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Coherent line removal: Filtering out harmonically related line interference
from experimental data, with application to gravitational wave detectors

Alicia M. Sintes and Bernard F. Schutz
Max-Planck-Institut fu¨r Gravitationsphysik (Albert-Einstein-Institut), Schlaatzweg 1, D-14473 Potsdam, Germany

~Received 2 July 1998; published 18 November 1998!

We describe a new technique for removing troublesome interference from external coherent signals present
in the gravitational wave spectrum. The method works when the interference is present in many harmonics, as
long as they remain coherent with one another. The method can remove interference even when the frequency
changes. We apply the method to the data produced by the Glasgow laser interferometer in 1996 and the entire
series of wide lines corresponding to the electricity supply frequency and its harmonics are removed, leaving
the spectrum clean enough to detect possible signals previously masked by them. We also study the effects of
the line removal on the statistics of the noise in the time domain. We find that this technique seems to reduce
the level of non-Gaussian noise present in the interferometer and therefore, it can raise the sensitivity and duty
cycle of the detectors.@S0556-2821~98!03424-9#

PACS number~s!: 04.80.Nn, 07.05.Kf, 07.50.Hp, 07.60.Ly
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I. INTRODUCTION

In this paper we present a new procedure to remove
ternal interference from the output of gravitational wa
~GW! detectors. This method allows the removal of pha
coherent lines, not stochastic ones~such as those due to the
mal noise!, while keeping the intrinsic detector noise. Th
method works so well that real gravitational wave sign
masked by the interference can be recovered.

Our method requires coherence between the fundame
and several harmonics. If there is no such coherence, o
methods are available@1–3#, but these methods will remov
real signals as well. It is ‘‘safe’’ to apply this technique
gravitational wave data because we expect that cohe
gravitational wave signals will appear with at most the fu
damental and one harmonic@4#. The information in the har-
monics of the interference can be used to remove it with
disturbing ‘‘single-line’’ signals. Therefore, this method ca
be very useful in the search for monochromatic GW sign
such as those produced by pulsars@5,6#.

The method can be used to remove periodic or bro
band signals~e.g., those which change frequency in tim!,
provided their harmonics are sufficiently strong and num
ous, even if there is no external reference source.
method requires little or noa priori knowledge of the signals
we want to remove. This is a characteristic that distinguis
it from other methods such as adaptive noise cancel
~ANC! @7#, which makes use of an auxiliary reference inp
derived from one or more sensors. Although in some ca
ANC can be used without a reference input, it is not cle
how ANC can, in those cases, cancel harmonics of bro
band signals and at the same time detect weak periodic
nals masked by them. This is particularly important in gra
tational wave detection, where signals can be as high a
kHz while the interference has a fundamental frequency
50 or 60 Hz.

In this paper, we illustrate the usefulness of this new te
nique by applying it to the data produced by the Glasg
laser interferometer in 1996 and removing all those lin
0556-2821/98/58~12!/122003~10!/$15.00 58 1220
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corresponding to the electricity supply frequency and its h
monics. As a result the interference is attenuated or eli
nated by cancellation in the time domain and the power sp
trum appears completely clean allowing the detection
signals that were buried in the interference.

The removal improves the data in the time-domain
well. Strong interference produces a significant no
Gaussian component to the noise. Removing it therefore
proves the sensitivity of the detector to short bursts of GW

The rest of the paper is organized as follows. In the n
section we definecoherent line removaland we give an al-
gorithm for it. In Sec. III we apply the method to remove th
50 Hz harmonics from GW interferometric data. First, w
focus our attention to the performance of the algorithm
two minutes of data and we check what happens to a sig
masked by the interference. Then, we implement an a
matic procedure to clean the whole data stream. We hav
solve some difficulties such as the presence of small gap
the data. We present the results obtained and we show
the electrical interference is completely removed. Moreov
we study the effects of the line removal on the statistics
the noise in the time domain. We compare the mean,
standard deviation, the skewness and the kurtosis of the
before and after the line removal and we also study
Gaussian character. We apply two statistical tests to the d
the chi-square test and the Kolmogorov-Smirnov test.
nally, in Sec. IV we discuss the results obtained.

