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The universe displays a three-dimensional pattern of hot and cold spots in the radiation remnant from the big
bang. The global geometry of the universe can be revealed in the spatial distribution of these spots. In a
topologically compact universe, distinctive patterns are especially prominent in spatial correlations of the
radiation temperature. Whereas these patterns are usually washed out in statistical averages, we propose a
scheme which uses the universe’s spots to observe global geometry in a manner analogous to the use of
multiple images of a gravitationally lensed quasar to study the geometry of the lens. To demonstrate how the
geometry of space forms patterns, we develop a simple real-space approximation to estimate temperature
correlations for any set of cosmological parameters and any global geometry. We present correlated spheres
which clearly show topological pattern formation for compact flat universes as well as for the compact
negatively curved space introduced by Weeks and another discovered by Best. These examples illustrate how
future satellite-based observations of the microwave background can determine the full geometry of the
universe[S0556-282(198)02124-9

PACS numbd(s): 98.70.Vc, 98.80.Hw

From the zebra’s stripes to the leopard’s spots, the animalan be generated. Such topologically induced pattern forma-
kingdom displays a diversity of coat patterns. Following thetion has already been seen in simulated maps of the micro-
innovative ideas of Turingil], mathematical biologists have wave sky[4,5].
posed and partly answered the question of how the leopard The diffusive processes in biological systems actually
got its spots. The fluctuation of enzymes diffusing throughsimplify an animal’s coat by singling out a particular mode
the developing embryo can lead to the spatial pattern formaand hence a particular pattern. By contrast, the universe con-
tion displayed by animal coats. Both the geometry and sizéains many competing modes. While some simple large scale
of the animal exert a strong influence on differentiating patpatterns are clearly evident in sky maps of the CMB tem-
terns. For instance, the broad cylindrical shape of the leopperature fluctuationg4,5], subtler patterns can be extracted
ard’s body favors spots while the tapered tail induces stripeffom the observations. In particular, a correlation in tempera-
[2]. Remarkably, these diverse features can arise from thiire between pairs of points can scan the map and select out
properties of simple solutions to second-order partial differ-geometric features. Maps of correlations for different topolo-
ential equations on the geometry and topology appropriatgies populate the cosmic zoo of possibilities displayed in
for animal limbs, tails, or bodies. Secs. Il and IIl.

Similarly, the global geometry of the universe can lead to CMB observations of the universe’s hot and cold spots
distinctive pattern formation by the normal modes of vibra-could be used as real-space pictures of geometry. With cor-
tion of the universe in the microwave sky, or even in therelated maps we could observe topologically lensed images
distribution of luminous ga|axies_ Unobscured by Comp"- of the horizon at the time of last scattering. The number and
cated evolutionary effects, the cosmic microwave backPattern of lensed images of the horizon provide information
ground radiation(CMB) offers the best site to seek out pat- about the geometry of the universe. A nice analogy is pro-
terning. When light last scattered off hot matter, smallvided by observations of grawtatlonal_ly lensed images of a
temperature fluctuations left birthmarks in the radiation.duasar, the pattern and number of which reveal the geometry
These hot and cold spots in the primordial radiation may p&f the intervening lens. The universe’s spots are too ;mall in
randomly distributed in an infinite universe, but if the uni- @hgular scale to have been detected by the Cosmic Back-
verse possesses a compact topology then distinctive patterB&und Explorer(COBE) but will be visible by the future

satellite missions, MARMicrowave Anisotropy Probeand
Planck Surveyar
) _ ) ) The fluctuations in the CMB can be described by decom-
For example, the two-dimensional Helmholtz equation posing the relative temperature fluctuationsT (X)/T
) Vig+Cg=0, _ _ _ =fd3IZ€zS|;¢|;, into a series of eigenmodes, each of which
with (n-V)¢=0 on the boundary, has solutions which describes 5 solution of Laplace’s equation on the curved space of the
different geometric tessellations of alternating regions with O . 2 12y g ~ . .
and $<0, [3]. For example, an infinite line of one-dimensional unlvorse, Vo+k)y=0. The gbk.are primordially seeded
stripes is described by the solutioris=coskx, with k=na for n  @mplitudes that on average define a spectrum of perturba-
—+1,+2,., whereas a solutiosh= [ coskx-+cosky], with k= t|on_s. Topology introduces boundary conditions Whlch create
or 2 describes a checker-board tessellation of space with alterna@ discretized set of wave vectors and complex relations be-
ing square spots, witih>0 and¢$<0, inclined at 45°. tween thegy [6]. This problem is tractable in the case of a
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flat universe but, for a compact hyperbolic space, the identi
fication rules lead to such intricate boundary conditions on

the modes that they cannot be decomposed analytitally |© J
This is a symptom of the chaotic hyperbolic flow of geode-
sics induced on these spaces. Microwave photons moving o
compact hyperbolic manifolds thus demand more indirect

methods of analysis. Cosmological observations favor a giG. 1. Two points may appear to be far apart but if we identify

negative curvature and mathematics favors compact hypegpposite sides of the rectangle we see that the same points are
bolic manifolds by providing an infinite number of candi- actually close together on the compact torus.

dates. The resistance encountered when subjecting these

manlfol_ds to conventional eigenmode treatments has sparkefle correlation function depends on only one parameter,
recent interest and produced several different approaches F%mely the angle between the two points on the sky, that is
the search for observational probes of the universe’s gIoba&(ﬁ A’)=C(6) where cogy=-A’. All of the informatior; in

topology. Three strategies have emerged: a search for circleg, homogeneous and isotropic Gaussian field is contained in
in the microwave sky8], a search for spatial pattern forma- c(o).
tion [4,6], and a direct attack via the method of images By contrast, topological identifications always break isot-
All three approaches are necessarily related. We will Se?opy (with the exception of the projective space 8% and
aspects of each emerge in our zoo of topological examples,, <t preak homogeneity as well. The hypertorugdiis the
For reviews and other interesting papers on cosmic topol(—)my homogeneous compact space. Consequently, the corre-
ogy see Refs10-13. lation function, C(f,A’), depends fully ond and A’ and
would require four dimensions for a full representation. Pre-
|. TOPOLOGY AND THE ANGULAR CORRELATION dicting C(h,A") is also more challenging on compact mani-
FUNCTION folds, particularly the compact hyperbolic spaces.

