identification scale
>80%Dh!. The compact flat spaces are thus of limited
terest, although polyhedra with sides of disparate leng
may still be viable.

However, since we do have eigenmodes for all flat topo
gies @6#, these topologies are important testing grounds
any method which attempts to circumvent the eigenva
problem. We therefore useE3 to test our real space approx
mation before moving on to compact topologies ofH3.

For illustration, we spend time explaining the features
the markings for a 2p/3-twisted hexagonal prism. The man
fold is E3/G with G the group of instructions for identifying
the faces of the hexagon. Define a coordinate system
which ê1 is orthogonal to the hexagonal face and the n
orthogonal vectorsê2 ,ê3 span the face as in Fig. 2.G is
generated by$g1 ,g2 ,g3% where g1 generates a rotation
through 2p/3 about theê1 axis combined with a translatio
orthogonal to the hexagonal face through a distancec, g2
effects a translation alongê2 through h, and g3 effects a
translation alongê3 also throughh. Another way to visualize
E3/G is to glue copies of the fundamental domain toget
according to the identification rules. In this wayE3 can be
completely tiled with layers of hexagons separated by
length of the prism direction.

We can use these symmetries to build the discrete s
trum of eigenmodes which describe fluctuations on t
space as was done in Ref.@6#. Using these modes a typica
map ofdT(n̂)/T for a simulated compact hexagonal univer
can be created. We show this for comparison in Fig. 3. Th
is something at work in the map ofdT(n̂)/T but it is hard to
define.

If, however, we inspect the idealized zero-variance
tipodal map, the pattern jumps out at us. These antipo

FIG. 2. The hexagonal geometry. The prism face is glued wit
twist of 2p/3 to create a topology distinct from the hypertorus.

FIG. 3. A typical map ofdT/T(n̂) in a hexagonal prism with
h50.8Dh.
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maps were built with our approximation anddid not require
the full mode solutions. We locate a point on the sphere o
last scattering~SLS! xW5Dhn̂ and compare the correlation o
that temperature with its antipodal pointxW852Dhn̂8. If the
universe were simplyE3, that is, flat and unconnected, the
these points should be totally uncorrelated on average. G
that this space is multiconnected, the two opposed po
may in fact be close together as demonstrated for the
surface of Fig. 1. We approximate the correlation betwe
antipodal points as the correlation that the points would h
in a simply connected space given their minimum separa
as in Eq.~1!. Antipody is then approximated as

^A~ n̂!&.CU@dmin„xW~ n̂!,xW8~2n̂!…# ~7!

whereCU(u) is obtained fromCMBFAST @19# for a standard,
flat CDM cosmology (Vb5.05,Vc5.95,H0
550 km s21 Mpc21) with the dipole component calculate
as per a flat power spectrum. This is illustrated in Fig. 4. W
minimize the distance by first taking the image of the
points under the action of the generators of the groupG until
we relocate them within the fundamental domain. Leav
one of these relocated points fixed, we consider all image
the second point that lie within one of the nearest neighb
of the fundamental domain, and choosedmin as the shortes
distance from the first point to one of these images. Note
only by considering all of these images, including those t
are diagonally located relative to the fundamental doma
can we be sure that our definition of distance depends on
overall topology of the space rather than on the particu
coordinates that we use to fix the fundamental domain. T
method results in an overall monopole component of
antipodal map which we wish to discard. We simply remo
the monopole as calculated from the antipodal map alo
with the understanding that this is to be compared with
measured map that is similarly normalized.

It is customary to use the Aitoff projection~as in Fig. 3!
to view the map ofdT(n̂)/T so as to see the entire sky. Fo
the antipodal map we prefer the orthographic project
which shows the genuine shape of the surface of last sca

a

FIG. 4. CU(u) for a flat, COBE normalized CDM cosmology
Note that the correlation becomes negative due to the definitio
dT/T.
6-4
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HOW THE UNIVERSE GOT ITS SPOTS PHYSICAL REVIEW D58 123006
ing. In this three-dimensional view, the sky pattern appe
to lie on a sphere. No information is lost by limiting ou
selves to a view of only half the sky at a time since A(nˆ) is
by definition symmetric underp.

There is clearly a hexagon in the antipodal map. The
tersection of the hexagonal layers with the spherical surf
of last scattering defines rings centered on the prism di
tion and are clearly picked out by A(nˆ) ~see Fig. 5!. The
rings of correlated spots occur since the correlation betw
points on the sphere of last scattering separated byp for this
geometry is the same as the correlation between oppo
sides on a circular slice through the sphere taken along
hexagonal plane, as demonstrated in Fig. 6. The bright
mary spots are identical points at the core and are just
related away from the center. In addition to these ident
images, there are also secondary spots picked up due t
correlation of regions which just near each other.

