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Model for stars of interacting bosons and fermions
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In this paper we introduce a current-current type interaction term in the Lagrangian density of gravity
coupled to complex scalar fields, in the presence of a degenerated Fermi gas. For low transferred momenta,
such a term, which might account for the interaction among boson and fermion constituents of compact stellar
objects, is subsequently reduced to a quadratic one in the scalar sector. This procedure enforces the use of a
complex radial field counterpart in the equations of motion. The real and the imaginary components of the
scalar field exhibit different behavior as the interaction increases. The results also suggest that the Bose-Fermi
system undergoes a phase transition for a suitable choice of the coupling constant.@S0556-2821~98!07720-0#

PACS number~s!: 95.30.Sf, 98.80.Cq
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I. INTRODUCTION

In modern approaches to astrophysics and cosmolo
concepts that were initially restricted to elementary parti
physics acquire a wider meaning, particularly in inflationa
models. These models give predictions for the mass den
of the present Universe larger than that observed, if one
sumes that it is close to the critical value. This suggests
there is a large amount of hidden matter, which has not b
detected so far.

Among the possible candidates for the so called dark m
ter are boson stars@1#, which consist of gravitational boun
states of scalar particles. These kinds of objects were
predicted theoretically by Ruffini and Bonazzola@5#, and
there is an increasing interest in the subject since there is
hope that they contribute to the dark matter problem. Mo
over, such structures were formed possibly, through grav
tional collapse in the early Universe and may appear als
the core of composite objects, whose external envelop
made of standard baryonic matter.

Since in addition to the bosons there were also fermi
in the primordial gas, we would expect boson-fermion st
to prevail. This system was studied in detail by Henriqu
et al. @2#. In their work it has been shown that the propert
of boson-fermion stars are qualitatively the same, irresp
tive of the addition of a self-coupling term for bosons. Ne
ertheless, it seems that there is no modeling for explic
dealing with the interaction between bosons and fermion
such systems, leading to conclusive results. In Ref.@2# the
effects of a direct coupling term between bosons and fer
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ons are briefly considered. Estimative effects are discus
but no numerical computation is performed.

In this work we introduce an effective coupling betwe
bosons and fermions to afford a more realistic description
the system and compare our results with the ones in
current literature. In Sec. II we construct the energ
momentum tensor for interacting fermions and bosons us
the Schwarzschild metric. In Sec. III we obtain the evoluti
equations for the coefficients of the metric and for the fiel
In Sec. IV we exhibit the results of numerical simulations f
the corresponding dynamical system. Finally, in Sec. V
discuss our results and compare with those obtained with
taking the interaction into account.

II. THE BOSON-FERMION INTERACTION

Before introducing the interaction term, we outline th
noninteractive boson-fermion model. We assume the me
to be the standard Schwarzschild one:

ds252B~r !dt21A~r !dr21r 2du21r 2 sin2udw2. ~1!

Our sign and conventions are the same as those use
Liddle and Madsen@3#. The Lagrangian for the complex sca
lar field with no explicit interaction is given by

L5
R

16pG
2]mF* ]mF2m2F* F, ~2!

where

F~r ,t!5f~r !e2 ivt, ~3!

and for our purposesf is a complex scalar field. In the
absence of fermion-boson coupling, all the equations for
stationary solutions depend onv2 ~see Ref.@3#, or Eqs.
~19!–~25! below!. So, the alternative choiceF(r ,t)
5f(r )eivt ~the so-called antiboson configuration! leads to
the same solutions.

ter
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For the composite boson-fermion star we consider that
fermions are described by a perfect fluid with energy den
r and pressurep as proposed by Chandrasekhar@4#:

r5K~sinh t2t !,
~4!

p5
K

3 S sinh t28 sinh
t

2
13t D ,

wheret is a parameter,K5mn
4/32p2, andmn is the fermion

mass~to be considered as that of neutrons for illustrat
purposes!. The evolution equation for the fermions is give
by an equation of state, namely we have

p852
1

2
~r1p!

B8

B
, ~5!

where the primes stand for derivatives with respect tor .
The corresponding energy-momentum tensor for

bosons and fermions without interaction reads as

Tmn
~0!5Tmn

B 1Tmn
F , ~6!

with

Tmn
B 5]nF* ]mF1]mF* ]nF2gmn~]lF* ]lF1m2F* F!,

~7!

