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We discuss Padienprovement of known four-loop order results based upon an asymptotic three-parameter
error formula for Padapproximants. We derive an explicit formula estimating the next-order coeffigignt
from the previous coefficients in a series- R;x+ R,x?>+ R;x®. We show that such an estimate is within
0.18% of the known five-loop order term in tigsfunction for single-component scalar field theory, and within
10% of the known five-loop term in the corresponding anomalous mass-dimension fupgtigh for scalar
field theory. We apply the same formula to generatg|a] Padesummation of the QCIB function and
anomalous mass dimension in order to demonstrate both the relative insensitivity of the evolatiop)oénd
the running quark masses to higher order corrections, as well as a somewhat increased compatibility of the
present empirical range fats(m,) with the range anticipated via evolution from the present empirical range
for ag(M,). For 3<n;<6 we demonstrate that positive zeros of 4@j2] Padesummation estimate of the
all-orders g function which incorporates known two-, three-, and four-loop contributions necessarily corre-
spond toultraviolet fixed points regardlessof the unknown five-loop term. Pad@provement of higher-order
perturbative expressions is presented for the decay rates of the Higgs boson into two gluons ahd jpar,a
and is used to show the relative insensitivity of these rates to higher order effects. Howevempratement
of the purely perturbative component of scalar/pseudoscalar current correlation functions is indicative of large
theoretical uncertainties in QCD sum rules for these channels, particularly if the continuum-threshold param-
eters, is near 1 GeY. [S0556-282(98)03021-5

PACS numbes): 11.10.Hi, 11.55.Hx, 12.38.Aw, 14.80.Bn

[. INTRODUCTION The present paper is phenomenologically oriented, spe-
cifically aimed at developing Padmproved estimates of
A recent body of work[1-3] has demonstrated how what are hoped to be computationally and/or experimentally
higher-order terms in a number of field-theoretical perturbaaccessible quantities. The particular items of interest consid-
tive series can be estimated by Pagproximant tech- ered are theg function and anomalous mass dimension for
niques. Of particular interest are applications 0 QCDyaqqiveO(N)-symmetric scalar field theorySec. 1), the
guantities, particularlyd andy functions now known to four- running QCD coupling constargec. 11}, the running ,quark

loop order inag [4—6]. Padeapproximant methods have al- L . )
ready addressed thg (flavor-numbey dependence of higher masses{Sgc. I\A,_the' Higgs-boson decay rates into two 'glu
ons and into &b pair (Sec. V}, and the purely perturbative

order terms in the QCIB and vy functions[2,3]. Near can-
cellations between coefficients of successive powers;of ~content of QCD-sum rules based upon scalar and pseudo-

however, can lead to a large uncertainty in the estimate§c@lar current correlation functioSec. V). In Sec. Ill, we
overall size of such higher-loop contributions—small errorsalSo discuss some general implications of Psufemation as
in fitted coefficients of¥ have been seen to lead to much &n @pproximation to all orders of perturbation theory. In par-
larger errors in the aggregateow known four-loop contri-  ticular, we analyze the fixed point structure of the most gen-
bution to thes function[2]. eral [2|2] Padesummation estimates of the full content of
In the present paper, our focus will be on using RPadeQCD B functions forn¢={3,4,5,¢ whose Maclaurin expan-
approximant methods to estimate the magnitude of highersions coincide with presently known perturbative contribu-
order corrections to quantities already calculated to three-antions.
four-loop order in QCD. We assess the theoretical uncer- In the section that immediately follows, we discuss how
tainty of such calculations by seeing how closely they coin-Padeapproximant methods can be used to estimate higher-
cide with their own Pad@mprovements, as well as whether order corrections to perturbative series in which the leading
successive orders of perturbation theory exhibit convergenc®ur terms are known. Although this methodology appears in
toward Padesummation estimates of the full perturbative se-other work[3], the presentation leading to E@.12 [which
ries. has not appeared elsewhgsgill, it is hoped, be of some
value to those unfamiliar with Paggproximant methods.
We also demonstrate the reasonable agreement of predictions
*Permanent address: Department of Applied Mathematics, Theased on Eq(2.12 with now-known five-loop terms irB
University of Western Ontario, London, Ontario N6A 5B7, Canada.and y functions forO(N)-symmetric scalar field theory.
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We consider the general problem of developing a’Pade gjyen knowledge of R;,Ry,R3} in the series(2.1), the

improvement of the series

S=1+Rx+Ryx>+Ryx3+..., (2.2

where {R;,R,,R3} are known and{R,,Rs,...} are not
known, through use of the asymptotic error formula for esti
matingRy; w+ 11X "™*1 via the Padeapproximant

1+a;x+ax2+...agxN
SINMI= 77 byX+box2+ ...+ byxV

=1+ Ry x+Ryx?+ Ryx3+ ...

N+M+1y .. (2.2

+Ry+m+1X
Let RR2% | be the prediction one would obtain from the
[N|M] Padeapproximant, and IRy, v 1 be the true value
of the coefficient. The structure of the asymptotic error for-
mula is given by[2]

Pade

I:QN-%—M+1_

Rnim+1 MIAM
~ [N+M+aM+bJ¥

2.3
Rn+m+1 @3

with numbers{A,a, (independent ofN,M) to be deter-
mined.

This error formula simplifies considerably ¥ is always
chosen to be 13]: the right-hand side of Eq2.3) becomes
—A/[N+1+(a+b)], with only the two numbers{A,a

relative errorsd, and §; are specified completely by the
left-hand sides of Eq92.5) and(2.7). These two equations
may be regarded as two equations in the two unknons
and @+ b) characterizing the asymptotic error formya3)
whenM =1. The solution to these two equations is

A=[1/6,—1/85]"1, (2.9
b1 5,— 2683 -
(a+h)= o (2.9

This information is sufficient to generate an asymptotic Pade
approximant(APAP) estimate[2,3] of the unknown coeffi-
cientR, in the serieg2.1). Consider th¢2|1] Padeapprox-
imant

_ Ltagxtan’

S T px

=1+(a;—by)x+[a,—by(a;—by)]x?
+[—by[a,—by(a;—by)]]x°
+[bi[az_b1(a1—b1)]]x4+...

(2.10

The three known values diR;,R,,R3} completely deter-
mine the three parametefa,,a,,b;} characterizingS;;.

=1+ Ryx+ Rpx2+ Ryx3+ RE%4,

+Dbj to be determined. These can be determined explicitijye see from Eq(2.10 that RF*¥=RZ/R,. However, the

for the seriesS in Eq. (2.1) given knowledge of the three
coefficients{R;,R,,R3}.
Given knowledge oR; only, the[0|1] Padeapproximant

Padg(z

1
Sl = T3 px ~ L b b?x?...=1+Ryx+Rj

(2.4)

predicts RE*¥=R2. Consequently, we see from the
asymptotic error formul#2.3) that

RE“R, Ri-R,  -A
R, R, 1+(atb)

5. (2.5

Given knowledge of onlyR,; andR,, the[1|1] Padeapprox-
imant

1+a,x

5[1\1]:1_1_—[31)(: 1+(ay—by)x+by(b; —a;)x?
+b%(a;—b)x3+...

