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Generating branes via sigma models
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Starting with theD-dimensional Einstein-dilaton-antisymmetric form equations and assuming a block-
diagonal form of a metric we derive aD(d)-dimensional o model with the target space
SL(d,R)/SO(d) X SL(2R)/SO(2)XR or its noncompact form. Various solution-generating techniques are
applied to reproduce some known and to construct somepbrane solutions. It is shown that tipebrane
Harrison transformation belonging to the SLR® subgroup generates blapkbranes from the seed Schwarzs-
child solution. A flux-brane generalizing the Bonnor-Melvin-Gibbons-Maeda solution is constructed as well as
a nonlinear superposition of the flux-brane and a spherical black hole. A new simple way to endow branes with
additional internal structure such as plane waves is suggested. Applying the harmonic maps technique we
generate new solutions with a nontrivial shell structure in the transverse $faatrioshka” p-branes.
Bonnor-type symmetry relating the four-dimensional vacuum SRY & the corresponding sector of the above
global symmetry group is used to construct a new magnetic six-brane with a dipole moment in the ten-
dimensional type IlA theory. A similas- model is constructed for the intersecting branes. It is shown that the
intersection rules have a simple geometric interpretation as conditions ensuring the symmetric space property
of the target space. The null-geodesic method is used to find intersecting “matriophiihes in type IIA
supergravity [ S0556-282(98)03120-9

PACS numbes): 04.50+h, 04.70.Dy, 11.25.Sq

[. INTRODUCTION Once such solutions are found, certain lower-dimensional so-
lutions may be obtained via appropriate compactification
Investigation of classicgb-brane solutions to supergravi- schemes. Somad hocprescriptions are also known which
ties in various dimensions has led to considerable progress gllow one to perform “blackening” deformations of
understanding relations between different string theories. Op-branes from extremal configuratiod9—11]. It can be
particular interest are type IIA and 1IB supergravities in tennoted that the diversity of techniques aAdsaze makes it
dimensions which may be regarded as the low-energy limitsather difficult to understand mutual relationships between
of the corresponding superstring theories, and eleverdifferent classes of multidimensional solutions. Also, be-
dimensional supergravity, which is supposed to be the loweause of the absence of the uniqueness theorems such as
energy limit of M theory. Recent progress in string theory isthose for four-dimensional black holes, it is unclear to which
also connected with the discovery of nonperturbative objectextent the known explicit solutions are general and exhaus-
calledD-branes. In the low-energy region they correspond tdive. Therefore the search for new schemes joining solutions
solutions of appropriate classical equations. There are severato classes and simplifying their generation seems to be
types ofp-branes which are important in the context of su-desirable.
perstrings. The major role is played by bosonic solutions One such approach consists in the use of “hidden” sym-
preserving a part of the initial supersymmetry, the so callednetries(dualitieg arising in dimensionally reduced theories.
Bogomol'nyi-Prasad-Sommerfiel[PS states(for a review  Duality symmetries can be used to generate new nontrivial
see Refs[1,2]). Another family consists of nonsaturating solutions from known ones, as well as to suggest new algo-
Bogomol'nyi boundblack p-branes possessing a regular rithms for integration of the field equations. Such a technique
event horizon. Both families may form intersecting multiple- is well known in four-dimensional general relativity, where it
brane structures. The solutions may be also endowed witachieved a high level of sophistication. For a class of
additional structures such as traveling waves. vacuum solutions effectively depending on three, rather than
Solving highly nonlinear bosonic equations in multidi- four coordinates, the hidden symmetry group is SR|2,
mensional supergravities constitutes a formidable technicakhich acts nonlinearly on the space of two moduli. One of
task. In most casep-brane solutions were obtained using the group transformationgEhlers transformatignis non-
some speciahnsazefor the metric and matter field8—6].  trivial and may be used as generating symmeliy:2 su-
To find BPS-saturated solutions one can also use the firgergravity in four dimensions being restricted to the set of
order Bogomol'nyi type equations instead of directly solving solutions possessing a non-null Killing vector field leads to
the equations of motiofi7,8]. However, this method is effi- the famous Kramer-Neugebauer-Kinnersley group(1SR
cient mostly in eleven- and ten-dimensional supergravitie§12,13, while the(truncated to one vectbN=4 supergrav-
where the Killing spinor equations are relatively simple.ity generates the Sp(R) symmetry[14]. The crucial role of
three dimension due to the fact that the vector fields then
can be traded for scalars allowing for a description of the
*Email address: galtsov@grg.phys.msu.su system as a nonlinear model.
TEmail: rytchkov@grgl.phys.msu.su Global symmetries of supergravities reduced to dimen-
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sions higher that 3, generically involve vector and antisym-ions, this is known as the harmonic maps technique. Using
metric form fields. It is well known, for example, that type harmonic maps onto geodesic subspaces we derive new so-
[IB supergravity, compactified to nine dimensions, exhibitslutions with “matrioshka” type structure of singularities.
the SL(2R) symmetry(S duality) mixing the NS and RR The third method we use is based on the Bonnor-type map
fields. Also there is a correspondence between type IIA antietween similar cosets involved in physically distinct theo-
[IB supergravities reduced to nine dimensions, which isries. In this way we obtain “dressedp-branes endowed
called T duality [15]. Using these dualities, accompanied by with dipole moments. Ouw-model approach gives espe-
appropriate boostér by the dimensional reduction and up- cially nontrivial results in the case of intersecting branes. We
lifting), it is possible to construct a variety of new solutions give an alternative interpretation of the so-called intersection
from the known one$l16—18. However, in order to exploit rules as conditions assuring the symmetric space property of
global symmetries to full extent one has to construct explicithe target space. We also derive new “matrioshka” type
nonlinear realizations of these duality groups on the space ahtersectingp-brane solutions. Other possible applications of
physical variables, which is generally a highly nontrivial our o model are also briefly discussed.
problem. Meanwhile, if one chooses a self-consisfamatz The paper is organized as follows. In Sec. Il we describe
in which vector and higher form fields are parametrized bythe derivation of the ¢ model starting with the
scalars, one can find purely scalar models defined on D-dimensional gravity coupled system of tkeform field
spacetime of dimension higher than 3. Although such modeland the dilaton. Using the block-diagoahsatzfor the met-
do not include all degrees of freedom of the initial action,ric we derive the correspondingsmodel action and examine
they still can be efficient for solution generating purposes. its symmetries. Section Ill is devoted to generation of the
The purpose of this paper is to formulate such an apgeneral blackp-brane solution by applying Harrison trans-
proach in the multidimensional model describing gravityformation. We argue that the prescription of “blackening”
coupled to dilaton and antisymmetric tensor field. Startingthe extremalp-branes is a manifestation of the target space
with the D-dimensional Einstein-dilaton-antisymmetric form isometries. In Sec. IV using the-model transformations we
equations we assume that spacetime possessemmuting  generate a flux-brane, which is a multidimensional analogue
hypersurface-orthogonal Killing vectors, which correspondsf the Bonnor-Melvin universe. We also find the nonlinear
to a block-diagonal form of a metric. Assuming also that thesuperposition of the flux-brane and a black hole. In Sec. V
differential form has only one nontrivial component, we con-we apply the technique of harmonic maps to obtain new
struct ac model on the transverse spagkany dimension solutions of thep-brane type and study their properties. Also

