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Generating branes via sigma models
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Starting with theD-dimensional Einstein-dilaton-antisymmetric form equations and assuming a block-
diagonal form of a metric we derive a (D2d)-dimensional s model with the target space
SL(d,R)/SO(d)3SL(2,R)/SO(2)3R or its noncompact form. Various solution-generating techniques are
applied to reproduce some known and to construct some newp-brane solutions. It is shown that thep-brane
Harrison transformation belonging to the SL(2,R) subgroup generates blackp-branes from the seed Schwarzs-
child solution. A flux-brane generalizing the Bonnor-Melvin-Gibbons-Maeda solution is constructed as well as
a nonlinear superposition of the flux-brane and a spherical black hole. A new simple way to endow branes with
additional internal structure such as plane waves is suggested. Applying the harmonic maps technique we
generate new solutions with a nontrivial shell structure in the transverse space~‘‘matrioshka’’ p-branes!.
Bonnor-type symmetry relating the four-dimensional vacuum SL(2,R) to the corresponding sector of the above
global symmetry group is used to construct a new magnetic six-brane with a dipole moment in the ten-
dimensional type IIA theory. A similars model is constructed for the intersecting branes. It is shown that the
intersection rules have a simple geometric interpretation as conditions ensuring the symmetric space property
of the target space. The null-geodesic method is used to find intersecting ‘‘matrioshka’’p-branes in type IIA
supergravity.@S0556-2821~98!03120-8#

PACS number~s!: 04.50.1h, 04.70.Dy, 11.25.Sq
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I. INTRODUCTION

Investigation of classicalp-brane solutions to supergrav
ties in various dimensions has led to considerable progres
understanding relations between different string theories
particular interest are type IIA and IIB supergravities in t
dimensions which may be regarded as the low-energy lim
of the corresponding superstring theories, and elev
dimensional supergravity, which is supposed to be the lo
energy limit of M theory. Recent progress in string theory
also connected with the discovery of nonperturbative obje
calledD-branes. In the low-energy region they correspond
solutions of appropriate classical equations. There are sev
types ofp-branes which are important in the context of s
perstrings. The major role is played by bosonic solutio
preserving a part of the initial supersymmetry, the so ca
Bogomol’nyi-Prasad-Sommerfield~BPS! states~for a review
see Refs.@1,2#!. Another family consists of nonsaturatin
Bogomol’nyi bound black p-branes possessing a regul
event horizon. Both families may form intersecting multipl
brane structures. The solutions may be also endowed
additional structures such as traveling waves.

Solving highly nonlinear bosonic equations in multid
mensional supergravities constitutes a formidable techn
task. In most casesp-brane solutions were obtained usin
some specialAnsätze for the metric and matter fields@3–6#.
To find BPS-saturated solutions one can also use the
order Bogomol’nyi type equations instead of directly solvi
the equations of motion@7,8#. However, this method is effi
cient mostly in eleven- and ten-dimensional supergravi
where the Killing spinor equations are relatively simp
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Once such solutions are found, certain lower-dimensional
lutions may be obtained via appropriate compactificat
schemes. Somead hocprescriptions are also known whic
allow one to perform ‘‘blackening’’ deformations o
p-branes from extremal configurations@9–11#. It can be
noted that the diversity of techniques andAnsätze makes it
rather difficult to understand mutual relationships betwe
different classes of multidimensional solutions. Also, b
cause of the absence of the uniqueness theorems suc
those for four-dimensional black holes, it is unclear to whi
extent the known explicit solutions are general and exha
tive. Therefore the search for new schemes joining soluti
into classes and simplifying their generation seems to
desirable.

One such approach consists in the use of ‘‘hidden’’ sy
metries~dualities! arising in dimensionally reduced theorie
Duality symmetries can be used to generate new nontri
solutions from known ones, as well as to suggest new a
rithms for integration of the field equations. Such a techniq
is well known in four-dimensional general relativity, where
achieved a high level of sophistication. For a class
vacuum solutions effectively depending on three, rather t
four coordinates, the hidden symmetry group is SL(2,R)
which acts nonlinearly on the space of two moduli. One
the group transformations~Ehlers transformation! is non-
trivial and may be used as generating symmetry.N52 su-
pergravity in four dimensions being restricted to the set
solutions possessing a non-null Killing vector field leads
the famous Kramer-Neugebauer-Kinnersley group SU~1,2!
@12,13#, while the~truncated to one vector! N54 supergrav-
ity generates the Sp(4,R) symmetry@14#. The crucial role of
three dimensionsis due to the fact that the vector fields the
can be traded for scalars allowing for a description of
system as a nonlinears model.

Global symmetries of supergravities reduced to dim
©1998 The American Physical Society01-1
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sions higher that 3, generically involve vector and antisy
metric form fields. It is well known, for example, that typ
IIB supergravity, compactified to nine dimensions, exhib
the SL(2,R) symmetry~S duality! mixing the NS and RR
fields. Also there is a correspondence between type IIA
IIB supergravities reduced to nine dimensions, which
calledT duality @15#. Using these dualities, accompanied
appropriate boosts~or by the dimensional reduction and u
lifting !, it is possible to construct a variety of new solutio
from the known ones@16–18#. However, in order to exploit
global symmetries to full extent one has to construct expl
nonlinear realizations of these duality groups on the spac
physical variables, which is generally a highly nontrivi
problem. Meanwhile, if one chooses a self-consistentAnsatz
in which vector and higher form fields are parametrized
scalars, one can find purely scalars models defined on
spacetime of dimension higher than 3. Although such mod
do not include all degrees of freedom of the initial actio
they still can be efficient for solution generating purpose

The purpose of this paper is to formulate such an
proach in the multidimensional model describing grav
coupled to dilaton and antisymmetric tensor field. Start
with theD-dimensional Einstein-dilaton-antisymmetric for
equations we assume that spacetime possessesd commuting
hypersurface-orthogonal Killing vectors, which correspon
to a block-diagonal form of a metric. Assuming also that t
differential form has only one nontrivial component, we co
struct as model on the transverse spaceof any dimension
with the target space

SL~d,R!/SO~1,d21!3SL~2,R!/SO~1,1!3R.