=1+Rx+R,x2+R%3... (2.6

predictngade: R3/R;. The asymptotic error formulé2.3)
for this case implies that

asymptotic error formul#2.3) suggests that a more accurate

estimate of the true valug, differs from Riadeby a predict-
able relative error:

R3/R,— Ry
Ry

_ -A
"~ 3+(a+b)’

=5, (2.12)

in which case we find from Eq$2.11), (2.8), and(2.9) that

_RIR,
1+ 6,

R3(83—25,)
 Ry(83-28,~ 8,63)
~ R3(R3+ R;R,R;— 2R3R;)
 Ry(2R3—R{Rs—RiR))

(2.12

As an example, we test the applicability of E§.12) by
comparing its prediction to the know®(g®) coefficient of
the B function for single-component massivé scalar field
theory[7]:

BY(g)=1.5971—(17/9 g+ 10.849%>
—90.5358°%+949.523*+ O(g°)]. (2.13
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TABLE I. Comparison ofB-function andy-function coefficients foO(N)-symmetric scalar field theory
obtained via Padestimates to those obtained via exact calculation. TBgVia Eq.(2.12” column displays
estimates obtained via the APAP algoritliZn12), based orB,_; listed in[7]. The “B4“®’ column displays
the results forB, obtained in[7] by explicit calculation. The B, via [2]” column lists the Padestimates
given in Table 3 of Ref[2], involving knowledge of thé&* dependence and a fit of the overdldependence
of B4, as well as a simplified asymptotic error formula. Theys(y,) via Eq. (2.12” column displays
estimates ofy, /7y, in the anomalous mass dimensigrfunction obtained via the APAP algorithi2.12),
based on prior coefficients listed [i@]. The final column, “(y,/v,)'""¢,” are coefficients explicitly calcu-

lated in[7].
B via Eq.(2.12) Bs"° Ba via[2] (val7yo) via Eq.(2.12 (valy0)'"™e

N=1 1421.7 1424.3 1432.3 135.1 150.76

N=2 1941.7 1922.3 1943.8 168.4 191.89

N=3 2555.9 2499.3 2540.3 203.1 236.94

N=4 3267.9 3158.8 3225.6 239.2 285.94
Identifying R;=—17/9, R;=10.8499 andR;=—90.5353, RZ—R,R,
we find from Eq.(2.12 that R,=947.8 in startlingly close by= ———, (2.17
agreement to the nexgt) term within Eq.(2.13. Although R;—RiRs
APAP improvement has also been applied elsewhg}eo
O(g®) terms inO(N) scalar field theorys functions, the a;=R;+Dby, (2.18
result obtained here relies on direct and explicit use of the
full asymptotic error formula(2.3). A comparison of Eq. a,=R,+b;R;+b,. (2.19

(2.12 predictions and exact values gf;, the O(N) scalar

field theory B-function coefficient ofg®, is presented in Equation(2.15, as determined from Eq&2.12) and(2.16—
Table 1. We emphasize that these predictions moeob-  (2.19, constitutes the procedure we denote as “Pade
tained by a fitting of thé\ dependence or any knowledge of summation” of the serie$in Eq. (2.1).

the N* dependence o8¥, as is the case in Table 3 of Ref.

[2]; for comparative purposes, the predictions of Ref.are Ill. PADE -IMPROVEMENT OF THE QCD COUPLING
also listed in Table I. o ) a
We can use Eq2.12) to predict the knowR, coefficient ~_ The QCD minimal subtractiofMS) or modified MS
within theN=1 scalar field theory’s anomalous mass dimen-(MS) renormalization-group functiong(x) and y(x) are
sion[7], as well: now known to four-loop ordef4,5,6]. Prior work involving
Padeimprovement methods has attempted to predict the fla-
Ym(9)=(9/2)[ 1—0.8333)+ 3.50@° vor dependence of these functions to four- and five-loop or-

der[2,3]. ,Bg”') and,BEl”f), the four- and five-loop order cor-
rections to thes function, are respectively third- and fourth-
Equation(2.12) predictsR,=135.1, a result only 10% off degree polynomials im;, and Pademethods have already
the 150.8 value given in Eq2.14). Table | shows that pre- Shown some success in predicting the polynomial coeffi-
dicted R, coefficients fory,(g) within O(2), O(3), and  cients now known foqﬁ(snf) [2]. However, an accurate deter-
O(4)-symmetric cases also remain within 20% of their truemination of the polynomial coefficients withif; is not re-
values, as given ii7]. These results provide a reasonableflected in the accuracy with whic; is itself determined.
basis for applying Eq2.12) [and its concomitant asymptotic Thus the overall Paddriven estimate of3; presented ifh2]
error formula(2.3)] to the 8 and y functions of QCD, as we for n;=3 [5(33): (7.6+0.1)x 10°/256=30=1, using nor-
will do in Secs. lll and IV. malization conventions appropriate for E®.1) below] is

A final improvement of the serie€.1) is possible by  gypstantially below the true valug{)=47.23), even after
expressing this series ag22] diagonal approximant—this  ajiowances are made for claimed uncertainties arising from
is @ more accurate representation of the infinite Se8i#®n  qyadratic Casimir contributiorf8]. It should also be noted
gne“vx{[ould og.tam bky arb|trar|lly trugﬁcstmlg trée}serlzs after thehat this estimate, once disentangled from a fitting p(ro)cedure

X" lerm. LIVen Known vaiues 1,R2,Rar ANAUSING 5360 at ascertaining the expliait dependence of;",

the APAP estimaté2.12) for Ry, the approximangzpz of ¢ 0 e trom a simplified version of the asymptoti3c error

the infinite seriesSis fully determined: formula (2.3), in which the denominator N+M +aM

-19.96°%+150.8*+O(g®]. (2.19

1+ agx+ a2 +b)M is taken to beN" [2]. Indeed, it is difficult to tell at
SHS[M]:W, (2.15 this stage whether the discrepancy between Ratmates of

Bz and the true value arises primarily from quadratic-

R.R,—R.R Casimir contributions not occurring in lower orders, or alter-

= 124—23, (2.16 natively, arises from the error involved in simplifying the
Ry—RiRg asymptotic error formula in order to make an estimatg@gf
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pOSSibIe. WlthOUt such a Simp!ification, the error f(?rmula (3nf):11423033_ 27133944”4‘1582379]]?
(2.3 has(in principle) three arbitrary constantg\,a,b in-
stead of ondA). +5.8566958X 10 °n?. (3.20

Consequently, in this section we will predi6t, directly
using the APAP algorithn(2.12 following from the full ~We use Egs(3.2), (3.1b), and(2.12) to predict the following
asymptotic error formul#2.3). We will not prejudice these values forp,:
predictions of 3, by attempting a fit of the polynomial de- 3
pendence onn;, nor will we attempt to disentangle ni=3: R,=-849.74,8,7=-1911.9; (3.3
guadratic-and-higher Casimir contributions frggg and 3.
Rather, we will make distinct predictions (ﬁg"f) via Eq.
(2.12 for n;=3,4,5,6. The validity of such an approach, par-
ticularly the possibility that the full asymptotic error formula
is inclusive of higher-order Casimir contributions B{x),
would be best established by comparison to an exact calcu-

: (ng) ; .
lation of 8,'”, when available. The large negative values fof=3 andn;=6 reflect the