II. THE PRINCIPLE OF COHERENT LINE REMOVAL

In this section, we definecoherent line removaland give
an algorithm for it.

We suppose that a certain interference signalm(t) ~e.g.,
50 Hz interference from the main electricity supply! enters
the system. It may already contain harmonics, and nonlin
effects in the system electronics may introduce further h
monics. If the processes that produce the harmonics are
tionary, then we expect the phase of the harmonics to
simply related to that ofm(t). In particular, we assume tha
the interference has the form
©1998 The American Physical Society03-1
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y~ t !5(
n

anm~ t !n1„anm~ t !n
…* , ~1!

wherem(t) is a nearly monochromatic function,n are natu-
ral numbers, andan are complex constants that depend
the processes that generate the harmonics, and which ar
known a priori. We suppose thatm(t) is a narrow-band
function near a frequencyf 0 . Then, thenth harmonic will be
nearn f0 .

The total output of the system also contains noise
possibly other signals. Usually, the data recorded is ba
limited, since an anti-aliasing filter is applied to the da
before it is sampled. Therefore, the functiony(t) must be
band-limited as well, and the number of harmonics to
considered is finite. This numbernmax is given by the Ny-
quist frequency and the frequency of the fundamental h
monic f 0 :

nmax5 f Nyquist/ f 021. ~2!

The key to this method is to estimate the interference
using many harmonics of the interference signal and to c
struct a function

h~ t !5 (
n51

nmax

rnM ~ t !n1„rnM ~ t !n
…* ~3!

that is as close a replica as possible ofy(t). This function is
then subtracted from the output of the system cancelling
interference. If there is a narrow gravitational wave sig
within a frequency band obscured by a particular harmo
it can still be present after line removal, because it will n
match the form of the signal being removed. Moreover,
causeh(t) is constructed from many frequency bands w
independent noise, the statistics of noise in any one band
little affected by coherent line removal.

Therefore, we have to design an algorithm to determ
the complex functionM (t) and all the parametersrn that
minimize the total output power. Notice that, from the e
perimental data, we do not independently know the value
the input signalm(t).

As pointed out before, we assume that the data produ
by the system is just the sum of the interference plus no
@we ignore here any signals not of the form~1!#

x~ t !5y~ t !1n~ t !, ~4!

where y(t) is given by Eq.~1! and the noisen(t) in the
detector is a zero-mean stationary stochastic process.
Fourier transform of the datax̃(n) is simply given by

x̃~n!5 ỹ~n!1ñ~n!. ~5!

Choosing a subset of harmonics$k%, or all of them if one
prefers, the idea is to construct the functionM (t) by extract-
ing the maximum information from the harmonics cons
ered. The procedure consists in determining the upper
lower frequency limit of each harmonic considere
(n ik ,n f k), and defining a set of functionsz̃k(n) in the fre-
quency domain as
12200
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z̃k~n![H x̃~n! n ik,n,n f k ,

0 elsewhere.
~6!

Comparing Eq.~6! with ~1! and ~5! we have

z̃k~n!5akm
k̃~n!1ñk~n!, ~7!

where

ñk~n!5H ñ~n! n ik,n,n f k ,

0 elsewhere,
~8!

is a zero-mean stationary random complex noise. Then,
calculate their inverse Fourier transform

zk~ t !5akm~ t !k1nk~ t !. ~9!

Since we assumem(t) to be a narrow-band function near
frequencyf 0 , eachzk(t) is a narrow-band function neark f0 .
It corresponds to one of the harmonics of the external in
ference plus noise which is independent in the different f
quency bands considered@nk(t) for different k#, since it is
produced by a stationary process.