These rings of structure are not the circles of the sky
Ref. @8#. As pointed out there, pairs of identical circles occ
in the microwave sky due to the intersection of the surface
last scattering with copies of itself. None of the circles a
located by A(nˆ) for the 2p/3 twist because none of th
circles in this space are paired under ap-symmetry. For
rings separated along the prism direction by multiples of 3c,
the hexagonal faces have completed a full rotation and
tipody compares one point to its opposite face. We conti
to call the concentric collections of spots in the correla
A(n̂) maps ‘‘rings’’ and we reserve ‘‘circles’’ for intersec
tions of the copies of the surface of last scattering with its
So, the primary spots on a given ring lie on different pairs
circles in the sky. The rings of secondary spots do not lie
circle pairs.

As the topology scale gets smaller, there are more ring
patterns and the first ring appears closer to the caps as sh
in Fig. 7.

The size of a spot will be set by the Silk damping whi
smooths fluctuations on small scales. For separations w
exceed this length, we expect correlations quickly to die
Since the Silk damping scale is smaller than the horizon
at the time of decoupling we expect the angular size of th
spots to be too small for COBE to have detected. The be
smearing in the COBE experiment would dilute a spot o
such a large angle that these bright markings would be be

FIG. 5. Orthographic projection of A(nˆ) at a resolution of 20
arcminutes for a hexagonal prism withh5b5c50.8Dh. The ob-
server is at the origin.
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the signal to noise sensitivity of the detector. However, a
experiment with high enough resolution and sensitivity
probe the Doppler peaks will be able to resolve these patt
on the sky. The planned missions MAP andPlanck Surveyor
would thus be able to detect the universe’s spots.

The other topology built from the hexagonal plane tilin
involves a relative twist of the prism face throughp/3. As
seen in the left-most panel of Fig. 8, there are again co
lated spots on rings. When we make the space sufficie
small so that at least three copies of the fundamental dom
fit within the SLS the first pair of circles appears inA(n̂), as
shown in the right-most panel of Fig. 8.

FIG. 6. The surface of last scatter intersects the layered tiling
flat space. Each full tile represents a copy of the fundamental
main. Slice 1 is represented on the lower left and slice 2 on
lower right. The dots show correlated points picked up in the
tipodal map and explain the emergence of the hexagonal geom
in Fig. 5.

FIG. 7. Orthographic projection of A(nˆ) for a hexagonal prism
with h5b5c50.6Dh.
6-5
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JANNA LEVIN et al. PHYSICAL REVIEW D 58 123006
The other four topologies are built from a parallelepip
as the fundamental domain, as for the simplest hyperto
No circles will be located by A(nˆ) for the hypertorus, which
is not to say that the hypertorus has no circles, just that n
of the pairs of circles are rotated byp relative to each other
Since the hypertorus does not involve any rotations of
faces, all three directions are picked out equally by antipo
pairings, as seen in the small torus of Fig. 9. The squ
geometry of the fundamental domain is blatantly traced
by the correlated spots leading to the disco ball effect.

For the twisted parallelepipeds, A(nˆ) will locate the axis
of symmetry along which the faces are twisted. The cor
lated spots still trace out the symmetric square of the e
lateral untwisted directions, as shown in Fig. 10. For thep/2
twisted space, the circles appear in A(nˆ) if more than two
copies of the fundamental domain fit inside the observa
universe. At least one pair of circles will appear always
the p-twisted space as well as for the last compact topolo
built by gluing a parallelepiped by a series of diagonal tra
lations andp twists.

The menagerie in this flat zoo is a testament to the in
ence of geometric patterns on the universe’s markings.
antipodal correlation is just one statistic but note how clea
antipodal correlations reveal the other symmetries of
space. For instance, the prism direction perpendicular to
hexagonal face is clearly identified. Once the symmetries
the space do begin to become apparent, the future data o
CMB can be systematically scanned for correlations un
other symmetries of a given topological spac

FIG. 8. A(n̂) for a hexagonal prism with ap/3 twist h5c
50.75Dh; there are no circles. To the right thez direction is .24
while h51; there are circles.

FIG. 9. A(n̂) for the torus withh5b5c50.31Dh.
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CM(n̂,gn̂/ign̂i). In this way the entire fundamental groupG
can be isolated, thereby determining the full geometry of
space, as was also suggested in Ref.@20#.

The indicator A(nˆ) is particularly convenient because
can be visualized on an half-sphere without the specifica
of a particular axis, but once an axis of symmetry is chos
correlations at other angular separations can similarly be
amined. As an example of such a correlation, we cons
CM(n̂,n̂8) where we merely compare the point (x,y,z) to
the point (x,y,2z) for the hypertorus of size 0.4 of the SLS
We assume that this axis has been identified by examin
the overall antipodal properties of the sky. We expect t
correlation to pick up circles and it does, as demonstrate
the Fig. 11.

