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Model for stars of interacting bosons and fermions
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In this paper we introduce a current-current type interaction term in the Lagrangian density of gravity
coupled to complex scalar fields, in the presence of a degenerated Fermi gas. For low transferred momenta,
such a term, which might account for the interaction among boson and fermion constituents of compact stellar
objects, is subsequently reduced to a quadratic one in the scalar sector. This procedure enforces the use of a
complex radial field counterpart in the equations of motion. The real and the imaginary components of the
scalar field exhibit different behavior as the interaction increases. The results also suggest that the Bose-Fermi
system undergoes a phase transition for a suitable choice of the coupling coigi&56-282(98)07720-0

PACS numbe(s): 95.30.5f, 98.80.Cq

[. INTRODUCTION ons are briefly considered. Estimative effects are discussed
but no numerical computation is performed.

In modern approaches to astrophysics and cosmology, In this work we introduce an effective coupling between
concepts that were initially restricted to elementary particledbosons and fermions to afford a more realistic description of
physics acquire a wider meaning, particularly in inflationarythe system and compare our results with the ones in the
models. These models give predictions for the mass densi§urrent literature. In Sec. Il we construct the energy-
of the present Universe larger than that observed, if one prdhomentum tensor for interacting fermions and bosons using
sumes that it is close to the critical value. This suggests thd'® Schwarzschild metric. In Sec. IIl we obtain the evolution
there is a large amount of hidden matter, which has not beefduations for the _cc_>eff|C|ents of the metrl_c and_ for th_e fields.
detected so far. In Sec. IV we exhibit the results of numerical simulations for

Among the possible candidates for the so called dark matt-he corresponding dynamical system. Finally, in _Sec. V we
ter are boson stafd], which consist of gravitational bound d'39USS our resultg an_d compare with those obtained without
states of scalar particles. These kinds of objects were firéfikmg the interaction into account.
predicted theoretically by Ruffini and Bonazzdla], and
there is an increasing interest in the subject since there is the Il. THE BOSON-FERMION INTERACTION
hope that they contribute to the dark matter problem. More- Before introducing the interaction term, we outline the

OVe, such structures were formed possibly, through glraVit‘f"ﬁoninteractive boson-fermion model. We assume the metric
tional collapse in the early Universe and may appear also i) pa the standard Schwarzschild one:
the core of composite objects, whose external envelope is '

made of standard baryonic matter. ds?= —B(r)d2+A(r)dr2+r2d 2+ r2sirfode?. (1)
Since in addition to the bosons there were also fermions

in the primordial gas, we would expect boson-fermion stars Qur sign and conventions are the same as those used by

to prevail. This system was studied in detail by Henrigueq_iddle and Madsef3]. The Lagrangian for the complex sca-

et al.[2]. In their work it has been shown that the properties|ar field with no explicit interaction is given by

of boson-fermion stars are qualitatively the same, irrespec-

tive of the addition of a self-coupling term for bosons. Nev- . .

ertheless, it seems that there is no modeling for explicitly L= m_%q’ IO —m D* D, 2

dealing with the interaction between bosons and fermions in

such systems, leading to conclusive results. In R&fthe  \here

effects of a direct coupling term between bosons and fermi-

D(r,7)=g(r)e”'", ()

*Permanent address: International Center of Condensed Matt@nd for our purposes is a complex scalar field. In the
Physics, Universidade de Bria) Caixa Postal 04513, 70919-970, absence of fermion-boson coupling, all the equations for the
Braslia—DF, Brazil and Departamento de Matdina, Univer-  Stationary solutions depend an’ (see Ref.[3], or Egs.

sidade Catolica de Brdim, 72022-900, Brasia-DF, Brazil. (19—(25 below. So, the alternative choiced(r,7)
"Permanent address: Instituto désiBa Tesica—UNESP, Rua = ¢(r)e'“” (the so-called antiboson configuratjoieads to
Pamplona 145, 01405-900, &®aulo-SP, Brazil. the same solutions.
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For the composite boson-fermion star we consider that the

. . A We : i) =yT*y, (12)
fermions are described by a perfect fluid with energy density
p and pressur@ as proposed by Chandrasekhd: where, in first approximation,
p=K(sinht—t), M=y’ Ti=u. (13)
4 _ _
K( ot The four-vectoru®=(u°,u, ,Ug,U,) is the four-velocity of
p=3|sinht=8sinhz+3t], the fermion fluid.