with the target space we use the null geodesic method to generate the Brinkmann
wave and to demonstrate its independence of gHaane
SL(d,R)/SO(1d—-1)XSL(2R)/SO(1,1) XR. structure. In Sec. VI we discuss a Bonnor-type map relating

four-dimensional solutions of the vacuum Einstein equations

The first coset here corresponds to Kaluza-Klein modulito multidimensionalp-brane type solutions and derive an
(with an overall scale factor removedhe rest is the Ehlers- apparently newp-brane solution to the type IIA supergravity
Harrison type coset involving the above scale factor, the diin ten dimensions endowed with a dipole moment. In Sec.
laton, and the nonzero component of the form field. TheVIl we discuss theintersecting pbranes in theo-model
SL(2R) group contains a Harrison-type transformationterms. It is shown that the well-known intersection rules re-
which generates solutions endowed with Page charges frostricting dimensionalities and the coupling constants for
uncharged solutions. known classes of composif@branes are equivalent to the

Using this o-model representation we explore different sSymmetric space condition for the target space. In this case
solution generating techniques known in general relativitythe coset models can be formulated which opens a way to
The most direct application consists in using the symmetriesonstruct more general classes of intersecting branes, an ex-
acting on the coset variables to construct new solutions frorample is given for the case of type IIA supergravity. In con-
already known ones. It turns out that the standard singl€lusion we discuss supersymmetry properties of new ob-
p-brane solutions are related to multidimensional Schwarzstained solutions and give some remarks on further
child metric by thep-brane Harrison transformation in ex- perspectives of the suggested approach.
actly the same way as the four-dimensional Reissner-
Nordstran solution of the Einstein-Maxwell theory is related
to the vacuum Schwarzschild solution by the original Harri-
son transformation. The resultipgbrane isblack (nonextre- We will consider the model theory with the following
mal), so our procedure gives a justification of the so-calledaction in theD-dimensional spacetime:
blackening prescription producing nonextrempadbranes
from extremal ones. In a similar way, just repeating the deri- 1 1 o ad
\lgathn of the Bonnor—Merm solution frgm flat space via szﬁ f de\/—_G(R— §(V¢)2_MF§“ ,

arrison transformation, we construct “flux-branes” sup-

ported by antisymmetric forms of arbitrary rank. These solu- @
tions for higher rank forms are new.

Our second approach consists in an exponentiation of thehereF g, 4 is a (d+ 1)-differential form,F4, =dAy, ¢ is
coset generators under some additional simplifying assumg dilaton. The corresponding equations of motion are

II. SIGMA-MODEL REPRESENTATION
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The energy-momentum tensors for the matter fields have the _ _ .
form It is straightforward to check that the field equatid¢@s-(12)
can be obtained from the new action of trenodel type
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Let us suppose that the space-time Hasommuting hy- + Zguhaagmgwfyﬁgw_ Se Yo, &Bv)]. (14)
persurface orthogonal Killing vectors, one of which is time-

like (the case with only spacelike Killing vectors will be
discussed latgr Then we can use the followingnsatzfor
the metric:

A similar action can be obtained assuming the purely
magneticAnsatzfor thed form

ds’=g,,,()dy*dy”+(V—g) ?h,(x)dx*dx?, (7) Forasii=

whereg,,, andh,gz are arbitraryd- and (s+2)-dimensional
metrics, withu, v running from 0 tod—1, ande, B running  in this case one has to set in the mesied. The Maxwell
from 1 tos+2,s=1, D=d+s+2, g=det@,,). The factor  equationg(3) are trivially satisfied, while the equation far
(V—g) ~?*is introduced for future convenience. Both metric follows from the Bianchi identity. In this case themodel
tensors depend only oftransversgcoordinatesc“. action still has the forn14) with the replacement af onu
For the antisymmetric form we assume either electric orand reversing the sign af. This fact is a manifestation of
magneticAnsdze In the electric case thd form has only the electric-magnetic duality. In what follows we consider
one nontrivial component explicitly an electric case, the corresponding magnetic solu-
tions can be obtained by the above dualization procedure.
For further analysis of the actiofi4) it is convenient to
rescale the world-volume metrg,, introducing the matrix
With this choice of the metric and the form one obtains a
reduced theory ing+ 2)-dimensional space. Clearly this re- B.=(V—9)"2g,,,, (16)
duction is not the most general one, namely, we have tacitly
assumed that all Kaluza-Klein vectors as well as the lowersuch that def,,)=—1. Then the action will read
dimensional antisymmetric forms arising in the full dimen- . .
sional reduction are not excited. However, this truncated _ P b e
theory is still reach enough to be explored in details. S= 242 f o X\m[ R =h B(Ea“qmﬁqﬁ
In terms of the functiong,,,, h,z, ¢, andv the equa-

ePe™ 189 5u(x), (15)