As another example we compare, for thep/2-twisted
space of size 0.4 the radius of the SLS, the correlation
tween two points separated by a rotation ofp/2 around thex
axis. In Fig. 12 we display the result of applying the corr
lation function

CM@dmin„xW~u,f!,xW8~u,f1p/2!…#. ~8!

B. Observing the universe’s spots

Our topological zoo of maps makes a compelling visu
argument for a pattern-driven approach to the search for
mic topology. Nevertheless, they are still only ensemb
averaged images calculated using an approximation met
As the real microwave sky contains no such averages
approximations, we are left wondering if we should belie
our eyes.

FIG. 10. A(n̂) for a p/2-twisted space.

FIG. 11. The sphere of correlationsC„n̂(x,y,z),n̂(x,y,2z)… for
the hypertorus. The topology scale is 0.4Dh.
6-6
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HOW THE UNIVERSE GOT ITS SPOTS PHYSICAL REVIEW D58 123006
In this section, we address the accuracy of our method
comparing our approximate maps with exactly calcula
ensemble-averaged maps as well as with simulated rea
tions of the microwave sky. We consider the flat hyperto
which has a simple eigenmode decomposition of the te
perature fluctuations,

dT

T
~ n̂!}(

kW
f̂kWexp~ iDhkW•n̂!, ~9!

with kW52p(nx /h,ny /b,nz /c). The f̂kW are primordially
seeded Gaussian amplitudes that obey the reality cond
f̂kW5f̂

2kW
* and as an ensemble define the spectrum

^f̂kWf̂kW8
* &5

2p2

k3 P~k!dkW ,kW8 . ~10!

With this decomposition we can construct the correlat
function between any two points on the sky as

C~ n̂,n̂8!5 K dT

T
~ n̂!

dT

T
~ n̂8!L

}(
kW

P~k!

k3 exp„iDhkW•~ n̂2n̂8!….

~11!

The antipodal correlation on the hypertorus is the sim
case,C(n̂,2n̂), and

^A~ n̂!&}(
kW

P~k!

k3 exp~ i2DhkW•n̂! ~12!

up to an overall normalization. This is nothing more than
Fourier transform of the power spectrum, and can be co
puted exactly.

In Fig. 13 we compare the results of our approximati
with the exact eigenmode decomposition of Eq.~12! for the
case of the hypertorus withh5b5c50.8. In both calcula-
tions, we take a simple flat@P(k)51# power spectrum with
no additional physics added.

In both maps the small-scale structure and location of
spots are identical, but in the approximate map the lar
scale features of the spots are smeared out. This sme

FIG. 12. The correlated sphere comparing points on the sur
of last scatter with points related by ap/2-twist around thez-axis.
The space is ap/2-twisted square with sides of length 0.4Dh.
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stems from the fact that our approximation does not inc
porate the damping of power at low wavenumbers due to
discretization of eigenmodes on the compact space. T
CU@dmin„xW (n̂),xW8(n̂8)…# falls off more slowly than the corre
sponding correlation function on the compact space.

This discrepancy can be remedied by replacing theCU

with an angular correlation function from which the lowe
multipoles have been removed. In the case of ah5b5c
50.8 space, the damping is well approximated by remov
the dipole, quadrupole, and octopole terms@17#. This results
in the approximate map shown in Fig. 14, which is qu
close to the exact result. In principle, the broadening of
spots can also be removed by including more terms in
method of images expansion, Eq.~2!. In practice, however, a
cumbersome number of terms have to be included in orde
begin to approach the exact result, with the maps actu
getting worse before they get better.

The question remains how to analyze real data so a
extract patterns with confidence. It is customary in an ana
sis of CMB observations to take angular averages in Fou
space. All standard methods thus smear out the very patt
we seek. Instead we advocate that the correlation map
treated as real space pictures of geometry. As such, they
akin to pictures of a galaxy or to observations of gravitatio
ally lensed images.

All of the previous correlation maps are ensemble av
ages. Since we have only one universe to observe and

ce
FIG. 13. A comparison of the real-space approximated antipo

map ~left! with the exact ensembled-averaged map~right! for a
torus space withh5b5c5.8Dh.

FIG. 14. Real-space approximated antipodal map, calcula
from a flat power-spectrum in which the dipole, quadrupole, a
octopole have been removed.
6-7



ri
a

nc
in
u-
t

er
b

ion

s
le
fl
t

f d
de

n
th
th
s

ht
i-

-
e

e

ea

it
-

ck

ond
ur

a-

u-
n
t of
in,

es

m
p of
eri-
ble

at
o
n.

on

JANNA LEVIN et al. PHYSICAL REVIEW D 58 123006
one realization of the data we might worry that cosmic va
ance would drown out any of the features of topology in
given realization. We are unable to combat cosmic varia
by averaging over the sky since it is precisely such averag
which we are trying to avoid. We have numerically sim
lated high-resolution observations of a toroidal universe
demonstrate what future satellite observations will off
Cosmic variance is not a terrible hindrance and we are a
to extract the correlated information from the high-resolut
simulations.

