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We discuss Pade´ improvement of known four-loop order results based upon an asymptotic three-parameter
error formula for Pade´ approximants. We derive an explicit formula estimating the next-order coefficientR4

from the previous coefficients in a series 11R1x1R2x21R3x3. We show that such an estimate is within
0.18% of the known five-loop order term in theb function for single-component scalar field theory, and within
10% of the known five-loop term in the corresponding anomalous mass-dimension functiongm(g) for scalar
field theory. We apply the same formula to generate a@2u2# Padésummation of the QCDb function and
anomalous mass dimension in order to demonstrate both the relative insensitivity of the evolution ofas(m) and
the running quark masses to higher order corrections, as well as a somewhat increased compatibility of the
present empirical range foras(mt) with the range anticipated via evolution from the present empirical range
for as(Mz). For 3<nf<6 we demonstrate that positive zeros of any@2u2# Padé-summation estimate of the
all-ordersb function which incorporates known two-, three-, and four-loop contributions necessarily corre-
spond toultraviolet fixed points,regardlessof the unknown five-loop term. Pade´ improvement of higher-order
perturbative expressions is presented for the decay rates of the Higgs boson into two gluons and into abb̄ pair,
and is used to show the relative insensitivity of these rates to higher order effects. However, Pade´ improvement
of the purely perturbative component of scalar/pseudoscalar current correlation functions is indicative of large
theoretical uncertainties in QCD sum rules for these channels, particularly if the continuum-threshold param-
eters0 is near 1 GeV2. @S0556-2821~98!03021-5#

PACS number~s!: 11.10.Hi, 11.55.Hx, 12.38.Aw, 14.80.Bn

I. INTRODUCTION

A recent body of work@1–3# has demonstrated how
higher-order terms in a number of field-theoretical perturba-
tive series can be estimated by Pade´-approximant tech-
niques. Of particular interest are applications to QCD
quantities, particularlyb andg functions now known to four-
loop order inas @4–6#. Pade´-approximant methods have al-
ready addressed thenf ~flavor-number! dependence of higher
order terms in the QCDb andg functions@2,3#. Near can-
cellations between coefficients of successive powers ofnf ,
however, can lead to a large uncertainty in the estimated
overall size of such higher-loop contributions—small errors
in fitted coefficients ofnf

k have been seen to lead to much
larger errors in the aggregate~now known! four-loop contri-
bution to theb function @2#.

In the present paper, our focus will be on using Pade´-
approximant methods to estimate the magnitude of higher-
order corrections to quantities already calculated to three-and
four-loop order in QCD. We assess the theoretical uncer-
tainty of such calculations by seeing how closely they coin-
cide with their own Pade´ improvements, as well as whether
successive orders of perturbation theory exhibit convergence
toward Pade´-summation estimates of the full perturbative se-
ries.

The present paper is phenomenologically oriented, spe-
cifically aimed at developing Pade´-improved estimates of
what are hoped to be computationally and/or experimentally
accessible quantities. The particular items of interest consid-
ered are theb function and anomalous mass dimension for
massiveO(N)-symmetric scalar field theory~Sec. II!, the
running QCD coupling constant~Sec. III!, the running quark
masses~Sec. IV!, the Higgs-boson decay rates into two glu-
ons and into abb̄ pair ~Sec. V!, and the purely perturbative
content of QCD-sum rules based upon scalar and pseudo-
scalar current correlation functions~Sec. VI!. In Sec. III, we
also discuss some general implications of Pade´ summation as
an approximation to all orders of perturbation theory. In par-
ticular, we analyze the fixed point structure of the most gen-
eral @2u2# Padé-summation estimates of the full content of
QCD b functions fornf5$3,4,5,6% whose Maclaurin expan-
sions coincide with presently known perturbative contribu-
tions.

In the section that immediately follows, we discuss how
Padé-approximant methods can be used to estimate higher-
order corrections to perturbative series in which the leading
four terms are known. Although this methodology appears in
other work@3#, the presentation leading to Eq.~2.12! @which
has not appeared elsewhere# will, it is hoped, be of some
value to those unfamiliar with Pade´-approximant methods.
We also demonstrate the reasonable agreement of predictions
based on Eq.~2.12! with now-known five-loop terms inb
andg functions forO(N)-symmetric scalar field theory.
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II. THE APAP ALGORITHM: PADE ´ -IMPROVEMENT FOR
PEDESTRIANS

We consider the general problem of developing a Pade´
improvement of the series

S[11R1x1R2x21R3x31..., ~2.1!

where $R1 ,R2 ,R3% are known and$R4 ,R5 ,...% are not
known, through use of the asymptotic error formula for esti-
matingRN1M11xN1M11 via the Pade´ approximant

S@NuM #[
11a1x1a2x21...aNxN

11b1x1b2x21...1bMxM

511R1x1R2x21R3x31...

1RN1M11xN1M111... . ~2.2!

Let RN1M11
Padé be the prediction one would obtain from the

@NuM # Padéapproximant, and letRN1M11 be the true value
of the coefficient. The structure of the asymptotic error for-
mula is given by@2#

RN1M11
Padé 2RN1M11

RN1M11
52

M !AM

@N1M1aM1b#M ~2.3!

with numbers $A,a,b% ~independent ofN,M! to be deter-
mined.

This error formula simplifies considerably ifM is always
chosen to be 1@3#: the right-hand side of Eq.~2.3! becomes
2A/@N111(a1b)#, with only the two numbers$A,a
1b% to be determined. These can be determined explicitly
for the seriesS in Eq. ~2.1! given knowledge of the three
coefficients$R1 ,R2 ,R3%.

Given knowledge ofR1 only, the@0u1# Padéapproximant

S@0u1#5
1

11b1x
512b1x1b1

2x2...511R1x1R2
Padéx2

~2.4!

predicts R2
Padé5R1

2. Consequently, we see from the
asymptotic error formula~2.3! that

R2
Padé2R2

R2
5

R1
22R2

R2
5

2A

11~a1b!
[d2 . ~2.5!

Given knowledge of onlyR1 andR2 , the@1u1# Padéapprox-
imant

S@1u1#5
11a1x

11b1x
511~a12b1!x1b1~b12a1!x2

1b1
2~a12b1!x31...

511R1x1R2x21R3
Padéx3... ~2.6!

predictsR3
Padé5R2

2/R1 . The asymptotic error formula~2.3!
for this case implies that

R2
2/R12R3

R3
5

2A

21~a1b!
[d3 . ~2.7!