Tmn
F 5~r1p!umun1pgmn , ~8!

where superscriptsB andF label bosons and fermions from
now on.

At this point we introduce the following interaction term
in the Lagrangian density:

L int5lJm~F! j m~c!, ~9!

where

Jm~F!5 i ~F* ]mF2F]mF* !, ~10!

j m~c!5c̄gmc, ~11!

which represent the boson and fermion currents, resp
tively, while theg’s are the usual Dirac matrices, which sa
isfy g0†52g0 andg i†5g i ( i 51,2,3). This is a typical con-
tact or current-current interaction between bosons
fermions where the coupling constant has dimension@l#
5M 22. We emphasize that in dealing with a nonrenorm
izable interaction term an energy scale must be introdu
when we consider quantum corrections; we find a sim
situation in the pure Einstein-Hilbert gravity. Note that th
point is of no relevance since we are giving a semiclass
treatment to the problem.

The complete Lagrangian density, including the inter
tion term, is invariant under globalU(1) gauge transforma
tions. For low transferred momenta we can use the Blo
Nordsieck approximation@7# in Eq. ~11! and replace it by
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j m~c!5c̄Gmc, ~12!

where, in first approximation,

G0.u0, G i.ui . ~13!

The four-vectorum5(u0,ur ,uu ,uw) is the four-velocity of
the fermion fluid.

The contribution of the interaction term for the energ
momentum tensor is computed via

1

2
A2gTab5]r

]~A2gL!

]g,r
ab 2

]~A2gL!

]gab ~14!

and is given by

Tmn
int5gmnLint2l@Jm j n1Jn j m#, ~15!

which, together with Eq.~6!, gives the total energy-
momentum tensor

Tmn5Tmn
~0!1Tmn

int .

For simplicity and due to the symmetries involved we c
consider only radial variations, and soum5(u0,ur ,0,0). To
keep the validity of the approximations used we can cons
the boson star in its ground state embedded in a fermion fl
for which the radial velocities are to be understood as a t
independent small perturbation, i.e.,v!1.

Usually the scalar field is taken asF(r ,t)5f(r )e2 ivt,
with f(r ) complex, in such a way as to obtain a time ind
pendent energy-momentum tensor. Consideringf(r ) as a
sum of real and imaginary parts@for instance,f(r )5f1(r )
1 if2(r )# the set of differential equations in Ref.@3# be-
comes the same for both fields,f1(r ) and f2(r ), and the
equations are just corresponding complex conjugate. T
way, one can choose the field definitions such that the im
nary part off(r ) vanishes, and, as a consequence, one
consider the real and the imaginary parts overall evolut
given byf(r )e2 ivt, with f(r ) real.

Meanwhile, dealing with interaction between bosons a
fermions there is no reason to exclude the imaginary p
related to the scalar field; moreover, the interaction cau
real and imaginary counterparts to be distinct from ea
other, as is shown in this article. Hence, our ansatz is

F~r ,t !5f~r !e2 ivt, ~16!

with

f5f11 if2 , f* 5f12 if2 ,

wheref1 andf2 are real fields.
The boson current is purely real,Jm* 5Jm , with compo-

nents

J05 i ~F* ]0F2F]0F* !52v~f1
21f2

2!,

J15 i ~F* ¹1F2F¹1F* !52~f18f22f1f28!
3-2
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and J25J350. For the fermion current the nonvanishin
components are

j 05u0c̄c, j 15u1c̄c,

for which we have used the low transferred momenta
proximation ~13!. The total energy-momentum tensor a
pears semiclassically on the right-hand side of the Eins
equations, i.e., Tmn5^0u:Tmn :u0&, with u0&5uNB ;0&
^ uNF ;kF&, whereNB andNF are the numbers of bosons an
fermions, respectively, andkF is the particles momentum in
the Fermi distribution. Henceforward, we consider all qua
tities within the semiclassical approximation. Thus, inste
of the bilinear operatorc̄c we take the ground-state of th
fermion system̂ c̄c&F , in the semiclassical approximation
In this limit we replace this quantity by the average fermi
densityn̄F , for first analysis purposes.