The first coset here corresponds to Kaluza-Klein mod
~with an overall scale factor removed!, the rest is the Ehlers
Harrison type coset involving the above scale factor, the
laton, and the nonzero component of the form field. T
SL(2,R) group contains a Harrison-type transformati
which generates solutions endowed with Page charges
uncharged solutions.

Using this s-model representation we explore differe
solution generating techniques known in general relativ
The most direct application consists in using the symmet
acting on the coset variables to construct new solutions f
already known ones. It turns out that the standard sin
p-brane solutions are related to multidimensional Schwa
child metric by thep-brane Harrison transformation in ex
actly the same way as the four-dimensional Reissn
Nordström solution of the Einstein-Maxwell theory is relate
to the vacuum Schwarzschild solution by the original Ha
son transformation. The resultingp-brane isblack~nonextre-
mal!, so our procedure gives a justification of the so-cal
blackening prescription producing nonextremalp-branes
from extremal ones. In a similar way, just repeating the d
vation of the Bonnor-Melvin solution from flat space v
Harrison transformation, we construct ‘‘flux-branes’’ su
ported by antisymmetric forms of arbitrary rank. These so
tions for higher rank forms are new.

Our second approach consists in an exponentiation of
coset generators under some additional simplifying assu
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tions, this is known as the harmonic maps technique. Us
harmonic maps onto geodesic subspaces we derive new
lutions with ‘‘matrioshka’’ type structure of singularities
The third method we use is based on the Bonnor-type m
between similar cosets involved in physically distinct the
ries. In this way we obtain ‘‘dressed’’p-branes endowed
with dipole moments. Ours-model approach gives espe
cially nontrivial results in the case of intersecting branes. W
give an alternative interpretation of the so-called intersect
rules as conditions assuring the symmetric space propert
the target space. We also derive new ‘‘matrioshka’’ ty
intersectingp-brane solutions. Other possible applications
our s model are also briefly discussed.

The paper is organized as follows. In Sec. II we descr
the derivation of the s model starting with the
D-dimensional gravity coupled system of thed-form field
and the dilaton. Using the block-diagonalAnsatzfor the met-
ric we derive the correspondings-model action and examine
its symmetries. Section III is devoted to generation of t
general blackp-brane solution by applying Harrison tran
formation. We argue that the prescription of ‘‘blackening
the extremalp-branes is a manifestation of the target spa
isometries. In Sec. IV using thes-model transformations we
generate a flux-brane, which is a multidimensional analo
of the Bonnor-Melvin universe. We also find the nonline
superposition of the flux-brane and a black hole. In Sec
we apply the technique of harmonic maps to obtain n
solutions of thep-brane type and study their properties. Als
we use the null geodesic method to generate the Brinkm
wave and to demonstrate its independence of thep-brane
structure. In Sec. VI we discuss a Bonnor-type map relat
four-dimensional solutions of the vacuum Einstein equatio
to multidimensionalp-brane type solutions and derive a
apparently newp-brane solution to the type IIA supergravit
in ten dimensions endowed with a dipole moment. In S
VII we discuss theintersecting p-branes in thes-model
terms. It is shown that the well-known intersection rules
stricting dimensionalities and the coupling constants
known classes of compositep-branes are equivalent to th
symmetric space condition for the target space. In this c
the coset models can be formulated which opens a wa
construct more general classes of intersecting branes, an
ample is given for the case of type IIA supergravity. In co
clusion we discuss supersymmetry properties of new
tained solutions and give some remarks on furth
perspectives of the suggested approach.

II. SIGMA-MODEL REPRESENTATION

We will consider the model theory with the followin
action in theD-dimensional spacetime:

S5
1

2k2 E dDxA2GS R2
1

2
~¹f!22

e2af

2~d11!!
Fd11

2 D ,

~1!

whereFd11 is a (d11)-differential form,Fd115dAd , f is
a dilaton. The corresponding equations of motion are
1-2
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RMN2
1

2
GMNR5e2afTMN

~F ! 1TMN
~f! , ~2!

]M~e2afA2GFd11
MM1¯Md!50, ~3!

1

A2G
]M~A2GGMN]Nf!1

a

2~d11!!
e2afFd11

2 50.

~4!

The energy-momentum tensors for the matter fields have
form

TMN
~F ! 5

1

2d! S FMM1¯Md
FN

M1¯Md2
GMN

2~d11!
Fd11

2 D , ~5!

TMN
~f! 5

1

2 S ]Mf]Nf2
1

2
GMN~¹f!2D . ~6!

Let us suppose that the space-time hasd commuting hy-
persurface orthogonal Killing vectors, one of which is tim
like ~the case with only spacelike Killing vectors will b
discussed later!. Then we can use the followingAnsatzfor
the metric:

ds25gmn~x!dymdyn1~A2g!22/shab~x!dxadxb, ~7!

wheregmn andhab are arbitraryd- and (s12)-dimensional
metrics, withm, n running from 0 tod21, anda, b running
from 1 to s12, s>1, D5d1s12, g5det(gmn). The factor
(A2g)22/s is introduced for future convenience. Both metr
tensors depend only on~transverse! coordinatesxa.

For the antisymmetric form we assume either electric
magneticAnsätze. In the electric case thed form has only
one nontrivial component

A01̄ d215v~x!. ~8!

With this choice of the metric and thed form one obtains a
reduced theory in (s12)-dimensional space. Clearly this re
duction is not the most general one, namely, we have tac
assumed that all Kaluza-Klein vectors as well as the low
dimensional antisymmetric forms arising in the full dime
sional reduction are not excited. However, this trunca
theory is still reach enough to be explored in details.

In terms of the functionsgmn , hab , f, andv the equa-
tions of motion read

1

Ah
]a~Ahhab]bgmlgls!gsn5

s

d1s
e2cgmnhab]av]bv,

~9!