Aoz --d-1=V(X). (8

. ; s+d
tions of motion read TR 2o(INN=9)d4(INy—0)
1
—d,(\VhheAg r\)g,,= —— e Yg,,h*Po v, 1 1
\/H (\/— Bgﬂ)\g )g d+s g,u vesY + Z -g‘ﬂ)\&a'g)\v’gvoaﬁ’g(rﬂ_ z e l//aav aﬁl}) ) . (17)
9
aBa—t _ Note, that the matri¥j,, now is decoupled from the rest of
da( b 9pv) =0, (10 the o-model variableg, interacting with them only through

1 the gravitational fielch, ;. Sinceg,,, is a symmetric matrix
9 (\/ﬁhaﬂo—; ¢):f e~ Yh*Bg 1w (12) with (minug unit determinant, this matrix parametrizes a
h “ b 2 e coset SL@,R)/SO(1d—1). Therefore the metric on the
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world-volume of thep-brane is to high extent independent of , 1 ) .
the othero-model variables, which only influence its overall dl =5F (d€+20dP)°—2F " dddD, (24)
scale.

To simplify the rest of the action we introduce together F=gt P2 (25)

with Eqg. (13) another variable

_ — The action of SL(R) on the potentials is realized nonlin-
¢=sdgp—a(s+d)ny—g, (18) early. It can be presented in terms of the following three

so that the inverse transformations read one-parametric subgroups:

1 2¢ (hH S=a250, <IJ=a<I>0, (26)
¢=—<a$+— , (19
A (std) (1) E=Ey—2bdy—b?, d=dy+b, 27)
1
Iny—g= (sdy— ), (20 i ¢ ,_ P+ct
Alstd) ) &=1 %z ® " 1-co-cez @@

whereA = a?+2sd/(s+d).
In the new variables the part of the action not including
the matrixg,,, will read

where a, b, and c are parameters. Transformatidi)
changes the scale of the solution. Note, that in order to have
asymptotical flatnesgin the case oftime coordinate re-
1 duced, one has to impose the conditiéfee) =1. The trans-
S=-— J’ d5+2x\/ﬁ[ R —heb formation (Il) is pure gauge, it changes an asymptotic value
2K of the antisymmetric form field. The third, Harrison transfor-
1 mation, acts on the space-time variables and matter fields
AdoEdpE+Ba g e ) ﬁﬁv) ] , (21)  nontrivially. ' .
Similarly one can consider the symmetry transformations
realized on the variablesandg. SubgroumR acts only oné

X

where

1 s+d {—&+a.

A= , B= .
a?sd(s+d)+ 2s%d? 2a%(s+d)+4sd In terms of initial fields it corresponds to the shift of the
(22 dilaton on a constant accompanied by the rescaling of the
metric. The matrix § parametrizes the coset
SL(d,R)/SO(1d—1), the representation of the group
SL(d,R) is realized in a natural way,

Now the ¢ part is also decoupled. The remaining fielland
v parametrize a coset SLE),/SO(1,1). Therefore the ac-
tion (17) corresponds to a nonlinearmodel with the target
space SL4,R)/SO(1d—1)XSL(2R)/SO(1,1)xR.

Let us recall that the possibility of description of the
gravitating systems in three dimensionscamodels on ho- whereU is a constant element of S(R).
mogeneous target spaces exists for many dimensionally re- So far we have considered the equations of mot@
duced theories. The four-dimensional Einstein-MaxweII(4) assuming that the space-time metric adrditommuting
theory in the presence of one non-null Killing vector field is Killing vectors one of which is timelike. One can also inves-

equivalent to the S(I,l)/S(U(Z)XUl(l)) e model[l?,l?}. A . __tigate the case when Killing vectors aa# spacelike In this
more complicated example is given by the dllaton—aX|onCase ther-model action will read

coupled Einstein-Maxwell theory, in which case one has the

coset target space SpR}/U(2) [14]. Severaloc models 1

were also derived in multidimensional supergravities S= 2.2 J ds*2x\/—h
[4,19,20, but the geometric structure of the target spaces

was not studied.