Given knowledge of$R1 ,R2 ,R3% in the series~2.1!, the
relative errorsd2 and d3 are specified completely by the
left-hand sides of Eqs.~2.5! and ~2.7!. These two equations
may be regarded as two equations in the two unknownsA
and (a1b) characterizing the asymptotic error formula~2.3!
whenM51. The solution to these two equations is

A5@1/d221/d3#21, ~2.8!

~a1b!5
d222d3

d32d2
. ~2.9!

This information is sufficient to generate an asymptotic Pade´
approximant~APAP! estimate@2,3# of the unknown coeffi-
cient R4 in the series~2.1!. Consider the@2u1# Padéapprox-
imant

S@2u1#5
11a1x1a2x2

11b1x

511~a12b1!x1@a22b1~a12b1!#x2

1@2b1@a22b1~a12b1!##x3

1@b1
2@a22b1~a12b1!##x41...

511R1x1R2x21R3x31R4
Padéx4. ~2.10!

The three known values of$R1 ,R2 ,R3% completely deter-
mine the three parameters$a1 ,a2 ,b1% characterizingS@2u1# .
We see from Eq.~2.10! that R4

Padé5R3
2/R2 . However, the

asymptotic error formula~2.3! suggests that a more accurate
estimate of the true valueR4 differs fromR4

Padéby a predict-
able relative error:

R3
2/R22R4

R4
[d45

2A

31~a1b!
, ~2.11!

in which case we find from Eqs.~2.11!, ~2.8!, and~2.9! that

R45
R3

2/R2

11d4

5
R3

2~d322d2!

R2~d322d22d2d3!

5
R3

2~R2
31R1R2R322R1

3R3!

R2~2R2
32R1

3R32R1
2R2

2!
. ~2.12!

As an example, we test the applicability of Eq.~2.12! by
comparing its prediction to the knownO(g6) coefficient of
the b function for single-component massivef4 scalar field
theory @7#:

b~1!~g!51.5g2@12~17/9!g110.8499g2

290.5353g31949.523g41O~g5!#. ~2.13!

ELIAS, STEELE, CHISHTIE, MIGNERON, AND SPRAGUE PHYSICAL REVIEW D58 116007

116007-2



Identifying R15217/9, R2510.8499 andR35290.5353,
we find from Eq.~2.12! that R45947.8 in startlingly close
agreement to the next (g4) term within Eq.~2.13!. Although
APAP improvement has also been applied elsewhere@2# to
O(g6) terms in O(N) scalar field theoryb functions, the
result obtained here relies on direct and explicit use of the
full asymptotic error formula~2.3!. A comparison of Eq.
~2.12! predictions and exact values ofb4 , the O(N) scalar
field theory b-function coefficient ofg6, is presented in
Table I. We emphasize that these predictions arenot ob-
tained by a fitting of theN dependence or any knowledge of
the N4 dependence ofb (4), as is the case in Table 3 of Ref.
@2#; for comparative purposes, the predictions of Ref.@2# are
also listed in Table I.

We can use Eq.~2.12! to predict the knownR4 coefficient
within theN51 scalar field theory’s anomalous mass dimen-
sion @7#, as well:

gm~g!5~g/2!@120.8333g13.500g2

219.96g31150.8g41O~g5!#. ~2.14!

Equation~2.12! predictsR45135.1, a result only 10% off
the 150.8 value given in Eq.~2.14!. Table I shows that pre-
dicted R4 coefficients forgm(g) within O(2), O(3), and
O(4)-symmetric cases also remain within 20% of their true
values, as given in@7#. These results provide a reasonable
basis for applying Eq.~2.12! @and its concomitant asymptotic
error formula~2.3!# to theb andg functions of QCD, as we
will do in Secs. III and IV.

A final improvement of the series~2.1! is possible by
expressing this series as a@2u2# diagonal approximant—this
is a more accurate representation of the infinite seriesS than
one would obtain by arbitrarily truncating the series after the
R4x4 term. Given known values of$R1 ,R2 ,R3% and using
the APAP estimate~2.12! for R4 , the approximantS@2u2# of
the infinite seriesS is fully determined:

S→S@2u2#5
11a1x1a2x2

11b1x1b2x2 , ~2.15!

b15
R1R42R2R3

R2
22R1R3

, ~2.16!

b25
R3

22R2R4

R2
22R1R3

, ~2.17!

a15R11b1 , ~2.18!

a25R21b1R11b2 . ~2.19!

Equation~2.15!, as determined from Eqs.~2.12! and~2.16!–
~2.19!, constitutes the procedure we denote as ‘‘Pade´-
summation’’ of the seriesS in Eq. ~2.1!.

III. PADÉ -IMPROVEMENT OF THE QCD COUPLING

The QCD minimal subtraction~MS! or modified MS
(MS) renormalization-group functionsb(x) and g(x) are
now known to four-loop order@4,5,6#. Prior work involving
Padé-improvement methods has attempted to predict the fla-
vor dependence of these functions to four- and five-loop or-
der @2,3#. b3

(nf ) andb4
(nf ) , the four- and five-loop order cor-

rections to theb function, are respectively third- and fourth-
degree polynomials innf , and Pade´ methods have already
shown some success in predicting the polynomial coeffi-
cients now known forb3

(nf ) @2#. However, an accurate deter-
mination of the polynomial coefficients withinb3 is not re-
flected in the accuracy with whichb3 is itself determined.
Thus the overall Pade´-driven estimate ofb3 presented in@2#
for nf53 @b3

(3)5(7.660.1)3103/25653061, using nor-
malization conventions appropriate for Eq.~3.1! below# is
substantially below the true value (b3

(3)547.23), even after
allowances are made for claimed uncertainties arising from
quadratic Casimir contributions@3#. It should also be noted
that this estimate, once disentangled from a fitting procedure
aimed at ascertaining the explicitnf dependence ofb3

(nf ) ,
follows from a simplified version of the asymptotic error
formula ~2.3!, in which the denominator (N1M1aM
1b)M is taken to beNM @2#. Indeed, it is difficult to tell at
this stage whether the discrepancy between Pade´ estimates of
b3 and the true value arises primarily from quadratic-
Casimir contributions not occurring in lower orders, or alter-
natively, arises from the error involved in simplifying the
asymptotic error formula in order to make an estimate ofb3

TABLE I. Comparison ofb-function andg-function coefficients forO(N)-symmetric scalar field theory
obtained via Pade´ estimates to those obtained via exact calculation. The ‘‘b4 via Eq.~2.12!’’ column displays
estimates obtained via the APAP algorithm~2.12!, based onb0 – 3 listed in @7#. The ‘‘b4

true’’ column displays
the results forb4 obtained in@7# by explicit calculation. The ‘‘b4 via @2#’’ column lists the Pade´ estimates
given in Table 3 of Ref.@2#, involving knowledge of theN4 dependence and a fit of the overallN dependence
of b4 , as well as a simplified asymptotic error formula. The ‘‘(g4 /g0) via Eq. ~2.12!’’ column displays
estimates ofg4 /g0 in the anomalous mass dimensiong function obtained via the APAP algorithm~2.12!,
based on prior coefficients listed in@7#. The final column, ‘‘(g4 /g0) true, ’’ are coefficients explicitly calcu-
lated in @7#.

b4 via Eq. ~2.12! b4
true b4 via @2# (g4 /g0) via Eq. ~2.12! (g4 /g0) true

N51 1421.7 1424.3 1432.3 135.1 150.76
N52 1941.7 1922.3 1943.8 168.4 191.89
N53 2555.9 2499.3 2540.3 203.1 236.94
N54 3267.9 3158.8 3225.6 239.2 285.94
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possible. Without such a simplification, the error formula
~2.3! has ~in principle! three arbitrary constants~A,a,b! in-
stead of one~A!.