]a~Ahhabe2c]bv !50, ~10!

1

Ah
]a~Ahhab]bf!5

a

2
e2chab]av]bv, ~11!
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Rab
~h!5

1

2
]af]bf1

1

s
]a~ lnA2g!]b~ lnA2g!

1
1

4
gml]aglngns]bgsm2

1

2
e2chab]av]bv,

~12!

where

c5af12 lnA2g. ~13!

It is straightforward to check that the field equations~9!–~12!
can be obtained from the new action of thes-model type

S5
1

2k2 E ds12xAhH R~h!2habS 1

2
]af]bf

1
1

s
]a~ lnA2g!]b~ lnA2g!

1
1

4
gml]aglngns]bgsm2

1

2
e2c]av]bv D J . ~14!

A similar action can be obtained assuming the pur
magneticAnsatzfor the d form

Fa1¯as115
1

A2G
eafea1¯as11b]bu~x!, ~15!

in this case one has to set in the metrics5d. The Maxwell
equations~3! are trivially satisfied, while the equation foru
follows from the Bianchi identity. In this case thes-model
action still has the form~14! with the replacement ofv on u
and reversing the sign ofa. This fact is a manifestation o
the electric-magnetic duality. In what follows we consid
explicitly an electric case, the corresponding magnetic so
tions can be obtained by the above dualization procedur

For further analysis of the action~14! it is convenient to
rescale the world-volume metricgmn introducing the matrix

g̃mn5~A2g!22/dgmn , ~16!

such that det(g̃mn)521. Then the action will read

S5
1

2k2 E ds12xAhH R~h!2habS 1

2
]af]bf

1
s1d

sd
]a~ lnA2g!]b~ lnA2g!

1
1

4
g̃ml]ag̃lng̃ns]bg̃sm2

1

2
e2c]av]bv D J . ~17!

Note, that the matrixg̃mn now is decoupled from the rest o
the s-model variables, interacting with them only throug
the gravitational fieldhab . Sinceg̃mn is a symmetric matrix
with ~minus! unit determinant, this matrix parametrizes
coset SL(d,R)/SO(1,d21). Therefore the metric on the
1-3
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D. V. GAL’TSOV AND O. A. RYTCHKOV PHYSICAL REVIEW D 58 122001
world-volume of thep-brane is to high extent independent
the others-model variables, which only influence its overa
scale.

To simplify the rest of the action we introduce togeth
with Eq. ~13! another variable

j5sdf2a~s1d!lnA2g, ~18!

so that the inverse transformations read

f5
1

D S ac1
2j

~s1d! D , ~19!

lnA2g5
1

D~s1d!
~sdc2aj!, ~20!

whereD5a212sd/(s1d).
In the new variables the part of the action not includi

the matrixg̃mn will read

S5
1

2k2 E ds12xAhH R~h!2hab

3S A]aj]bj1B]ac]bc2
1

2
e2c]av]bv D J , ~21!

where

A5
1

a2sd~s1d!12s2d2 , B5
s1d

2a2~s1d!14sd
.

~22!

Now thej part is also decoupled. The remaining fieldsc and
v parametrize a coset SL(2,R)/SO(1,1). Therefore the ac
tion ~17! corresponds to a nonlinears model with the target
space SL(d,R)/SO(1,d21)3SL(2,R)/SO(1,1)3R.

Let us recall that the possibility of description of th
gravitating systems in three dimensions ass models on ho-
mogeneous target spaces exists for many dimensionally
duced theories. The four-dimensional Einstein-Maxw
theory in the presence of one non-null Killing vector field
equivalent to the SU~2,1!/S„U~2!3U~1!… s model@12,13#. A
more complicated example is given by the dilaton-ax
coupled Einstein-Maxwell theory, in which case one has
coset target space Sp(4,R)/U(2) @14#. Severals models
were also derived in multidimensional supergravit
@4,19,20#, but the geometric structure of the target spa
was not studied.

Let us discuss ours model ~17! in detail. Since the po-
tential space is the direct product of three independ
cosets, one can analyze each of them separately. The t
verse SL(2,R)/SO(1,1) part can be conveniently describ
by an analogue of the Ernst potentials@21#

F5
v

2A2B
, E5ec2

v2

8B
, ~23!

using which the target space metric can be rewritten i
familiar form @13#
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dl25
1

2
F22~dE12FdF!222F21dFdF, ~24!

F5E1F2. ~25!

The action of SL(2,R) on the potentials is realized nonlin
early. It can be presented in terms of the following thr
one-parametric subgroups:

~ I! E5a2E0 , F5aF0 , ~26!

~ II ! E5E022bF02b2, F5F01b, ~27!

~ III ! E85
E

122cF2c2E , F85
F1cE

122cF2c2E , ~28!

where a, b, and c are parameters. Transformation~I!
changes the scale of the solution. Note, that in order to h
asymptotical flatness~in the case oftime coordinate re-
duced!, one has to impose the conditionE(`)51. The trans-
formation ~II ! is pure gauge, it changes an asymptotic va
of the antisymmetric form field. The third, Harrison transfo
mation, acts on the space-time variables and matter fi
nontrivially.

Similarly one can consider the symmetry transformatio
realized on the variablesj andg̃. SubgroupR acts only onj:

j→j1a.