Compact spaces are specified by=U/T' whereU is the We will mt_roduce a real-space approximation wh_|c_h cap-
tures all the important features necessary for examining glo-

geometry of_the infinite space beforg any compa_ctification%al structure. Our approximation is based on two physical
are madel is also known as the universal covering space. ’

; : observations. First, two points which appear to be widely
'I_'he generat_orsgk} of the gro_upl“ _pro_wde the set of instruc- separated may actually be close together, as in Fig. 1: there is
tions for gluing together points ik in order to render the

space finite and multiconnected. The elementd dorm a not a unique distance between points. Secondly, the correla-

discrete subgroup of the full isometry group of the coveringtion between two points is strongly peaked around short
space. A finite geometry has the same curvature) ashe separations. While global topology drastically changes the

; ; . Ia{ge scale perturbations, it does not have a strong impact on
universal covering space is usually assumed to be a space 0

constant curvature, either the flgg, the negatively curved scales much smaller than the size of the physical space.
3 ) ' 9 y Therefore we expect the correlation function between nearby
H3, or the positively curve&®. The real universe does not

have perfectly constant curvature over the entire manifoldpomts to be well approximated by the correlation function of

) . . X a simply connected universe.
its true topologies will then be a deformatlon of perfect poly- Motivated by these two observations, we propose the fol-
hedrg. The Statement that .thef universe looks homogeneo ing real space approximation to the angular correlation
and Isotropic on average |nd|cates. that congtant Cu.rvaturfﬁmction: we take the correlation in temperature between two
W'". be a reasonable first assumption for finite manifolds oints on the surface of last scattering to be the correlation
Wh'ch are comparable to pr_smaller than the Hubble scale nction in a simply connected universe given their mini-
the visible universe. We limit ourselves to the subset of ob- ; :

' . . . . .. _mum separation, that is,
servationally viable manifolds with covering spaces of either

the flatE® or hyperbolicH? variety.

. ~A oA — U N > ~
In order to scan the sky for evidence of compact topology Cm(R,A")~C[dmin(X(R), X" (A"))], 2
we use the correlation function for the temperature at two
different points on the sky, whereCV is the correlation function on the universal cover,

X(h) is the physical location of a point on the surface of last

oT(h) ST(R") o, scattering, and,, is the minimum distance between the

< T T >=C(n,n ). @ two points in the topological space. To find the minimum
distance we locate the image points with the generators of

where fi is a unit vector pointing from the Earth towards the identifications. The point’ has first neighbor images at
some location on the sky. The sphere of radiugh defines locationsy,=g,X’' and second neighbor images at locations
the surface from which we receive last-scattered photondk,k, = 9,9k, X", etc. More concisely, the images out to order
The size of the radiug) #, is the conformal time between the m can be written as
time of last scattering and the present. The angular brackets

denote an average over all possible realizations. In a simply m

connected cosmos, the assumption that the hot and cold spots 5 _ H oy @)
; . o Yk, = L1 QX (A").

are homogeneously and isotropically distributed ensures that m [ '
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The image point which lands closest &§n) determines Instead of building fullsT(A)/T maps, we build selective
dmin- Note that all of the effects of topology appear only in correlation maps. An illustrative example is the antipodal
the minimization of the separation between the two pointsmap constructed by evaluating the correlation function at
Thus, the correlation function can be approximated usingntipodal points along the sky,

only a knowledge of the identifications that compactify the ) o

space: the very relations that are used to specify the topol- A(h)=C (A, —h). ®)
ogy.

Our approximation is closely related to the method of
images employed in Reff9]. The correlation function com-
puted by the method of images is a sum oaitof the copies
of the image points in the simply connected space with th
same curvature,

In a simply-connected universe &Y would produce on av-
erage nothing more than an overall monopole. Fortuitous
correlations may appear at random in a given realization but
éhere would be no defining structure. In a universe with com-
pact topology a great deal of structure can be surveyed by
means of this one simple correlation. While the best analysis
for any particular topology will make use of the full correla-

C(A,A")= lim X CU@d(f,yh") tion function, the antipodal map will prove to be a most
e—e N useful survey tool. To get a feel for the way in which corre-
p— lations reflect global topology, we make a gallery of corre-
v dr sinFrcY(r), (4) lated spheres first for all flat topologies and then for a few
0

choice compact hyperbolic spaces. We also consider corre-
lations under symmetries other than antipodal as the specific

the exponential proliferation of images, particularly r,

as the radiug, increases relative to the volume of the fun-
damental domair [9]. The y are composite elements of the Cy(R)=C (N, gfV||lgAl), (6)
group I'. Our approximation amounts to keeping only the

dominant term in the sum over images. Maintaining the firswwhere agairg is an element of the group. For the compact
term is by far less cumbersome than summing an infinitdhyperbolic spaces, we also correlate an arbitrary point with
number of terms and fares well in approximating the exacthe rest of the surface of last scatter. In many ways these
correlation function. The approximation is also quite valu-point-to-sphere correlations, are the most promising. They
able for our purposes since we are able to easily include theery dramatically reveal geometric patterns and they do not
essential effects of the smoothing across the horizon at theequire any foreknowledge of the symmetries of the space.
time of last scattering and the relevant microphysics at work

maps we consider correlations of the form

over small separations. The small-scale physics at the time of Il. THE COSMIC ZOO
last scattering is important for distinguishing topologically _
lensed images from fictitious correlations as explained in A. Flat topologies