Consequently, in this section we will predictb4 directly
using the APAP algorithm~2.12! following from the full
asymptotic error formula~2.3!. We will not prejudice these
predictions ofb4 by attempting a fit of the polynomial de-
pendence onnf , nor will we attempt to disentangle
quadratic-and-higher Casimir contributions fromb3 andb4 .
Rather, we will make distinct predictions ofb4

(nf ) via Eq.
~2.12! for nf53,4,5,6. The validity of such an approach, par-
ticularly the possibility that the full asymptotic error formula
is inclusive of higher-order Casimir contributions tob(x),
would be best established by comparison to an exact calcu-
lation of b4

(nf ) , when available.
We define theb function as in@4#:

m2
d

dm2 x52x2(
i 50

`

b ix
i

52b0x2(
i 50

`

Rix
i , ~3.1a!

with x[as(m)/p and

Ri[b i /b0 . ~3.1b!

Known values ofb02b3 are then found to be@5#

b0
~nf !5~1122nf /3!/4, ~3.2a!

b1
~nf !5~102238nf /3!/16, ~3.2b!

b2
~nf !5~2857/225033nf /181325nf

5/54!/64, ~3.2c!

b3
~nf !5114.23033227.133944nf11.5823791nf

2

15.8566958231023nf
3. ~3.2d!

We use Eqs.~3.2!, ~3.1b!, and~2.12! to predict the following
values forb4 :

nf53: R452849.74, b4
~3!521911.9; ~3.3!

nf54: R4540.203, b4
~4!583.7563; ~3.4!

nf55: R4570.203, b4
~5!5134.56; ~3.5!

nf56: R452239.22, b4
~6!52418.64. ~3.6!

The large negative values fornf53 andnf56 reflect the
near cancellation of the factor (2R2

32R1
3R32R1

2R2
2) in the

denominator of Eq.~2.12!. Since a change of sign can easily
occur if this cancellation is over- or underestimated, the saf-
est interpretation of Eqs.~3.3! and ~3.6! is to predict a rela-
tively large magnitude forb4 , with the sign uncertain.

Corresponding results from Table III of Ref.@3# with qua-
dratic Casimir contributions and a 1/1024 normalization fac-
tor appropriate to Eq.~3.1a! included are b45$278(nf
53),202(nf54),165(nf55),166(nf56)%. As stated earlier,
these latter results are based upon a fit to the polynomial
coefficients ofnf

k in b4 , with near cancellation of very large
opposite-sign coefficients for thek50 and k51 terms.
These latter results appear most consistent with those ob-
tained above whennf55.

To get a feeling of the magnitude of these Pade´ estimates
of five-loop effects, we generate the@2u2# approximant~2.15!
from the known values forR1 , R2 , andR3 and our estimate
of R4 , and incorporate this approximant directly into theb
function @m2dx/dm2[b(x)#:

nf53: b~3!~x!52
9x2

4 F1194.383x275.605x2

1192.606x2244.71x2G , ~3.7a!

nf54: b~4!~x!52
25x2

12 F125.8963x24.0110x2

127.4363x14.3932x2G , ~3.7b!

nf55: b~5!~x!52
23x2

12 F 125.9761x26.9861x2

127.2369x20.66390x2G . ~3.7c!

We can use these Pade´ approximations to the fullb function to evolveas
(nf )(m)5px(nf )(m) down tom51 GeV from an

initial conditionas
(5)(Mz)50.118@8# through use of the following~four- and five-! flavor threshold matching conditions with

m(m th)5m th @9#:

x~nf21!~m th!5x~nf !~m th!@110.1528„x~nf !~m th!…21$0.972120.0847~nf21!%„x~nf !~m th!…3#. ~3.8!

In Fig. 1 we display the evolution ofas(m) to low ener-
gies through use of two-loop, three-loop, four-loop, and the
Padé-improved four-loopb functions of Eq.~3.7!. All of

these curves are generated from the initial condition
as

(5)(Mz)50.118, with m th54.3 GeV @i.e., mb(mb)
54.3 GeV] identified as thenf55 flavor threshold, and with
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m th51.3 GeV identified as thenf54 flavor threshold. Equa-
tion ~3.8! is utilized in full in both the four-loop and Pade´-
improved calculations; it is utilized toO(x2) to generate
flavor-threshold initial conditions in the three-loop calcula-
tion, and the matching condition is trivial for the two-loop
calculation. It is evident from the figure that curves from
successive orders of theb function appear to converge from
below to that generated via Eq.~3.7!, the Pade´ summation
approximating all orders. The gaps between curves of suc-
cessive order clearly narrow as the order increases. Figure 1
shows that the Pade´ summation leads to a curve foras(m)
that exceeds the unimproved four-loop curve by less than
1%. Such a difference is inconsequential compared to the
estimated uncertainties inas(Mz) andm th for four- and five-
flavor thresholds. Both the four-loop and the Pade´-improved
curve are indicative of benchmark valuesas(1 GeV)50.48
and as(mt)50.32. However, if the flavor thresholds and
as(Mz) are assigned their accepted@8# lower-bound values
@as

(5)(Mz)50.115, m th
(nf55)

54.1 GeV, m th
(nf54)

51.0 GeV],
the values we obtain atm51 GeV andm5mt from either
four-loop or Pade´-summationb functions areas

(4)(1 GeV)
50.41 and as

(4)(mt)50.29. Corresponding upper-bound
values @as

(5)(Mz)50.121, m th
(nf55)

54.5 GeV, m th
(nf54)

51.6 GeV] lead to as
(3)(1 GeV)50.57 and as

(4)(mt)
50.35. In view of these~much-! larger-than-1% uncertain-

ties in low-energy values, the best possible test at present of
Padéimprovement would be nonempirical, i.e., a comparison
to an explicit five-loopcalculationof the b function.