We define theg function as in[4]: near cancellation of the factor B3 — RIR;—RZR3) in the
denominator of Eq(2.12). Since a change of sign can easily
occur if this cancellation is over- or underestimated, the saf-
est interpretation of Eq43.3) and(3.6) is to predict a rela-
. tively large magnitude fopB,, with the sign uncertain.
- Corresponding results from Table Il of R¢8] with qua-
- _'80)(2240 Rix', (313 gratic Casimir contributions and a 1/1024 normalization fac-
tor appropriate to Eq.3.13 included are 8,={278(n;
with x=ag(u)/7 and =3),202(;=4),165(M;=5),166(;=6)}. As stated earlier,
these latter results are based upon a fit to the polynomial
Ri=Bi/Bo- 3.1 coefficients ofnkin B,, with near cancellation of very large
opposite-sign coefficients for the=0 and k=1 terms.
These latter results appear most consistent with those ob-
) _11_ tained above when;=5.
o —(11=2nd3)/4, (3.29 To get a feeling of the magnitude of these Padémates
of five-loop effects, we generate tf@82] approximant2.15
from the known values foR;, R,, andR; and our estimate

(ng) 5 of R4, and incorporate this approximant directly into the
B, " =(2857/2-503N/18+325n7/54) /64, (3.20  fynction [ n2dx/du?=B(x)]:

ni=4: R,=40.203, B\"=83.7563; (3.9
n;=5: R,=70.203, B{>'=134.56; (3.5

ni=6: R,=-239.22, BY=-418.64. (3.6

d - 4
2 _ 7 y— 2 i
W g X=X X

Known values ofBy— B3 are then found to bg5]

(") = (102—38n,/3)/16, (3.2b

o ey 9x? [ 1+ 94.38%— 75.60%> 3.7
ni=3: B (X)= = 7 | 17 90.60&—244.722" o7
s 25x? [1—5.896%— 4.0110¢2 3.7H
ne=4: BU(X)=~ 5 | T-7436%1 4.39322 " @
e e 23x? [ 1-5.976X— 6.986X> 3.7
ng=5: BY(x)= 12 |1-7.236%—0.6639%°|" 370

We can use these Padpproximations to the fulB function to evolveag”')(,u): mx(") () down tou=1 GeV from an
initial condition a(ss)(MZ) =0.118[8] through use of the followingfour- and five} flavor threshold matching conditions with
M(n) = pin [9:

XM7Y () =x "0 () [1+0.1528X M () +{0.9721-0.0847 s — L HX ™ (44))°]. (3.8

|
In Fig. 1 we display the evolution afs(«) to low ener- these curves are generated from the initial condition

gies through use of two-loop, three-loop, four-loop, and theag5)(Mz)=O.118, with  w,=4.3GeV [i.e,, my(my,)

Padeimproved four-loop8 functions of Eq.(3.7). All of =4.3 GeV] identified as tha;=5 flavor threshold, and with
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ties in low-energy values, the best possible test at present of
Padé Padeimprovement would be nonempirical, i.e., a comparison
a to an explicit five-loopcalculation of the 8 function.
We note, however, that higher-order effects do appear to
increase the overlap between the presespmewhat large

N empirical range foerg(m,) (0.370+0.033[8]) and the range
o predicted via evolution down from the present empirical
2L range fora (M,) (0.118+0.003[8]). Taking into account

the present uncertainty in the five-flavor threshold,(
=4.3+0.3 GeV[8]) and incorporating the matching condi-
tion (3.8 for ay(«) below and aboves,,, we find the fol-

% lowing predictedranges forag(m,) for two-loop, three-loop,
four-loop and Padsummationg functions:
iz Two-loop:
0.2916< ag(m,)=<0.3391, (3.9a
[ag(m,)]e,=0.3137, (3.9
Three-loop:
ot/ 0.2944< ag(m,)<0.3451, (3.109
D D Y [as(m;)]e,=0.3182, (3.100
w(GeV)
Four-loop:

FIG. 1. A comparison of the evolution of( u)=ag(u)/ = for
m.=pu=1 GeV obtained from the evolution of two-loofPL), 0.295% ay(m,)<0.3477, (3.113
three-loop(3L), four-loop (4L), and[2]2] Padesummationg func-
tions. All curves are generated from the initial conditiag(M )

=0.118, with five-and four-flavor threshold matchings occurring at [as(m;)]e,=0.3200, (3.11b
4.3 GeV and 1.3 GeV, respectively. .

Padeimproved:
min=1.3 GeV identified as the;=4 flavor threshold. Equa- 0.2963< ag(m,)=<0.3489 (3.123
tion (3.8 is utilized in full in both the four-loop and Pade ST ’
. . . . . oy 2
improved calculations; it is utilized t@(x“) to generate [ae(M.)]e, = 0.3208. (3.12H

flavor-threshold initial conditions in the three-loop calcula-

tion, and the matching condition is trivial for the two-loop

calculation. It is evident from the figure that curves from
ive orders of th@function r nverge from .

successive orders of thigfunction appear to converge fro central valuegcv) displayed above are evolved down from

below to that generated via E¢B.7), the Padesummation «(M,)=0.118 with a five-flavor threshold atuy,

approximating all orders. The gaps between curves of suc- _
cessive order clearly narrow as the order increases. Figure _1.f'r'l3 Ge\_/'4TOhé I(\)/wer %Olf[?lds evolvet:‘rom;(Mz) —|0.11f5
shows that the Padsummation leads to a curve far(u) Wit gy =40 SEV, an € upper bounds evolve from

that exceeds the unimproved four-loop curve by less thafts(M2) =0.121 with ., =4.6 GeV. .
1%. Such a difference is inconsequential compared to the There are also some unexpected theoretical consequences

; O . ising from estimating the summation of the fglifunction
estimated uncertainties (M ,) and u,, for four- and five- arising : ; .
flavor thresholds. Both the four-loop and the Raderoved series through use of an approprlately. chosen IW. OXI-
curve are indicative of benchmark valuaeg(1 GeV)=0.48 mant[1]. Thze mosg geneza[l2|2] approximant must Y'eld 1
and ag(m,)=0.32. However, if the flavor thresholds and +Ryx+Ryx"+ Ryx*+ Ryx” as the first five terms of its Ma-

ag(M,) are assigned their acceptEg] lower-bound values claurin expansion. For optimal generality, we require that
(5) N (nj=5)__ (nj=4) _ R;, Ry, andR; be given by Eqs(3.1b and(3.2), but allow

[as™(M;)=0.115, Py =41GeV, puyt =10 G?V]’ R, to bearbitrary. We then find that

the values we obtain gt =1 GeV andu=m, from either

four-loop or Padesummationg functions area!{*(1 GeV)

=0.41 and o{*(m,)=0.29. Corresponding upper-bound B(x)=—Box®

values [aP(M)=0.121, u{"P=45Gev, ui™"

=1.6GeV] lead to a{¥(1GeV)=057 and «{(m,)  with {a;,a,,b;,b,} linear inR, as follows:

=0.35. In view of thesédmuchy larger-than-1% uncertain- n;=3:

The ranges listed above progressively overlap the low end of
the present experimental range 0.83Y,(m,)<0.403. The

1+ a;x+ a,x?
1+bx+byx?