Sec. Il B. The physical processes operating at last scattering Compact flat spaces have already fallen out of favor as
can in principle be folded into the method of images to refinesmall universes. The first suspect for investigation was the
our approximation and sharpen the focus on our pictures ofimplest hypertorul4]. The fundamental domain is a par-
geometry. The thickness and velocity of the surface of lashllelepiped with opposite faces identified in pairs. As shown
scatter will also induce additional corrections. A test of ourpy Stevens, Scott and Sil5], the square hypertorus suffers
approximation when applied to the flat geometries is given ina sharp truncation of long wavelength power in temperature
detail in Sec. Il B. fluctuations, too sharp to be consistent with COBE observa-
Given an estimate of the full four-dimensional tions unless the box is larger than about 40% of the observ-
Cu(R,A"), we could build realizations of a map 6T(A)/T  able universe. Later, anisotropic tori were studied in Refs.
for any topology, even without the eigenmodes. A given uni{16] using symmetry methods, and were similarly bound.
verse would be obtained by a random realization of aThe tightest limits on an equal-sided square hypertorus were
Gaussian-distributed variable with a me&dT(N)/T)=0  obtained in Ref[9] using the method of images, placing the
and varianceC (h,n"). However, we can do better. As topology scale just beyond the observable universe With
Cm(n,A") is a function on two copies of the sky, it neces- =2.19 » whereh is the length of the side of the square and
sarily must be calculated numerically lef,iX values, where Ay is the conformal time since last scattering.
Npix is the number of pixels into which the sky is divided. ~ With the universal covering space &f, there are only
This is cumbersome, if not practically impossible, to carryfive more orientable, compact spaces that can be constructed
out for many topologies on a reasonably finely grided sky18]. Three are built by identifying the faces of a parallelepi-
map, particularly if we aim at the resolutions expected ofped with relative twis{see Fig. 18 and two are constructed
future CMB satellite missions. Furthermore, many of theby identifying the faces of a hexagonal prism with the prism
peaks of this function occur at values whéreand i’ are  faces twisted by /3 or 7/3 relative to each other before
separated by a small angle on the sky. Since these poinkeing identified. In Refg6,17], we derived the eigenmode
would be close together regardless of global topology, muclspectrum explicitly for all twisted cases and showed that the
of the base space @ ,,(f,") is useless in discriminating angle-averaged power spectrum is incompatible with COBE
between topological properties of cosmological models.  for equilateral spaces unless the universe was very large, if
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FIG. 2. The hexagonal geometry. The prism face is glued with a
twist of 27/3 to create a topology distinct from the hypertorus.

0 50 100 150
e

not actually infinite (i.e. topological identification scale

=80%A ). The compact flat spaces are thus of limited in-

terest, although polyhedra with sides of disparate lengths

may still be viable. FIG. 4. CY(#) for a flat, COBE normalized CDM cosmology.
However, since we do have eigenmodes for all flat t0p0|0_N0te that the correlation becomes negative due to the definition of

gies[6], these topologies are important testing grounds fodT/T.

any method which attempts to circumvent the eigenvalue

problem. We therefore ugé® to test our real space approxi- Maps were built with our approximation axi not require
mation before moving on to compact topologiesHt the full mode solutionsWe locate a point on the sphere of
For illustration, we spend time explaining the features inlaSt scatteringSLS) x= A and compare the correlation of

the markings for a 2/3-twisted hexagonal prism. The mani- that temperature with i3t5 antipodal poiit=—Aph'. If the
fold is E3/T" with T" the group of instructions for identifying universe were simpl§e”, that is, flat and unconnected, then

the faces of the hexagon. Define a coordinate system tdpese points should be totally uncorrelated on average. Given

which &, is orthogonal to the hexagonal face and the nonthat this space is multiconnected, the two opposed points

orthogonal vector®,,&, span the face as in Fig. T is may in fact be close together as demonstrated for the 2D
generated by{g;,g,,gs} Where g, generates a rotation surface of F.ig. 1. We approxir_nate the corrglation between
through 2r/3 about the2, axis combined with a translation antipodal points as the correlation that the points would have
orthogonal to the hexagonal face through a distance, in a simply connected space given their minimum separation

effects a translation alon§, throughh, and g5 effects a as in Eq.(1). Antipody is then approximated as

translation alon@; also throughh. Another way to visualize (A(R))=CY[ dpmin(R(A), X" (— P))] (7)

E3/T is to glue copies of the fundamental domain together

according to the identification rules. In this w&} can be whereCY(6) is obtained fromcMBFAST [19] for a standard,

completely tilec! With_ Iaygrs of hexagons separated by theg|5t CDM cosmology Q,=.050.=.95H,

length of the prism direction. _ _ =50 km s Mpc™Y) with the dipole component calculated
We can use these symmetries to build the discrete spegg per a flat power spectrum. This is illustrated in Fig. 4. We

trum of eigenmodes which describe fluctuations on thisyinimize the distance by first taking the image of these

space as was done in R¢6]. Using these modes a typical points under the action of the generators of the gBumtil

map of 5T(A)/T for a simulated compact hexagonal universeye relocate them within the fundamental domain. Leaving

can be created. We show this for comparison in Fig. 3. Thergne of these relocated points fixed, we consider all images of

is something at work in the map &fT(A)/T butitis hard to  the second point that lie within one of the nearest neighbors

define. _ o _ of the fundamental domain, and choakg, as the shortest

_ If, however, we inspect the idealized zero-variance angjstance from the first point to one of these images. Note that

tipodal map, the pattern jumps out at us. These antipodainly by considering all of these images, including those that

are diagonally located relative to the fundamental domain,

= ,ﬂ‘ I can we be sure that our definition of distance depends on the
,fg ‘,.". f‘ o '3,."?9_ overall topology of the space rather than on the particular
w3 .'1?".) o ‘,ﬂ: “ R e .:Q’; coordinates that we use to fix the fundamental domain. This
7t AL < v - §3. M method results in an overall monopole component of the
“ o 7 ‘;"’— s ‘; 2¥ 11 o 3 antipodal map which we wish to discard. We simply remove
5'"{ AR ) LU R S the monopole as calculated from the antipodal map alone,
L35 xS ‘% :ri ,511‘1"},"‘/8" with the understanding that this is to be compared with a
RIS, s 2 X T measured map that is similarly normalized.
“"a-";k« /‘_’ﬁ’ ps L It is customary to use the Aitoff projectiofas in Fig. 3

to view the map ofsT(A)/T so as to see the entire sky. For
FIG. 3. A typical map ofsT/T(f) in a hexagonal prism with the antipodal map we prefer the orthographic projection
h=0.8A7. which shows the genuine shape of the surface of last scatter-
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Slice 1 copy

FIG. 5. Orthographic projection of Ajnat a resolution of 20
arcminutes for a hexagonal prism with=b=c=0.8A . The ob-

server is at the origin. ®
ing. In this three-dimensional view, the sky pattern appears °
to lie on a sphere. No information is lost by limiting our- \ .
selves to a view of only half the sky at a time since” A(® - \
by definition symmetric undetr.
There is clearly a hexagon in the antipodal map. The in- Q
tersection of the hexagonal layers with the spherical surface / . o o
of last scattering defines rings centered on the prism direc-
tion and are clearly picked out by A(n(see Fig. 5. The @
rings of correlated spots occur since the correlation between
points on the sphere of last scattering separated fiyr this FIG. 6. The surface of last scatter intersects the layered tiling of

geometry is the same as the correlation between oppositélgt.Spac.e- Ea(.:h full tile represents a copy of the funQamentaI do-
sides on a circular slice through the sphere taken along th@ain. Slice 1 is represented on the lower left and slice 2 on the

hexagonal plane, as demonstrated in Fig. 6. The bright pril_ower right. The dots show correlated points picked up in the an-

mary spots are identical points at the core and are just cofPedal map and explain the emergence of the hexagonal geometry
related away from the center. In addition to these identical” Fig. 5.

images, there are also secondary spots picked up due to t
correlation of regions which just near each other.