Now, we define1

Bk~ t ![@zk~ t !#1/k, ~10!

that can be rewritten as

Bk~ t !5~ak!
1/km~ t !bk~ t !, ~11!

where

bk~ t !5F11
nk~ t !

akm~ t !kG1/k

. ~12!

All these stochastic functions$Bk(t)% are almost monochro
matic around the fundamental frequencyf 0 but they have
different mean values

^Bk~ t !&5~ak!
1/km~ t !. ~13!

They differ by a certain complex amplitude. In order to e
timate the interferenceM (t), we need to define another s
of functions

bk~ t ![am~ t !bk~ t !, ~14!

such that, these new functions$bk(t)% form a set of random
variables—functions of time—and they all have the sa
mean value

^bi~ t !&5am~ t !. ~15!

1In order to perform this operation numerically, we separatezk(t)
into amplitude and phase [zk(t)5Ak(t)exp„iFk(t)…, whereAk(t)
andFk(t) are real functions#. Then, we correct the phase angle b
adding multiples of62p in order to make it continuous and pre
vent branch cut crossing. We constructBk(t) as Bk(t)
5Ak(t)

1/k exp„iFk(t)/k….
3-2
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COHERENT LINE REMOVAL: FILTERING OUT . . . PHYSICAL REVIEW D 58 122003
The functionsbk(t) are constructed multiplying the previou
functionsBk(t) by a certain complex amplitudeGk

bk~ t !5GkBk~ t !. ~16!

The values ofGk can be obtained from a least squa
method, comparing the first harmonic considered,k(1), with
the other ones~i.e., Gk are the values that minimiz
uBk(1)(t)2GkBk(t)u2 for eachk!. We find

Gk5(
j

Bk~1!~ j Dt !Bk~ j Dt !* Y (
j

uBk~ j Dt !u2, ~17!

where Dt corresponds to the time interval between tw
samples, so that the sampling frequency is equal to 1/Dt, *
denotes the complex conjugate, and the indexj counts
sampled points in the time domain.

Now, we want to constructM (t) as a function of all
$bk(t)%, in such a way that it has the same mean and m
mum variance. If we assume the functionM (t) to be linear
with $bk(t)%, statistically the best estimate is

M ~ t !5S (
k

bk~ t !

Var@bk~ t !# D Y S (
k

1

Var@bk~ t !# D .

~18!

The variance ofbk(t) can be estimated by doing a Taylo
expansion of Eq.~12!, hence we obtain

Var@bk~ t !#5
^nk~ t !nk~ t !* &
k2uakm~ t !ku2 1corrections, ~19!

where we can approximate

uakm~ t !ku2'uzk~ t !u2, ~20!

and the numerator can be rewritten as

^nk~ t !nk~ t !* &5E dnE dn8^ñk~n!ñk~n8!* &e2p i ~n2n8!t.

~21!

In the case of stationary noise@i.e., ^ñ(n)ñ(n8)* &
5S(n)d(n2n8)#, the previous equation becomes

^nk~ t !nk~ t !* &5E dnE dn8Sk~n!d~n2n8!e2p i ~n2n8!t

5E
n ik

n f k
S~n!dn, ~22!

whereS(n) is the power spectral density of the noise.
After we have estimated the interferenceM (t), it only

remains to determine the parametersrn in Eq. ~3!. They can
be obtained by minimizing the total output power in the tim
domain,ux(t)2h(t)u2 ~i.e., applying a least square method!.
Taking into account that the noise near the different harm
ics is uncorrelated, it yields

rn5(
j

x~ j Dt !Mn~ j Dt !* Y (
j

uMn~ j Dt !u2, ~23!
12200
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-

which is the form we use in our algorithm. One can al
minimize the total output power in the frequency doma
ux̃(n)2h̃(n)u2. Then, we get

rn5(
j

x̃~ j Dn!Mñ~ j Dn!* Y (
j

uMñ~ j Dn!u2, ~24!

where j is now the frequency index.