The map ofdT(n̂)/T at the top of Fig. 15 is a simulation
of an all-sky map generated using the explicit eigenmode
~9!. The physical processes at work on very small sca
were modeled so as to emulate the Doppler peaks of a
CDM universe. To obtain fairly accurate maps we have
keep account of the physical processes at the epoch o
coupling which determine the shape of the spectrum. At
coupling, the comoving length of the horizon ishdec
.1022Dh, which is presumably far smaller than the dime
sion of our fundamental domain. The causal processes
modulate the spectrum are therefore not modified by
compact nature of the space. In this case we can use a
able function forP(k) which is able to reproduce the heig
and position of the first Doppler peak in a flat CDM un
verse. The function we choose is the following:

P~k!

k3 5~kn211kn111kn13!exp~2k2/4! ~13!

wherek51022kDh andn is the primordial fluctuation spec
tral index. We show this function in Fig. 16. In the sam
figure we also show thek-range covered by the model w
examined. With the power spectrum of Eq.~13!, the relative
height of the first Doppler peak and the Sachs-Wolfe plat
are in good agreement with a flat CDM model for 0.8<n

FIG. 15. Upper panel: the unsmoothed numerical CMB d
with 10243513 pixels for a small square hypertorus with side
length 0.2Dh. Lower panel: the power spectrum for this simulatio
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<1.2. As reported in@6#, the lower limit onk is fixed by the
dimensions of the fundamental domain, while the upper lim
is constrained by the resolution grid ink-space used to gen
erate a given realization. We used a grid ofnxnynz52563

elements ink-space which we fast-Fourier transformed ba
into real space to calculate ourdT(n̂)/T spectra. The maxi-
mum wavenumber for a given realization iskmax5nxp/h. It
is apparent from Fig. 16 that it is unnecessary to go bey
this resolution limit to probe down to the accuracy of o
approximate power spectrum.

To obtain the angular power spectrum,Cl
5(mualmu2/(2l 11), we decompose the temperature fluctu
tions into spherical harmonics,dT(n̂)/T5( lmalmYlm(n̂),
using a modified version of the fast code developed by M
ciacciaet al. @21#. The power spectrum of the simulation ca
be seen at the bottom of Fig. 15. Notice the enhancemen
power due to the multiple copies of the fundamental doma
a feature already noted in Ref.@17#. While theCl ’s certainly
do not contain all of the information in a map ofdT/T in a
universe with multiconnected topology, the spectrum do
reveal the essential behavior ofdT/T at very highl ’s where
topology is less influential.

The leftmost panel in Fig. 17 is the antipodal map fro
the data smoothed on scales of 1.5°. We smooth the ma
Fig. 15, as though the data were convolved with an exp
mental beam, before taking the product map. The ensem
average computed from Eq.~12! is shown in the rightmost

a
f

FIG. 16. The power spectrum as a function ofkDh.

FIG. 17. The simulated data shown in Fig. 15 is smoothed
scales of 1.5°. The antipodal map~left! is then read off the
smoothed data and compared with an ensemble average~right!.
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HOW THE UNIVERSE GOT ITS SPOTS PHYSICAL REVIEW D58 123006
panel of Fig. 17. Clearly, the realization shows the struct
of the ensemble average. While this small universe can
ruled out with the COBE data due to the conspicuous lack
power on small scales@15,6#, the pattern would go undetec
ted in the existing satellite data. If we had smoothed
scales of 7° to emulate the COBE experiment, any defini
pattern would have been washed away. The much hig
resolution of MAP andPlanck Surveyoris required to mea-
sure the universe’s spots.

The very small space was chosen for dramatic effe
Since these spaces sample lowl modes more sparsely, ther
is less cosmic variance in some sense and the pattern
easier to detect. The large spaces can suffer more cont
nation from lowl modes. To recover the bare information
the ensemble averages, the lowl modes may need to b
cleaned from the larger spaces.

We also consider the correlation which comparesẑ→
2 ẑ, as this is a true symmetry of the space. If we align
fundamental domain with theẑ axis of the SLS, then the
correlation compares points in the directionn̂(u,f) with
points in the directionn̂8(p2u,f):

Cz~ n̂!5C„~u,f!,~p2u,f!…. ~14!