These rings of structure are not the circles of the sky o
Ref.[8]. As pointed out there, pairs of identical circles occur
in the microwave sky due to the intersection of the surface o
last scattering with copies of itself. None of the circles are
located by A(M for the 27/3 twist because none of the
circles in this space are paired undermesymmetry. For

H?e signal to noise sensitivity of the detector. However, any
xperiment with high enough resolution and sensitivity to
robe the Doppler peaks will be able to resolve these patterns
n the sky. The planned missions MAP apldnck Surveyor
ould thus be able to detect the universe’s spots.

The other topology built from the hexagonal plane tiling
involves a relative twist of the prism face througti3. As

i i . h seen in the left-most panel of Fig. 8, there are again corre-

rings separated along the prism direction by multiplesaf 3 lated spots on rings. When we make the space sufficiently

t_he hexagonal faces ha\_/e cor_npleted a full rotation anq a%mall so that at least three copies of the fundamental domain
tipody compares one point to_ Its opposite f'?‘ce- We continu it within the SLS the first pair of circles appearsAitf), as
to call the concentric collections of spots in the correlate shown in the right-most panel of Fig. 8.

A(h) maps “rings” and we reserve ‘“circles” for intersec-
tions of the copies of the surface of last scattering with itself.
So, the primary spots on a given ring lie on different pairs of
circles in the sky. The rings of secondary spots do not lie on
circle pairs.

As the topology scale gets smaller, there are more rings of
patterns and the first ring appears closer to the caps as shown
in Fig. 7.

The size of a spot will be set by the Silk damping which
smooths fluctuations on small scales. For separations which
exceed this length, we expect correlations quickly to die off.
Since the Silk damping scale is smaller than the horizon size
at the time of decoupling we expect the angular size of these
spots to be too small for COBE to have detected. The beam
smearing in the COBE experiment would dilute a spot over FIG. 7. Orthographic projection of Ajrfor a hexagonal prism
such a large angle that these bright markings would be belowith h=b=c=0.6A .
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FIG. 8. A(h) for a hexagonal prism with ar/3 twist h=c FIG. 10. A(H for a m/2-twisted space.
=0.75\ 5; there are no circles. To the right tzedirection is .24
while h=1; there are circles.

[ 2

C y(N,giv||gf|). In this way the entire fundamental grolip
can be isolated, thereby determining the full geometry of the
pace, as was also suggested in [R2d)].

The indicator A(W) is particularly convenient because it
is not to say that the hypertorus has no circles, just that nonga" be v_|suaI|zed_ on an half-spherg without the sp_ecmcatlon
of the pairs of circles are rotated byrelative to each other. ofa par_tlcular axis, but once an aX'S.Of symmetry is chosen,
Since the hypertorus does not involve any rotations of thecor_relatlons at other angular separations can similarly be_ ex-
faces, all three directions are picked out equally by antipoda m'?rff %,f;ﬁgr:ﬁ?ﬂzg sggrr:] aarcgr{ﬁéatlgri\r,xv;ez)c (?{Qsmer
pairings, as seen in the small torus of Fig. 9. The squarg " . i ~ ) forthe h y ; P fsi %4 ,f t'h SLS
geometry of the fundamental domain is blatantly traced ou € point &,y, —2) or the hypertorus of size 1.4 of the SL>.
by the correlated spots leading to the disco ball effect. € assume thgt this axis h"’!S been identified by examining

For the twisted parallelepipeds, A(will locate the axis the ove_rall an'u_podal properties Qf the sky. We expect th|_s
of symmetry along which the facés are twisted. The Corre_correlatlon to pick up circles and it does, as demonstrated in
lated spots still trace out the symmetric square of the eqmt_heAzlgénlc}ther example we compare, for the2-twisted
lateral untwisted directions, as shown in Fig. 10. For 2 space of size 0.4 the radius of the SLS, the correlation be-

twisted space, the circles appear in"A(h more than two . .
copies of the fundamental domain fit inside the observabléwfaen two points sepgrated by a rotationdg ar_ound thex
axis. In Fig. 12 we display the result of applying the corre-

universe. At least one pair of circles will appear always forlation function
the m-twisted space as well as for the last compact topology
built by gluing a parallelepiped by a series of diagonal trans-

The other four topologies are built from a parallelepiped
as the fundamental domain, as for the simplest hypertoruss.
No circles will be located by A{nfor the hypertorus, which

lations andsr twists. C [ dmin(X( 0, $),X' (6, ¢+ m/2))]. €)
The menagerie in this flat zoo is a testament to the influ-
ence of geometric patterns on the universe’s markings. An B. Observing the universe’s spots

antipodal correlation is just one statistic but note how clearly . . .
antipodal correlations reveal the other symmetries of the Our topological zoo Of. maps makes a compelling visual
space. For instance, the prism direction perpendicular to th@'gument for a pattern-driven approach to the search for cos-
hexagonal face is clearly identified. Once the symmetries ofiC topology. Nevertheless, they are still only ensemble-
the space do begin to become apparent, the future data on tA¥€r2ged images calculated using an approximation method.

CMB can be systematically scanned for correlations undefS the_ rea_l microwave sky contains no such averages or
other symmetries of a given topological Space:approxmatlons, we are left wondering if we should believe

our eyes.

FIG. 11. The sphere of correlatio@f(x,y,z),n(X,y,—z)) for
FIG. 9. A(M) for the torus withh=b=c=0.31A 5. the hypertorus. The topology scale is 8
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0 %

FIG. 12. The correlated sphere comparing points on the surface ) ] ]
of last scatter with points related byz2-twist around thez-axis. FIG. 13. A comparison of the real-space approximated antipodal
The space is ar/2-twisted square with sides of length 0.4 map (left) with the exact ensembled-averaged nteght) for a

torus space witth=b=c=.8A 7.

In this section, we address the accuracy of our method by L ,
comparing our approximate maps with exactly calculatectems from the fact that our approximation does not incor-
ensemble-averaged maps as well as with simulated realizROrate the damping of power at low wavenumbers due to the
tions of the microwave sky. We consider the flat hypertorugliscretization of eigenmodes on the compact space. Thus

which has a simple eigenmode decomposition of the temC "[dmin(X(R).X' (7"))] falls off more slowly than the corre-
perature fluctuations sponding correlation function on the compact space.