Thus, the interaction counterpart for the energ
momentum tensor is

T0
0 int52T1

1 int

522ln̄F@~f1f282f18f2!u11v~f1
21f2

2!u0#,

T2
2 int5T3

3 int5lJa j a,

Now, one is led to determine the four-velocities of the fe
mion fluid. The fermion and the interaction counterparts
the total energy-momentum tensor involves the fo
velocities,u05ut andu15ur , given byum5dxm/dt, where
dt252ds2; henceumum521. Since the fermion fluid is
allowed to display only radial displacements, the velocity
of the fermion fluid is given by the relationdr25v2dt2, and

u05
1

AB2Av2
, u15

v

AB2Av2
.

Since v!1, we can write the four-velocities in the first-ord
approximation as

u05
1

AB
1O~v2!, u15

v

AB
1O~v2!,

and the four-vectorum obeys the normalization condition u
to order v2, i.e., umum5211O(v2). It is noteworthy that
v5v(r ) imposes difficulties to a proper physical interpre
tion; actually one should consider convection velocities, w
v5v(r ,u,f), which would increase the complexity of th
equations.

Alternatively, we can model the velocities to avoid a
proximations in this stage, and we relate the velocity of
fermion fluid to a parametern and to the metric coefficient
by

v25n
B

A
~n!1!
12300
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and this velocity can be considered, within the scope of t
model, as a small perturbation comparable to those use
time-independent perturbation theory. Due to the finiten
of A(r ) andB(r ), we note that v5v(r ) is finite. Hence, the
four-velocities become

u05
1

A12n

1

AB
,

u15A n

12n

1

AA
, ~17!

with no approximations. Now, the perturbative velocity
the fermion fluid is ruled by the parametern, which is the
maximum value of v2(r ).

III. EVOLUTION EQUATIONS

To obtain the set of equations that govern the fields
make use of the equations of Einstein, Klein-Gordon, and
the parametric equation for fermions. To obtain the sca
fields evolution equations, we use the total Lagrangian

LT5r 2sin uAABF R

16pG
1

v2

B
~f1

21f2
2!

2
f18

21f28
2

A
1m2~f1

21f2
2!1

v

A12n

a

AB
~f1

21f2
2!

2A n

12n

a

AA
~f1f282f18f2!G , ~18!

wherea52ln̄F . Using this expression directly in the actio
principle, we can find the correct Klein-Gordon equatio
which now presents a source term. With an appropriate
definition of the dynamical variables and parameters, nam

x5mr,

s~x!5A8pGf~r !,

r̄~ t !5
4pG

m2 r~ t !,

p̄~ t !5
4pG

m2 p~ t !,

ā5
a

m
, w5

v

m
,

and choosing Eq.~17!, the equations read
3-3
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A85xA2F2S r̄1 p̄

12n
2 p̄D 1S w2

B
11Ds21

s2

A
1A n

12n

ā

AA
~s1s282s18s2!1

w

A12n

ā

AB
s2G2

A

x
~A21!, ~19!

B85xABF2S n

12n
~ r̄1 p̄!1 p̄D1S w2

B
21Ds21

s2

A
1A n

12n

ā

AA
~s1s282s18s2!1

w

A12n

ā

AB
s2G1

B

x
~A21!,

~20!

s185s1 , ~21!

s285s2 , ~22!

s1852AS w2

B
211

ā

A12n

w

AB
D s11A n

12n
āAAs21F1

2 S A8

A
2

B8

B D2
2

xGs11S 1

2

B8

B
1

2

xDA n

12n

āAA

2
s2 ,

~23!

s2852AS w2

B
211

ā

A12n

w

AB
D s22A n

12n
āAAs11F1

2 S A8

A
2

B8

B D2
2

xGs22S 1

2

B8

B
1

2

xDA n

12n

āAA

2
s1 ,

~24!

t8522
B8

B

sinh t22 sinh~ t/2!

cosht24 cosh~ t/2!13
, ~25!
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s25s1
21s2

2 , s25s1
21s2

2 .

These equations form a nonautonomous system of non
ear first-order differential equations, which cannot be line
ized due to the quadratic terms involved. Equations~19! and
~20! are the Einstein equations; Eqs.~21!–~24! correspond to
the Klein-Gordon equation, whereas Eq.~25!, which comes
from Eq. ~5!, gives the evolution of the fermion energy de
sity and pressure. In the above set of equations the dynam
variables and parameters are dimensionless. From now
the primes stand for derivatives with respect tox. Note that
without the proposed interaction (ā50, n50! we recover
the boson-fermion equations proposed in Ref.@2#.