Let us discuss ous- model (17) in detail. Since the po- X
tential space is the direct product of three independent
cosets, one can analyze each of them separately. The trans- 1
verse SL(ZR)/SO(1,1) part can be conveniently described +Baapipypt 5 e wﬁavﬁgv) ] (29)
by an analogue of the Ernst potentif®i|

§—U~"gu,

1
h a T 0..0%99 .0
R = Ad,£0pE+ 7 G008,,8"" 05T,

5 where A and B are the same as in Eq22). This action
__v f—ele v 23) differs from the previous one by the sign of the last term.
' 8B’ As a result, the metric on the target space is positively
definite so we deal with the coset S1,R)/SO()
using which the target space metric can be rewritten in a<SL(2R)/SO(2)xX R. Introducing modified Ernst potentials
familiar form [13] for the SL(2R)/SO(2) sector
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v 02 Let us start with the Schwarzschild solution in the
o= , E=—eV— —, (30 D-dimensional spacetime corresponding to a “neutradl’ (
2v2B 8B —1)-brane
we come back to Eq.24). Hence the Harrison transforma- B 2MY > 5
tion again is given by Eq28). ds’= _(1_ rs dt+dyj+---+dyg,

The above symmetries can be used to generate new solu-
tions from the old ones. Obviously, we are restricted by the
chosermAnsatzfor the metric(7) and antisymmetric fornig),
where we can takg,,(X) to be of Minkowski or Euclidean ) )
signature. This means that the seed solutions should thave Using Egs.(13) and (18) we obtain
commuting Killing vectors orthogonal to hypersurfaces and
only one nontrivial component of thek form. New solutions Yo= In( 1— ﬂ) Eo=— Ea(s+ d)In( 1— ﬂ)

. . . . . 0 s [ 0 s |
obtained by application af-model symmetries will have the r 2
same properties.

The generating procedure is as follows. Choosing the seed vo=0, (32
solution with the above properties, one has to find the corre- | . . .
sponding potentials, i, and¢, which are given by Eq<8), which corresponds to the following seed Ernst potentials:
(13), and(18). The next step is to construct the Ernst poten- oM
tials (23) and apply the transformatiori&7), (26), and(28). Dy=0, &=1- —. (33
The new Ernst potentials should be converted into the ex- r
plicit solution by using the Eq$23), (19), (20). As we have . . .
mentioned, only the third transformatiq@8) is nontrivial, ;rer;ﬁi;:rrilzlczjntrg?rﬁ\?vr:‘Eﬂzgﬁ&aigd .the rescaling of po-
but two others can help to fix the scale in order to ensure y 4 v
asymptotic flatness, as well as to set zero an asymptotic oM 2Q
value of the form potential. The physical meaning of the dlen(l——s) +In| 1+ —
Harrison transformation is recharging of the solutianthe r r
case of one timelike Killing vector in the reduction scheme oM 20| 1
or adding flux of the differential forntin the case of space- v =2c\/ﬁ< 1— _S) ( 1+ _S) , (34)
like Killing vectors). Thus it gives us the possibility to get r r
(chargedl p-branes and flux-branes from vacuum configura-
tions. Some concrete examples of this procedure will bé(vhere
given in Secs. 3 and 4. Mc2

+

am\ =t
1_F dre+r dQS+1. (31)

-2

IIl. GENERATION OF BLACK p-BRANES

dt2+dy§+---+dy§1}

vd 2M -1
[(l—?) dr2+r2dQS+1], (36)

2Q 2a2/A

e_“¢= 1+ F

(37

The function¢ remains the same. The resulting metric is
multidimensional generalization of the Reissner-Nordstro ds?= 1+F
brane ofD=11 supergravity23]. Black p-branes for gen- 1+ s
(see, e.g., Ref§10,11,25, and references thergin the black p-brane solution[9]. The corresponding dilaton
specified by the one-center harmonic functions. The process
p-brane solutions can be obtained from Schwarzschild soluygte that the extremal limit of this solution M —0, c—1
tion of the hidden symmetry contained in the model. This IV. GENERATION OF THE FLUX-BRANE
for an explicit generation of aingleblack p-brane, while in  apply the same technique to obtain thex-branesolution

As the first application of the above technique we con-
sider the generation of blagk-branes. A blackp-brane is a ( 2Q —VS[ ( M
black hole. The simplest cage=1 corresponds to the black '
string [22]. Another important example is the black mem- ( 2Q
+
eral dimensions were constructed in R¢f524]. Also there
is a number of papers treating intersections of bladkanes  wherey=4A"*(s+d)*. This coincides with the metric of
Black p-branes are usually treated as suitable deformafield is given by
tions of the corresponding extremalbranes, the latter being
of deformation is called “blackening,” the relevant prescrip-
tion was given in Refs[9,10]. Also it is known that black
tion by sequences of boosts and dualitie§]. We prove  gq thatQ is finite.
here that the existence of such prescriptions is a manifesta-
symmetry is nothing but the SL([R), which was considered
in the previous section. In this section we use this symmetry Assuming that all Killing vectors are space-like we can
Sec. VII we will explain the generation afitersectingblack  which is a multidimensional generalization of the Bonnor-
p-branes. Melvin universe[27] in the Einstein-Maxwell gravity. The
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Bonnor-Melvin solution with a dilaton was constructed by According to Eqs(13) and (18),
Gibbons and Maed8], the flux-brane solutions to the mul-

tidimensional gravity with one-form field were considered in Yo=2In(r?sin § cos 6 sin ¢),
Ref. [29]. We give their generalization for the case of the _ - )
arbitrary rankd-form of either electric or magnetic type. §o=—4a In(r”sin ¢ cos ¢ sin ¢), (46)

Qur starting point is a fIaD-dlmensmnal space-time writ- .\« 4o seed Ernst potentials have the form
ten in the multicylindrical coordinates

Eo=—r?sirf6 cog o sirty, ®y=0.
ds’=—dt*+(pidei+ -+ pide})
Using Harrison transformation®28) we obtain a new solu-

+dpf+- -+ dpg+ dx,dx?, (38 tion with the metric
wherea=1,...s+1—d. This yields d?={1+c2r*sir?0 co2d szw}z(ahz)
vo=2Inpy--pg, &o=—a(std)In p;---pg, vo=0, 5 2M\ 7t
(39 X4 — 1—r—3 dt -+ 1—r—3 dr

so that the corresponding Ernst potentials are
. +r2d92+r2co§0d¢2]
&o=—p1pa, Po=0. (40)

2, 4ci ; —2/(a?+2
Applying the electric Harrison transformati¢28) we obtain +{1+c?r*sir’6 cog 6 sirfy} 2«2

2/ i 2 ; 2
Y=210 py-py—2 In(1+C2p% -2, Xr2(sinfode;+cog o sirfydes).