This discrepancy can be remedied by replacing @ve
oT N o with an angular correlation function from which the lowest
?(”)“z PrexpiAzk-h), (9  multipoles have been removed. In the case dizab=c
k =0.8 space, the damping is well approximated by removing

e D R : : the dipole, quadrupole, and octopole terh3]. This results
with k=2m(n,/hny/b,n,/c). The ¢y are primordially . thepappr?)ximatg map shownpin Fig.r[14], which is quite

seeded Gaussian amplitudes that obey the reality conditio} L .
b y v éﬁlose to the exact result. In principle, the broadening of the

- % N 1 . . .
$x=¢_; and as an ensemble define the spectrum spots can also be removed by including more terms in the
02 method of images expansion, E@). In practice, however, a
(™) = 13 P(K) S i - (100  cumbersome number of terms have to be included in order to
K k ’ begin to approach the exact result, with the maps actually
. . . . __getting worse before they get better.
]\cN'tht.th'Sb dtt\el;:ompoau?n we_ctan cotrr]]struli:t the correlation The question remains how to analyze real data so as to
unction between any two points on the sky as extract patterns with confidence. It is customary in an analy-
ST ST sis of CMB observations to take angular averages in Fourier
C(h,pn")= <?(ﬁ) ?(ﬁ')> space. All standard methods thus smear out the very patterns
we seek. Instead we advocate that the correlation maps be
treated as real space pictures of geometry. As such, they are

“E Pk) expli A 77|2. (A—A")). akin to pictqres of a galaxy or to observations of gravitation-
ok ally lensed images.
(13) All of the previous correlation maps are ensemble aver-

. . . . ages. Since we have only one universe to observe and onl
The antipodal correlation on the hypertorus is the simple 9 y y

case,C(h,—N), and

P(k *
(A(R))x >, %)exp(iZA 7K- 1) (12)
k

up to an overall normalization. This is nothing more than a
Fourier transform of the power spectrum, and can be com-
puted exactly.

In Fig. 13 we compare the results of our approximation
with the exact eigenmode decomposition of ER) for the
case of the hypertorus with=b=c=0.8. In both calcula-
tions, we take a simple flatP(k) =1] power spectrum with
no additional physics added.

In both maps the small-scale structure and location of the FIG. 14. Real-space approximated antipodal map, calculated

spots are identical, but in the approximate map the largefrom a flat power-spectrum in which the dipole, quadrupole, and
scale features of the spots are smeared out. This smearingtopole have been removed.
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FIG. 16. The power spectrum as a functionkdf ».

=<1.2. As reported 6], the lower limit onk is fixed by the

el dimensions of the fundamental domain, while the upper limit
Multipole I is constrained by the resolution grid kaspace used to gen-

erate a given realization. We used a gridmhyn,= 256°

_FIG. 15. Upper panel: the unsmoothed numerical CMB datag|ements irk-space which we fast-Fourier transformed back
with 1024x 513 pixels for a small square hypertorus with side of .

i L - _“"into real space to calculate odif (A)/T spectra. The maxi-
length 0.2 7. Lower panel: the power spectrum for this simulation. . L
mum wavenumber for a given realizationkig = nym/h. It

one realization of the data we might worry that cosmic Vari_is_apparent. fro”.‘ Eig. 16 that it Is unnecessary ta go beyond
this resolution limit to probe down to the accuracy of our

ance would drown out any of the features of topology in a imat i
given realization. We are unable to combat cosmic varianc@‘p‘_)l_rox'm":‘)te -powiz Spec ruml. ¢ c

by averaging over the sky since it is precisely such averaging 0 02 am € anguiar  power Spectrum\,
which we are trying to avoid. We have numerically simu- _:2m|"?"m| /(2| +1)’ we decor_nposeAthe temperature fJuctua—
lated high-resolution observations of a toroidal universe td'onS Into Z%he(;'cal harm?nrllcs?T(n)/'l(';?ma.lemd(nb),
demonstrate what future satellite observations will offer.USI"9 & Modilied version o the fast code eveloped by Mu-
Cosmic variance is not a terrible hindrance and we are ablgiacciaet al.[21]. The power spectrum of the simulation can

to extract the correlated information from the high-resolution e seen at the bottom_ of F|g..15. Notice the enhancemenF of
simulations. power due to the multiple copies of the fundamental domain,

The map of5T(A)/T at the top of Fig. 15 is a simulation 2 feature alrgady noted i|j Réﬂ.?].'Wh.iIe theC,’s certa}inly
of an all-sky map generated using the explicit eigenmodes df© ot contain all of the information in a map 61/T in a
(9). The physical processes at work on very small scaledniverse with mu.ltlconnec.ted topology, the. sp?ctrum does
were modeled so as to emulate the Doppler peaks of a fi€veal the essential behavior 8T/T at very highl’s where
CDM universe. To obtain fairly accurate maps we have tdi©P0logy is less influential. _ _
keep account of the physical processes at the epoch of de- 1n€ leftmost panel in Fig. 17 is Ehe antipodal map from
coupling which determine the shape of the spectrum. At deth€ data smoothed on scales of 1.5°. We smooth the map of
coupling, the comoving length of the horizon igyec Fig. 15, as though the dgta were convolved with an experi-
~10"2A 7, which is presumably far smaller than the dimen-mental beam, before taking the_ product map. The ensemble
sion of our fundamental domain. The causal processes thgerage computed from E@L2) is shown in the rightmost
modulate the spectrum are therefore not modified by the
compact nature of the space. In this case we can use a sui
able function forP(k) which is able to reproduce the height
and position of the first Doppler peak in a flat CDM uni-
verse. The function we choose is the following:

P
(g) :(Kn—1+ Kn+l+ Kn+3)exrx— K2/4) (13)

K

wherex=10"2kA 5 andn is the primordial fluctuation spec-
tral index. We show this function in Fig. 16. In the same
figure we also show th&-range covered by the model we
examined. With the power spectrum of E3), the relative FIG. 17. The simulated data shown in Fig. 15 is smoothed on
height of the first Doppler peak and the Sachs-Wolfe plateadcales of 1.5°. The antipodal maeft) is then read off the
are in good agreement with a flat CDM model for €188  smoothed data and compared with an ensemble avériagd).
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FIG. 18. On the left is the correlated spheZg(i) defined in FIG. 19. On the left i<C,(h) read directly off the numerical data
Eq. (14) read directly off the numerical data. On the right the quan-for the larger torus of size 0.A% smoothed on scales of 0.5°. On
tity &,(f) of Eq. (15) is plotted to draw out the circles. the right&,(A) of Eq. (15) is plotted.