III. REMOVAL OF 50 Hz HARMONICS FROM THE
INTERFEROMETRIC DATA STREAM

In this section, we present experimental results that de
onstrate the performance of the coherent line removal
show its potential value. This new technique is applied to
data produced by the Glasgow laser interferometer and
electrical interference is successfully removed.

In the study of the data produced by the Glasgow la
interferometer in 1996@8#, we observe in the spectrum man
instrumental lines, some of them at multiples of 50 Hz. A
these lines are rather broad, and when we compare them
observe that their overall structure is very similar but on
the scaling of the width is different~see Fig. 1!.

If we look at these lines in more detail, in smaller leng
Fourier transforms~seconds in length!, they appear as wel
defined small bandwidth lines which change frequency o
time in the same way, while other ones remain at cons
frequency. Therefore, all these lines at multiples of 50
must be harmonics of a single source~for example the elec-
tricity supply!, and this makes them good candidates to t
our algorithm.

The same phenomenon is observed in the Garching
meter prototype@9#. The Laser Interferometric Gravitationa
Wave Observatory~LIGO! group has also reported large
instrumental artifacts at multiples of the 60 Hz line fr
quency in their 40-meter interferometer@10#. Therefore, this
seems to be a general effect present in the different proto
interferometers.

In the Glasgow data, the lines at 1 kHz have a width o
Hz. Therefore, we can ignore these sections of the po
spectrum or we can try to remove this interference in orde
be able to detect GW signals masked by them.

In the large-scale detectors now under construction,
expect the amount of interference to be smaller. Prototy
such as the Glasgow instrument were designed to test op
systems, not to collect high quality data, and the effort
quired to exclude interference was not justified by the go
of the prototype development. However, we cannot be s
that such interference will be completely absent or that ot
sources of interference will not manifest themselves in lo
duration spectra. Indeed, the Glasgow data@8# contain other
regular features of unknown origin@11#. For this reason we
investigate a solution to this problem using the existing da

A. Testing procedure

As a first test, we apply the coherent line removal to a
of 219 points ~approximately two minutes! of the Glasgow
3-3
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FIG. 1. Comparison of the structure of the lines at 250 Hz and at 350 Hz of the power spectrum~of 2 min! of the Glasgow data. The
broad shape is due to the wandering of the incoming electricity frequency.
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data. The stretch of data selected corresponds to a perio
time in which the detector is on lock and the level of noise
low.

After calculating the discrete Fourier transform~DFT! of
this piece of data@using the fast Fourier transform~FFT!
algorithm#, we notice that the odd harmonics of the 50 H
line are much stronger than the even ones. Thus, in orde
construct the reference waveformM (t), we choose a set o
ten harmonicsk5$3,5,7, . . . ,21%, corresponding to the line
at frequencies 503k( i ) Hz. We also give as inputs the co
responding upper and lower frequency limits of each of th
harmonics, (n ik ,n f k), that are obtained from the power spe
trum.

The first difficulty that arises is to estimate the pow
spectral density~PSD! of the noise~without the external
electrical interference! in those frequency bands correspon
ing to the harmonics considered. In the absence of any e
information, we assume the PSD is constant in each
quency band and we calculate its value by averaging
PSD in the nearness of the line considered. With all t
information, we apply the line removal and we successfu
remove the electrical interference as it can be seen in Fig

We have repeated the procedure considering only six
monics, k5$3,5,7,9,11,13%, and, surprisingly, the interfer
ence still remains below the noise level showing the pow
of this algorithm. The method requires further study~i.e.,
with simulated noise and different signals! in order to char-
acterize how its performance depends upon the numbe
harmonics and their strength. Of course, in order to obta
minimum variance forM (t), the larger number of harmonic
considered the better. The minimum number of harmon
12200
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required depends, in each case, on the strength of the
monics considered, more precisely, with the rat
^nk(t)nk(t)* &/uakm(t)ku2, appearing in Eq.~19!, which
should be smaller than one.