In terms of initial fields it corresponds to the shift of th
dilaton on a constant accompanied by the rescaling of
metric. The matrix g̃ parametrizes the cose
SL(d,R)/SO(1,d21), the representation of the grou
SL(d,R) is realized in a natural way,

g̃→U21g̃U,

whereU is a constant element of SL(d,R).
So far we have considered the equations of motion~2!–

~4! assuming that the space-time metric admitsd commuting
Killing vectors one of which is timelike. One can also inve
tigate the case when Killing vectors areall spacelike. In this
case thes-model action will read

S5
1

2k2 E ds12xA2h

3H R~h!2habS A]aj]bj1
1

4
g̃ml]ag̃lng̃ns]bg̃sm

1B]ac]bc1
1

2
e2c]av]bv D J , ~29!

where A and B are the same as in Eq.~22!. This action
differs from the previous one by the sign of the last ter
As a result, the metric on the target space is positiv
definite so we deal with the coset SL(d,R)/SO(d)
3SL(2,R)/SO(2)3R. Introducing modified Ernst potential
for the SL(2,R)/SO(2) sector
1-4
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F5
v

2A2B
, E52ec2

v2

8B
, ~30!

we come back to Eq.~24!. Hence the Harrison transforma
tion again is given by Eq.~28!.

The above symmetries can be used to generate new
tions from the old ones. Obviously, we are restricted by
chosenAnsatzfor the metric~7! and antisymmetric form~8!,
where we can takegmn(x) to be of Minkowski or Euclidean
signature. This means that the seed solutions should had
commuting Killing vectors orthogonal to hypersurfaces a
only one nontrivial component of thed form. New solutions
obtained by application ofs-model symmetries will have the
same properties.

The generating procedure is as follows. Choosing the s
solution with the above properties, one has to find the co
sponding potentialsv, c, andj, which are given by Eqs.~8!,
~13!, and~18!. The next step is to construct the Ernst pote
tials ~23! and apply the transformations~27!, ~26!, and~28!.
The new Ernst potentials should be converted into the
plicit solution by using the Eqs.~23!, ~19!, ~20!. As we have
mentioned, only the third transformation~28! is nontrivial,
but two others can help to fix the scale in order to ens
asymptotic flatness, as well as to set zero an asymp
value of the form potential. The physical meaning of t
Harrison transformation is recharging of the solution~in the
case of one timelike Killing vector in the reduction schem!
or adding flux of the differential form~in the case of space
like Killing vectors!. Thus it gives us the possibility to ge
~charged! p-branes and flux-branes from vacuum configu
tions. Some concrete examples of this procedure will
given in Secs. 3 and 4.

III. GENERATION OF BLACK p-BRANES

As the first application of the above technique we co
sider the generation of blackp-branes. A blackp-brane is a
multidimensional generalization of the Reissner-Nordstr¨m
black hole. The simplest casep51 corresponds to the blac
string @22#. Another important example is the black mem
brane ofD511 supergravity@23#. Black p-branes for gen-
eral dimensions were constructed in Refs.@9,24#. Also there
is a number of papers treating intersections of blackp-branes
~see, e.g., Refs.@10,11,25#, and references therein!.

Black p-branes are usually treated as suitable deform
tions of the corresponding extremalp-branes, the latter being
specified by the one-center harmonic functions. The proc
of deformation is called ‘‘blackening,’’ the relevant prescri
tion was given in Refs.@9,10#. Also it is known that black
p-brane solutions can be obtained from Schwarzschild s
tion by sequences of boosts and dualities@26#. We prove
here that the existence of such prescriptions is a manife
tion of the hidden symmetry contained in the model. T
symmetry is nothing but the SL(2,R), which was considered
in the previous section. In this section we use this symme
for an explicit generation of asingleblack p-brane, while in
Sec. VII we will explain the generation ofintersectingblack
p-branes.
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Let us start with the Schwarzschild solution in th
D-dimensional spacetime corresponding to a ‘‘neutral’’d
21)-brane

ds252S 12
2M

r s Ddt21dy1
21¯1dyd21

2

1S 12
2M

r s D 21

dr21r 2dVs11 . ~31!

Using Eqs.~13! and ~18! we obtain

c05 lnS 12
2M

r s D , j052
1

2
a~s1d!lnS 12

2M

r s D ,

v050, ~32!

which corresponds to the following seed Ernst potentials

F050, E0512
2M

r s . ~33!

The Harrison transformations~28! and the rescaling of po
tentials yield the new functionsc andv:

c5 lnS 12
2M

r s D1 lnS 11
2Q

r s D 22

,

v52cA2BS 12
2M

r s D S 11
2Q

r s D 21

, ~34!

where

Q5
Mc2

12c2 . ~35!

The functionj remains the same. The resulting metric is

ds25S 11
2Q

r s D 2nsH 2S 12
2M

r s Ddt21dy1
21¯1dyd21

2 J
1S 11

2Q

r s D ndH S 12
2M

r s D 21

dr21r 2dVs11J , ~36!

wheren54D21(s1d)21. This coincides with the metric o
the black p-brane solution@9#. The corresponding dilaton
field is given by

e2af5S 11
2Q

r s D 2a2/D

. ~37!

Note that the extremal limit of this solution isM→0, c→1
so thatQ is finite.

IV. GENERATION OF THE FLUX-BRANE

Assuming that all Killing vectors are space-like we c
apply the same technique to obtain theflux-branesolution
which is a multidimensional generalization of the Bonno
Melvin universe@27# in the Einstein-Maxwell gravity. The
1-5
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Bonnor-Melvin solution with a dilaton was constructed
Gibbons and Maeda@28#, the flux-brane solutions to the mu
tidimensional gravity with one-form field were considered
Ref. @29#. We give their generalization for the case of t
arbitrary rankd-form of either electric or magnetic type.

Our starting point is a flatD-dimensional space-time writ
ten in the multicylindrical coordinates

ds252dt21~r1
2dw1

21¯1rd
2dwd

2!

1dr1
21¯1drd

21dxadxa, ~38!

wherea51,...,s112d. This yields

c052 ln r1¯rd , j052a~s1d!ln r1¯rd , v050,
~39!

so that the corresponding Ernst potentials are

E052r1
2
¯rd

2 , F050. ~40!

Applying the electric Harrison transformation~28! we obtain

c52 ln r1¯rd22 ln~11c2r1
2
¯rd

2!,

v52
2cA2Br1

2
¯rd

2

11c2r1
2
¯rd

2 , ~41!

with j remaining the same. As a result we get the followi
metric:

ds25~11c2r1
2
¯rd

2!2ns~r1
2dw1

21¯1rd
2dwd

2!