: (3.13
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a,=7.1945-0.1026R,, (3.14a
a,=—11.329+0.07564R,, (3.14b ol \
b;=5.4168-0.1026R,, (3.149 .
b,=—25.430+0.25808R,; (3.149 . N
ni=4 x|
a,=4.8401-0.1106&R,, (3.153
a,=—8.1842+0.1083&,, Xdi 4
(3.15h
b,=3.3001-0.1106&,, (3.159
b,=—16.314+ 0.21904R,; (3.159 ° p;
7]
ng=>5: FIG. 2. Schematic behavior af 1) obtained from 42|2] Pade

(3.163 summation estimate of th@function whose positive numerator and
’ denominator zeros alternate. The denominator zeros are denoted by
Xq1 @andXy,, the numerator zeros are denotedxXyy andx,,, and

a,=2.6793-0.1232R,,

a,;=—6.19671-0.01124%,, (3.160b the alternation of zeros is consistent with the smallest positive zero
being a zero of the denominator<®y;<Xn1<Xg»<X,». The
_ value uq; is defined such that(ug;) =Xq1; values ofu<ugy; are
b;=1.4184-0.1232®,, (3160 tside the domain ot(w).
by=—9.4599+0.1442R; (3.169  positive zero occurring for the denominator. Zeros of 1

+b,x+b,x? represent values of for which x(u) has infi-
. nite slope. Zeros of + a;x+a,x? are fixed-point values of
ne=6: X. As is evident from the figure, all such fixed points are
necessarily ultraviolet, and the infrared regioimiaccessible

2,=0.61085-0.18424,, (3.173 for values ofu less than those corresponding to zeros of the
_ denominator. Such behavior suggeéts the possible exis-

a,= —6.6275-0.2418R,, (3.179 tence of a strong phase of QCD at short distances, reflective
B of a nonzeraultraviolet fixed point, and2) the inapplicabil-

by=—0.31772-0.1842R,, (3.179 ity of a perturbative theory of quarks and gluons to the in-

frared region, specifically the region excluded from the do-

b,= —6.0423-0.05757R, . (3.179 main of the first positive branch of(u) (Fig. 2).
The first statement above, which has applicability to su-
For all n; values listed above, the first positive zero of Persymmetric gluodynamics as well0], may also have
1+a;x+a,x? in Eq. (3.13 is found to be above the first ramifications for scenarios of dynamical electroweak sym-
positive zero of 3 b,x+b,x2, regardlessof the choice for Metry breaking that usually involve a distinct technicolor
R,. Consequently, the smallest positive zero #fx), if ~ 9roup. The second statement parallels old infrared slavery
given by Eq. (3.13)is necessarily an ultraviolet fixed point ideas, except that the inapplicability of perturbation theory to
andnot an infrared fixed point, an inescapable result of theloW energies is not seen to follow from the coupling constant
denominator sign change farbetween 0 and the first posi- 9rowing infinite (or nonperturbatively large as in infrared

tive zero of Eq.(3.13. Moreover, for those values &, for ~ Slavery, but from an explicit decoupling of the infrared re-
which a second positive zero of+la,;x+a,x? is possible, ~9ion from the ultraviolet by virtue oB-function singularities

we find from Egs.(3.14—(3.17) that a second positive zero aIterna}ing withﬁjfunction zeros(Fig. 2). We have verified
of 1+ b;x+b,x2 will also occur at some value ofbetween that this alternation occurs in the most gend@P] Pade
the two positive zeros of +a;x+a,x. This ensures that Summation of thes function even whem;=0.
neitherpositive zero of # a;x+ a,x? corresponds to an in-
frared fixed point.

In Fig. 2, a schematic diagram is presented showing dif- The running masm(u) satisfies the differential equation
ferent branches for the evolution »fu) anticipated from a
B function (3.13 with the above-described alternation of d_ran y(x) @.1)
positive denominator and numerator zeros, with the smallest dx B(X) '

IV. PADE -IMPROVEMENT OF THE RUNNING MASS
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where x=a4(u)/m, as in the previous section, and where ni=3: 9.¥=162.987, (4.3

B(X)(=p2dx/du?) is given by Egs(3.19 and (3.2). The
QCD MS anomalous mass dimension functigix) has been —4- (4) _ 75 234 4.4
calculated to four-loop ordd#,6: M=% 7 5.2349, “.4

_ ni=>5: =12.5550, 4,
y(X)=—x 1+, x|, (4.29 f & (49
i=1

ni=6: =12.1820. (4.6)

y1=4.20833-0.138889, (4.2b

) One can obtain a solution fan[x(«)] which includes the
¥2=19.5156-2.28412;—0.0270062f, (4.20  O(x*) Padeimprovement of3(x) and y(x) by expressing
v(X)/ B(x) as a Maclaurin series i using APAP estimates

¥3=98.9434-19.107 % (3.3—(3.6) for B, and(4.3)—(4.6) for y,. By truncating this
. 4 . . . ._
+O.276163|?+0.00579329f3. 4.29 ?ne;zz %f)t/ex , the differential equatiod.1) can be approxi

Padeimprovement of the square-bracketed expression within
Eq. (4.29 is straightforward via the methods of Sec. Il by
identifying R;, R, andR3 in Eq. (2.2) with y4, y, and y3.
Using Eqg.(2.12 we obtain the following APAP estimates

X dm -1 2 3 4
gk Lo Hdixt P dadext], (4.7)

for y,: with By given by Eq.(3.28, and withd; given as follows:
|

n;=3: d;=0.895063, d,=1.94172, d;=2.88956, d,=417.493; (4.8

ni=4: d;=1.014131, d,=1.74994, d;=0.0880435, d,= —3.93256; 4.9

n;=5: d;=1.17549, d,=0.809817, d;=—1.05016, d,=—10.0138; (4.10

n;=6: d;=1.39796, d,=1.63266, d;=—6.84005, d,=142.769. (4.11

The values ford;, d,, andd; are exactly determined by x* term is the lowest-degree term sensitive to Pddeen

four-loop calculations o3("?(x) andy(")(x). The value of estimates of3, andy,. We find the following set of expres-

d, is underlined to emphasize that it is determined fromsions forc(x) from thed; in Egs.(4.8—(4.11):

APAP estimates. The large values foy whenn;=3 and . u )

n;=6 reflect correspondingly large values f8f* and g% ne=3: c®(x)=x"Y1+0.895063+1.3714%

that are disc.ussed in the previous section. _ +1.951683+106.12%%], (4.13
The solution to Eq(4.7) can be expressed in terms of R

X(um) ivaluated at two djfferent valqes Qf: x({ul)le, n=4: c®(x)=x12271+1.0141%+ 1.389202

X(m2)=X,, where x(u) is the running coupling whose

evaluation is discussed in the previous section. This solution +1.0905%°—0.076582%*], (4.14

to Eq.(4.7) is [4] _—

ne=5: c®(x)=x*?2§1+1.1754%+1.5007 %>
+0.1724863—10.281%%], (4.15

M(X2) =mM(X1)C(X2)/c(Xy), (4.123

where
n=6: c®x)=x¥T1+1.3979&+1.7934%>

c(x)=xYPo{1+d x+[(d?+d,)/2]x?

—0.683486°+ 33.794%*]. (4.16
+[(d3+2d5+3d,d,)/6]x° e

4 2 2 4 These same expressions are obtained(®®) in Ref. [4];

+[(d1+3d3+6d,+6d1dy+8d,dg) 124]X7} the effects of Padémprovement reside entirely in the*

(4.12h  terms.