We note, however, that higher-order effects do appear to
increase the overlap between the present~somewhat large!
empirical range foras(mt) (0.37060.033@8#! and the range
predicted via evolution down from the present empirical
range foras(Mz) (0.11860.003 @8#!. Taking into account
the present uncertainty in the five-flavor threshold (m th
54.360.3 GeV @8#! and incorporating the matching condi-
tion ~3.8! for as(m) below and abovem th , we find the fol-
lowing predictedranges foras(mt) for two-loop, three-loop,
four-loop and Pade´-summationb functions:
Two-loop:

0.2910<as~mt!<0.3391, ~3.9a!

@as~mt!#cv50.3137, ~3.9b!

Three-loop:

0.2944<as~mt!<0.3451, ~3.10a!

@as~mt!#cv50.3182, ~3.10b!

Four-loop:

0.2957<as~mt!<0.3477, ~3.11a!

@as~mt!#cv50.3200, ~3.11b!

Padé-improved:

0.2963<as~mt!<0.3489, ~3.12a!

@as~mt!#cv50.3208. ~3.12b!

The ranges listed above progressively overlap the low end of
the present experimental range 0.337<as(mt)<0.403. The
central values~cv! displayed above are evolved down from
as(Mz)50.118 with a five-flavor threshold atm th
54.3 GeV. The lower bounds evolve fromas(Mz)50.115
with m th54.0 GeV, and the upper bounds evolve from
as(Mz)50.121 withm th54.6 GeV.

There are also some unexpected theoretical consequences
arising from estimating the summation of the fullb-function
series through use of an appropriately chosen Pade´ approxi-
mant @1#. The most general@2u2# approximant must yield 1
1R1x1R2x21R3x31R4x4 as the first five terms of its Ma-
claurin expansion. For optimal generality, we require that
R1 , R2 , andR3 be given by Eqs.~3.1b! and~3.2!, but allow
R4 to bearbitrary. We then find that

b~x!52b0x2F11a1x1a2x2

11b1x1b2x2G , ~3.13!

with $a1 ,a2 ,b1 ,b2% linear in R4 as follows:
nf53:

FIG. 1. A comparison of the evolution ofx(m)[as(m)/p for
mt>m>1 GeV obtained from the evolution of two-loop~2L!,
three-loop~3L!, four-loop ~4L!, and@2u2# Padé-summationb func-
tions. All curves are generated from the initial conditionas(Mz)
50.118, with five-and four-flavor threshold matchings occurring at
4.3 GeV and 1.3 GeV, respectively.
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a157.194520.10261R4 , ~3.14a!

a25211.32910.075643R4 , ~3.14b!

b155.416820.10261R4 , ~3.14c!

b25225.43010.25806R4 ; ~3.14d!

nf54:

a154.840120.11068R4 , ~3.15a!

a2528.184210.10836R4 ,
~3.15b!

b153.300120.11068R4 , ~3.15c!

b25216.31410.21904R4 ; ~3.15d!

nf55:

a152.679320.12329R4 , ~3.16a!

a2526.1967120.011245R4 , ~3.16b!

b151.418420.12329R4 , ~3.16c!

b2529.459910.14421R4 ; ~3.16d!

nf56:

a150.6108520.18424R4 , ~3.17a!

a2526.627520.24181R4 , ~3.17b!

b1520.3177220.18424R4 , ~3.17c!

b2526.042320.057574R4 . ~3.17d!

For all nf values listed above, the first positive zero of
11a1x1a2x2 in Eq. ~3.13! is found to be above the first
positive zero of 11b1x1b2x2, regardlessof the choice for
R4 . Consequently, the smallest positive zero ofb(x), if
given by Eq. (3.13), is necessarily an ultraviolet fixed point
andnot an infrared fixed point, an inescapable result of the
denominator sign change forx between 0 and the first posi-
tive zero of Eq.~3.13!. Moreover, for those values ofR4 for
which a second positive zero of 11a1x1a2x2 is possible,
we find from Eqs.~3.14!–~3.17! that a second positive zero
of 11b1x1b2x2 will also occur at some value ofx between
the two positive zeros of 11a1x1a2x2. This ensures that
neitherpositive zero of 11a1x1a2x2 corresponds to an in-
frared fixed point.

In Fig. 2, a schematic diagram is presented showing dif-
ferent branches for the evolution ofx(m) anticipated from a
b function ~3.13! with the above-described alternation of
positive denominator and numerator zeros, with the smallest

positive zero occurring for the denominator. Zeros of 1
1b1x1b2x2 represent values ofx for which x(m) has infi-
nite slope. Zeros of 11a1x1a2x2 are fixed-point values of
x. As is evident from the figure, all such fixed points are
necessarily ultraviolet, and the infrared region isinaccessible
for values ofm less than those corresponding to zeros of the
denominator. Such behavior suggests~1! the possible exis-
tence of a strong phase of QCD at short distances, reflective
of a nonzeroultraviolet fixed point, and~2! the inapplicabil-
ity of a perturbative theory of quarks and gluons to the in-
frared region, specifically the region excluded from the do-
main of the first positive branch ofx(m) ~Fig. 2!.

The first statement above, which has applicability to su-
persymmetric gluodynamics as well@10#, may also have
ramifications for scenarios of dynamical electroweak sym-
metry breaking that usually involve a distinct technicolor
group. The second statement parallels old infrared slavery
ideas, except that the inapplicability of perturbation theory to
low energies is not seen to follow from the coupling constant
growing infinite ~or nonperturbatively large!, as in infrared
slavery, but from an explicit decoupling of the infrared re-
gion from the ultraviolet by virtue ofb-function singularities
alternating withb-function zeros~Fig. 2!. We have verified
that this alternation occurs in the most general@2u2# Padé
summation of theb function even whennf50.

IV. PADÉ -IMPROVEMENT OF THE RUNNING MASS

The running massm(m) satisfies the differential equation

dm

dx
5m

g~x!

b~x!
~4.1!

FIG. 2. Schematic behavior ofx(m) obtained from a@2u2# Padé-
summation estimate of theb function whose positive numerator and
denominator zeros alternate. The denominator zeros are denoted by
xd1 andxd2 , the numerator zeros are denoted byxn1 andxn2 , and
the alternation of zeros is consistent with the smallest positive zero
being a zero of the denominator: 0,xd1,xn1,xd2,xn2 . The
valuemd1 is defined such thatx(md1)5xd1 ; values ofm,md1 are
outside the domain ofx(m).
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where x[as(m)/p, as in the previous section, and where
b(x)([m2dx/dm2) is given by Eqs.~3.1a! and ~3.2!. The
QCD MS anomalous mass dimension functiong(x) has been
calculated to four-loop order@4,6#:

g~x!52xF11(
i 51

g ix
i G , ~4.2a!

g154.2083320.138889nf , ~4.2b!

g2519.515622.28412nf20.0270062nf
2, ~4.2c!

g3598.9434219.1075nf

10.276163nf
210.00579322nf

3. ~4.2d!