It is noteworthy that these equations are invariant un
the scale transformation

B→hB, w→Ahw,

even after the inclusion of the interaction term. Since
initial value B0 is undetermined, this permits its redefinitio
during numerical calculations, in such a way to obtain
asymptotic values for the metric coefficients converging
those of a flat space.

IV. RESULTS

In this section we present the numerical simulation res
of the above set of equations. The set of equations w
solved by using the fifth-order Runge-Kutta method; we a
use an appropriate ‘‘shooting method’’ to infer the value
w, according to an initial value ofB0 . We require the metric
12300
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to be asymptotically flat and the scalar fields as well as th
derivatives to vanish at infinity. Note that there is no overl
betweens ands8, which is characteristic of the ground sta
of the system. Throughout the simulations the initial valu
ares1

05s2
050.21, s1

05s2
050, andA051. For further details

on the numerical criteria, the interested reader is referre
Ruffini and Bonazzola@5#.

In Fig. 1 we show the ground state of a boson-fermi
star for t057. In this caseB050.067 and w50.964.

Figure 2 displays the same curves fort058.7 which cor-
responds toB050.024 and w50.934. Notice that the peak in
the curve forA has increased and has been shifted towa
the origin, whiles and s8 approach to zero faster. Large
values oft0 mean higher fermion energy densities, so th
the fermion contribution to the energy-momentum tensor
comes dominant. In this sense we would expect curves
those given in Fig. 3 to be in agreement with the pioneer
results of Oppenheimer and Volkoff for neutron stars@6#.

Figures 4 and 5 exhibit the results after introducing t
interaction term, for the choicet054.0, and different values
of the dimensionless coupling constantā. When we switch
the interaction on at small values ofā, w increases, as
shown in Table I. On the other handt vanishes at a smalle
x. Note also that close to the singularity at the origin we s
that the last terms in Eqs.~19! and~20! are dominant. In this
regionA;x/(x2const) andB;(x2const)/x, so thatB and
B8 diverges andA becomes oscillating. Hence, for numeric
purposes it is convenient to start withx slightly shifted from
the origin.

If we continue to increase the interaction we observe th
for a certain value ofā, w suddenly decreases, suggesti
3-4
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that there is a critical value ofā, in the rangee232e22, in
which the system experiences a second-order phase tr
tion, corresponding to boson-fermion pair formation. In Fig
5~b! and ~c! we can observe the splitting of the real an
imaginary parts of the scalar field that also occurs in su
interval. For completeness, we also exhibit the phase sp
diagrams for the metric coefficients and for the scalar fie
at ā5e22 in Fig. 6.

Notice that, differently from the case with no boso
fermion interaction, Eqs.~19!–~25! are not symmetric unde
the sign changev→2v. So, we can expect different resul
for the two possible choicesF(r ,t)5f(r )e2 ivt and
F(r ,t)5f(r )eivt. Hence, from now on we refer to th
2 ivt solution astype I star and1 ivt solution astype II
star.

The results for a type II star are presented in Table I,
which one can also observe a transition whenā is in the
rangee222e21, where a similar scalar fields splitting ca
be obtained. The results presented in Table I show that th
is a clear distinction between the type I and type II cases,
a stability analysis is in order.

Although not sufficient, the binding energy (Eb) can give
a necessary condition for the stability of the star:

Eb5M2~muNBu1mnNF!, ~26!

where M is the total mass of the star,m and mn are the
boson and the fermion particle masses, respectively,uNBu is

FIG. 1. Fields and metric coefficients for a typical boso
fermion star, witht057. The corresponding value of w is aroun
0.96412.
12300
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the number of scalars andNF is the number of fermions. If
Eb.0 the configuration is unstable. IfEb,0 it has the pos-
sibility of being stable; in this case, a complete analy
would involve time dependence of the fields@9#. In Eq. ~26!
we have introduced the absolute value for the scalar parti
to give a proper interpretation for the binding energy, sin
the number of scalar particles in the type II star (1 ivt
ansatz! givesNB,0. The quantities listed above are given b

M5E rd3r 5
MPl

2

m
M~`!, ~27!