It is important to recognize that these results ultimately

Coefficients ofx, x?, and x® are determined in full by derive from applying the asymptotic error formul2.3 to

known coefficients in the four-loop and y functions. The the perturbative field-theoretical calculation @fx) and

116007-7
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¥(x), as argued ifi2] and[3]. As in the previous section, the given in Eq.(4.5). The full [2|2] approximants are then used
results(4.3—(4.6) differ from those one would obtain using to  evaluate c(x) in Eg. (4.1238: c®)(x)
the fits of Ref.[3] to the coefficients off within y,, par-  =exd [(y®(x)/85)(x))dx]. It is evident from Fig. 3b that
ticularly asvy, so extracted involves the near cancellation ofPadeimprovement does not significantly alten,(x) be-
large terms from successive valuesloffrom Table X of  yond a correction comparable to five-loop expectations; the
Ref. [3] one finds for n;=5 that y{’=530-(143)-5 relative change from such Padmprovement is, respec-
+(6.67)-5°+(0.037) 5°— (8.54 107°) - 5*=—13.7. Small tively, within 0.1% (Fig. 3b and 0.01% of the unimproved
variations in these Paesstimated coefficients can easily three- and four-loop results.
lead to positive values comparable to that of Eg5). Figure 3c displays the corresponding evolution of the
It is also important to note that the application of the charmed quark mass.(u) for 1.3 Ge\<u<20 GeV, as
APAP algorithm at the field-theoretical level—i.e., B{x)  obtained fromg and y functions evaluated to two-, three-,
and y(x)—is not equivalent to applying it to “perturbative”  and four-loop order as well as from Padgrovement of the
expressions which are obtained by integrating over thesgur-loop 8 and y functions, both below and above the five-
functions. One could question, for example, whetherxthe flavor threshold. The initial value is taken to be
terms appearing in Eqé4.13—(4.16 might be obtainable by m¢(1.3 GeV)=1.3 GeV for all four curves, and the five-
direct application of the APAP algorithr(2.12 to lower-  flavor threshold is assumed to occur at 4.3 G&Y. The
degree terms irx. If we apply Eq.(2.12 directly to Egs. “Pade’ curve is obtained by direct substitution of appropri-
(4.13—(4.16) using the explicit coefficients of, x?, andx®  ate[22] Padesummationg and y functions into Eq.(4.1).
in order to estimate the coefficientsxf, thex? coefficients At the five-flavor threshold, we utilize the threshold-
we obtain are very different from those listed. Instead wematching constrainf9]
obtain, rfspectively, fanf={3,4,5,6}: 2.68%*, 0.742&*,
0.0183%", and 0.2858". This discrepancy is indicative of (ng) —mn=D (nf) 2
the inapplicability of the error formul&2.3) to the series in M (pen) My (pan)[1+0.2060 e, ™ puen)/ )

Eq. (4.12h, assuming Eq(2.3) is applicable to the perturba- +(1.8229+ 0-024ﬁf)(a(nf)(ﬂth)/7)3]71

tive field-theoretical serie$3.19 and (4.29. Such applica- s

bility is suggested by the predictions of five-loop terms for (4.18
O(N) scalar field theory3 and y functions already noted in

Sec. . with n;=5 and u;,=4.3GeV to generate the above-

Figures 3a—3d display the relative impact on runningthreshold initial condition fom. . Thus, the above-threshold
quark masses of higher order corrections both augmenteprtion of the Padeurve in Fig. 3c is obtained from this
and unaugmented by Padmprovement. Given an initial initial condition via substitution of Eqs(3.79 and (4.17)
valuemy(4.3 GeV)=4.3 GeV[8], we evolvem® () up to into the differential equatiofd.1). The below threshold por-
wu=175 GeV. Figure 3a indicates the evolution obtained viaion of the Padecurve is obtained from the initial condition
Eq. (4.1) from three-loopB and y functions—i.e., from trun-  Mc(1.3 GeV)=1.3 GeV via substitution of the Pade
cation of the serie$3.13 and (4.23 afteri=2. Figure 3b Summation four-flavorg function (3.7b and four-flavory
displays the relative effects of higher-order corrections augfunction
mented and unaugmented by Padgrovement. We first
consider the unaugmented four-loop case. The upper curve in @) [1-0.454%—1.34547]

Fig. 3b is the ratio oim, obtained from four-loop3 and y yU(X)=—x [1-4.106%+ 3.7090C] (4.19
functions tom, obtained from three-loop and y functions

(Fig. 33. As p INCTEASEs from 4 GeV to 175 GeV, the rela- intg the differential equatiort4.1). The constraint4.18) is
tive decrease im{(1) from use of four-loop information is  aiso utilized to generate the four-loop curve in Fig. 3c, and

seen to-be less than 0.1%. . . [when taken to ordefa(snf)(uth))z] to generate the three-
Padeimprovement of four-loop results is displayed in the loop curve. As in Fig. 1, curves of successive order appear to

:Sw(;ar_ curve c(;f F'tg' Stb ' ;_f:('ss) cur\;e tﬁ ITE rat||o of alfuIIy converge(at least qualitativelyto the Padesstimate, which
adeimproved estimate ofn;*(x) to the three-loop calcu- is almost indistinguishable from the four-loop curve.

lation of mé_s)(:“«) displayed in Fig. 3a. The full Paden- Padeimprovement effects are somewhat larger for light
provement is obtained via an APAP-algorithm determ'f‘at'orhuarks(u,d,s). The evolution of light quarks from an initial
of g% and ), which is then utilized to construct Pade value (normalized to unityat =1 GeV is displayed in Fig.
summation[2|2] approximants as estimates of the aggregated. This latter set of curves is obtained via utilization of Eq.
effect ofall higher-order terms i andy. The[22] approx-  (4.18 at bothn;=4 andn;=5 flavor thresholds, which are,
imant for 8®)(x) is given by Eq.(3.70; the[2|2] approxi-  respectively, taken to be at 1.3 GeV and 4.3 G8Y Below
mant within the 1.3 GeV four-flavor threshold, the Padarve is gener-
14119485+ 1.027652 ated via Eq.(4.1) using then;=3 Padesummationy func-

(5)(y) = — tion
Y 0= "X 1531004+ L.756642| 417

is obtained via Eqs(2.19—(2.19 using then;=5 values of ®)(x)= — x [1-1.237%~1.8485%°]
Y1, ¥2, andy; as well as the APAP-algorithm value o> Y [1-5.028%+4.799%7]

(4.20
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FIG. 3. (@) Evolution of the running massn,(u) obtained from three-loog3L) B8 and y functions from the initial condition
m,(4.3 GeV)=4.3 GeV. (b) A comparison of the ratio ofny(«) obtained from four-loop(4L) and [2]2] Padesummationg and y
functions to my(w) obtained from three-loop(3L) B and vy functions, as shown in(a), given the initial condition
m,(4.3 GeV)=4.3 GeV. (c) A comparison of the evolution ah () obtained from evolution of two-loof2L), three-loop(3L), four-loop
(4L) and[22] Padesummationg and vy functions. (d) Masses of light(u,d,9 quarks from two-loop, three-loop, four-loop, af#{2]
PadesummationB and y functions. Masses at=1 GeV are normalized to unity.
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and then;=3 B function (3.73. Between the four- and five-
flavor thresholds we utilize Eq#4.19 and(3.7b), and above Rl
the five-flavor threshold, we utilize Eqgt.17) and(3.70 as
before. The bumps in Fig. 3d occur at the four- and five-
flavor thresholdg1.3 GeV and 4.3 GeV, respectiveghand

are anticipated from the threshold matching conditii8.