The corresponding dilaton field is
2¢\2Bp?-+p}

VT T 14t (42) e~ =11+ c2risirPg cog siry}2e’l(@+2),
with £ remaining the same. As a result we get the foIIowingWhil_e the nonvanishing component of the two-form potential
metric: is given by
(14202 p2) " p2d 02+ - -+ p2d 2 2 r4sirfg cos 6 sirfy
AS'=(Lr ol pd) pides paded Aores™ " 0752 [T+ cor'si?6 o6 Sy}
+(14c2p2---pf)Y(—dt?+dpi+- -
It is easy to see that the obtained solution is indeed a non-
+dp§+dxadx‘“). (42 linear superposition of the black hole and the flux-brane. The
) ] o limit c—0 returns us back to the Schwarzshild solution,
The corresponding dilaton field is while puttingM =0 we recover the flux-brane. Along the
ad_ 5 2 2202 same lines one can construct the instanton describing the
e “?=(1+cp1pg)”t ", (43 nucleation ofp-branes by the homogeneous antisymmetric

form
while thed-form potential has the nonvanishing component

2c\/25p§---p§ V. HARMONIC MAPS
Apyeq= ™ 1+c%p%-p3 (44) The sigma-model representation can be used for con-

structing new solutions in a different way not using directly

where the coefficienB is given by Eq.(22). the symmetries of the target space. In this section we will

Applying a similar technique one can easily constructfind solutions of the theoryl) by the harmonic maps tech-
more complicated solutions. As an example let us derive th@ique which is based on direct exponentiation of the coset
metric describing a six-dimensional dilatonic black hole ingenerators.
the magnetic field of the one-flux-brane. Now we start not In order to apply this procedure we rewrite themodel
with the flat space-time, but with the six-dimensionalaction(17) in the following matrix form
Schwarzschild solution writing the metric on the four-sphere

in the form[30] :if s+2
S 5.2 d>*2x\h

2M
dSZZ—(l—r—g

R+ heb

2M\ !
dt2+ 1—r—3) dl’2

1

x| 2B Tr &HM&BM’1+4Tr aaaaﬁﬁl)], (47)

+r2(d6?+ cog ody?+ sir? od 2
) ) where the matriXM is built from the fields¥, v, and¢ as
+Cos0 sirfyde3). (45  follows:
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2 0
2\2B
17 v 1 v?
M=exp<—§> 225 ~3 exptp—S—B) 0 (48)
4 €
0 0 a5
exp( 2" Jsd(s+d)

This representation is a convenient starting point for an apsuch thato(e) =0. According to the above general scheme,
plication of the harmonic maps technique. In particular wewe presentM in the form (54), whereMg is an element of
will be interested here in constructing solutions correspondthe coset SL(R)/SO(1,1)XR and the generatdf belongs

ing to the null geodesics of the target spag#,32. to the algebra sI(R) XR. My has to be taken corresponding
Consider the transverse part of the act{d), to an assumed asymptotic behavior, E&p) gives
1
_ +2 (h) apf -1 1
S=52 f d* 2xh[R™ + 2Bh*ATr(9,M M 1)1, Mo:diag{ - _,1)_ 56
(49) ?

whereM is an element of the appropriate coset spa¢el. A convenient parametrization of the matifis
The equations of motion read

a ¢ O
1
——=,(vhh*M~19,M) =0, (50) K={d —a 0], (57)
vh 0 0 b

(h_ _ -1
Rap 2B Tr(daMdgM ). (51 One has to distinguish two different cases: Ket0 and

It was noticed 12] that if the matrixM depends orx coor- detK=0.

dinates through a single functioM =M (a(x)), thena(x) (1; Deggnerate ansedethzo. The general' constraint
can be chosen to be a harmonic function on the curved spadd K“=0 gives 2@“+cd)+b“=0. ;I'ogether with the re-
with the metrich, i.e., striction detKk=0 this mean®=0, a“+cd=0. In terms of

the matrixK this leads tokK?=0, so the exponentiation is
1 essentially different from that in the nondegenerate case:
N 3o(VNN*3 50)=0. (52)

Jh

Equation(50) then reduces to the matrix equation

ek = +Ko. (58

Therefore for the matriM one obtains

d _,dM
do M55 1=0 (53 2+2a0 2co 0
1
whose solution can be expressed in the exponential form M=]| - Eda — E(l—a(r) 0]. (59
M= MoeKU, (54) 0 0 1

where K belongs to the Lie algebra of the gro, and

Mo e G/H. Substituting this into the Einstein equatiof) This matrix should be symmetric which gives an additional

constraint on the parameters, so the resulting matrix depends

one gets on a single parametex
RN =2B Tr(K?)d,0d,0. 55
oh (K9)9a0dp 55 2+2a0 ac 0
It is clear that in the particular case Kf)=0 the metrich 1
is Ricci-flat (and hence can be chosen X¥lafhis is a con- M= ao —5(1-ao) 0. (60)
structive way to build null-geodesic solutions to an arbitrary
o model. Let us apply it to our model with the target space 0 0 1

SL(2R)/SO(1,1)XR. Here we are interested in the asymp-
totically flat solutions, so we choose the harmonic function Comparing this with Eqs(48) and (13) we get
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e *=(1+0g)2*A, (63)

(61)

y=—2In(1+ac), £=0, uzzﬁ(l—

l1+aoc

. . . . L . This solution saturates the Bogomol’'nyi bound
Sinceo is an arbitrary harmonic function, it is defined up to 9 y

a scale parameter. Thus without loss of generality one can

puta=1. The resulting metric is
ds?=(1+0) "S(—dt?+dyi+---+dyj_,)

F (14 0)" YA+ +dXE, ).