FIG. 2. The same curves as those of Fig. 1, fort058.7.

FIG. 3. The evolution oft for different initial values (t054.0,
t057.0 and t058.7!. All curves on thist vs x graphic usess1

0

5s2
050.21, s1

05s2
050, andA051.
3-5
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wherer52(T0
0B1T0

0F) is the total energy density and

M~`!5 lim
x→`

S 12
1

A~x! D ,

R5
*rrd3r

*rd3r
5

MPl
2

m2 E r̄x3dx, ~28!

wherer̄5(8pG/m2)r,

NB5E d3rA2gJ05
MPl

2

m2 wE
0

`AA

B
x2s2dx, ~29!

NF5E d3rA2g j05
MPl

2

mnm

8

3p E
0

`
AA sinh3~ t/4!x2dx,

~30!

where, in the last expression we have usedj 05nF /AB and
nF(r )5(mn

3/3p2)sinh4(t/4), which is the Fermi fluid par-
ticles density.

The results for type I stars are listed in Table II, and tho
for type II stars are on Table III.

For the type I star case, whenā is small, we obtain sta-
bility as expected in Ref.@2#. Meanwhile, we observe that
the increasing of the interaction causes the star to beco
unstable, which is not observed for the type II case. T

FIG. 4. Fields and metric coefficients for a boson-fermion st

when we switch on the interaction atā5e215. Here t054.0 and
n50.01.
12300
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r

FIG. 5. The same curves as those shown in the Fig. 4, foā
5e22.

TABLE I. Eigenvalue w for type I stars~and values of wA for
type II star!, and corresponding values ofB0 , for different coupling

constantsā, with n50.01, s050,29698, andt054,0.

Type I Type II

ā w B0 wA B0

e215 0.910943 0.2472 20.910943 0.2472
e26 0.917884 0.2512 20.917704 0.2507
e23 0.927375 0.2598 20.924390 0.2511
e22 0.926882 0.2661 20.925015 0.2456
e21 0.922895 0.2840 20.917396 0.2261
3-6
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increasing of the interaction, given byā, causes the type I
star radius to decrease, reaching values that are smaller
that for the fermion star radius. The opposite occurs for
type II star radius; the increasing of the interaction causes
fermion star radius to be overcome by that of the type II st
which, under these conditions, makes an envelope of typ
external to the fermion star.

As suggested by Liddle and Madsen@3#, the stability can
also be established by finding the asymptotic solutions a
lytically. Considering thats1 , s2 , andt vanish asx→`, and
A→1 andB→1 asx→`, Eqs.~19!–~25! give

s i95S 2w2112
āw

A12n
D s i ~ i 51,2!. ~31!

and the solutions are

s i;e2ux, ~32!

whereu5Aw21aw21 anda5ā/A12n. If u is complex,
s i oscillates and the stability is doubtful. Hence, w is r
stricted to the range

2
2a2Aa214

2
,w,

2a1Aa214

2
. ~33!

When a!1, the eigenvalues are restricted to the interv
21,w,1, as obtained in Ref.@3#. In this case, for type I

FIG. 6. Phase space diagrams~a! for the metric coefficients and
~b! for the scalar fields.
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stars the ground state and the excited eigenvalues are
sented as w0,w1,w2,¯,1. Meanwhile, whena;e23,

w0,w1,w2,¯,12dw,

wheredw measures the peripheral shift of the positive root
the functionu~w!. Thus, for positive energies, correspondin
to the typen star case

2a1Aa214

2
1dw51

and, since we are consideringa,1,

dw5
a

2
2

a2

16
1O~a4!.

We can observe thatdw is larger in the region where th
interaction causes the splitting betweens1 and s2 to be
larger. Now, one can see that a qualitative analysis abou
effects of the velocity of the fermion fluid on the splitting o
the fields is available: the greater is the parametern, the
smaller are the values necessary forā to cause the periphera
shift pronounced. This eliminates the necessity of plott
different curves for different values of the fermion fluid v
locities, for comparision purposes.