The contribution of the interaction term for the energy-

wheret is a parameterl,<=mﬁ/327r2, andm, is the fermion momentum tensor is computed via

mass(to be considered as that of neutrons for illustrative

purposeks The evolution equation for the fermions is given } \/—_gT =9 I(vV=9L) _ IN=9£) (14)
by an equation of state, namely we have 2 BT 9gef R
1 B’ and is given by
p=—5(*tP) g (5) . _ _
TLTV:gMVEint_)\[J[.LJ V+‘]VJ ,u,]! (15)

where the primes stand for derivatives with respeat.to which, together with Eq.(6), gives the total energy-
The corresponding energy-momentum tensor for th%oméntum tensor o

bosons and fermions without interaction reads as
) int
T, =To+T.

T =Tt T ®)
For simplicity and due to the symmetries involved we can

consider only radial variations, and sé¢=(u°,u,,0,0). To

keep the validity of the approximations used we can consider

the boson star in its ground state embedded in a fermion fluid

with

T8,=0,0%9,0+9,0* 9,0 —g,,(,0* P O+m?d* D),

(7 for which the radial velocities are to be understood as a time
. independent small perturbation, i.e<1. '
T.,=(ptpu,u,+pg,,, 8 Usually the scalar field is taken als(r,7)=¢(r)e 7,

with ¢(r) complex, in such a way as to obtain a time inde-
pendent energy-momentum tensor. Considerf(g) as a
sum of real and imaginary parffor instance,¢(r)= ¢4(r)
+igy(r)] the set of differential equations in Ref3] be-
comes the same for both fieldg,(r) and ¢,(r), and the
equations are just corresponding complex conjugate. This
way, one can choose the field definitions such that the imagi-
nary part of¢p(r) vanishes, and, as a consequence, one can
consider the real and the imaginary parts overall evolution
given by ¢(r)e "7, with ¢(r) real.

Meanwhile, dealing with interaction between bosons and
fermions there is no reason to exclude the imaginary part
related to the scalar field; moreover, the interaction causes
real and imaginary counterparts to be distinct from each
which represent the boson and fermion currents, respe®ther, as is shown in this article. Hence, our ansatz is
tively, while the v's are the usual Dirac matrices, which sat-

where superscriptB andF label bosons and fermions from
now on.

At this point we introduce the following interaction term
in the Lagrangian density:

LIM=NI(®)j*(y), 9

where
JM(<I>)=i(CD*a#cI)—CDaM<I>*), (10

i“() = by, (12)

isfy °T=—»%andy'T=+9' (i=1,2,3). This is a typical con- D(r,t)=g(r)e "7, (16)
tact or current-current interaction between bosons and
fermions where the coupling constant has dimenginmh with
_ _2 . . . . _
: M . We er_nphasme that in dealing with a nonr_enormal b= ditidy, b =di—idy,
izable interaction term an energy scale must be introduced
when we consider quantum corrections; we find a similarWhere and & are real fields
situation in the pure Einstein-Hilbert gravity. Note that this 1 % . ' " .
The boson current is purely realy;=J,, with compo-

point is of no relevance since we are giving a semiclassicarll

treatment to the problem.

The complete Lagrangian density, including the interac-

tion term, is invariant under glob&)(1) gauge transforma-

Jo=i(D* 9o — D Ip®*) = 2( p2+ ¢2),

tions. For low transferred momenta we can use the Bloch-

Nordsieck approximatiofi7] in Eq. (11) and replace it by

J1=i(P*V, o — DV, 0*)=2(p1p— D13)
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and J,=J3;=0. For the fermion current the nonvanishing and this velocity can be considered, within the scope of this

components are model, as a small perturbation comparable to those used in
time-independent perturbation theory. Due to the finiteness
of A(r) andB(r), we note that ¥ v(r) is finite. Hence, the

j°=ulyy, jl=ulyy, four-velocities become
for which we have used the low transferred momenta ap- 1 1
proximation (13). The total energy-momentum tensor ap- ul= S
pears semiclassically on the right-hand side of the Einstein 1-nB

equations, i.e., T,,=(0[:T,,:[0), with [0)=|Ng;0)
®|Ng ;kg), whereNg andNg are the numbers of bosons and

fermions, respectively, ankk is the particles momentum in N1
the Fermi distribution. Henceforward, we consider all quan- ul=/——, (17)
tities within the semiclassical approximation. Thus, instead 1-n\a