panel of Fig. 17. Clearly, the realization shows the structurdor the unsmoothed data, in the rightmost panel of Fig. 18.

of the ensemble average. While this small universe can b&his measure of the temperature difference singles out the

ruled out with the COBE data due to the conspicuous lack ofircles.

power on small scalgsl5,6], the pattern would go undetec-  For a larger square torus of sihe=0.41A 7, the correla-

ted in the existing satellite data. If we had smoothed orfion C,(f) of Eq. (14) also finds faint circles. Figure 19

scales of 7° to emulate the COBE experiment, any definitivéhows the occurrence of circles in the sky at latitudes of

pattern would have been washed away. The much highedround 55°, 38°, 24° and 12°. The left figure is a map of the

resolution of MAP andPlanck Surveyois required to mea- Simple correlation functiorC,(f) of Eq. (14) smoothed at

sure the universe’s spots. 0.5° while the right figure locates the circles more distinctly,
The very small space was chosen for dramatic effectwithout smoothing, by plotting thé&,(f) of Eqg. (15). The

Since these spaces sample Ibmodes more sparsely, there thin dark circles are the collection of identical points for

is less cosmic variance in some sense and the patterns amdich &,=0.

easier to detect. The large spaces can suffer more contami- For contrast, we compare the predictions for a hypertorus

nation from lowl modes. To recover the bare information in With those for a simply-connected flat cosmos. Figure 20
the ensemble averages, the |ldwmodes may need to be shows a realization of the SLS for a flat CDM universe. The

cleaned from the larger spaces. data is again smoothed on scales of 1.5°. The llawodes
We also consider the correlation which compages  Mmissing from the map in Fig. 15 are clearly present in an

—2, as this is a true symmetry of the space. If we align thenfinite universe. There is no evidence of a pattern in antipo-

fundamental domain with thé axis of the SLS, then the dal correlations, nor in the&,(n,n'(Zz—~2)), as demon-

correlation compares points in the directidifg, ) with  Strated in the bland pictures of Fig. 20.

points in the directio’ (7— 0, ¢):

C,(M)=C((0,0).(7m—0,8)). (14)

Notice that even in a universe with no topology there will be
some structure in such a correlation function. The equator sc
defined is always compared with itself and so shows more
correlations than the poles even without multiconnected
identifications. Since this is an actual symmetry of the hy-
pertorus we should find 10 circles in one hemisphere for the
small space of sizb=0.21A 5. We pick up nine circles at
latitudes 64°, 53°, 44°, 37°, 30°, 24°, 17°, 11° and 6°, and
ten if we include the one identified point at the poles, as
shown in Fig. 18compare with Fig. 11 It is difficult to see
that these spots do in fact lie on fully correlated circles. After
all, the maps only represent the simple product
ST(R)ST(A')/T2. A measure of the correlations across the
pairs of circles would draw out the feature more crisfdge
also, in this connection, the statistic suggested in F&dj.

To illustrate, we plot the quantity ) . .
FIG. 20. Simulated CDM data for a universe with no topology.

The standard map of the surface of last scatter is shown on the top.
_ 2
A\ 6T(0,¢) 6T(m—6,9) On the bottom left is the map(h) and on the bottom right is the
§z(n) - (15) ~
T T map C,(h).
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In general we suggest a two-step investigation to observeum system$22]. The assumption of a flat, Gaussian seeded
topological lensing as the data becomes available. Firstly, ispectrum of perturbations may be a poor one.
is advantageous to smooth the data on some small scale. While complicated, these spaces are not obscure. There is
Correlations can then be read off more easily from thea countable infinity of topologically distinct compaét®
smoothed map. Secondly, the unsmoothed data can then bpaces, although they have yet to be completely classified
exploited to measure the temperature variation across tH@3]. Furthermore, observations favor a universe with sub-
spot at the location indicated by the correlated signal. Theritical density. There is therefore considerable interest in
measured spectra of the related spots can then be comparemderstanding the predictions for these spaces. Regardless of
If the spectra match, topologically lensed images have beehow predictive maps are produced, the ultimate question is,
measured: a correlation measure across two spots can hew do we analyze the CMB data to search for topology.
used to confirm lensed copies of a fluctuation. The smallCanonical treatments rely on angular averages which smear
scale structure of the two regions should be almost iderftical out patterns and a likelihood analysis based on Gaussian sta-
although large-scale effects such as the subtraction of thistics. While this may have some restricted meaning, it is
CMB dipole, or the integrated Sachs-Wolfe effect in opendangerous to draw precise conclusions from a Gaussian iso-
spaces may cause a difference in the mean temperature of thepic probability distribution when the space itself destroys
two patches. In practice, a generalization of Eldy) such as isotropy and the primordial spectrum is unknown. Further-
more, it requires a case by case analysis and may even de-
[ OT(X=Xspod  OT(Y—Yspod |2 pend on the location of the observer.
§(x)= T - T (16) This implies that a statistical analysis of the data requires
a model template. If the universe is not a perfect manifold of
where the temperature fluctuations are defined with respe@onstant curvature the template match is lost. Instead of ask-
to the local mean temperatures of the spots, should do well iing the statistical fit of the data to an infinite number of
confirming lensed copies of fluctuations. models we can just take a picture of the sky and from this
As we improve our understanding of the correlation func-obtain a picture of correlated maps. As already argued, the
tion on short scales we might determine the spectrum of eacppectrum of the spots can be measured to judge if we are
of these spots and use this information to distinguish fictireally looking at the topological lensing of the horizon at the
tious correlations from the real thing. In an actual realizationfime of decoupling. The idea of combing the data for circles
all of these correlated spots will be there under a web ofn the sky also shares the model independence feature and
spurious correlations due to cosmic variance. These randofotivation.
correlations can be distinguished much as foreground We apply our method to two small hyperbolic topologies,
sources are distinguished from the galaxies they occult. Spiihe Weeks space and the Best space, named after their dis-
rious correlations will not be distributed on rings, nor will coverers. The Best space is a compact hyperbolic manifold
they have the characteristic size and spectrum of the top@btained by identifying the twenty faces of a regular icosa-
logical correlations. Cosmic variance as a form of cosmidhedron[24]. The Weeks spade5| has a more complicated
noise could thus in principle be subtracted off the mapsfundamental domain with 18 faces and is of particular inter-
Again, the task is similar in spirit to distinguishing the gravi- st since it is currently the smallest compact hyperbolic
tationally lensed images of a quasar from other unrelated ospace known.
foreground sources.