Now, we are interested in studying what will happen to
signal masked by the interference. For this purpose, we a
coherent line removal to the true experimental data with
external simulated signal at 452 Hz, that is initially hidd
due to its weakness.

First, we take into account not to consider the harmo
near 450 Hz as an input to estimate the interferenceM (t). In
this case, we succeed in removing the electrical interfere
while keeping the signal present in the data, obtaining a c
outstanding peak over the noise level and whose amplitud
not modified~see Fig. 3!.

However, now we apply the same procedure, but incl
ing the harmonic near 450 Hz (k59). In this case,M (t)
contains a low-level of signal component in addition to t
electrical interference. This signal component causes a
cellation of the 25.4% of the amplitude of the line at 452 H
and also the appearance of weaker signals under the o
harmonics. The amount of signal distortion depends b
cally on the variance ofb9(t) with respect to the other ones

Any of the harmonics considered in the construction
the reference functionM (t) may contain a ‘‘single-line’’ sig-
nal we want to recover, buta priori, we will not be able to
say which one is masking a signal. The key is that grav
tional wave signals will not be present with multiples ha
monics. Therefore, after applying the line removal, we w
have a candidate line. If we are interested, we can repea
procedure without using the ‘‘dangerous’’ harmonic a
3-4
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FIG. 2. Decimal logarithm of the periodogram of 219 points~approximately 2 min! of ~a! the Glasgow data with the detail of one of th
harmonics near 754 Hz.~b! The same data after the removal of the electrical interference as described in the text.
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hence, we can make use of the whole power of the algorit
With this aim, it is better to consider the lower harmonic
since their frequency bands are narrower and also the p
ability of having a thermal line buried with them may a
cordingly be lower.

B. Automatic cleaning of the whole data stream

The next step consists in removing the electrical interf
ence from the whole data stream making use of an autom
procedure.

The Glasgow data consist of 19 857 408 points, samp
at 4 kHz and quantized with 12 bit analog-to-digital co
verter~ADC! with a dynamical range from210– 10 V. The
data are divided into 4848 blocks of 4096 points. For each
these blocks, the standard deviation is calculated and,
pending whether it exceeds a certain value, the whole bl
is classified as ‘‘bad.’’

The first 18 min of data are rendered useless due
failure of autolocking. Therefore, we decide to ignore t
first 1153 blocks. The rest of the data are separated
12200
.
,
b-

-
tic

d

f
e-
k

a

to

groups of 64 blocks~approximately 1 min of data! and, for
each of them, the coherent line removal algorithm is appli

The first difficulty that arises is how to deal with th
‘‘bad’’ blocks. In some cases, the detector is out of lock an
in other ones, the level of noise is very high. Since t
method is based on Fourier transforms, the suggestion
defining a window function that vetoes the ‘‘bad’’ data pr
duces that each real feature in the spectrum be accompa
by horrible side lobes and satellites features, the structur
which depends in detail on the distribution of those gaps
order to reduce these effects, we realize that it is better no
remove the ‘‘bad’’ data, but to divide each ‘‘bad’’ block b
its standard deviation. Of course, the ‘‘bad’’ blocks are n
taken into account in order to determine the parametersrn
given by Eq. ~23!. This is done multiplying the function
M (t) and the input data by a window function, such that, it
equal to zero for each block of ‘‘bad’’ data and one othe
wise. As a result, all ‘‘bad’’ data are set to zero in the outp

Another important issue is to design strategy to detect
harmonics of the electricity supply interference, and det
3-5
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ALICIA M. SINTES AND BERNARD F. SCHUTZ PHYSICAL REVIEW D58 122003
mine their upper and lower frequency limits without intera
ing with the program. This is not an easy task, since
noise level is very high, the lines are broad, they vary
time, and they are partially hidden by the noise. Also,
presence of violin modes closed to the harmonics, or co
pletely overlapping with them, makes it more difficult.