Notice that even in a universe with no topology there will
some structure in such a correlation function. The equato
defined is always compared with itself and so shows m
correlations than the poles even without multiconnec
identifications. Since this is an actual symmetry of the h
pertorus we should find 10 circles in one hemisphere for
small space of sizeh50.21Dh. We pick up nine circles a
latitudes 64°, 53°, 44°, 37°, 30°, 24°, 17°, 11° and 6°, a
ten if we include the one identified point at the poles,
shown in Fig. 18~compare with Fig. 11!. It is difficult to see
that these spots do in fact lie on fully correlated circles. Af
all, the maps only represent the simple produ
dT(n̂)dT(n̂8)/T2. A measure of the correlations across t
pairs of circles would draw out the feature more crisply~see
also, in this connection, the statistic suggested in Ref.@8#!.
To illustrate, we plot the quantity

jz~ n̂!5S dT~u,f!

T
2

dT~p2u,f!

T D 2

~15!

FIG. 18. On the left is the correlated sphereCz(n̂) defined in
Eq. ~14! read directly off the numerical data. On the right the qua
tity jz(n̂) of Eq. ~15! is plotted to draw out the circles.
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for the unsmoothed data, in the rightmost panel of Fig.
This measure of the temperature difference singles out
circles.

For a larger square torus of sizeh50.41Dh, the correla-
tion Cz(n̂) of Eq. ~14! also finds faint circles. Figure 19
shows the occurrence of circles in the sky at latitudes
around 55°, 38°, 24° and 12°. The left figure is a map of
simple correlation functionCz(n̂) of Eq. ~14! smoothed at
0.5° while the right figure locates the circles more distinct
without smoothing, by plotting thejz(n̂) of Eq. ~15!. The
thin dark circles are the collection of identical points f
which jz50.

For contrast, we compare the predictions for a hyperto
with those for a simply-connected flat cosmos. Figure
shows a realization of the SLS for a flat CDM universe. T
data is again smoothed on scales of 1.5°. The lowl modes
missing from the map in Fig. 15 are clearly present in
infinite universe. There is no evidence of a pattern in anti
dal correlations, nor in theCz„n̂,n̂8(zW→2zW)…, as demon-
strated in the bland pictures of Fig. 20.

-
FIG. 19. On the left isCz(n̂) read directly off the numerical data

for the larger torus of size 0.41Dh smoothed on scales of 0.5°. O
the rightjz(n̂) of Eq. ~15! is plotted.

FIG. 20. Simulated CDM data for a universe with no topolog
The standard map of the surface of last scatter is shown on the
On the bottom left is the mapA(n̂) and on the bottom right is the
mapCz(n̂).
6-9
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JANNA LEVIN et al. PHYSICAL REVIEW D 58 123006
In general we suggest a two-step investigation to obse
topological lensing as the data becomes available. Firstl
is advantageous to smooth the data on some small s
Correlations can then be read off more easily from
smoothed map. Secondly, the unsmoothed data can the
exploited to measure the temperature variation across
spot at the location indicated by the correlated signal. T
measured spectra of the related spots can then be comp
If the spectra match, topologically lensed images have b
measured: a correlation measure across two spots ca
used to confirm lensed copies of a fluctuation. The sm
scale structure of the two regions should be almost identic2

although large-scale effects such as the subtraction of
CMB dipole, or the integrated Sachs-Wolfe effect in op
spaces may cause a difference in the mean temperature o
two patches. In practice, a generalization of Eq.~15! such as

j~xW !5S dT~xW2xW spot!

T
2

dT~yW2yW spot!

T D 2

~16!

where the temperature fluctuations are defined with res
to the local mean temperatures of the spots, should do we
confirming lensed copies of fluctuations.

As we improve our understanding of the correlation fun
tion on short scales we might determine the spectrum of e
of these spots and use this information to distinguish fi
tious correlations from the real thing. In an actual realizati
all of these correlated spots will be there under a web
spurious correlations due to cosmic variance. These ran
correlations can be distinguished much as foregro
sources are distinguished from the galaxies they occult. S
rious correlations will not be distributed on rings, nor w
they have the characteristic size and spectrum of the to
logical correlations. Cosmic variance as a form of cosm
noise could thus in principle be subtracted off the ma
Again, the task is similar in spirit to distinguishing the grav
tationally lensed images of a quasar from other unrelate
foreground sources.

III. THE HYPERBOLIC ZOO

We turn now to the application of our correlated sphe
to compact hyperbolic universes. Compact hyperbolic spa
are inherently chaotic. The exponentially deviating trajec
ries of geodesic motions on a space of negative curva
mix and fold chaotically through the space as they exit a
enter the multi-faceted fundamental domain. Chaos end
these spaces with many intriguing properties, including fr
tal structures within the pattern of entangled geodesics.
patterns inscribed in these skies thus promise to be intric
Primordial quantum fluctuations which ultimately seed t
hot and cold spots are described by quantum chaos for w
there are very different predictions than for nonchaotic qu

2The sphere of last scatter cuts through the same 3D volume
ferently, so even if a point is identical to another on the SLS,
surrounding small region can be a slightly different sample of
3D patch.
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tum systems@22#. The assumption of a flat, Gaussian seed
spectrum of perturbations may be a poor one.