At ©=5 GeV, Fig. 3d shows that there is a 1% difference
between running masses obtained via unimproved and-Pade
improved four-loopB and y functions. Once again, however, 1,029
the distance between curves of successive order decreases e
the order increases, giving the appearance of convergenCog—st)
towards the Padinproved curve. loo

1.0284

V. APPLICATION TO HIGGS BOSON DECAYS

Although the Higgs particle has yet to be directly ob-
served, expressions for its decay into either two-gludris
or a bb pair [12] have been worked out with precision in
perturbation theory. In much the same way, knowledge of
the Z° decay widths, whose precise values are important for 1o
bounds on standard-model parameters, preceded the disco\
ery of thez? itself. In this section, we apply Padi@prove-
ment to the decay processes—two gluons andH—bb, 2ozs]
and examine whether such improvement leads to detectable %0 50 100 20 1o 150
changes from the calculated rates obtained without such M,(GeV)
Padeimprovement.

1.0274

FIG. 4. A comparison of the ratio of the Higgs decay rate into
two gluons obtained via Padmprovement discussed in the text to

A. Higgs boson-two gluons the three-loo3L) expression for the same rate.
The decay ratéd —gg has been calculated to three-loop
order in perturbation theorjl1]: Rg/Rl ZRg

R.= = ) 2

3 371+5; RI+RIR, ®2
I'(H—gg) CeMity [1+17.916%
—gg)=———X[1+17.
997 36mv2 :

For differentM  values we plot in Fig. 4 the ratio of the
+(156.808-5.70833 Iim;/M73))x5 PadeimprovedH — gg rate to the rate obtained directly from
O3] 5. Eq. (5.2), using the three-loop function to obtqian from

H/ s ' the initial conditionx(M,) =0.118/r [8]. The Pademprove-
ment of theH — gg rate is obtained for a given choice Wi
where xH:x(MH)za(SS)(MH)/Tr, and whereMy is as- first by evolvingxy from the same initial condition via the
sumed to be less than,. Padeimprovement can enter this [2|2] approximant(3.7¢ for the g function, then by using
expression both in the actual value of (M) evolving  Eq. (5.2 to estimate the)(x?2) term in Eq.(5.1), and finally
from a Padeémproved 8 function, as well as in a Pade by replacing the now-known cubicﬂRle+R2xﬁ|+ R3x,3_|
driven estimate of the(?(xﬁ) contribution to the square in Eq.(5.1) with its appropriatg2|1] Padesummation:
bracketed expression in E@5.1). One cannot apply the
APAP algorithm of Sec. Il to estimate this term because for ) 3
a given value of M, only the coefficient ofx(R, 1T RiX+TRX"+RsX
=17.9167) andx’[R,=156.808-5.70833 In{/M)] are 14 (Ry— Ry /Ry)X+ (Ry— RyRy /R,)X2
known; the coefficienR; of x3 is not known. One way to — 1—(Ry/R,)X : (5.3
estimateR; is to express * R;x+ R,x? as a[1|1] Padeap- 82
proximant, which upon expansion yiel&g= Rg/Rl. A re-
finement on this estimate that is actually utilized to approxi- Figure 4 shows that such Pad@provement yields a
mate B35 in Ref. [2] is to assume in the asymptotic error 2.5%—3% increase in thd—gg rate, with very little sensi-
formula(2.3) thata+b is small compared tdl+1. One can tivity to the Higgs boson mass. Such improvement is best
then argue from Eq92.5) and (2.7) that 6;=5,/2, where  understood to be an estimate(ohknown higher-order cor-
52=(Ri—R2)/R2 is determined in full byR; andR,. Equa- rections to Eq.(5.1) that should be eventually testable
tion (2.7) can then be rearranged to yield the following esti-against both experimental and future higher-order calcula-
mate ofRj3: tions of theH—gg rate.
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B. Higgs bosonr- bb 1.001

The decay rate Higgsbg has been calculated to four-
loop order in perturbation theofyl2]:

1.0008

T'(H—bb)=[3G:Mymi(M )/ (47v2)]

X{[14 (17/3xy+29.146 %5 + 41.758% ] v.0006 4
—(BMA(My)/M2)[1+(20/3x,+14.6X41}.
(54) 1.0004 +
bb

Full Padeimprovement of this expression for a given value s
of My (with My<m,) entails(1) determination ofx(M) 10002 |
through use of Eq(3.7), the[2]2] Padesummation of the3
function, to evolvex(u) from an appropriate initial condi- aL/aL

tion, e.g., a®(M,)=0.118 [8], (2) determination of N
my(My) through substitution into Eqg4.1) of Egs. (3.79

and (4.17, the [2|2] Pade summations forB®®)(x) and

y®)(x), so as to evolvenff’)(u) from an appropriate initial 09996
condition, e.g.,m,(4.3 GeV)=4.3 GeV [8], (3) Padeim-
provement andi2|2] Padesummation of the cubic expression

in Eq (54)1 0.9996 -

Padé /3L

1+ (17/3x+29.146 %>+ 41.758 %3 P A - - " =

M, (GeV)

[1+4.3026X+21.064%?]
T [1-1.3640%—0.35297%7]’

(5.5 __FIG. 5. A comparison of the ratio of the Higgs decay rate into a
bb pair obtained to four-loog4L) order and through subsequent
Padeimprovement(as described in the texto the same rate ob-

where Eq.(2.12 is used to generate an estimate of #fe tained to three-loo3L) order.

coefficient[67.2473, and where Eq92.15—(2.19 are used
to generate thg2|2] approximant in Eq(5.5), and(4) Pade
improvement andi2|1] Padesummation of the quadratic ex- figure that the two ratios are within 0.0001 of each other for

pression in Eq(5.4), all values ofMy belowm,. In other words, Padamprove-
) ment reduces the four-loop result f6{H—bb) by at most
[1+5.58+7.38% ] 0.01%. The effect thas seen seems to derive wholly from
2% -
1+(20/9x+14.6% [1-1.086] 58 e Padémprovement ofm{®(u), as is evident from com-

parison of Fig. 5 to Fig. 3b. Of course, such close agreement

where Eq.(5.2) is used to generate an estimate of #fe  between Eq(5.4) and its fully Padémproved version sug-
coefficient[15.87), and where Eq(5.3) is used to generate gests that the expressi®8.4) is more than adequate for fu-
the [2/1] approximant in Eq(5.6). ture comparison to experiment. Thus the purpose of the

The relative size of all these corrections, referenced to thanalysis presented here is really to demonstrate the robust-
rate calculated to the next-to-highest-knoltiwee-loog or-  ness of Eq(5.4) against Padestimates of higher-order cor-
der in perturbation theory, is displayed in Fig. 5. The toprections.
curve is the ratig I'(H—bb) J4.00p/[T(H—bb)]5.00p, @S The small size of corrections past even the three-loop or-
a function of My . The four-loop rate is obtained directly der is partly a consequence of the small size(@l ) char-
from Eq. (5.4), with my,(My) and xy4[ =x(My)] obtained acterizing Higgs decay rates. Padarrections are of much
from B and y functions that are truncated to zero after theirmore interest when the magnitudeofs larger, suggesting
B3 and v contributions. The three-loop rate is obtained bytheir usefulness in assessing the perturbative content of low-
truncating off the highest-order terms in E@5.49—  energy QCD—i.e., QCD sum rules. In the section that fol-
specifically the®(x®) term on the left-hand side of E¢5.5)  lows we will address how Padeprovement can be utilized
and theO(x?) term on the left-hand side of E¢5.6)—and  to estimate substantial higher-order corrections to sum rules
by obtainingx, andmy(M,) from 8 and y functions that relevant to scalar- and pseudoscalar-meson static properties.
are truncated to zero aftgt, and y, contributions. The top

curve shows a change of 0.02% to 0.09% in going from
three- to four-loop order. VI. PERTURBATIVE CONTENT