A. Strong patterns in a Weeks space

lil. THE HYPERBOLIC ZOO It is advantageous to consider embedded as a 3D sur-

We turn now to the application of our correlated spheregace in a 4D Minkowski spacetime. The universal cokr
to compact hyperbolic universes. Compact hyperbolic space$§ then a pseudosphere and the 4D coordinates are restricted
are inherently chaotic. The exponentially deviating trajectof0 the 3D surface with pseudoraditisl,
ries of geodesic motions on a space of negative curvature
mix and fold chaotically through the space as they exit and
enter the multi-faceted fundamental domain. Chaos endows
these spaces with many intriguing propertieS, inciuding fraC_The isometries OH3 can then be written as>44 matrices of
tal structures within the pattern of entangled geodesics. Thée special Lorentz transformations. The coordinate transfor-
patterns inscribed in these skies thus promise to be intricatéation
Primordial quantum fluctuations which ultimately seed the
hot and cold spots are described by quantum chaos for which Ug= coshr
there are very different predictions than for nonchaotic quan-

—ud+ui+ustui=—1. (17)

u;=sinhr sin 6 cos ¢

°The sphere of last scatter cuts through the same 3D volume dif-
ferently, so even if a point is identical to another on the SLS, the
surrounding small region can be a slightly different sample of the
3D patch. uz=sinhr cos @ (18

u,=sinhr sin 6 sin ¢
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recovers the cosmologically familiar form of the 3D metric
distance in comoving coordinates,

ds®=dr2+sintfr(d 6+ sirf0d ¢?). (19

The geodesics take on a particularly simple fd2é] in
the Minkowskian space. For simplicity, we tended to leave
the Earth at the origin. For completeness, we mention how to
move the Earth away from the center of the universe. If we
align the Earth with thez-axis at positionu= (u2,0,0u3)
we can Lorentz boost the Earth to the origin with the trans-
formation

Y 0 0 —yB FIG. 21. The Dirichlet domain for the Weeks space.
0 10 0
A=l o 01 o (200 3-manifold known with a volume of=0.94. With Q,
=0.3, and the redshift of last scattering taken to de
-y 0 0 vy =1100, soA »=2.328, we geVg s=150.64, and so there

o 3 i .. areroughly 150 copies of this universe within the SLS. With
and y=u, and yB=u,. A photon observed in the direction () — 6 A7~1.5 and there are only about 5-6 copies.

f hasy=—f and thus originated on the SLS at coordinates There are 9 identification rules to glue these 18 faces in

coshA pairs. The 9y; can be used to define a set of generators with
u=A"1 A sinh A’7 ) (22) many relations among theitsuch a set of generators was
[ Ui

also used by Fagund¢g9]). They are related to the words
a,b of a much simpler presentation of the fundamental group

;r:'ng?t?affi'gebnizgsggsr?l'Zed to an arbitrary location W'th{a, b:ababa 'bba !b,abab laab abl. We extract

The radius of the SLSA#, depends on the value i, fror_n SnapPeahese nine facg_—palrln@(_S,l) matrices and
. - their inverses out to 12 significant digits. It is necessary to
and the redshift of last scattering. In general, . . )
use extremely precise matrices due to the chaotic flows. The
sensitivity to initial conditions causes the image points to
quickly be lifted off the pseudosphere if insufficient preci-
(22)  sion is used.
The image points are denoted ¥ in Minkowski coor-
dinates:

2—-2Q,
Qp(1+2)

n= arccos?6 1+

in units of the curvature radius. The volume of the SLS is

VSLS:J sinterdrdQ

andk;= *1,...+9. Since we number thg, from 1-9, letg,
be the identity so thagy=u’#. We want to find the closest

The volume of the SLS grows exponentially with time. Separation betweew* and any of the image poinig*. The

Therefore, many more copies of the fundamental domain cafl, - - - 9k, form words of lengthn wheren is the highest

be contained within a surface of last scatter. The number obrder of the farthest neighbor.

copies is a topological invariant, quite unlike in flat space. In  Another way to count copies is to count periodic geode-

flat space, one is free to set the volume of the manifoldsics. The identification rules correspond to the minimal

relative to the volume of the SLS arbitrarily. This is not closed loop geodesics. The number of geodesics of ldngth

possible forH3, as is ensured by the rigidity theordi®7], goes as

which states that the volume in units of the curvature is

fixed. A peculiar consequence is that the volume of a mani- eht

fold is a topological invariant. In effect, if we measure topol- N(L)~ e

ogy we can refine our measure of the radius of the last scat-

tering surface and therely,. In other words, we can use o i

topology to measure curvature. whlch is a result from chaos theory, with the Kolninggorov-
In order to compactify the space, we consider the specifi©inai entropy determined byllthe volume scdle; V™. If

example provided by the Weeks space. The fundamental ddve assume crudely that=nV** so tham is the order of the

main is a polyhedron with 18 faces and 26 vertices shown im€ighbor, that is, the length of the woyd, then

Fig. 21 which was taken frorBnapPeaa census of compact

hyperbolic manifold428]. The Weeks space is the smallest N(n)~e"/n.

=7 (sinh(2A 7) — 2A 7). (23
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So, forQy=0.3, the SLS encompasses roughly 150 copies
of the fundamental domain and includes copies which are
between 6 and 7 words away. F6;=0.6, the farthest
neighbors are about 3 words from the origin. The 9 genera-
tors and their inverses combine to form"i8ords of length
n but as a result of the many relations amongdhe all but
N(n)~e"/n of these are repeats. Scanning thé p8ssible
imagesNix X Npix times is a huge numerical demand. To
manage the task we use the following numerical algorithm,
which is analogous the scheme used in the flat cases:

(1) Move the pointu on the SLS in towards the origin two
steps to the image poin;eﬁ‘zkfgkzgklu”. Out of these 138

points, select the three nearest the origin. FIG. 22. An antipodal map for the Weeks space with
(2) Move these 3 images two more steps and keep the one1 5.