of the bilinear operatogyiy we take the ground-state of the

fermion systemt gy , in the semiclassical approximation, With no approximations. Now, the perturbative velocity of
In this limit we replace this quantity by the average fermionthe fermion fluid is ruled by the parametey which is the

densityFF, for first analysis purposes. maximum value of {r).
Thus, the interaction counterpart for the energy-

momentum tensor is lIl. EVOLUTION EQUATIONS

Oint_ lint . . .
ToM=-T;" To obtain the set of equations that govern the fields we
make use of the equations of Einstein, Klein-Gordon, and of
_ —2)\np[(¢1¢é—¢1¢>2)U1+w(¢§+ ¢§)uo], the parametric equation for fermions. To obtain the scalar

fields evolution equations, we use the total Lagrangian

Tgiﬂt:Tgint:)\Jaja' ,

R w ) )
6.6 §(¢1+¢2)

—r2qj
Now, one is led to determine the four-velocities of the fer- LT=r"sin 6VAB
mion fluid. The fermion and the interaction counterparts of
the total energy-momentum tensor involves the four- 124 pr2

w o
velocities,u’=u, andu'=u,, given byu*=dx*/dr, where - 1T2 +MA( P2+ p2) + ——= —=( o+ P3)
dr?=—ds?% henceutu,=—1. Since the fermion fluid is V1-n\B

allowed to display only radial displacements, the velocity v i
i id is qi b2 — 2 -2 , ,
of the fermion fluid is given by the relatiothr“=v-d+<, and — A IHJ_K(%%_%%)]’ (18)
1 \
W=——, ul=—. — . . . . . .
B—Av JB—AV? wherea=2\ng. Using this expression directly in the action

principle, we can find the correct Klein-Gordon equation,
Since w1, we can write the four-velocities in the first-order which now presents a source term. With an appropriate re-

approximation as definition of the dynamical variables and parameters, namely
ul= ! +0(v?), ul= Y +0(v?) x=mr
\/E L) \/E ’

o(X)=v8wGe(r),

and the four-vectou” obeys the normalization condition up
to order ¥, i.e., u*u,=—1+0(v?). It is noteworthy that 4G
v=v(r) imposes difficulties to a proper physical interpreta- ;(t)= —Wz—p(t),
tion; actually one should consider convection velocities, with m
v=v(r,0,¢), which would increase the complexity of the
equations. _ T

Alternatively, we can model the velocities to avoid ap- p(t)=—=p(1),
proximations in this stage, and we relate the velocity of the
fermion fluid to a parametar and to the metric coefficients

by P

3[R

B
vZ=n— (n<1)

A and choosing Eq.17), the equations read
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2

A’—A22_p—+5_+w+1 2+SZ+ L « ol o)+ e o AAl 19
=X 1—n P/Hlgtlletg \/1_nﬁ(0102 0107) Ton B° <A-D, (19
B =xAB| 2| - _+_+_+W2 1 2+Sz+\/ N &g 4 @ 2| . Bialq
=X 1TpetPtp| g —llo"+ 4+ ﬁ\/_z(o-lo-Z_o-lo-Z) l—n\/_go <(A-D),
(20)
O':IL:S]_, (21)
(Té252, (22)
,_sz 1+Z w +/n_\/z+'lA’ B\ 2] (1B’ 2 [ n ayA
S=mAlB Y T BT Vima At R A T B TS T 2B TR Vice 2 o2
(23
,_sz L a w /n_JK +'1A’ B\ 2] 18" 2 [ n ayA
2= Jione/ 7 Vi VT2l A "B X228 "x) Vi—n 2 v
(24)
B’ sinht—2sinht/2)
t'=—2— : (25)
B cosht—4 cosl{t/2)+3
|
where to be asymptotically flat and the scalar fields as well as their
s 2 2 s 2 derivatives to vanish at infinity. Note that there is no overlap
o°=01t03, S°=s1t5;. betweens ando’, which is characteristic of the ground state