The bottom curve compares the ratio IofH — bE), ob- OF SCALAR/PSEUDOSCALAR QCD SUM RULES

tained by full Padémprovement of[['(H—bb)], as de- The resonance content of finite-enetgyand LaplaceR,
scribed above, tI'(H—bb)]3.150p. It is evident from the QCD sum ruled13,14 is obtained from integrals over the
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imaginary part of current correlation functioms(s, x?) in
the subcontinuum regiors sg):

1 S
J—"k(so)=; j * Im T1(s,sq)s"ds, (6.2
0
|
1 as(w) u?
hl 2y 7 s Lt
p Im II(s,u) e +( ap+ta; In S +
2 2\\2
X|CgtcCy In(% +c, In(% +Cj

The problem we will address in this section is the computa-

tion of R4, which is necessary for the determination of
O(a‘s‘) contributions taF, andR, . For three flavors Chetyr-
kin [12] has found that

a,=17/3, a,;=2, (6.43
bo=31.8640, b, =31.6667,b,=17/4,  (6.4b
Co=89.1564, ¢, = 297.596,

C,=229/2, c;=9.20833. (6.49

If we definew=s/u?, we can estimat&,[w] directly by
substituting

Rl[W] = a.o_ a.l In W,

(6.5a

Rz[W]zbo_bl In w+ b2(|n W)z, (65b)

Ra[W]=co—c; In w+c,(In w)2—c5(In w)® (6.50

directly into Eq.(2.12. This enables one to determine ex-
plicitty O(a?) corrections to the sum-rulg$.1) and (6.2),
even thoughR,[w] determined in this way is manifestly not
a fourth-order polynomial in Ing). In particular, we easily
find the O(«2) contribution toF(sp) to be

33% as(sélz) e
AFo(so)= 12| —— fo 2R, [w]wdw
352 a S1/2 4
:16;2( (% ) (2059.4, (6.69
S3 @ (51/2) 4 1
Afl(so)=—°2( =20 ) J 3R, [W]w2dw
8 0
53 a S1/2 4
:ﬁz—( (% )) (1158.4, (6.6b

PHYSICAL REVIEW B8 116007

1 (s
Ril7,50) = — fOO Im TI(s,ln)se 5ds. (6.2

We consider here the purely perturbative content of the cor-
relation function for scalar currents, which is presently
known to four-loop ordef12]:

aS(“)>2 b+ b, |n(%2 b, |n<%2 + “57(7“))3
|n(%2)>3 +(“S(“))4R4+...]. 6.3
|
AF(sp) = :2—132 ( asiélz))4 f 014R4[W]W3dw
= 33;‘32 ( a0 ) 4(833.43.
(6.60

The integrals in Eq96.6) have been evaluated numerically.
This approach, however, ignores the known structural depen-
dence ofR, on the variablew,

R4[W]:d0_d1 In w+ dz(ln W)Z_dg(ln W)3+ d4(|n W)4,

(6.7)

which may be important when one integrates over the
variable, as in Eq96.6). The (’)(a;‘) corrections to the first
three finite energy sum rules are easily determined in terms
of the constantsl; by substitution of Eq(6.7) into the inte-
grand of Eq.(6.1) via Eq. (6.3):

35(2) as(s(l)lz) 4
AFo(So)= 12| 7 —
d, d, 3d; 3d,
X(do 2ttty 69
s3 [as(sg?\?
Afl(so)zﬁ p
Xt 3tg tg tay) 09
3sy [ax(sg™)?
AFalo) =502 | T
d, d, 3d; 3d,

We can use the Padalgorithm (2.12) to estimate the
coefficientsd; . To do so, we leR;, R,, andR; be given by
Egs. (6.5 for five representative values @f between zero
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and one:w={1le ¥ e 12e ! e 2. Whenw=1, corre-
sponding tos=s; in the finite-energy sum rule integrand
(6.1, we see from Egs(6.5 that R;=ay, R,=bgy, R;
=cg. Using the APAP algorithm(2.12, we find that
R, 1]=251.442-d,. When w=e Y4(s=0.77%,), we
find from Egs. (6.5 that R;=37/6, R,=40.0463, R;
=170.8554. Using Eqgs(2.12 and (6.7), respectively, we
then find that

R, e Y41=699.398=d,+d,/4+d,/16

+ds/64+d,/256.  (6.1D)

Similarly we find the following results whew=e Y{s

=0.6065,), w=e }(s=0.368,), and w=e (s
R,[e ¥2]=1389.82=d+ d,/2+ d,/4+ d4/8+d,/16,

(6.12

R e 1]1=3652.36=dy+d;+d,+d;+d,, (6.13

R, e 2]=12804.9=dy+ 2d;+4d,+ 8d;+ 16d,.
(6.14

We solve the four linear equation8.11)—(6.14) for the four

unknownsd,,d,,ds,d, using the value already obtained for

do(=251.422), and we obtaid, = 1357.84,d,=1634.53,

d;=404.630d,=3.9097. Substitution of these numbers into
Egs. (6.89—(6.10 yields results remarkably close to those
obtained in Eqs(6.6). These results are listed in the under-

lined highest-order terms given below for the Pameroved

perturbative content of the first three finite energy sum rule

[x=ag(s5)/ 7]:

3s3

1672

+302.116+ 2057.x4],

FolSo) = [1+6.6666%+49.822%>

(6.153

3
S|
Fi(so)= 8—7‘:2 [1+6.3333%+43.3646

+215.846¢+ 1158.4%], (6.15b

3sg
F2(S0)= 352 [1+6.1666K+ 40.311%2

+178.73k%%+ 833.5%%].