1~11c2r1
2
¯rd

2!nd~2dt21dr1
21¯

1drd
21dxadxa!. ~42!

The corresponding dilaton field is

e2af5~11c2r1
2
¯rd

2!2a2/D, ~43!

while thed-form potential has the nonvanishing compone

Aw1¯wd
52

2cA2Br1
2
¯rd

2

11c2r1
2
¯rd

2 , ~44!

where the coefficientB is given by Eq.~22!.
Applying a similar technique one can easily constru

more complicated solutions. As an example let us derive
metric describing a six-dimensional dilatonic black hole
the magnetic field of the one-flux-brane. Now we start n
with the flat space-time, but with the six-dimension
Schwarzschild solution writing the metric on the four-sphe
in the form @30#

ds252S 12
2M

r 3 Ddt21S 12
2M

r 3 D 21

dr2

1r 2~du21cos2udc21sin2udw1
2

1cos2u sin2cdw2
2!. ~45!
12200
t

t
e

t
l
e

According to Eqs.~13! and ~18!,

c052 ln~r 2sin u cosu sin c!,

j0524a ln~r 2sin u cosu sin c!, ~46!

thus the seed Ernst potentials have the form

E052r 4sin2u cos2u sin2c, F050.

Using Harrison transformations~28! we obtain a new solu-
tion with the metric

ds25$11c2r 4sin2u cos2u sin2c%2/~a212!

3H 2S 12
2M

r 3 Ddt21S 12
2M

r 3 D 21

dr2

1r 2du21r 2cos2udc2J
1$11c2r 4sin2u cos2u sin2c%22/~a212!

3r 2~sin2udw1
21cos2u sin2cdw2

2!.

The corresponding dilaton field is

e2af5$11c2r 4sin2u cos2u sin2c%2a2/~a212!,

while the nonvanishing component of the two-form potent
is given by

Aw1w2
52

2c

a212

r 4sin2u cos2u sin2c

$11c2r 4sin2u cos2u sin2c%
.

It is easy to see that the obtained solution is indeed a n
linear superposition of the black hole and the flux-brane. T
limit c→0 returns us back to the Schwarzshild solutio
while putting M50 we recover the flux-brane. Along th
same lines one can construct the instanton describing
nucleation ofp-branes by the homogeneous antisymme
form.

V. HARMONIC MAPS

The sigma-model representation can be used for c
structing new solutions in a different way not using direc
the symmetries of the target space. In this section we
find solutions of the theory~1! by the harmonic maps tech
nique which is based on direct exponentiation of the co
generators.

In order to apply this procedure we rewrite thes-model
action ~17! in the following matrix form

S5
1

2k2 E ds12xAhH R~h!1hab

3S 2B Tr ]aM]bM 211
1

4
Tr ]ag̃]bg̃21D J , ~47!

where the matrixM is built from the fieldsC, v, andj as
follows:
1-6
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M5expS 2
c

2 D S 2
v

2A2B
0

v

2A2B
2

1

2 S exp c2
v2

8BD 0

0 0 expS c

2
1

j

Asd~s1d!
D .

D ~48!
ap
w
nd

pa

ry
c
p-

e,

g

t

:

al
nds
This representation is a convenient starting point for an
plication of the harmonic maps technique. In particular
will be interested here in constructing solutions correspo
ing to the null geodesics of the target space@31,32#.

Consider the transverse part of the action~47!,

S5
1

2k2 E ds12xAh@R~h!12BhabTr~]aM]bM 21!#,

~49!

whereM is an element of the appropriate coset spaceG/H.
The equations of motion read

1

Ah
]a~AhhabM 21]bM !50, ~50!

Rab
~h!522B Tr~]aM]bM 21!. ~51!

It was noticed@12# that if the matrixM depends onx coor-
dinates through a single function,M5M „s(x)…, thens(x)
can be chosen to be a harmonic function on the curved s
with the metrich, i.e.,

1

Ah
]a~Ahhab]bs!50. ~52!

Equation~50! then reduces to the matrix equation

d

ds S M 21
dM

ds D50, ~53!

whose solution can be expressed in the exponential form

M5M0eKs, ~54!

where K belongs to the Lie algebra of the groupG, and
M0PG/H. Substituting this into the Einstein equations~51!
one gets

Rab
~h!52B Tr~K2!]as]bs. ~55!

It is clear that in the particular case Tr(K2)50 the metrich
is Ricci-flat ~and hence can be chosen flat!. This is a con-
structive way to build null-geodesic solutions to an arbitra
s model. Let us apply it to our model with the target spa
SL(2,R)/SO(1,1)3R. Here we are interested in the asym
totically flat solutions, so we choose the harmonic functions
12200
-
e
-

ce

e

such thats(`)50. According to the above general schem
we presentM in the form ~54!, whereM0 is an element of
the coset SL(2,R)/SO(1,1)3R and the generatorK belongs
to the algebra sl(2,R)3R. M0 has to be taken correspondin
to an assumed asymptotic behavior, Eq.~48! gives

M05diagS 2,2
1

2
,1D . ~56!

A convenient parametrization of the matrixK is

K5S a c 0

d 2a 0

0 0 b
D . ~57!

One has to distinguish two different cases: detKÞ0 and
detK50.

~1! Degenerate case:detK50. The general constrain
Tr K250 gives 2(a21cd)1b250. Together with the re-
striction detK50 this meansb50, a21cd50. In terms of
the matrix K this leads toK250, so the exponentiation is
essentially different from that in the nondegenerate case

eKs5I 1Ks. ~58!

Therefore for the matrixM one obtains

M5S 212as 2cs 0

2
1

2
ds 2

1

2
~12as! 0

0 0 1

D . ~59!

This matrix should be symmetric which gives an addition
constraint on the parameters, so the resulting matrix depe
on a single parametera

M5S 212as as 0

as 2
1

2
~12as! 0

0 0 1

D . ~60!