While complicated, these spaces are not obscure. The
a countable infinity of topologically distinct compactH3

spaces, although they have yet to be completely class
@23#. Furthermore, observations favor a universe with s
critical density. There is therefore considerable interest
understanding the predictions for these spaces. Regardle
how predictive maps are produced, the ultimate question
how do we analyze the CMB data to search for topolo
Canonical treatments rely on angular averages which sm
out patterns and a likelihood analysis based on Gaussian
tistics. While this may have some restricted meaning, it
dangerous to draw precise conclusions from a Gaussian
tropic probability distribution when the space itself destro
isotropy and the primordial spectrum is unknown. Furth
more, it requires a case by case analysis and may even
pend on the location of the observer.

This implies that a statistical analysis of the data requi
a model template. If the universe is not a perfect manifold
constant curvature the template match is lost. Instead of
ing the statistical fit of the data to an infinite number
models we can just take a picture of the sky and from t
obtain a picture of correlated maps. As already argued,
spectrum of the spots can be measured to judge if we
really looking at the topological lensing of the horizon at t
time of decoupling. The idea of combing the data for circ
in the sky also shares the model independence feature
motivation.

We apply our method to two small hyperbolic topologie
the Weeks space and the Best space, named after their
coverers. The Best space is a compact hyperbolic mani
obtained by identifying the twenty faces of a regular icos
hedron@24#. The Weeks space@25# has a more complicated
fundamental domain with 18 faces and is of particular int
est since it is currently the smallest compact hyperbo
space known.

A. Strong patterns in a Weeks space

It is advantageous to considerH3 embedded as a 3D sur
face in a 4D Minkowski spacetime. The universal coverH3

is then a pseudosphere and the 4D coordinates are restr
to the 3D surface with pseudoradius21,

2u0
21u1

21u2
21u3

2521. ~17!

The isometries ofH3 can then be written as 434 matrices of
the special Lorentz transformations. The coordinate trans
mation

u05coshr

u15sinh r sin u cosf

u25sinh r sin u sin f

u35sinh r cosu ~18!

if-
e
e
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HOW THE UNIVERSE GOT ITS SPOTS PHYSICAL REVIEW D58 123006
recovers the cosmologically familiar form of the 3D metr
distance in comoving coordinates,

ds25dr21sinh2r ~du21sin2udf2!. ~19!

The geodesics take on a particularly simple form@26# in
the Minkowskian space. For simplicity, we tended to lea
the Earth at the origin. For completeness, we mention how
move the Earth away from the center of the universe. If
align the Earth with thez-axis at positionue

m5(ue
0,0,0,ue

3)
we can Lorentz boost the Earth to the origin with the tra
formation

L5S g 0 0 2gb

0 1 0 0

0 0 1 0

2gb 0 0 g

D ~20!

andg[ue
0 andgb[ue

3 . A photon observed in the directio
n̂ hasv̂52n̂ and thus originated on the SLS at coordina

u5L21S coshDh
n̂ sinh Dh D . ~21!

This can easily be generalized to an arbitrary location w
an arbitrary Lorentz boost.

The radius of the SLS,Dh, depends on the value ofV0
and the redshift of last scattering. In general,

h5arccoshS 11
222V0

V0~11z! D ~22!

in units of the curvature radius. The volume of the SLS i

VSLS5E sinh2rdrdV

5p„sinh~2Dh!22Dh…. ~23!

The volume of the SLS grows exponentially with tim
Therefore, many more copies of the fundamental domain
be contained within a surface of last scatter. The numbe
copies is a topological invariant, quite unlike in flat space.
flat space, one is free to set the volume of the manif
relative to the volume of the SLS arbitrarily. This is n
possible forH3, as is ensured by the rigidity theorem@27#,
which states that the volume in units of the curvature
fixed. A peculiar consequence is that the volume of a ma
fold is a topological invariant. In effect, if we measure topo
ogy we can refine our measure of the radius of the last s
tering surface and therebyV0 . In other words, we can us
topology to measure curvature.

In order to compactify the space, we consider the spec
example provided by the Weeks space. The fundamenta
main is a polyhedron with 18 faces and 26 vertices show
Fig. 21 which was taken fromSnapPea, a census of compac
hyperbolic manifolds@28#. The Weeks space is the smalle
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3-manifold known with a volume of.0.94. With V0
50.3, and the redshift of last scattering taken to bez
51100, soDh52.328, we getVSLS5150.64, and so there
are roughly 150 copies of this universe within the SLS. W
V0.0.6, Dh;1.5 and there are only about 5–6 copies.