. . of the system. Throughout the simulations the initial values

These equations form a nonautonomous system of nonlin- = ¢ 7 0 0 .
ear first-order differential equations, which cannot be linear2r€ 1= 02=0.21,5,=5,=0, andA,=1. For further details
ized due to the quadratic terms involved. Equatiti® and ~ °" the_ numerical criteria, the interested reader is referred to
(20) are the Einstein equations; Eq81)—(24) correspond to  Ruffini and Bonazzolg5). _
the Klein-Gordon equation, whereas Eg5), which comes In Fig. 1 we sh.ow the ground state of a boson-fermion
from Eq. (5), gives the evolution of the fermion energy den- Star forto=7. In this caseB,=0.067 and w0.964.
sity and pressure. In the above set of equations the dynamical Figure 2 displays the same curves fgr=8.7 which cor-
variables and parameters are dimensionless. From now d&sponds td@,=0.024 and w-0.934. Notice that the peak in

the primes stand for derivatives with respecitoNote that  the curve forA has increased and has been shifted towards
without the proposed interactioru0, n=0) we recover the origin, whileo and ¢’ approach to zero faster. Larger

the boson-fermion equations proposed in R2f. values oft; mean higher fermion energy densities, so that
It is noteworthy that these equations are invariant undethe fermion contribution to the energy-momentum tensor be-
the scale transformation comes dominant. In this sense we would expect curves like
those given in Fig. 3 to be in agreement with the pioneering

B— 5B, w—nw, results of Oppenheimer and Volkoff for neutron stgé$

Figures 4 and 5 exhibit the results after introducing the
even after the inclusion of the interaction term. Since thenteraction term, for the choicg=4.0, and different values

initial value By is undetermined, this permits its redefinition ot ihe dimensionless coupling constant When we switch
during numerical calculations, in such a way to obtain thethe interaction on at small values of w increases. as
asymptotic values for the metric coefficients converging to . i '
shown in Table I. On the other hatdranishes at a smaller
those of a flat space. : . -
X. Note also that close to the singularity at the origin we see
that the last terms in Eq§19) and(20) are dominant. In this

region A~x/(x—const) andB~ (x—const)k, so thatB and
In this section we present the numerical simulation result®’ diverges and\ becomes oscillating. Hence, for numerical
of the above set of equations. The set of equations werBUrposes it is convenient to start wifslightly shifted from

solved by using the fifth-order Runge-Kutta method; we alsghe origin. _ . _
use an appropriate “shooting method” to infer the value of If we continue to increase the interaction we observe that,

w, according to an initial value d@,. We require the metric for a certain value ofx, w suddenly decreases, suggesting

IV. RESULTS
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-0.15
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FIG. 1. Fields and metric coefficients for a typical boson- FIG. 2. The same curves as those of Fig. 1,tfpr8.7.
fermion star, witht,=7. The corresponding value of w is around

0.96412. the number of scalars and; is the number of fermions. If

_ E,>0 the configuration is unstable. H,<O0 it has the pos-
that there is a critical value af, in the rangee™*~e"2, in  sibility of being stable; in this case, a complete analysis
which the system experiences a second-order phase trangiould involve time dependence of the field. In Eq. (26)

tion, corresponding to boson-fermion pair formation. In Figs.we have introduced the absolute value for the scalar particles
5(b) and (c) we can observe the splitting of the real andto give a proper interpretation for the binding energy, since
imaginary parts of the scalar field that also occurs in suchhe number of scalar particles in the type Il starigr

interval. For completeness, we also exhibit the phase spaggsaty givesNg<0. The quantities listed above are given by
diagrams for the metric coefficients and for the scalar fields

3

ata=e 2 in Fig. 6. M2
Notice that, differently from the case with no boson- M:j pd3r=—PlM(w), (27)
fermion interaction, Eq919)—(25) are not symmetric under m

the sign change— — w. So, we can expect different results
for the two possible choicesb(r,7)=¢(r)e '“" and
O(r,7)=¢(r)e'“’. Hence, from now on we refer to the
—iwT solution astype | star and+iw7 solution astype I
star.

The results for a type Il star are presented in Table I, for

which one can also observe a transition wherns in the
rangee ?—e !, where a similar scalar fields splitting can
be obtained. The results presented in Table | show that there 3
is a clear distinction between the type | and type Il cases, and , |
a stability analysis is in order.