This metric is nothing but the usuptbrane solution with the
harmonic functiorH =1+ ¢ [33]. The corresponding dilaton

field is given by

4sB
u= 2B e, (64

(62

(2) Nondegenerate caseetK+0. Once again we have a
constraint Trk2=0, which implies 2%+ cd) + b?=0. Per-
forming a direct exponentiation one obtains

This matrix should be symmetric, so taking into account the

constraints on the coefficients we obtain

sin(o+ @) sin o
sin ¢ sin ¢
M= sin o sin(o— @) L
sin ¢ 2sing
0 0 e2’

where we pub=v2 because of the scaling freedom for the

harmonic function and denoted

1
a?+1’

sin o=

Equations(48) and (13) yield

sin(o+ @)

sin ¢

¢=o\2sd(s+d), y=—2In

B 2y2B sino
- osinot o)

Now it is easy to construct the whole metric:

~ bo 2cv2  bo
sin— sin— 0
V2 b V2
1 bo av2  bo . (65)
—=—cos—+——sin— O
2 va 2b o)
0 ebo’

— S

sin(o+ ¢)
sin ¢

xXe~ V“S(S+d)/2dva(r(_dt2+ dyi++dy§_1)

sinc+¢) " ——
(66) néT(PQD ev‘d(s+ d)/ZSvaU(dX%_i_ R dX§+2)
(69
and the dilaton field
; 2a%/IA
e*a¢= w e~ \r"Sd(S+d)/2Va0'. (70)
¢

The structure of this solution is similar to that of the usual
(67) p-brane, but the metric functions are essentially diffeféart
the O-brane case see R¢82]). The full r-range solution
contains a sequence of compact singular transverse hypersur-
faces lying between the subsequent ragtef the equation

o(ry)+e=wk, k=1,2,... (72

and forming a “matrioshka’-type structure in the transverse
space. Curvature invariants diverge rat The outermost
spacetime is asymptotically flat, and for it one can calculate
the Arnowitt-Deser-Misner(ADM) mass and the Page

(68)  charge[34]. It easy to check that the Bogomol'nyi bound is
indeed saturatedas could be expected since the solution
corresponds to a null geodesic in the target spafcéhe
parameterp satisfies the constraints
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[ sd
sin(p+x)= ﬁ, COSXZa\/ﬁ. (72

PHYSICAL REVIEW D58 122001

This metric can be rewritten in the light-cone coordinates as

ds’=—dudv — odu?. (82

_ As arealistic example let us take the type IIA supergrav—rhis corresponds to the well-known Brinkmann wdias]
ity, whose bosonic action in the Einstein frame is given by o4 the decoupling 6§ from the action(17) reflects the

1
s=5r2 | 05076

1 o ¢ 03612 adl2
X\ R (V) o arFe oxmiFe axar o
1
-2 f F,OF,0A,, (73)
where
Fi=dAg+A,OF 5. (74)

We will consider the Neveu-Schwa(iS) part of the action

possibility of a superposition gf-branes and waves$6].

VI. BONNOR-TYPE MAP

One can obtain new nontrivial solutions from the old one
using a map between similar cosets describing physically
different theories. This idea traces back to the Bonnor con-
struction of the metric of a magnetic dipole in general rela-
tivity using a correspondence of two SLR)/SO(1,1) de-
scribing stationary vacuum gravity and static electrovacuum.
Since we have the same subspace inpgH&rane cas€l7),
one can use the same correspondence to generate new
p-brane solutions.

For the vacuum Einstein theory in four dimensions the

consisting of the metric, dilaton, and two-form. The usualtarget space describing stationary solutions has the form
extremal one-brane solution corresponds to the elementary

NS string and has the form
ds’=H ¥4 —dt?+dy?) + H"(dx +- - +dxg). (75)

The “matrioshka” one-brane line element reads

sin(o+ —3
dszz rin e*(\/§/4)<r(_dt2+dy2)
sin(o+ 1a
ZTQD‘P) e VoAt dxd), (76)

while the dilaton is

sin(o+ ¢) |12

e = —
Sin ¢

- (V312)c

(77

The null geodesic method can also be applied to the

SL(d,R)/SO(1d—1) part of the initialc model (17). The
matrix § should be taken in a form similar to E(p4),
where TrK?=0, K belongs to an algebra s€(R).
Asymptotic flathess conditions imply

To=diag —1,1,...). (79
In the simplest casd=2 the condition TiK?=0 leads to
detK=0, i.e., the resulting matrig has the form

B —co
9

—(1+ao)
B do l-ao

), a’+dc=0. (80)

The matrixg should be symmetric, so=—-d=*a, and
after rescaling of the harmonic functien

(—(1+0) iO')
1-0/°

To

(81)

1
dsz=ﬁz(df2+d)(2), (83
wheref =g,; andy is the twist potential. One can check that

the correspondence between tewanodels can be achieved
only if B=1/8. Note that the appropriate map is complex:

v=2Inf, v=iy, (84)

so, in order to obtain real solutions in the Minkowski space,
we should take the complexified seed solutions.