There are 9 identification rules to glue these 18 faces
pairs. The 9gi can be used to define a set of generators w
many relations among them~such a set of generators wa
also used by Fagundes@29#!. They are related to the word
a,b of a much simpler presentation of the fundamental gro
$a,b:ababa21bba21b,abab21aab21ab%. We extract
from SnapPeathese nine face-pairingO(3,1) matrices and
their inverses out to 12 significant digits. It is necessary
use extremely precise matrices due to the chaotic flows.
sensitivity to initial conditions causes the image points
quickly be lifted off the pseudosphere if insufficient prec
sion is used.

The image points are denoted byym in Minkowski coor-
dinates:

ykn , . . . ,k1

m 5)
i

n

gki
u8m

andki561,..,69. Since we number thegk from 1–9, letg0

be the identity so thaty0
m[u8m. We want to find the closes

separation betweenum and any of the image pointsym. The
gki

. . . gkn
form words of lengthn where n is the highest

order of the farthest neighbor.
Another way to count copies is to count periodic geod

sics. The identification rules correspond to the minim
closed loop geodesics. The number of geodesics of lengL
goes as

N~L !;
ehL

hL

which is a result from chaos theory, with the Kolmogoro
Sinai entropy determined by the volume scale,h;V21/3. If
we assume crudely thatL5nV1/3 so thatn is the order of the
neighbor, that is, the length of the wordym, then

N~n!;en/n.

FIG. 21. The Dirichlet domain for the Weeks space.
6-11



ie
a

r

o
m

o

o
th
s

ta

o
c

th
b-
n

o
ac

ca
ac
ly
cte
ca
tin
in
i-
n
b
n
th
n
tio
a

ig.
p.
o-

e
se-
the
ical
axis
nd

lic
face

an
er-
out
the
r at
the
to

hy-

ing
ular

he

JANNA LEVIN et al. PHYSICAL REVIEW D 58 123006
So, for V050.3, the SLS encompasses roughly 150 cop
of the fundamental domain and includes copies which
between 6 and 7 words away. ForV050.6, the farthest
neighbors are about 3 words from the origin. The 9 gene
tors and their inverses combine to form 18n words of length
n but as a result of the many relations among thegk , all but
N(n);en/n of these are repeats. Scanning the 18n possible
imagesNpix3Npix times is a huge numerical demand. T
manage the task we use the following numerical algorith
which is analogous the scheme used in the flat cases:

~1! Move the pointu on the SLS in towards the origin tw
steps to the image pointsyk2k1

m 5gk2
gk1

um. Out of these 182

points, select the three nearest the origin.
~2! Move these 3 images two more steps and keep the

image nearest the origin so that it is essentially within
fundamental domain. Depending on how many neighbor
within the SLS, step~2! can be repeated.

~3! Repeat the same steps to the pointu8 being compared.
Both points should now be located within the fundamen
domain.

~4! Keeping one image fixed within the fundamental d
main, move the other within two neighbors until the distan
between the two images is minimized.

~5! The geodesic distance on the pseudosphere is

d~ym,y8m!5arccosh~y0y802yW•yW 8!. ~24!

We use this in our approximation

CM~ n̂,n̂8!'CU@dmin„xW~ n̂!,xW8~ n̂8!…#, ~25!

where we use the angular correlations obtained from
CMBFAST code, withVb50.05 and the remainder of the su
critical density is assumed to be made up of nonbaryo
dark matter.

It is important to note that in a negatively-curved cosm
there is, in addition to the Sachs-Wolfe effect on the surf
of last scattering, an integrated Sachs-Wolfe~ISW! contribu-
tion to the perturbations. The ISW effect is due to the de
of the gravitational potential as the photons transit the sp
Although we have not yet fully included the ISW effect, on
the fluctuations on the largest scales should be affe
whereas spots probe small-scale physics. On those s
where the ISW effect contributes the geodesics are devia
sufficiently so that photons that originated in the same vic
ity quickly take different paths with different decaying grav
tational potentials. Correlations will not therefore be e
hanced. One might fear that topological correlations could
erased by the different histories of the two initially adjace
photon trajectories. Since the ISW effect does not effect
Doppler peaks in an infinite cosmos, it should leave the u
verse’s spots unmarred. The next phase of investiga
should include the ISW effect. Our maps correspond to d
for which the lowest multipoles have been cleaned off.
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An antipodal map for the Weeks space is shown in F
22. There is clearly topological lensing evident in this ma
The stripey features are significantly different from the ge
metric spots seen in theA(n̂) maps of the flat spaces. Unlik
all of the flat spaces, no obvious axis of symmetry is
lected, which is to be expected given the geometry of
fundamental domain. The appearance of strong topolog
correlations in the future data and the absence of a clear
of symmetry under antipody would implicate a compact a
curved universe.