V. CONCLUDING REMARKS

In this work we studied a model for boson-fermion sta
with interaction, in the region of low frequencies, and w
observed the behavior of the system for increasing value
the coupling constantā. At small values ofā there is no
significant change in the system; asā becomes larger and
larger the ground-state energy of the system increases

TABLE II. Values for mass, number of particles and radius f
equilibrium configuration of type I stars in Table I. Notice that n
all configurations are stable.

ā M muNBu1mnNF mR Eb

e215 0,38300 0,38939 1,62674 ,0
e26 0,38238 0,38849 1,62446 ,0
e23 0,37094 0,37139 1,57159 ,0
e22 0,35299 0,34508 1,49618 .0
e21 0,31299 0,29113 1,25427 .0

TABLE III. The same results as those in Table II for type
stars. All configurations are possibly stable.

ā M muNBu1mnNF mR Eb

e215 0,38297 0,38939 1,62677 ,0
e26 0,38378 0,39057 1,63229 ,0
e23 0,39647 0,41008 1,68681 ,0
e22 0,42106 0,44982 1,78725 ,0
e21 0,48669 0,57737 1,95772 ,0
3-7
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the fermion energy density and pressure vanish at sm
distances. As a result, the fermion star is confined to
smaller region, after which the scalar fields are still prese
We would also expect an enhancement in the emission
of gravitational waves, thus increasing the probability of d
tecting such stellar objects.

When ā reaches a critical value, the ground-state ene
of the system suddenly decreases, indicating the possible
currence of a second-order phase transition. In this case
might have supplied enough energy to bind bosons and
mions together. We have also observed that this occurs
different values ofā when considering separately the cas
of type I or type II stars.

The presence of the interaction, in addition to the splitt
between the scalar fields, makes type I (2 ivt ansatz! and
type II (1 ivt ansatz! cases distinct.

There is a different increase for the ground-state ene
for these cases when the interaction grows and the con
rations exhibit distinct mass, radius and number of partic
This structure difference leads us to conclude that in a c
figuration where type I and type II are present, there is
asymmetry resulting from the interaction with fermions;
particular we have shown that type II stars may be stabl
a larger range of values forā.

It is interesting to point out that, although the interacti
studied in this work is different from the interaction pr
posed in Ref.@2#, the numerical results do agree with th
estimates made by Henriques, Liddle, and Moorhouse.
obtain non-negligible effects by the introduction of the inte
action term in the case of light bosons, in which the Com
ton wavelength turns out to be of the order of the ferm
star radius as discussed in Ref.@2#.

Besides, as pointed out by Liddle and Madsen@3#, the
complex scalar field theory is described by both particles
antiparticles, and similarly one should expect the format
of an object composed by bosons and antibosons. The
fective’’ charge is proportional to the number of particl
and antiparticles

N5Nf2Nf̄ , ~34!

whereNf and Nf̄ refers to bosons and antibosons, resp
tively. In this case, an asymmetry between the numbe
s
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particles in type I and type II stars might contribute for t
formation of the object@10#. In fact, for type I stars we ge
N.0 and for type II starsN,0, but equivalent configura

tions ~sameā and initial values! of these types of stars d
not have the same value ofuNu. From the results outlined
above it is possible to estimate a similar asymmetry;
instance, in the critical case whenā;e22 the asymmetry
between type I and type II givesNI /NII51.63.

It is also of importance knowing ifā is experimentally
expected to be in the range to which the asymmetry is
lated. Pisano and Tomazelli@8# have reinterpreted the boson
fermion contact interaction in the context of the minim
supersymmetric standard model. They have determined

ā&10219, and it is beneath the expectations for the tran
tion. Nevertheless, they have considered flat space-time
ues and the experimental expected value for the boson m
m;45 GeV; the present work considers light bosons as p
posed in Ref.@2#, m;5310211 eV, which gives the bound

ā&90, using the same prescription as in Ref.@8#.
Another interesting matter is to develop a qualitative a

proach to our evolution equations with Schwarzschild m
ric, in order to compare the phase diagrams with our co
sponding numerical results. It may be also of interest
search for similar effects in the realm of solid state physi
since many theories use slave bosons in contact with fe
ons.

A more general treatment of boson-fermion gravitatio
ally bounded systems should incorporate spin effects by c
sidering the full Dirac Lagrangian. However, it would b
necessary to extend the system of differential equations f
seven to fifteen, which might demand a great effort.
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