image nearest the origin so that it is essentially within the
fu.nd.amental domain. Depending on how many neighbors fit A antipodal map for the Weeks space is shown in Fig.
within the SLS, steff2) can be repeated. 22. There is clearly topological lensing evident in this map.
(3) Repeat the same steps to the peihbeing compared. The stripey features are significantly different from the geo-
Both pomts should now be located within the fundamentaletric spots seen in th&(A) maps of the flat spaces. Unlike
domain. _ _ o all of the flat spaces, no obvious axis of symmetry is se-
(4) Keeping one image fixed within the fundamental do-|ected, which is to be expected given the geometry of the
main, move the other within two neighbors until the distanceéfyndamental domain. The appearance of strong topological
between the two images is minimized. _ correlations in the future data and the absence of a clear axis
(5) The geodesic distance on the pseudosphere is of symmetry under antipody would implicate a compact and
curved universe.
Another revealing correlation function for the hyperbolic
d(y*,y'#)=arccosky®y’°~y-y’). (24)  spaces compares a random point with the rest of the surface
of last scatteringC(u#,A), as shown in Fig. 23. This is
unlike any correlation we have considered so far, but it can
We use this in our approximation clearly be quite successful at uncovering geometric proper-
ties. As in the flat universes, the spots are likely spread out
since we have not accounted for the discretization of the
C (A~ CY[dmin(R(A), K" (A'))], (25) Iharmonics of the finit.e box which causes big dips in power at
arge modes, especially for such a small space. Again, the
inclusion of a huge number of terms would be needed to
incorporate this effect. We also comp@¢n,ggi/||ggi|) in
?:ig. 24. This transformation combines a boost along the hy-
gerbolic surface with a rotation.

where we use the angular correlations obtained from th
CMBFAST code, with(),,=0.05 and the remainder of the sub-
critical density is assumed to be made up of nonbaryoni
dark matter.

It is important to note that in a negatively-curved cosmos B. The Best patterns

there is, in addition to the Sachs-Wolfe effect on the surface pgqgt puilt three compact hyperbolic spaces by identifying
of last scattering, an integrated Sachs-W@I8W) contribu- e taces of an icosahedron possessing twenty triangular
tion to the perturbations. The ISW effect is due to the decay

of the gravitational potential as the photons transit the space.
Although we have not yet fully included the ISW effect, only
the fluctuations on the largest scales should be affected
whereas spots probe small-scale physics. On those scales
where the ISW effect contributes the geodesics are deviating
sufficiently so that photons that originated in the same vicin-
ity quickly take different paths with different decaying gravi-
tational potentials. Correlations will not therefore be en-
hanced. One might fear that topological correlations could be
erased by the different histories of the two initially adjacent
photon trajectories. Since the ISW effect does not effect the
Doppler peaks in an infinite cosmos, it should leave the uni-
verse’'s spots unmarred. The next phase of investigation
should include the ISW effect. Our maps correspond to data FIG. 23. Correlation with a random point and the rest of the
for which the lowest multipoles have been cleaned off. sphere for the Weeks space withy=1.5.
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FIG. 24. The sphere correlated under the transformagion FIG. 26. The map ofA(h) for the Best space witfl =0.3.

faces, as shown in Fig. 25. All of these spaces have volume Both Figs. 23 and 27 are ensemble averages. To draw out
V=4.6860342738. The smallest geodesic ball which can erthe topologically lensed images in an actual observation, we
compass this space has a radius of radisd.38 while the need to define a quantity such as
largest sphere which can be inscribed within the icosahedron
has radiug=0.87. For a rough estimate of the number of R Al D
copies we counN= Vg ¢/V. With Q,=0.3, there are on the &(R)= ( oT(fo) _ 5T(n)) (26)
order of 32 copies of this Best space within the SLS. T T

The faces are identified with 10 generators, the matrix
representations for which can again be foundSimapPea wheref, is the point to be compared with the rest of the
The abelianized homology group &/35. Fagundes also sphere. As detailed in Sec. Il B, such a procedure locates
studied this space and, in particular, the occurrence of pereandidate topologically lensed images. The spectrum across
odic quasar imagef30]. The other three non-isomorphic the candidate clone can then be measured and compared with
Best spaces with icosahedra as fundamental domains haweat of the original point to ascertain if it is a good fit to a
different fundamental groups and homology groupZt9  clone or nothing more than a random correlation.
and Z/2x Z/2. To construct our maps, we follow the same As data from the planned satellite missions becomes
procedure as detailed for the Weeks space. available, the CMB can be scanned for any hidden geometric

The map ofA(f) is shown in Fig. 26. Antipody outlines features. In the meantime, these correlated spheres show the
pairs of identified triangular faces and also locates circleshuge potential for a pattern-oriented search of topological
Clearly a symmetry group for the Best space is located idensing.
this map. The cosmic soccer ball in Fig. 27 is the correlation Our real-space approximation allows one to calculate
of one point on the SLS with the rest of the sphere. The pointemperature correlations while avoiding the analytically in-
happens to be very near the origin of one of the copies of th&ractable eigenvalue problem on compact hyperbolic 3-
icosahedron. The patterns in the plot reflect the extreme synspaces. Once a candidate compact universe has been estab-
metry of the fundamental domain and also hint at the fractalished, such templates are useful for deeper statistical studies
nature of the geodesics. Notice the five-pointed star surf9]. However, an observational search for topology through
rounding the tetrahedron. In the triangular corners of thdarge-angle temperature correlations can be made without a
five-pointed star there appear to be six-pointed stars suparticular template being presupposed. This model indepen-
rounding hexagons.

FIG. 27. The correlation of one point on the surface of last
scatter with the rest of the sphere. The point is near the origin of
FIG. 25. The Dirichlet domain for the Best space. one of the clones of the fundamental domain.
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dence of a pattern-driven approach is particularly important Geometry effects not just the large-scale universe, but
because it allows us to take pictures even if the space doesdso the animals which inhabit it. As progeny of the universe,
not have constant curvature, if observations depend stronglynimals inherit certain cosmic blueprints. Perhaps it is only
on the location of the observer, or if chaotic mixing leads tofitting that many analogues to the cosmic patterns could be
unusual primordial spectra. Since we cannot predict topologfound here on Earth on the backs of insects, in animal mark-
within existing theories, we need this flexibility. ings, even in human made monuments. If we could create a
While general relativity predicts the evolution of curva- 700 of universes, each with a different topology, we might

ture, it does not specify the topology of space or of spacereplicate all the animal markings from zebra stripes to leop-
time. Only a theory beyond Einstein’s will be able to fully arg spots.

specify the geometry of the universe. Supergravity theories

necessarily acknowledge the importance of topology and
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