As an example let us consider the complexified Kerr-NUT
(Newmann-Unti-Tamborinosolution of the Einstein theory
taking pure imaginary rotation and NUT parametarsia,

N=iN

A+aZsirfg
ds?’=— —————(dt— wde?)
2
+3 dr2+d92+ A sio d¢p? (85)
A A+aZsirte '
where
A=r2—2Mr—a?+N?, (86)
S=r2+6% 6=—i(acosf+N), (87
2 [NA cos6+a sirf8(Mr—N?)]
0= ——=— cos f+a si r— .
A+a’sirfg
(88)
The potentiald and y will be given by
. A+a’sir’9  2i(Macosf+MN—Nr)
- E ) X_ E .
(89
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Since the potentiak is pure imaginary, the complex trans- =N ,r;A,;=d for eacha. Since we intend to consider the
formation (84) will give a real solution. usualp-branes we suppose that each nontrivial component of
Consider the type IIA supergravity3). It contains a one- the d form has zero indeX,..., i.e., it covers the timelike
form which can be connected with electric black hole or withdirection. In terms of the incidence matrix it meang;
the magnetic D6-brane. We will construct the metric of the=1. We assume that nontrivial components ofdHferm are

D6-brane. It is easy to check that in this cd&sés equal to
1/8, so we can use the above technique. The (84dp ap-

plied to the potential$89) and the Eqs(19),(20) lead to the A,=v4(X) H O, (96)
following metric: {ilAgi=1}
> herew,; arer; forms
ds’= Y8 —dt?+dy;+- -+ dyg) + o dr? Wherew; arer;
+ 1185462+ 7B sirRgdg?, (90) w;=dy; 0+ Ody]'.

wheref, A, and2, are given by Eqgs(89), (86), and (87). . . _
) : ) : : . v, are some functions of variablesa=1,... E.
This metric describes the magnetic D6-brane with the dipole Now, as in Sec. II, we substitute thisisatzinto the equa-

moment which is generated by the parameterThe non-  tjons of motion and obtain the correspondingnodel. Intro-

trivial components of the one-form field strength are ducing as in Eq(16) the “internal” metricsg"
f—5/4 f—5/4
re— Op _ : - i
F=Ssna F =sang? OV gy, =(g"D?gl, (97)

whereu is given by it is easy to obtain the following. These renormalized metric

tensors are decoupled from the rest of thenodel and we
(920  find them only in the sectokTr ﬁaﬁ(‘)ﬁﬁﬁ“)fl. The rest of
the o-model action reads

_ 2(Ma cos §+MN—Nr)
- 5 _

u

The corresponding dilaton field can be expressed through the
function f as follows: 1 v2 il RO 5 1
- S __haB| —

(320 _ ol @3 S=52 J d> “xyhy R™—h (20a¢>3ﬁ¢>)

L~ . . . eh Jlg® Jlag®
In the limita=0, M=N the configuration obtained reduces +Gijda(INVlg™) dp(InV[g[)
to the usual extremal magnetic D6-brane. 1 E _
-5 e“¢ZEiN1Aai'“"9""aava&5va] . (99)
VII. INTERSECTING p-BRANES 2 3=1

In order to describe within the same approach ititer-
secting pbranes we have to change our ba&itsatz(7),(8).
Now we assume that theeform has more than one nontrivial
component and the metric exhibits a block structure . 1 1

Gij:r—5ij+g. (99)

Whereéij is a matrix with the following components:

N
ds?=2 g, (x)dy~idy"
=1 Now the target space isN(+ E+ 1) dimensional, it is param-
N —2s etrized by¢, Iny[g™[, andv,.
11 \/W) hap(X)dx*dx?, (94) The explicit solutions known for the intersecting branes
i=1 were found only assuming certain conditions on the param-
: . , ) ~eters(intersection rules It turns out that these conditions
wheregﬂ?vi, 9(')=detgﬂ?yi andh,, are arbitrary symmetric  correspond to the symmetric space property of the sigma-
tensorsu;,vi=1--'r;, a,B=1---s+2. model target space. Let us remind the reader that the metric
A convenient description of th@-form Ansatzis based on space is called symmetric if the Riemann tensor is covari-
the incidence matrix approadh]. The incidence matrix is antly constant, i.e.,
an rectangulaN X E matrix,

+

A=(A,), a=1,... E, i=1,...N, (95) VaRpcae=0. (100

where rows correspond to different components of theStraightforward calculations yield the following. All nonzero
d-form and columns refer to the blocks in the metf@l). = components of the five-index tens&,Ry.q. are propor-
The entries of the incidence matrix are equal to O or 1tional to

122001-10



GENERATING BRANES VIA SIGMA MODELS PHYSICAL REVIEW D58 122001

Y1=adp+2Iny—g9+2Inyg?, (103
o= adp+2Iny—g9+21Inyg"?, (104

& =—asp—2(s—r)Iny—g@+2r InygP+2r Inyg?,
(109

N
exp( -~ aq’)—ZZl Aailn\/|g(”|)

N
Xexp( —adp—2, Aa’iln\/|g(i)|)
=

a? d? N
X<7— D—2+'E]_ riAaiAari .

E=q(r+s)¢—a(g+2r+s)iny—g?, (106)

This means that the target space is symmetric when the ing.4 the constants are
cidence matrix satisfy the following condition:

o2 d2 N A= 1 A 1 B._ 1 B._ 1
> + 2 NiAgiAL=0, (101 1= as2 2T o(qrarrs)r2d’ Pt ar B2 ar
2 D-2 & -

showing that we deal with the usyalbrane intersection rule
[5]. Thus, theo-model approach gives a simple geometrical
interpretation of the intersection rul@01): only when Eq.
(101 is satisfied is the target space a symmejpgeudgRi-
emannian spack.