(6.150

Padecorrections to the Laplace sum rul@s2) are not listed,
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u? u2\12
R4=251.44+1357.8 Ir(?) + 1634.% In<?) }

3 2
+3.909{In(%)

4

2
+404.6%|n(%) (6.16

As a cross-check on these results, we note that
m? ImI1®(s,u?), the n(=3 correlator based on the
renormalization-group invariant scalar currentyy, satis-
fies the homogeneous renormalization-group equation

0 d
—_|,,2 ___ (3) _
0 [,u P + B (x) X
J
+my 3 (x) a_m} m? Im 1% (s,u?),  (6.17)

where x=a¢/m and where Ini1®(su?) is given by Eq.
(6.3) with

R4: d0+ dl |n(,u2/S) + d2 Inz(/.LZ/S)

+dg In3(u?/s)+d, In*(u?ls). (6.18

When substituted into Eq6.17), the known four-loop coef-
ficients of then;= 38 function (3.2) andy function (4.2) are
sufficient in themselves to determine the constahtsd,,
d;, andd,. These numbers are found, respectively, to be
1562.96, 1583.62, 356.036, and 20.143. We thus see that
values ofd;, d,, andd; determined by the renormalization
Sgroup equatiorni6.17) differ, respectively, from the values in
Eq. (6.16 via APAP methods by 13.1%, 3.2%, and 13.6%.
Although the estimate fod, does not share this otherwise
remarkable agreement, it should be noted that the very small
APAP estimate ford, given in Eq.(6.16) follows from the
near cancellation of much larger numbers. Both the APAP
estimate ford, and the value obtained from E(.17) are
quite small in magnitude compared to the other coefficients.
It is also worth noting that the underlin€&j terms in Eqgs.
(6.195 are not very different from those one would obtain
using either theR3/R, estimate suggested by[21] approx-
imant, as discussed following E.10), or the APAP algo-
rithm (2.12 applied directly to the knowrnonunderlineg
terms of Eqs(6.15. The increase in the size of coefficients
with increasing powers ok suggests the utility of §2/2]
Padesummation for these three expressions as an improve-
ment over truncating off what may be substané¥k®) cor-
rections to Eqs(6.15. By applying Egs(2.19-(2.19 to the
three equationés.15, we obtain the following2|2] approxi-
mants to the full perturbative content of the first three finite-

as they are complicated by the occurrence of two scale varienergy sum rules:

ables &, and 7). However, such corrections are straightfor-

ward to obtain via integration of tr(é(a;‘) term of Eq.(6.3),

which we have already obtained via APAP estimates of

do_4:

3s? [1+3.807X+6.81242

1672 | 1—2.8594&—23.94%2 |’ (6.193

Fo(sg)=
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3 tor zeros represenitravioletfixed points, behavior which, if

Fi(so) %0 1+2'391R+1l'30&2} licable to the true8 functi Id d le thésuit
1(S0)= 5= >, (6.19 applicable to the trug8 function, would decouple uit-
8" [1-3.9416&~7.093K ( o ably definedl infrared region from perturbative QCD.
In Sec. IV, we applied Padienprovement methods to the
368 5 running quark mass by estimating five-loop contributions to
Fy(sg)= So [1+2.2174+12.79Kk } 6.199 the y functions for 3, 4, 5, and 6 quark flavors. We then
22077 32712 | 1-3.949%—3.167(° extracted an estimate for th@(x*) contribution to closed-

form expressions fomy[ ag(x)/ 7] that had been obtained
o earlier[4,6] to O(x%). We compared the evolution of three-
1/zBoth Eqs.(6.15&)_and(6.19&) are indicative of a need for loop, four-loop, and Padsummation estimates ah,(u),
Sp - to be substantially larger than 1 GeV for finite-energy once again finding very little relative differen¢@.01% be-
sum rules to be useful in the scalar and pseudoscalar chatween Padesummation and four-loop determinations of
nels. If sj?=1GeV, we see from Fig. 1 that(1GeV) my(u) over the rangeu<m,, given identical five-flavor-
=0.153. For this value ok, each successive term in the threshold initial conditions. Corresponding agreement was
square brackets of E¢6.153 is approximately unity, indica- still seen to occur at the 1% level for light quarks.
tive of nonconvergence. This is reflected by a near-vanishing In Sec. V we applied the results of the previous two sec-
of the denominator of Eq:6.199, implying a divergent re- tions to higher-loop calculations of the Higgs decay ratio
sult for the summation of the full perturbative seriessff —ggandH—bb, rates which are sensitive to running cou-
=3.24 GeV?, we see from Fig. 1 thax(sj?)=0.10. The plings and running masses, as well as higher-loop corrections
truncated serie$6.153 is then seen to yield a value that is that are polynomial inag(my). The calculated three-loop
only 87% of that obtained via the Pademmation(6.193, H-—gg rate is shown to be within 3% of our Pade
indicative of the magnitude of the higher-order terms missimprovement estimate, given identical choices fdr,,
ing from Eq.(6.153. Note that a choice fos, near or some-  «(M,), and my-threshold initial conditions. Similarly, the
what above 3 Ge¥is suggested by Laplace sum-rule fits in calculated four-loogH— bb rate is seen to differ from full
both the pseudoscal@t5] and scalaf16] resonance chan- padeimprovement by at most 0.01%.
nels. . All the results summarized up until this point are indica-
The finite energy sum rul&y(s,) provides an example of tjve of close agreement between known perturbation theory
how it is not enough just to have precise higher-order resultsand padeapproximant improvements intended to take into
Even though Eq(6.153 includes four-loop effects as well as account higher-order effects. Consequently, the theoretical
an APAP-algorithm estimate of five-loop effects, the five yncertainties associated with the truncation of any such cal-
terms listed demonstrate only sluggish convergence for a reyyjations at the three-or-four-loop order are shown to be
alistic choice ofsy. There is found to be enough of a differ- small. In Sec. VI, we considered quantities known to four-
ence between the truncated seri@l5a and its Pade |oop order for which this isiot the case, the purely pertur-
summation(6.193 to suggest the advisability of using the pative content of QCD sum rules in scalar/pseudoscalar-
latter. resonance channels. We constructed a ~Rdgierithm
estimate of the purely perturbativa( a;‘) contribution to the
VII. SUMMARY imaginary part of scalar/pseudoscalar correlation functions,
) i ) ) ~and we obtained2|2] Padesummation estimates of the all-
Using a Padenotivated algorithm(2.12, we have esti-  orders content of the first three finite energy sum rules. We
mated in Sec. lll the five-loop contributions to tﬁéunctllon found the overall convergence of the primary sum rule to be
for n;={3,4,5,8, and we have compared the evolution of goubtful for values of the QCD continuum threshold near
ag(w) from u=M, obtained from two-loop, three-loop, s =1 Ge\2. Even fors, above 3 Ge¥, we found a greater-
four—|00p, and Padeummation estimates Of the fl.m fUnC' than_lo% discrepancy between F)Mmation and four_
tion. Low energy values ok obtained from the four-loo  |oop-order contributions to this sum rule, suggesting the ex-

functions with quoted flavor thresholds and appropriatgstence of substantial theoretical uncertainties from higher-
threshold matching conditions are within 1% of those ob-than-four-loop contributions.

tained from the Padsummationg functions, a small effect
compared to the much larger sensitivity @f(1 GeV) and
ag(m,) to present uncertainties ing(M,) and c- and b-
quark flavor thresholds. We are grateful for Mark Samuel’s participation in the

We concluded Sec. Il by extracting the most general seearly stages of this work, prior to his sudden passing last
of [2|2] Padesummation estimates of 3, 4, 5, and 6 flavor November. We are also grateful to A. L. Kataev for a semi-
QCD g functions whose Maclaurin expansions yield knownnal discussion on higher-order terms in sum rules, K. G.
four-loop results for their first four terms. For positive values Chetyrkin for useful correspondence on both the running
of ag, these Padesummation estimates of thg function  quark mass and scalar correlation functions, and to the Natu-
were shown to alternate denominator and numerator zerosal Sciences and Engineering Research Council of Canada
regardlessof the size of the(presently unknownfive-loop  for research support. V.E. is grateful for the hospitality of the
term serving as a free parameter in thgd@]-approximants. Department of Physics and Engineering Physics at the Uni-
Such alternation necessarily implies that all positive numeraversity of Saskatchewan.
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