The method we have used consists in computing
power spectrum for each piece of the data~with the electrical
interference! and we search for the location of the first ha
monic considered. We calculate the meanmk(1) and the stan-
dard deviationsk(1) in a certain frequency interval which w
are sure contains the first harmonic. Then, we search in d
for ten harmonics in the frequency bands centered res
tively at mk(1)k( i )/k(1) and which amplitudes are propo
tional to sk(1)k( i )/k(1). In each band, we set a thresho
depending on the mean and the variance of the power s
trum at the ends of those intervals. We determine the po
which are over the threshold, and from them, we try to
termine the nearest points to the beginning and end of
corresponding line. One has to be careful, since violin mo
~i.e., the transverse modes of the suspension wires! can be
present and stand out of the threshold, and also, the harm
ics considered can be partially under it.

FIG. 3. ~a! Zoom of the same experimental data as in Fig. 2 w
an artificial signal added at 452 Hz.~b! The data in~a! after remov-
ing the electrical interference, revealing that the signal remains
tectable.
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Our criteria consists in lowering the threshold until the
is a certain minimum number of points over it. This numb
is set depending on the length of the data~number of blocks
used! and the harmonic considered. Then, we find the lo
tion of, not the first but, a certainn-point p(n) that stands
out of that threshold and we consider the first point of t
line to be p(n)2n. A similar procedure is applied for the
last point. In case that there is just one signal present in
interval, we would expectp(n)2n to be similar top(1), but
in case that, for example, a violin mode is very close to
harmonic~but not overlapping with it!, then we hope that the
quantity p(n)2n would lie between the two lines. Finally
the initial and final points are shifted until they reach a loc
minimum of an averaged power spectrum.

We solved these two questions, executing our progr
usingMATLAB software running on an SGI–Origin 2000 an
after approximately 140 min CPU time, the data is stor
almost clean of electrical interference.

To show the result of the program, in Fig. 4, we compa
a zoom of the spectrogram for the frequency range betw

e-

FIG. 4. Comparison of a zoom of the spectrogram. The d
areas correspond to the periods in which the detector is out of l
~a! is obtained from the Glasgow data. We can observe the wan
ing of the incoming electrical signal. The other two remaining lin
at constant frequency correspond to violin modes.~b! The same
spectrogram as in~a! after applying coherent line removal, showin
how the electrical interference is removed to below the noise le
3-6
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COHERENT LINE REMOVAL: FILTERING OUT . . . PHYSICAL REVIEW D 58 122003
740 and 760 Hz. There, we can see the performance of
coherent line removal algorithm, comparing how a line d
to an harmonic of the electrical interference in the initial d
is removed. We notice that the algorithm did not work pro
erly for two sets of blocks: 1730–1793 and 3213–3276.
both cases, this is caused by the presence of a huge nu
of ‘‘bad’’ blocks corresponding to periods in which the d
tector is out of lock.

In order to reduce the noise variance and see the qu
of the performance of the coherent line removal, we calcu
an average periodogram using Welch’s overlap met
@12,13#. We remove the two sets of bad data, we divide
rest into sets of 128 blocks with overlaps of 64 blocks, a
we average over the short periodograms. By doing so,
observe how the harmonics of the electricity supply f
quency still remain undetectable over the noise level. A
we discover a series of thin features at 701, 1002 and 1
Hz, and the presence of violin modes at 853, 1451 and 1
Hz that were buried with the electrical interference befor

C. Effects on the statistics

After removing the electrical interference, we are inte
ested in studying possible side effects on the statistics of
noise in the time domain.