Padéimprovement of the square-bracketed expression within
Eq. ~4.2a! is straightforward via the methods of Sec. II by
identifying R1 , R2 andR3 in Eq. ~2.1! with g1 , g2 andg3 .
Using Eq. ~2.12! we obtain the following APAP estimates
for g4 :

nf53: g4
~3!5162.987, ~4.3!

nf54: g4
~4!575.2349, ~4.4!

nf55: g4
~5!512.5550, ~4.5!

nf56: g4
~6!512.1820. ~4.6!

One can obtain a solution form@x(m)# which includes the
O(x4) Padéimprovement ofb(x) and g(x) by expressing
g(x)/b(x) as a Maclaurin series inx, using APAP estimates
~3.3!–~3.6! for b4 and~4.3!–~4.6! for g4 . By truncating this
series afterx4, the differential equation~4.1! can be approxi-
mated by

x

m

dm

dx
5@b0

211d1x1d2x21d3x31d4x4#, ~4.7!

with b0 given by Eq.~3.2a!, and withdi given as follows:

nf53: d150.895063, d251.94172, d352.88956, d45417.493; ~4.8!

nf54: d151.014131, d251.74994, d350.0880435, d4523.93256; ~4.9!

nf55: d151.17549, d250.809817, d3521.05016, d45210.0138; ~4.10!

nf56: d151.39796, d251.63266, d3526.84005, d45142.769. ~4.11!

The values ford1 , d2 , and d3 are exactly determined by
four-loop calculations ofb (nf )(x) andg (nf )(x). The value of
d4 is underlined to emphasize that it is determined from
APAP estimates. The large values ford4 when nf53 and
nf56 reflect correspondingly large values forb4

(3) andb4
(6)

that are discussed in the previous section.
The solution to Eq.~4.7! can be expressed in terms of

x(m) evaluated at two different values ofm: x(m1)[x1 ,
x(m2)[x2 , where x(m) is the running coupling whose
evaluation is discussed in the previous section. This solution
to Eq. ~4.7! is @4#

m~x2!5m~x1!c~x2!/c~x1!, ~4.12a!

where

c~x!5x1/b0$11d1x1@~d1
21d2!/2#x2

1@~d1
312d313d1d2!/6#x3

1@~d1
413d2

216d416d1
2d218d1d3!/24#x4%.

~4.12b!

Coefficients ofx, x2, and x3 are determined in full by
known coefficients in the four-loopb and g functions. The

x4 term is the lowest-degree term sensitive to Pade´-driven
estimates ofb4 andg4 . We find the following set of expres-
sions forc(x) from thedi in Eqs.~4.8!–~4.11!:

nf53: c~3!~x!5x4/9@110.895063x11.37143x2

11.95168x31106.122x4#, ~4.13!

nf54: c~4!~x!5x12/25@111.01413x11.38920x2

11.09052x320.0765827x4#, ~4.14!

nf55: c~5!~x!5x12/23@111.17549x11.50071x2

10.172486x3210.2813x4#, ~4.15!

nf56: c~6!~x!5x4/7@111.39796x11.79347x2

20.683486x2133.7949x4#. ~4.16!

These same expressions are obtained toO(x3) in Ref. @4#;
the effects of Pade´ improvement reside entirely in thex4

terms.
It is important to recognize that these results ultimately

derive from applying the asymptotic error formula~2.3! to
the perturbative field-theoretical calculation ofb(x) and
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g(x), as argued in@2# and@3#. As in the previous section, the
results~4.3!–~4.6! differ from those one would obtain using
the fits of Ref.@3# to the coefficients ofnf

k within g4 , par-
ticularly asg4 so extracted involves the near cancellation of
large terms from successive values ofk: from Table X of
Ref. @3# one finds for nf55 that g4

(5)55302(143)•5
1(6.67)•521(0.037)•532(8.54•1025)•545213.7. Small
variations in these Pade´-estimated coefficients can easily
lead to positive values comparable to that of Eq.~4.5!.

It is also important to note that the application of the
APAP algorithm at the field-theoretical level—i.e., tob(x)
andg(x)—is not equivalent to applying it to ‘‘perturbative’’
expressions which are obtained by integrating over these
functions. One could question, for example, whether thex4

terms appearing in Eqs.~4.13!–~4.16! might be obtainable by
direct application of the APAP algorithm~2.12! to lower-
degree terms inx. If we apply Eq. ~2.12! directly to Eqs.
~4.13!–~4.16! using the explicit coefficients ofx, x2, andx3

in order to estimate the coefficients ofx4, thex4 coefficients
we obtain are very different from those listed. Instead we
obtain, respectively, fornf5$3,4,5,6%: 2.683x4, 0.7426x4,
0.01839x4, and 0.2850x4. This discrepancy is indicative of
the inapplicability of the error formula~2.3! to the series in
Eq. ~4.12b!, assuming Eq.~2.3! is applicable to the perturba-
tive field-theoretical series~3.1a! and ~4.2a!. Such applica-
bility is suggested by the predictions of five-loop terms for
O(N) scalar field theoryb andg functions already noted in
Sec. II.

Figures 3a–3d display the relative impact on running
quark masses of higher order corrections both augmented
and unaugmented by Pade´ improvement. Given an initial
valuemb(4.3 GeV)54.3 GeV@8#, we evolvemb

(5)(m) up to
m5175 GeV. Figure 3a indicates the evolution obtained via
Eq. ~4.1! from three-loopb andg functions—i.e., from trun-
cation of the series~3.1a! and ~4.2a! after i 52. Figure 3b
displays the relative effects of higher-order corrections aug-
mented and unaugmented by Pade´ improvement. We first
consider the unaugmented four-loop case. The upper curve in
Fig. 3b is the ratio ofmb obtained from four-loopb and g
functions tomb obtained from three-loopb andg functions
~Fig. 3a!. As m increases from 4 GeV to 175 GeV, the rela-
tive decrease inmb

(5)(m) from use of four-loop information is
seen to be less than 0.1%.