Comparing this with Eqs.~48! and ~13! we get
1-7
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c522 ln~11as!, j50, v52A2BS 12
1

11as D .

~61!

Sinces is an arbitrary harmonic function, it is defined up
a scale parameter. Thus without loss of generality one
put a51. The resulting metric is

ds25~11s!2ns~2dt21dy1
21¯1dyd21

2 !

1~11s!nd~dx1
21¯1dxs12

2 !. ~62!

This metric is nothing but the usualp-brane solution with the
harmonic functionH511s @33#. The corresponding dilaton
field is given by
th

e

12200
n

e2af5~11s!2a2/D. ~63!

This solution saturates the Bogomol’nyi bound

M5
4sBQVs11

k2 . ~64!

~2! Nondegenerate case:detKÞ0. Once again we have
constraint TrK250, which implies 2(a21cd)1b250. Per-
forming a direct exponentiation one obtains
M5S 2 cos
bs

&
1

2a&

b
sin

bs

&

2c&

b
sin

bs

&
0

2
d&

2b
sin

bs

&
2

1

2
cos

bs

&
1

a&

2b
sin

bs

&
0

0 0 ebs

D . ~65!
al

rsur-

se

ate
e
is
on
This matrix should be symmetric, so taking into account
constraints on the coefficients we obtain

M5S 2
sin~s1w!

sin w

sin s

sin w
0

sin s

sin w

sin~s2w!

2 sin w
0

0 0 e&s

D , ~66!

where we putb5& because of the scaling freedom for th
harmonic function and denoted

sin w5
1

Aa211
. ~67!

Equations~48! and ~13! yield

j5sA2sd~s1d!, c522 lnFsin~s1w!

sin w G ,

v5
2A2B sin s

sin~s1w!
. ~68!

Now it is easy to construct the whole metric:
e
ds25Fsin~s1w!

sin w G2ns

3e2As~s1d!/2dnas~2dt21dy1
21¯1dyd21

2 !

1Fsin~s1w!

sin w Gnd

eAd~s1d!/2snas~dx1
21¯1dxs12

2 !

~69!

and the dilaton field

e2af5Fsin~s1w!

sin w G2a2/D

e2Asd~s1d!/2nas. ~70!

The structure of this solution is similar to that of the usu
p-brane, but the metric functions are essentially different~for
the 0-brane case see Ref.@32#!. The full r -range solution
contains a sequence of compact singular transverse hype
faces lying between the subsequent rootsr k of the equation

s~r k!1w5pk, k51,2,... ~71!

and forming a ‘‘matrioshka’’-type structure in the transver
space. Curvature invariants diverge atr k . The outermost
spacetime is asymptotically flat, and for it one can calcul
the Arnowitt-Deser-Misner~ADM ! mass and the Pag
charge@34#. It easy to check that the Bogomol’nyi bound
indeed saturated~as could be expected since the soluti
corresponds to a null geodesic in the target space! if the
parameterw satisfies the constraints
1-8
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sin~w1x!5A sd

2~s1d!
, cosx5aA2B. ~72!

As a realistic example let us take the type IIA supergr
ity, whose bosonic action in the Einstein frame is given b

S5
1

2k2 E d10xA2G

3S R2
1

2
~¹f!22

e2f

233!
F3

22
e3f/2

232!
F2

22
ef/2

234!
F48

2D
2

1

4k2 E F4∧F4∧A2 , ~73!

where

F485dA31A1∧F3 . ~74!

We will consider the Neveu-Schwarz~NS! part of the action
consisting of the metric, dilaton, and two-form. The usu
extremal one-brane solution corresponds to the elemen
NS string and has the form

ds25H23/4~2dt21dy2!1H1/4~dx1
21¯1dx8

2!. ~75!

The ‘‘matrioshka’’ one-brane line element reads

ds25Fsin~s1w!

sin w G23/4

e2~)/4!s~2dt21dy2!

1Fsin~s1w!

sin w G1/4

e~1/4) !s~dx1
21¯1dx8

2!, ~76!

while the dilaton is

e2f5Fsin~s1w!

sin w G1/2

e2~)/2!s. ~77!

The null geodesic method can also be applied to
SL(d,R)/SO(1,d21) part of the initials model ~17!. The
matrix g̃ should be taken in a form similar to Eq.~54!,

g̃5g̃0eKs, ~78!

where TrK250, K belongs to an algebra sl(d,R).
Asymptotic flatness conditions imply

g̃05diag~21,1,...!. ~79!

In the simplest cased52 the condition TrK250 leads to
detK50, i.e., the resulting matrixg̃ has the form

g̃5S 2~11as! 2cs

ds 12as
D , a21dc50. ~80!

The matrix g̃ should be symmetric, soc52d56a, and
after rescaling of the harmonic functions

g̃5S 2~11s! 6s

6s 12s
D . ~81!
12200
-

l
ry

e

This metric can be rewritten in the light-cone coordinates

ds252dudv2sdu2. ~82!

This corresponds to the well-known Brinkmann wave@35#
and the decoupling ofg̃ from the action~17! reflects the
possibility of a superposition ofp-branes and waves@36#.

VI. BONNOR-TYPE MAP

One can obtain new nontrivial solutions from the old o
using a map between similar cosets describing physic
different theories. This idea traces back to the Bonnor c
struction of the metric of a magnetic dipole in general re
tivity using a correspondence of two SL(2,R)/SO(1,1) de-
scribing stationary vacuum gravity and static electrovacuu
Since we have the same subspace in thep-brane case~17!,
one can use the same correspondence to generate
p-brane solutions.

For the vacuum Einstein theory in four dimensions t
target space describing stationary solutions has the form

ds25
1

2 f 2 ~d f21dx2!, ~83!

wheref 5gtt andx is the twist potential. One can check th
the correspondence between twos models can be achieve
only if B51/8. Note that the appropriate map is complex

C52 ln f , v5 ix, ~84!

so, in order to obtain real solutions in the Minkowski spa
we should take the complexified seed solutions.