For both sets of data, we calculate the mean, the stan
deviation, the skewness and the kurtosis of each block,
we compare the values obtained. We observe that the m
is hardly changed and its value is almost constant aro
20.01860.002 V for the ‘‘good’’ blocks. By contrast, a big
difference is obtained for the standard deviation. In the G
gow data, we see that the standard deviation is not unifo
it tends to increase, specially during an on lock period u
the detector goes out of lock and its average value is aro
1.50 V. After the line removal, we observe the same beh
ior, but for each block, the standard deviation is reduced
0.4560.05 V, obtaining an average value around 1.05
~see Fig. 5!.

The skewness characterizes the degree of asymmet
the distribution around its mean. The value for each blo
changes from20.01560.060 in the original Glasgow data
to 20.00560.040 after the line removal. The kurtosis me
sures the relative peakedness or flatness of a distribution
respect to a normal distribution. In both sets of data,
kurtosis fluctuates from a slight negative value to a la
positive one. For the Glasgow data, the kurtosis is conc
trated around20.3560.15, obtaining a maximum~isolated!
value of 7.8, and after removing the electrical interference
is around20.1560.15. Therefore, it is much closer to th
zero value, even though the~isolated! spikes are larger, the
highest value being 16.7. The kurtosis value gives an i
how Gaussian the noise is and whether it has a large ta
not. A value near zero suggests a Gaussian nature, a
positive value indicates that the distribution is quite peak
Since both values, the skewness and the kurtosis, are ge
closer to zero after the line removal, we are interested
studying the possible reduction of the level of non-Gauss
noise. To this end, we choose a set of 410 blocks of ‘‘goo
data and we study their histogram, calculating the numbe
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events that lie between different equal intervals, before
after removing the electrical interference.

Instead of plotting the number of events versus its lo
tion, we plot their logarithm as a function of (x2m)2, where
x is the central position of the interval considered andm is
the mean~see Fig. 6!. In case that the noise distributio
resembles a Gaussian, all points should fit on a straight

FIG. 5. The solid line~top one! corresponds to the block stan
dard deviation of the Glasgow data. When the detector is on lo
its typical value is 1.50 V. However, when the detector is out
lock, this value grows up to 10. The dashed line~bottom one! cor-
responds to the standard deviation of the data after removing
electrical interference. Its typical value is now around 1.05 V.

FIG. 6. Comparison of the logarithm plot of the histogram f
the blocks 4111 to 4520 as a function of (x2m)2. The circles
correspond to the Glasgow data and the stars to the same data
removing the electrical interference. The Glasgow data is charac
ized bym520.0182 V ands51.5151 V. After the line removal,
we obtain the values ofm520.0182 V ands51.0449 V. In the
right-hand corner, there is zoom of the original figure, but resca
so that the abscissa corresponds to (x2m)2/2s2. If the data re-
sembles a Gaussian distribution, we will expect a single stra
line of slope21. This is not the case for the Glasgow data, bu
seems to be satisfied for the clean data up to 4s. The large number
of points in the highest bin of the Glasgow data is an effect
saturating the ADC. These points are spread to higher and lo
voltages by line removal.
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FIG. 7. Comparison of the block chi-square test:~a! for the Glasgow data,~b! after the removal of the interference.
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of slope 21/2s2, where s is the standard deviation. W
observe that this is not the case. Although, both distributi
seem to have a linear regime, they present a break and th
very heavy tail. The two distributions are very different. Th
is mainly due to the change of the standard deviation,
has a value ofsG51.5151 V for the original Glasgow dat
andsc51.0449 V after removing the interference.

We can zoom the ‘‘linear’’ regime and change the scale
the abscissa to (x2m)2/(2s2). Then, any Gaussian distribu
tion should fit into a straight line of slope21. We observe
that after removing the interference, it follows a Gauss
distribution quite well up to 4s. Whereas, the original Glas
gow data does not fit to a straight line: The slope change
does not correspond to the right one; and close to the ori
it is flatter than a Gaussian due to the negative kurtosis va

We can study the population of the noise in the tail of t
distributions and see how it is affected by the line remov
The number of events that exceeds the67 V is of 60 in the
Glasgow data and of 51 after removing the interferen
meaning that the events are now concentrated at lower v
ages. But, one can be more interested in comparing the n
ber of events that exceeds a certain standard deviation v
The population outstanding 5s is just 51 for the Glasgow
data, but of 96 after the line removal. This higher number
events in the tail is due to the big reduction of the stand
deviation value, since the sames value corresponds to
much lower voltage.