Although not sufficient, the binding energi{) can give

a necessary condition for the stability of the star: 0 : —
0.1 1 10 100
T

S A T > BN B I =]

1

Ep=M —(m|Ng|+m;Ng), (26)

FIG. 3. The evolution ot for different initial values {,=4.0,

where M is the total mass of the stam and m, are the t,=7.0 andt,=8.7). All curves on thist vs x graphic usess’
boson and the fermion particle masses, respectiyhlyl, is  =09=0.21,s9=s)=0, andA,=1.
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0.15 - i
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FIG. 4. Fields and metric coefficients for a boson-fermion star

when we switch on the interaction at=e~'°. Heret,=4.0 and 004 ' ' ' ' ‘ ' '
n=0.01. -0.05
wherep=— (T38+TJ") is the total energy density and -0.06
1 -0.07
vt 1|
o A(X) -0.08
. ) -0.09
fprd°r  Mp J'_3
_IP TP 3 28 0.
fpd3r mZ2 p (28 0.1
-0.11 | 1 | ! ! [ 1 I
wherep= (87G/m?)p, 04 06 08 1 12 14 16 18 2

M3 @ (A FIG. 5. The same curves as those shown in the Fig. 4afor
NB=I d3r\/—g\]°=m—gI wf \[g x?o?dx, (29 _eg2 g
0

M 8
m,m 37

Ne= [ r =i

- ; 2
fo \/K sint?(t/4)xdx, TABLE |. Eigenvalue w for type | staréand values of w for
(30) type Il stay, and corresponding values Bf,, for different coupling
constantsy, with n=0.01, 6,=0,29698, and,=4,0.

where, in the last expression we have ugdng/\B and
ne(r) =(m3/372)sintf(t/4), which is the Fermi fluid par- Type | Type II
ticles density. —

The results for type | stars are listed in Table I, and those f‘ls
for type 1l stars are on Table Ill.

For the type | star case, whenis small, we obtain sta-
bility as expected in Ref[2]. Meanwhile, we observe that
the increasing of the interaction causes the star to become
unstable, which is not observed for the type Il case. The

w Bo Wa Bo
0.910943 0.2472  —0.910943 0.2472
-6 0.917884 0.2512  —0.917704 0.2507
-3 0.927375 0.2598  —0.924390 0.2511
-2 0.926882 0.2661  —0.925015 0.2456
- 0.922895 0.2840  —0.917396 0.2261

® ® ®@ ® P
=
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1.6 TABLE II. Values for mass, number of particles and radius for
equilibrium configuration of type | stars in Table I. Notice that not
15 all configurations are stable.

14r @ M m|Ng| +m,Ng mR g,

A4 13fF e 15 0,38300 0,38939 1,62674 <0

e 6 0,38238 0,38849 1,62446 <0

L2 - e s 0,37094 0,37139 1,57159 <0

e ? 0,35299 0,34508 1,49618 >0

Lir el 031299 0,29113 125427 >0

1
0.2 0.3 04 0.5 0.6 0.7 0.8 0.9 1 . .
B stars the ground state and the excited eigenvalues are pre-

sented as w<w; <w,<---<1. Meanwhile, whera~e 3,

W0<W1<W2<' <1_ é\N,

-0.02 4
004 | wheredw measures the peripheral shift of the positive root of
the functiond(w). Thus, for positive energies, corresponding
-0.06 4 to the typen star case
1,0%
-0.08 - —a+.a’+4 1
5 =
-0.1 4
. 1 and, since we are consideriag< 1,
-0.12 L L
0 0.05 0.1 0.15 0.2 2
e sw=o-2 L o(ah
2 16 '

FIG. 6. Phase space diagrafag for the metric coefficients and

(b) for the scalar fields. We can observe thadw is larger in the region where the

. . . . ) — interaction causes the splitting between and o, to be
increasing of the interaction, given hy, causes the type | |3rger Now, one can see that a qualitative analysis about the

star radius to decrease, reaching values that are smaller thage s of the velocity of the fermion fluid on the splitting of
that for the fermion star radius. The opposite occurs for they o fields is available: the greater is the parametethe

type Il star radius; the increasing of the interaction causes the I th | . th heral
fermion star radius to be overcome by that of the type I star>Maller are the vajues necessary cause tne peripnera

which, under these conditions, makes an envelope of type ﬁ.hift pronounced. Th_is eliminates the necessiyy of plotting

external to the fermion star. dlff_e_rent curves for_d_n‘ferent values of the fermion fluid ve-
As suggested by Liddle and MadsgS], the stability can locities, for comparision purposes.