Padéimprovement of four-loop results is displayed in the
lower curve of Fig. 3b. This curve is the ratio of a fully
Padé-improved estimate ofmb

(5)(m) to the three-loop calcu-
lation of mb

(5)(m) displayed in Fig. 3a. The full Pade´ im-
provement is obtained via an APAP-algorithm determination
of b4

(5) and g4
(5) , which is then utilized to construct Pade´-

summation@2u2# approximants as estimates of the aggregate
effect ofall higher-order terms inb andg. The@2u2# approx-
imant for b (5)(x) is given by Eq.~3.7c!; the @2u2# approxi-
mant within

g~5!~x!52xF111.19485x11.02765x2

122.31904x11.75664x2G ~4.17!

is obtained via Eqs.~2.15!–~2.19! using thenf55 values of
g1 , g2 , andg3 as well as the APAP-algorithm value forg4

(5)

given in Eq.~4.5!. The full @2u2# approximants are then used
to evaluate c(x) in Eq. ~4.12a!: c(5)(x)
5exp@*„g (5)(x)/b (5)(x)…dx#. It is evident from Fig. 3b that
Padé-improvement does not significantly altermb(m) be-
yond a correction comparable to five-loop expectations; the
relative change from such Pade´ improvement is, respec-
tively, within 0.1% ~Fig. 3b! and 0.01% of the unimproved
three- and four-loop results.

Figure 3c displays the corresponding evolution of the
charmed quark massmc(m) for 1.3 GeV<m<20 GeV, as
obtained fromb and g functions evaluated to two-, three-,
and four-loop order as well as from Pade´ improvement of the
four-loop b andg functions, both below and above the five-
flavor threshold. The initial value is taken to be
mc(1.3 GeV)51.3 GeV for all four curves, and the five-
flavor threshold is assumed to occur at 4.3 GeV@8#. The
‘‘Padé’’ curve is obtained by direct substitution of appropri-
ate @2u2# Padé-summationb and g functions into Eq.~4.1!.
At the five-flavor threshold, we utilize the threshold-
matching constraint@9#

mq
~nf !~m th!5mq

~nf21!
~m th!@110.2060„as

~nf !~m th!/p…

2

1~1.822910.0247nf !„as
~nf !~m th!/p…

3#21

~4.18!

with nf55 and m th54.3 GeV to generate the above-
threshold initial condition formc . Thus, the above-threshold
portion of the Pade´ curve in Fig. 3c is obtained from this
initial condition via substitution of Eqs.~3.7c! and ~4.17!
into the differential equation~4.1!. The below threshold por-
tion of the Pade´ curve is obtained from the initial condition
mc(1.3 GeV)51.3 GeV via substitution of the Pade´-
summation four-flavorb function ~3.7b! and four-flavorg
function

g~4!~x!52x
@120.4541x21.3454x2#

@124.1069x13.7090x2#
~4.19!

into the differential equation~4.1!. The constraint~4.18! is
also utilized to generate the four-loop curve in Fig. 3c, and
@when taken to order-„as

(nf )(m th)…2] to generate the three-
loop curve. As in Fig. 1, curves of successive order appear to
converge~at least qualitatively! to the Pade´ estimate, which
is almost indistinguishable from the four-loop curve.

Padé-improvement effects are somewhat larger for light
quarks~u,d,s!. The evolution of light quarks from an initial
value~normalized to unity! at m51 GeV is displayed in Fig.
3d. This latter set of curves is obtained via utilization of Eq.
~4.18! at bothnf54 andnf55 flavor thresholds, which are,
respectively, taken to be at 1.3 GeV and 4.3 GeV@8#. Below
the 1.3 GeV four-flavor threshold, the Pade´ curve is gener-
ated via Eq.~4.1! using thenf53 Pade´-summationg func-
tion

g~3!~x!52x
@121.2373x21.8485x2#

@125.0289x14.7993x2#
~4.20!
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FIG. 3. ~a! Evolution of the running massmb(m) obtained from three-loop~3L! b and g functions from the initial condition
mb(4.3 GeV)54.3 GeV. ~b! A comparison of the ratio ofmb(m) obtained from four-loop~4L! and @2u2# Padé-summationb and g
functions to mb(m) obtained from three-loop~3L! b and g functions, as shown in ~a!, given the initial condition
mb(4.3 GeV)54.3 GeV. ~c! A comparison of the evolution ofmc(m) obtained from evolution of two-loop~2L!, three-loop~3L!, four-loop
~4L! and @2u2# Padé-summationb and g functions. ~d! Masses of light~u,d,s! quarks from two-loop, three-loop, four-loop, and@2u2#
Padé-summationb andg functions. Masses atm51 GeV are normalized to unity.
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and thenf53 b function ~3.7a!. Between the four- and five-
flavor thresholds we utilize Eqs.~4.19! and~3.7b!, and above
the five-flavor threshold, we utilize Eqs.~4.17! and~3.7c! as
before. The bumps in Fig. 3d occur at the four- and five-
flavor thresholds~1.3 GeV and 4.3 GeV, respectively!, and
are anticipated from the threshold matching condition~4.18!.
At m55 GeV, Fig. 3d shows that there is a 1% difference
between running masses obtained via unimproved and Pade´-
improved four-loopb andg functions. Once again, however,
the distance between curves of successive order decreases as
the order increases, giving the appearance of convergence
towards the Pade´-improved curve.

V. APPLICATION TO HIGGS BOSON DECAYS

Although the Higgs particle has yet to be directly ob-
served, expressions for its decay into either two-gluons@11#
or a bb̄ pair @12# have been worked out with precision in
perturbation theory. In much the same way, knowledge of
the Z0 decay widths, whose precise values are important for
bounds on standard-model parameters, preceded the discov-
ery of theZ0 itself. In this section, we apply Pade´ improve-
ment to the decay processesH→two gluons andH→bb̄,
and examine whether such improvement leads to detectable
changes from the calculated rates obtained without such
Padéimprovement.

A. Higgs bosoñ two gluons

The decay rateH→gg has been calculated to three-loop
order in perturbation theory@11#:

G~H→gg!5
GFMH

3 xH
2

36p&
3@1117.9167xH

1„156.80825.70833 ln~mt
2/MH

2 !…xH
2

1O~xH
3 !#, ~5.1!

where xH5x(MH)5as
(5)(MH)/p, and whereMH is as-

sumed to be less thanmt . Pade´ improvement can enter this
expression both in the actual value ofas

(5)(MH) evolving
from a Pade´-improved b function, as well as in a Pade´-
driven estimate of theO(xH

3 ) contribution to the square
bracketed expression in Eq.~5.1!. One cannot apply the
APAP algorithm of Sec. II to estimate this term because for
a given value of MH , only the coefficient of x(R1

517.9167) andx2@R25156.80825.70833 ln(mt
2/MH

2 )# are
known; the coefficientR3 of x3 is not known. One way to
estimateR3 is to express 11R1x1R2x2 as a@1u1# Padéap-
proximant, which upon expansion yieldsR35R2

2/R1 . A re-
finement on this estimate that is actually utilized to approxi-
mate b3 in Ref. @2# is to assume in the asymptotic error
formula ~2.3! thata1b is small compared toN11. One can
then argue from Eqs.~2.5! and ~2.7! that d3.d2/2, where
d25(R1

22R2)/R2 is determined in full byR1 andR2 . Equa-
tion ~2.7! can then be rearranged to yield the following esti-
mate ofR3 :

R35
R2

2/R1

11d3
5

2R2
3

R1
31R1R2

. ~5.2!