As an example let us consider the complexified Kerr-NU
~Newmann-Unti-Tamborino! solution of the Einstein theory
taking pure imaginary rotation and NUT parametersã5 ia,
Ñ5 iN

ds252
D1ã 2sin2u

S
~dt2vdw2!

1SS dr2

D
1du21

D sin2u

D1ã 2sin2u
df2D , ~85!

where

D5r 222Mr 2ã21Ñ2, ~86!

S5r 21d2, d52 i ~ ã cosu1Ñ!, ~87!

v5
2i

D1ã2sin2u
@ÑD cosu1ã sin2u~Mr 2Ñ2!#.

~88!

The potentialsf andx will be given by

f 5
D1ã2sin2u

S
, x52

2i ~Mã cosu1MÑ2Ñr !

S
.

~89!
1-9
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Since the potentialx is pure imaginary, the complex trans
formation ~84! will give a real solution.

Consider the type IIA supergravity~73!. It contains a one-
form which can be connected with electric black hole or w
the magnetic D6-brane. We will construct the metric of t
D6-brane. It is easy to check that in this caseB is equal to
1/8, so we can use the above technique. The map~84! ap-
plied to the potentials~89! and the Eqs.~19!,~20! lead to the
following metric:

ds25 f 1/8~2dt21dy1
21¯1dy6

2!1 f 1/8
S

D
dr2

1 f 1/8Sdu21 f 27/8D sin2udw2, ~90!

where f , D, and S are given by Eqs.~89!, ~86!, and ~87!.
This metric describes the magnetic D6-brane with the dip
moment which is generated by the parameterã. The non-
trivial components of the one-form field strength are

Frw52
f 25/4

S sin u
]uu, Fuw5

f 25/4

S sin u
] ru, ~91!

whereu is given by

u5
2~Mã cosu1MÑ2Ñr !

S
. ~92!

The corresponding dilaton field can be expressed through
function f as follows:

e~3/2!f5 f 9/8. ~93!

In the limit ã50, M5N the configuration obtained reduce
to the usual extremal magnetic D6-brane.

VII. INTERSECTING p-BRANES

In order to describe within the same approach theinter-
secting p-branes we have to change our basicAnsatz~7!,~8!.
Now we assume that thed-form has more than one nontrivia
component and the metric exhibits a block structure

ds25(
i 51

N

gm in i

~ i ! ~x!dym idyn i

1S )
i 51

N

Aug~ i !u D 22/s

hab~x!dxadxb, ~94!

wheregm in i

( i ) , g( i )5detgmini

(i) andhab are arbitrary symmetric

tensors,m i ,n i51¯r i , a,b51¯s12.
A convenient description of thed-form Ansatzis based on

the incidence matrix approach@5#. The incidence matrix is
an rectangularN3E matrix,

D5~Dai!, a51, . . . ,E, i 51, . . . ,N, ~95!

where rows correspond to different components of
d-form and columns refer to the blocks in the metric~94!.
The entries of the incidence matrix are equal to 0 or
12200
le

he

e

,

( i 51
N r iDai5d for eacha. Since we intend to consider th

usualp-branes we suppose that each nontrivial componen
the d form has zero indexA0¯ , i.e., it covers the timelike
direction. In terms of the incidence matrix it meansDa1
51. We assume that nontrivial components of thed form are

Aa5va~x! )
$ i uDai51%

∧v i , ~96!

wherev i are r i forms

v i5dyi
1∧¯∧dyi

r i .

va are some functions ofx variables,a51,...,E.
Now, as in Sec. II, we substitute thisAnsatzinto the equa-

tions of motion and obtain the correspondings model. Intro-
ducing as in Eq.~16! the ‘‘internal’’ metrics g̃( i )

gm in i

~ i ! 5~Aug~ i !u!2/r i g̃m in i

~ i ! , ~97!

it is easy to obtain the following. These renormalized met
tensors are decoupled from the rest of thes model and we
find them only in the sector14 Tr ]ag̃( i )]bg̃( i )21

. The rest of
the s-model action reads

S5
1

2k2 E ds12xAhH R~h!2habS 1

2
]af]bf D

1Ĝi j ]a~ lnAug~ i !u!]b~ lnAug~ j !u!

2
1

2 (
a51

E

e2af22( i 51
N Dai lnAug~ i !u]ava]bvaJ , ~98!

whereĜi j is a matrix with the following components:

Ĝi j 5
1

r i
d i j 1

1

s
. ~99!

Now the target space is (N1E11) dimensional, it is param-
etrized byf, lnAug( i )u, andva .

The explicit solutions known for the intersecting bran
were found only assuming certain conditions on the para
eters ~intersection rules!. It turns out that these condition
correspond to the symmetric space property of the sig
model target space. Let us remind the reader that the m
space is called symmetric if the Riemann tensor is cov
antly constant, i.e.,

¹aRbcde50. ~100!

Straightforward calculations yield the following. All nonzer
components of the five-index tensor¹aRbcde are propor-
tional to
1-10
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expS 2af22(
i 51

N

DailnAug~ i !u D
3expS 2af22(

i 51

N

Da8 i lnAug~ i !u D
3S a2

2
2

d2

D22
1(

i 51

N

r iDaiDa8 i D .