also be established by finding the asymptotic solutions ana-

lytically. Considering thas, , s,, andt vanish asx—, and V. CONCLUDING REMARKS

A—1 andB—1 asx—, Egs.(19—(25) give In this work we studied a model for boson-fermion stars

with interaction, in the region of low frequencies, and we

) o (i=1,2). (31) observed the behaviciof the system for incieasing values of
the coupling constan&. At small values ofa there is no
significant change in the system; asbecomes larger and
larger the ground-state energy of the system increases and

aW

Vi-n

O'i”=( —wW2+1-—

and the solutions are

o a—0x
gi—e (32) TABLE lll. The same results as those in Table Il for type Il

— . stars. All configurations are possibly stable.
where 6= \w?+aw—1 anda=a/\1—n. If 6 is complex, 9 P Y

T .oscillates and the stability is doubtful. Hence, w is re- . M m|Ng| + MmN mR g
stricted to the range

e 15 0,38297 0,38939 1,62677 <O

_a- Va’+4 _-atyatta 33 e ® 0,38378 0,39057 1,63229 <0

2 w 2 ' (33 e 3 0,39647 0,41008 1,68681 <O

e 2 0,42106 0,44982 1,78725 <0

When a<1, the eigenvalues are restricted to the interval g-1 0,48669 0,57737 1,95772 <0

—1<w<1, as obtained in Ref3]. In this case, for type |
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the fermion energy density and pressure vanish at smallgrarticles in type | and type Il stars might contribute for the
distances. As a result, the fermion star is confined to dormation of the objecf10]. In fact, for type | stars we get
smaller region, after which the scalar fields are still presentN>0 and for type Il stardN<O0, but equivalent configura-

We would also expect an enhancement in the emission rafg, s (samea and initial values of these types of stars do
of gravitational waves, thus increasing the probability of de- i have the same value B[, From the results outlined

tecting such stellar objects. above it is possible to estimate a similar asymmetry; for
When « reaches a critical value, the ground-state energynstance, in the critical case whem~e™2 the asymmetry

of the system suddenly decreases, indicating the possible ofapyeen type | and type I gives, /N, =1.63.

currence of a second-order phase transition. In this case, we . . L .

might have supplied enough energy to bind bosons and fer- It is also of importance knowing it is experimentally

mions together. We have also observed that this occurs fdP*P€cted to be in the range to which the asymmetry is re-

different values ofe when considering separately the caseslated' Pisano and Tomaze[B] have reinterpreted the boson-

of type | or type Il stars. fermion conta(_:t interaction in the context of the minimal
The presence of the interaction, in addition to the splittingﬂJpersymmetrlc standard model. They have determined that
between the scalar fields, makes typeifr ansatz and &= 10 '° and it is beneath the expectations for the transi-
type Il (+iw7T ansaty cases distinct. tion. Nevertheless, they have considered flat space-time val-
There is a different increase for the ground-state energyies and the experimental expected value for the boson mass,
for these cases when the interaction grows and the configum~45 GeV; the present work considers light bosons as pro-
rations exhibit distinct mass, radius and number of particlesposed in Ref[2], m~5x 10 1! eV, which gives the bound
This structure difference leads us to conclude that in a cong <90, using the same prescription as in &l
figuration where type | and type Il are present, there is an  apother interesting matter is to develop a qualitative ap-
asymmetry resulting from the interaction with fermions; in ,.o5-n to our evolution equations with Schwarzschild met-
particular we have shownlhat type Il stars may be stable i&ic, in order to compare the phase diagrams with our corre-
a larger range of values far. sponding numerical results. It may be also of interest to
It is interesting to point out that, although the interactiongearch for similar effects in the realm of solid state physics,

studied in this work is different from the interaction pro- gince many theories use slave bosons in contact with fermi-
posed in Ref[2], the numerical results do agree with the ;o

estimates made by Henriques, Liddle, and Moorhouse. We s 1qre general treatment of boson-fermion gravitation-

obtain non-negligible effects by the introduction of the inter- ; . _
action term in the case of light bosons, in which the Comp_aIIy bounded systems should incorporate spin effects by con

. sidering the full Dirac Lagrangian. However, it would be

ton wavelength turns out to be of the order of the fermion . . .
star radius as discussed in RE]. necessary to extend_ the system of differential equations from

Besides, as pointed out by Liddle and Madg&h the seven to fifteen, which might demand a great effort.
complex scalar field theory is described by both particles and
antiparticles, and similarly one should expect the formation
of an object composed by bosons and antibosons. The “ef- ACKNOWLEDGMENTS
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