For differentMH values we plot in Fig. 4 the ratio of the
Padé-improvedH→gg rate to the rate obtained directly from
Eq. ~5.1!, using the three-loopb function to obtainxH from
the initial conditionx(Mz)50.118/p @8#. The Pade´ improve-
ment of theH→gg rate is obtained for a given choice ofMH
first by evolvingxH from the same initial condition via the
@2u2# approximant~3.7c! for the b function, then by using
Eq. ~5.2! to estimate theO(xH

3 ) term in Eq.~5.1!, and finally
by replacing the now-known cubic 11R1xH1R2xH

2 1R3xH
3

in Eq. ~5.1! with its appropriate@2u1# Padésummation:

11R1x1R2x21R3x3

→
11~R12R3 /R2!x1~R22R3R1 /R2!x2

12~R3 /R2!x
. ~5.3!

Figure 4 shows that such Pade´ improvement yields a
2.5%–3% increase in theH→gg rate, with very little sensi-
tivity to the Higgs boson mass. Such improvement is best
understood to be an estimate of~unknown! higher-order cor-
rections to Eq.~5.1! that should be eventually testable
against both experimental and future higher-order calcula-
tions of theH→gg rate.

FIG. 4. A comparison of the ratio of the Higgs decay rate into
two gluons obtained via Pade´ improvement discussed in the text to
the three-loop~3L! expression for the same rate.
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B. Higgs bosoñ bb̄

The decay rate Higgs→bb̄ has been calculated to four-
loop order in perturbation theory@12#:

G~H→bb̄!5@3GFMHmb
2~MH!/~4p& !#

3$@11~17/3!xH129.1467xH
2 141.7581xH

3 #

2„6mb
2~MH!/MH

2
…@11~20/3!xH114.62xH

2 #%.

~5.4!

Full Padéimprovement of this expression for a given value
of MH ~with MH,mt) entails ~1! determination ofx(MH)
through use of Eq.~3.7!, the @2u2# Padésummation of theb
function, to evolvex(m) from an appropriate initial condi-
tion, e.g., as

(5)(Mz)50.118 @8#, ~2! determination of
mb(MH) through substitution into Eq.~4.1! of Eqs. ~3.7c!
and ~4.17!, the @2u2# Padé summations forb (5)(x) and
g (5)(x), so as to evolvemb

(5)(m) from an appropriate initial
condition, e.g.,mb(4.3 GeV)54.3 GeV @8#, ~3! Padé im-
provement and@2u2# Padésummation of the cubic expression
in Eq. ~5.4!,

11~17/3!x129.1467x2141.7581x3

→
@114.30262x121.0641x2#

@121.36405x20.352971x2#
, ~5.5!

where Eq.~2.12! is used to generate an estimate of thex4

coefficient@67.2472#, and where Eqs.~2.15!–~2.19! are used
to generate the@2u2# approximant in Eq.~5.5!, and~4! Padé-
improvement and@2u1# Padésummation of the quadratic ex-
pression in Eq.~5.4!,

11~20/3!x114.62x2→
@115.581x17.382x2#

@121.086x#
, ~5.6!

where Eq.~5.2! is used to generate an estimate of thex3

coefficient@15.87#, and where Eq.~5.3! is used to generate
the @2u1# approximant in Eq.~5.6!.

The relative size of all these corrections, referenced to the
rate calculated to the next-to-highest-known@three-loop# or-
der in perturbation theory, is displayed in Fig. 5. The top
curve is the ratio@G(H→bb̄)#4-loop /@G(H→bb̄)#3-loop , as
a function of MH . The four-loop rate is obtained directly
from Eq. ~5.4!, with mb(MH) and xH@5x(MH)# obtained
from b andg functions that are truncated to zero after their
b3 andg3 contributions. The three-loop rate is obtained by
truncating off the highest-order terms in Eq.~5.4!—
specifically theO(x3) term on the left-hand side of Eq.~5.5!
and theO(x2) term on the left-hand side of Eq.~5.6!—and
by obtainingxH and mb(MH) from b and g functions that
are truncated to zero afterb2 andg2 contributions. The top
curve shows a change of 0.02% to 0.09% in going from
three- to four-loop order.

The bottom curve compares the ratio ofG(H→bb̄), ob-
tained by full Pade´ improvement of@G(H→bb̄)#, as de-
scribed above, to@G(H→bb̄)#3-loop . It is evident from the

figure that the two ratios are within 0.0001 of each other for
all values ofMH below mt . In other words, Pade´ improve-
ment reduces the four-loop result forG(H→bb̄) by at most
0.01%. The effect thatis seen seems to derive wholly from
the Pade´ improvement ofmb

(5)(m), as is evident from com-
parison of Fig. 5 to Fig. 3b. Of course, such close agreement
between Eq.~5.4! and its fully Pade´-improved version sug-
gests that the expression~5.4! is more than adequate for fu-
ture comparison to experiment. Thus the purpose of the
analysis presented here is really to demonstrate the robust-
ness of Eq.~5.4! against Pade´ estimates of higher-order cor-
rections.

The small size of corrections past even the three-loop or-
der is partly a consequence of the small size ofx(MH) char-
acterizing Higgs decay rates. Pade´ corrections are of much
more interest when the magnitude ofx is larger, suggesting
their usefulness in assessing the perturbative content of low-
energy QCD—i.e., QCD sum rules. In the section that fol-
lows we will address how Pade´ improvement can be utilized
to estimate substantial higher-order corrections to sum rules
relevant to scalar- and pseudoscalar-meson static properties.

VI. PERTURBATIVE CONTENT
OF SCALAR/PSEUDOSCALAR QCD SUM RULES

The resonance content of finite-energyFk and LaplaceRk
QCD sum rules@13,14# is obtained from integrals over the

FIG. 5. A comparison of the ratio of the Higgs decay rate into a
bb̄ pair obtained to four-loop~4L! order and through subsequent
Padéimprovement~as described in the text! to the same rate ob-
tained to three-loop~3L! order.
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imaginary part of current correlation functionsP(s,m2) in
the subcontinuum region (s,s0):

Fk~s0!5
1

p E
0

s0
Im P~s,s0!skds, ~6.1!