Another revealing correlation function for the hyperbo
spaces compares a random point with the rest of the sur
of last scattering,C(um,n̂), as shown in Fig. 23. This is
unlike any correlation we have considered so far, but it c
clearly be quite successful at uncovering geometric prop
ties. As in the flat universes, the spots are likely spread
since we have not accounted for the discretization of
harmonics of the finite box which causes big dips in powe
large modes, especially for such a small space. Again,
inclusion of a huge number of terms would be needed
incorporate this effect. We also computeC(n̂,g8n̂/ig8n̂i) in
Fig. 24. This transformation combines a boost along the
perbolic surface with a rotation.

B. The Best patterns

Best built three compact hyperbolic spaces by identify
the faces of an icosahedron possessing twenty triang

FIG. 22. An antipodal map for the Weeks space withDh
51.5.

FIG. 23. Correlation with a random point and the rest of t
sphere for the Weeks space withDh51.5.
6-12
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faces, as shown in Fig. 25. All of these spaces have volu
V54.6860342738. The smallest geodesic ball which can
compass this space has a radius of radiusr .1.38 while the
largest sphere which can be inscribed within the icosahed
has radiusr .0.87. For a rough estimate of the number
copies we countN5VSLS/V. With V050.3, there are on the
order of 32 copies of this Best space within the SLS.

The faces are identified with 10 generators, the ma
representations for which can again be found inSnapPea.
The abelianized homology group isZ/35. Fagundes also
studied this space and, in particular, the occurrence of p
odic quasar images@30#. The other three non-isomorphi
Best spaces with icosahedra as fundamental domains
different fundamental groups and homology groups ofZ/29
and Z/23Z/2. To construct our maps, we follow the sam
procedure as detailed for the Weeks space.

The map ofA(n̂) is shown in Fig. 26. Antipody outlines
pairs of identified triangular faces and also locates circ
Clearly a symmetry group for the Best space is located
this map. The cosmic soccer ball in Fig. 27 is the correlat
of one point on the SLS with the rest of the sphere. The po
happens to be very near the origin of one of the copies of
icosahedron. The patterns in the plot reflect the extreme s
metry of the fundamental domain and also hint at the fra
nature of the geodesics. Notice the five-pointed star s
rounding the tetrahedron. In the triangular corners of
five-pointed star there appear to be six-pointed stars
rounding hexagons.

FIG. 24. The sphere correlated under the transformationg8 .

FIG. 25. The Dirichlet domain for the Best space.
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Both Figs. 23 and 27 are ensemble averages. To draw
the topologically lensed images in an actual observation,
need to define a quantity such as

j~ n̂!5S dT~ n̂0!

T
2

dT~ n̂!

T D 2

~26!

where n̂0 is the point to be compared with the rest of th
sphere. As detailed in Sec. II B, such a procedure loca
candidate topologically lensed images. The spectrum ac
the candidate clone can then be measured and compared
that of the original point to ascertain if it is a good fit to
clone or nothing more than a random correlation.

As data from the planned satellite missions becom
available, the CMB can be scanned for any hidden geome
features. In the meantime, these correlated spheres show
huge potential for a pattern-oriented search of topolog
lensing.

Our real-space approximation allows one to calcul
temperature correlations while avoiding the analytically
tractable eigenvalue problem on compact hyperbolic
spaces. Once a candidate compact universe has been e
lished, such templates are useful for deeper statistical stu
@9#. However, an observational search for topology throu
large-angle temperature correlations can be made witho
particular template being presupposed. This model indep

FIG. 26. The map ofA(n̂) for the Best space withV50.3.

FIG. 27. The correlation of one point on the surface of la
scatter with the rest of the sphere. The point is near the origin
one of the clones of the fundamental domain.
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dence of a pattern-driven approach is particularly import
because it allows us to take pictures even if the space d
not have constant curvature, if observations depend stro
on the location of the observer, or if chaotic mixing leads
unusual primordial spectra. Since we cannot predict topol
within existing theories, we need this flexibility.

While general relativity predicts the evolution of curv
ture, it does not specify the topology of space or of spa
time. Only a theory beyond Einstein’s will be able to ful
specify the geometry of the universe. Supergravity theo
necessarily acknowledge the importance of topology
compact hyperbolic cosmologies have even recently b
studied as a consequence of string theories@31#. However the
universe was born, it was endowed with some topology
will have a place in our cosmic zoo. Astronomical studies
the topology of the universe may provide the most import
insights into those aspects of the fundamental laws of Na
that dictated the global character of the space in which
live.
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Geometry effects not just the large-scale universe,
also the animals which inhabit it. As progeny of the univer
animals inherit certain cosmic blueprints. Perhaps it is o
fitting that many analogues to the cosmic patterns could
found here on Earth on the backs of insects, in animal ma
ings, even in human made monuments. If we could crea
zoo of universes, each with a different topology, we mig
replicate all the animal markings from zebra stripes to le
ard spots.
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