The Glasgow data has a dynamical range from210 to
110 V, as it was defined by the computer board they u
After removing the electrical interference, we observe eve
at 11.8 V. This implies that the amplitude of the signal w
remove is of at least 1.8 V. This high signal amplitude,
gether with the previous existence of events close to the l
of the dynamical range allowed, and the decrease of the s
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dard deviation can explain how, in some ‘‘isolated’’ case
the kurtosis value grows so much.

In order to study the Gaussian character, we apply t
statistical tests to the data: the chi-square test@14# that mea-
sures the discrepancies between binned distributions, and
one-dimensional Kolmogorov-Smirnov test@15# that mea-
sures the differences between cumulative distributions o
continuous data. Both tests can be applied to our data s
we can always turn continuous data into binned data,
grouping the events into specified ranges of the continu
variable.

We compute the significance probability for each block
the data using both tests and we check whether the distr
tion are Gaussian or not. The two tests are not equivalent
in any case, the values of the significance probability wo
be close to unity for distribution resembling a Gaussian d
tribution ~see Figs. 7 and 8!.

In all cases, we find that the data deviates from a Gaus
distribution by a wide margin. Although, for some blocks w
get a high significance probability, this cannot be taken
the dominant trend. As a result of both tests, we note how
significance probability increases after removing the elec
cal interference, showing that this procedure suppres
some non-Gaussian noise, although, generally speaking
distribution may still be described as being non-Gaussian
character.

IV. DISCUSSION

We have described a new exciting technique for remov
troublesome interference from external coherent sign
~such as the electricity supply frequency and its harmon!
which can obscure wide frequency bands. This approach
leave the spectrum clean enough to see true gravitati
3-8
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FIG. 8. Block Kolmogorov-Smirnov test:~a! for the Glasgow data,~b! after the removal of the interference.
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waves that have been buried in the interference. Theref
this new method appears to be good news as far as sear
for continuous waves is concerned.

We have appliedcoherent line removalto the Glasgow
laser interferometer data and we have succeeded in remo
the electrical interference. By doing so, we have discove
some new thin features at 701, 1002 and 1503 Hz, and
some violin modes at 853, 1451 and 1750 Hz that w
masked by the interference in the original data.

The results of the previous section indicate thatcoherent
line removalcan also reduce the level of non-Gaussian no
This result is very encouraging for large-scale interfero
eters. Nicholsonet al. @16# reported that the effective strai
sensitivity in coincident observations for short bursts in
time scale, was a factor of 2 worse than the theoretical b
limit that the detectors could have set, the excess being
to unmodeled non-Gaussian noise, and they also indicate
reducing this non-Gaussian noise could raise the sensit
and duty cycle of working detectors close to their optimu
performance.

Coherent line removalcan be applied to any kind of co
herent interference signal. It only requires phase-cohere
between the fundamental and several harmonics. Since
algorithm can be applied recursively for small pieces o
long data stream, the global physical process that produ
al

-
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the interference~and all the harmonics! does not need to be
stationary, i.e., the parametersan in Eq. ~1! may change in
time. We only require that the process could be conside
stationary for those time scales in which the algorithm
applied. For every small piece of data, the reference func
M (t) and all the parametersrn are calculated allowing any
possible changes. This method can be considered as an a
tive method that has the ability to adjust its own paramet
automatically and requires little knowledge of the signal
want to remove.

Coherent line removalmay have more applications, no
only for the detection of GW radiation, but also, for examp
in radioastronomy or in other completely different fields.

We hope that the results described before will encour
others in testing and applying this new technique to ot
problems.
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