Let us consider the simplest case of two intersectin
p-branes(with two nontrivial components of thd form, E
=2, and three blocks in the metribN=3, r;=q, ro=rg3
=r). If the parameters of our configuration satisfy E01),
the o-model action(98) could be diagonalized and reduce
to a simple form similar to Eq21):

Thus we have obtained theo model with the
SL(2R)/SO(1,1)X SL(2R)/SO(1,1)XRXR target space.
This structure means that twp-branes can be generated
separately. As an example one can construct two intersecting
lack p-branes. The procedure is similar to that discussed in
ec. lll, but now one has to apply Harrison transformations
with different parameters to each SLR}/SO(1,1) compo-
nent. Thus one obtains two intersecting nonextremal
d p-branes with different chargegl0,11. This derivation
demonstrates that the existence of such configurations is a
consequence of the-model target space symmetries.
1 In Sec. V we constructed some new solutions using the
S= 2.2 f ds+2x\/ﬁ( R(h)—h“'(”(Al&aEl&Bfl null geodesic method applied to themodel (21). The same
strategy applied to the- model (102 leads to extremal in-
1 tersectingp-branes with two charge@n the case of the de-
+A200820p82+ Brdathndpin— 5 e 10,0100, generate matri¥<) and to the intersecting “matrioshka’-
type p-branes(in the case of the nondegenerate matfix

1 — Thus we can speculate that “matrioshka-branes are sub-
+Badoifadpihy— 5 € "20,02dp02 | 1 (102 ject to the usual intersection rule. As an example we exhibit
the metric of two intersecting “matrioshka”-type one-branes
where in type IIA supergravity:
i 3/ H 3/8 H =17 i -1
dSZZ S|r(0'1+(Pl) SIr](UZ+(P2) e_(7\‘@/48)0'1_(‘[2/16)0'2 SIr](Ul+()Dl) S|n(0'2+¢2) e_(y@/e)a.l_'_(‘/jlz)o.z
sin ¢4 sin ¢, sin ¢4 sin ¢,
sin(o,+ -t sin(o,+ -1
X (—dt2+dy?) + M} e (4 2+ dZ2) + S+ ¢2) e(‘6’3)”1(dz§+dzﬁ)+dxadx“).
Sin P1 Sin (2]
(108
|
VIII. DISCUSSION AND CONCLUSIONS simplest brane-containing theory. Although the idea of using

dualities of dimensionally reduced theories is not new, we

In this paper, we have focused on the technical aspects @faye shown that knowing an explicit nonlinear realization of

gettingp-brane solutions via the-model formulation of the 5jities in terms of the target space variables one can ex-

ploit “hidden symmetries” more effectively. We have
shown that under the restriction of the block-diagonal met-
The related ideas were recently discussed in (3. rics and the correspondingnsaze for an antisymmetric
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form a typicalp-brane producing action reduces to the mul-this is also true for the Melvin solution of the Einstein-
tidimensionalo-model on a symmetric target space. AmongMaxwell theory embedded intd=2 supergravity. Also, ad-
target space isometries there are Harrsion-type transformahitional structure on extremai-branes, such as dipole mo-
tions generating Page charges, which relate uncharged uprent, leads to supersymmetry breaking. The situation with
lifted black holes and genuine blagkbranes. “matrioshka”-type p-branes is more complicated. The out-
Apart from the direct use of transformations to get newermost component of the corresponding spacetime is asymp-
solutions from old ones, one can also apply various integratotically flat, and one can check that the BPS bound is indeed
tion methods developed earlier in general relativity. In par-Saturated. However, both in type Il ten-dimensional super-
ticular, using a technique of harmonic maps we have foun@ravities and in eleven-dimensional supergravity no Killing
new classes gb-branes with a nontrivial “matrioshka’-type SPINOrs exist on this background. There is no contradiction

structure of the transverse space. We have shown that sorR§tWeen these facts because the solution is singular and pos-
p-brane “rules,” such as intersection rules for compositeSESSes an inner boundary which has to be taken into account

branes or “blackening” prescriptions, have a rather naturalVn€n integrating the corresponding Nester forms.
geometric interpretation in the-model terms. Since the We note in conclusion that our formulation also opens a

main subgroup involved is SL(R), one can effectively use way to apply techniques of integrable systems assuming that

solutions to other theories sharing the same group structurré‘e target space variables depend qnly on tWO.Of the trans-
to get newp-brane solutions. This Bonnor-type correspon-Erse coordinates. In four-dimensional theories the full
dence is somewhat similar to duality between different theo_space-nmz_met_r Ic canbl?e recovered (;ncedth? SOIUtI'Q; of the
ries which was widely discussed recently in the context offorresponding integrable system s found. In multidimen-
superstrings sional cases additional assumptions are needed about the

We have considered the purely bosonic problem and CorI§tructure of the transverse space to ensure complete solvabil-
structed solutions to the model actioh). However, in the ity. More general Lagrangians including several antisymmet-

most interesting cases, such as type IIA and IIB supergraviiC forms and dilatons can also be investigated under the
ssumption of the block-diagonal metrics. However, in the

ties, we have supersymmetric actions. Bosonic fields of thes@>SU! ) . .
theories are the same as in the problem we have discussébqr.‘d'agonal cases one encounters serious te_chnlcal cgmph—
Thus it is important to find whether or not the constructegcations while attempting to find an explicit nonlinear realiza-
solutions, being at the same time the solutions to supersyn]i
metric theories, preserve a part of the initial supersymmetry.
The corresponding analysis shows that, except for the usual

extremalp-branes, our new solutions do not preserve super- This work was supported in part by the Russian Founda-
symmetries. In particular, we have checked that flux-branetion for Basic Research Grants No. 96-01-00608R.), 96-

in type lIA supergravity are not supersymmetric. Recall that02-18899(D.G.), and by MSF Grant No. p98-37®D.G.).

ion of “hidden” symmetries.
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