This means that the target space is symmetric when the
cidence matrix satisfy the following condition:

a2

2
2

d2

D22
1(

i 51

N

r iDaiDa8 i50, ~101!

showing that we deal with the usualp-brane intersection rule
@5#. Thus, thes-model approach gives a simple geometric
interpretation of the intersection rule~101!: only when Eq.
~101! is satisfied is the target space a symmetric~pseudo!Ri-
emannian space.1

Let us consider the simplest case of two intersect
p-branes~with two nontrivial components of thed form, E
52, and three blocks in the metric:N53, r 15q, r 25r 3
5r !. If the parameters of our configuration satisfy Eq.~101!,
the s-model action~98! could be diagonalized and reduce
to a simple form similar to Eq.~21!:

S5
1

2k2 E ds12xAhH R~h!2habS A1]aj1]bj1

1A2]aj2]bj21B1]ac1]bc12
1

2
e2c1]av1]bv1

1B2]ac2]bc22
1

2
e2c2]av2]bv2D J , ~102!

where
ts

12200
n-

l

g

c15af12 lnA2g~0!12 lnAg~1!, ~103!

c25af12 lnA2g~0!12 lnAg~2!, ~104!

j152asf22~s2r !lnA2g~0!12r lnAg~1!12r lnAg~2!,
~105!

j25q~r 1s!f2a~q12r 1s!lnA2g~0!, ~106!

and the constants are

A15
1

4sr2 , A25
1

2~q12r 1s!r 2d
, B15

1

4r
, B25

1

4r
.

~107!

Thus we have obtained thes model with the
SL(2,R)/SO(1,1)3SL(2,R)/SO(1,1)3R3R target space.
This structure means that twop-branes can be generate
separately. As an example one can construct two intersec
black p-branes. The procedure is similar to that discussed
Sec. III, but now one has to apply Harrison transformatio
with different parameters to each SL(2,R)/SO(1,1) compo-
nent. Thus one obtains two intersecting nonextrem
p-branes with different charges@10,11#. This derivation
demonstrates that the existence of such configurations
consequence of thes-model target space symmetries.

In Sec. V we constructed some new solutions using
null geodesic method applied to thes model~21!. The same
strategy applied to thes model ~102! leads to extremal in-
tersectingp-branes with two charges~in the case of the de
generate matrixK! and to the intersecting ‘‘matrioshka’’
type p-branes~in the case of the nondegenerate matrixK!.
Thus we can speculate that ‘‘matrioshka’’p-branes are sub
ject to the usual intersection rule. As an example we exh
the metric of two intersecting ‘‘matrioshka’’-type one-bran
in type IIA supergravity:
ds25Fsin~s11w1!

sin w1
G3/8Fsin~s21w2!

sin w2
G3/8

e2~7A6/48!s12~&/16!s2S Fsin~s11w1!

sin w1
G21Fsin~s21w2!

sin w2
G21

e2~A6/6!s11~&/2!s2

3~2dt21dy2!1Fsin~s11w1!

sin w1
G21

e~A6/3!s1~dz1
21dz2

2!1Fsin~s21w2!

sin w2
G21

e~A6/3!s1~dz3
21dz4

2!1dxadxaD .

~108!
ing
we
of
ex-

e
et-
VIII. DISCUSSION AND CONCLUSIONS

In this paper, we have focused on the technical aspec
gettingp-brane solutions via thes-model formulation of the

1The related ideas were recently discussed in Ref.@37#.
of

simplest brane-containing theory. Although the idea of us
dualities of dimensionally reduced theories is not new,
have shown that knowing an explicit nonlinear realization
dualities in terms of the target space variables one can
ploit ‘‘hidden symmetries’’ more effectively. We hav
shown that under the restriction of the block-diagonal m
rics and the correspondingAnsätze for an antisymmetric
1-11
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form a typicalp-brane producing action reduces to the m
tidimensionals-model on a symmetric target space. Amo
target space isometries there are Harrsion-type transfo
tions generating Page charges, which relate uncharged
lifted black holes and genuine blackp-branes.

Apart from the direct use of transformations to get n
solutions from old ones, one can also apply various integ
tion methods developed earlier in general relativity. In p
ticular, using a technique of harmonic maps we have fou
new classes ofp-branes with a nontrivial ‘‘matrioshka’’-type
structure of the transverse space. We have shown that s
p-brane ‘‘rules,’’ such as intersection rules for compos
branes or ‘‘blackening’’ prescriptions, have a rather natu
geometric interpretation in thes-model terms. Since the
main subgroup involved is SL(2,R), one can effectively use
solutions to other theories sharing the same group struc
to get newp-brane solutions. This Bonnor-type correspo
dence is somewhat similar to duality between different th
ries which was widely discussed recently in the context
superstrings.

We have considered the purely bosonic problem and c
structed solutions to the model action~1!. However, in the
most interesting cases, such as type IIA and IIB supergr
ties, we have supersymmetric actions. Bosonic fields of th
theories are the same as in the problem we have discus
Thus it is important to find whether or not the construct
solutions, being at the same time the solutions to supers
metric theories, preserve a part of the initial supersymme
The corresponding analysis shows that, except for the u
extremalp-branes, our new solutions do not preserve sup
symmetries. In particular, we have checked that flux-bra
in type IIA supergravity are not supersymmetric. Recall th
-

,

o.

t.
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this is also true for the Melvin solution of the Einstein
Maxwell theory embedded intoN52 supergravity. Also, ad-
ditional structure on extremalp-branes, such as dipole mo
ment, leads to supersymmetry breaking. The situation w
‘‘matrioshka’’-type p-branes is more complicated. The ou
ermost component of the corresponding spacetime is asy
totically flat, and one can check that the BPS bound is ind
saturated. However, both in type II ten-dimensional sup
gravities and in eleven-dimensional supergravity no Killi
spinors exist on this background. There is no contradict
between these facts because the solution is singular and
sesses an inner boundary which has to be taken into acc
when integrating the corresponding Nester forms.

We note in conclusion that our formulation also opens
way to apply techniques of integrable systems assuming
the target space variables depend only on two of the tra
verse coordinates. In four-dimensional theories the
space-time metric can be recovered once the solution of
corresponding integrable system is found. In multidime
sional cases additional assumptions are needed abou
structure of the transverse space to ensure complete solv
ity. More general Lagrangians including several antisymm
ric forms and dilatons can also be investigated under
assumption of the block-diagonal metrics. However, in
nondiagonal cases one encounters serious technical com
cations while attempting to find an explicit nonlinear realiz
tion of ‘‘hidden’’ symmetries.
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