Rk~t,s0!5
1

p E
0

s0
Im P~s,1/t!ske2stds. ~6.2!

We consider here the purely perturbative content of the cor-
relation function for scalar currents, which is presently
known to four-loop order@12#:

1

p
Im P~s,m2!5

3s

8p2 H 11S as~m!

p D Fa01a1 lnS m2

s D G1S as~m!

p D 2Fb01b1 lnS m2

s D1b2S lnS m2

s D D 2G1S as~m!

p D 3

3Fc01c1 lnS m2

s D1c2S lnS m2

s D D 2

1c3S lnS m2

s D D 3G1S as~m!

p D 4

R41...J . ~6.3!

The problem we will address in this section is the computa-
tion of R4 , which is necessary for the determination of
O(as

4) contributions toFk andRk . For three flavors Chetyr-
kin @12# has found that

a0517/3, a152, ~6.4a!

b0531.8640, b1531.6667, b2517/4, ~6.4b!

c0589.1564, c15297.596,

c25229/2, c359.20833. ~6.4c!

If we definew[s/m2, we can estimateR4@w# directly by
substituting

R1@w#5a02a1 ln w, ~6.5a!

R2@w#5b02b1 ln w1b2~ ln w!2, ~6.5b!

R3@w#5c02c1 ln w1c2~ ln w!22c3~ ln w!3 ~6.5c!

directly into Eq. ~2.12!. This enables one to determine ex-
plicitly O(as

4) corrections to the sum-rules~6.1! and ~6.2!,
even thoughR4@w# determined in this way is manifestly not
a fourth-order polynomial in ln(w). In particular, we easily
find theO(as

4) contribution toFk(s0) to be

DF0~s0!5
3s0

2

16p2 S as~s0
1/2!

p D 4E
0

1

2R4@w#wdw

5
3s0

2

16p2 S as~s0
1/2!

p D 4

~2059.4!, ~6.6a!

DF1~s0!5
s0

3

8p2 S as~s0
1/2!

p D 4E
0

1

3R4@w#w2dw

5
s0

3

8p2 S as~s0
1/2!

p D 4

~1158.4!, ~6.6b!

DF2~s0!5
3s0

4

32p2 S as~s0
1/2!

p D 4E
0

1

4R4@w#w3dw

5
3s0

4

32p2 S as~s0
1/2!

p D 4

~833.47!.

~6.6c!

The integrals in Eqs.~6.6! have been evaluated numerically.
This approach, however, ignores the known structural depen-
dence ofR4 on the variablew,

R4@w#5d02d1 ln w1d2~ ln w!22d3~ ln w!31d4~ ln w!4,
~6.7!

which may be important when one integrates over thew
variable, as in Eqs.~6.6!. TheO(as

4) corrections to the first
three finite energy sum rules are easily determined in terms
of the constantsdi by substitution of Eq.~6.7! into the inte-
grand of Eq.~6.1! via Eq. ~6.3!:

DF0~s0!5
3s0

2

16p2 S as~s0
1/2!

p D 4

3S d01
d1

2
1

d2

2
1

3d3

4
1

3d4

2 D , ~6.8!

DF1~s0!5
s0

3

8p2 S as~s0
1/2!

p D 4

3S d01
d1

3
1

2d2

9
1

2d3

9
1

8d4

27 D , ~6.9!

DF2~s0!5
3s0

4

32p2 S a2~s0
1/2!

p D 4

3S d01
d1

4
1

d2

8
1

3d3

32
1

3d4

32 D . ~6.10!

We can use the Pade´ algorithm ~2.12! to estimate the
coefficientsdi . To do so, we letR1 , R2 , andR3 be given by
Eqs. ~6.5! for five representative values ofw between zero
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and one:w5$1,e21/4,e21/2,e21,e22%. When w51, corre-
sponding tos5s0 in the finite-energy sum rule integrand
~6.1!, we see from Eqs.~6.5! that R15a0 , R25b0 , R3
5c0 . Using the APAP algorithm~2.12!, we find that
R4@1#5251.4425d0 . When w5e21/4(s50.779s0), we
find from Eqs. ~6.5! that R1537/6, R2540.0463, R3
5170.8554. Using Eqs.~2.12! and ~6.7!, respectively, we
then find that

R4@e21/4#5699.3985d01d1/41d2/16

1d3/641d4/256. ~6.11!

Similarly we find the following results whenw5e21/2(s
50.606s0), w5e21(s50.368s0), and w5e22(s
50.135s0):

R4@e21/2#51389.825d01d1/21d2/41d3/81d4/16,
~6.12!

R4@e21#53652.365d01d11d21d31d4 , ~6.13!

R4@e22#512804.95d012d114d218d3116d4 .
~6.14!

We solve the four linear equations~6.11!–~6.14! for the four
unknownsd1 ,d2 ,d3 ,d4 using the value already obtained for
d0(5251.422), and we obtaind151357.84,d251634.53,
d35404.630,d453.9097. Substitution of these numbers into
Eqs. ~6.8!–~6.10! yields results remarkably close to those
obtained in Eqs.~6.6!. These results are listed in the under-
lined highest-order terms given below for the Pade´-improved
perturbative content of the first three finite energy sum rules
@x[as(s0

1/2)/p#:

F0~s0!5
3s0

2

16p2 @116.66667x149.8223x2

1302.110x312057.0x4#, ~6.15a!

F1~s0!5
s0

3

8p2 @116.33333x143.3640x2

1215.846x311158.4x4#, ~6.15b!

F2~s0!5
3s0

4

32p2 @116.16667x140.3119x2

1178.731x31833.52x4#. ~6.15c!

Padécorrections to the Laplace sum rules~6.2! are not listed,
as they are complicated by the occurrence of two scale vari-
ables (s0 and t!. However, such corrections are straightfor-
ward to obtain via integration of theO(as

4) term of Eq.~6.3!,
which we have already obtained via APAP estimates of
d024 :

R45251.4411357.8 lnS m2

s D11634.5F lnS m2

s D G2

1404.63F lnS m2

s D G3

13.9097F lnS m2

s D G4

. ~6.16!

As a cross-check on these results, we note that
m2 Im P(3)(s,m2), the nf53 correlator based on the
renormalization-group invariant scalar currentmc̄c, satis-
fies the homogeneous renormalization-group equation

05Fm2
]

]m
1b~3!~x!

]

]x

1mg~3!~x!
]

]mGm2 Im P~3!~s,m2!, ~6.17!

where x[as /p and where ImP(3)(s,m2) is given by Eq.
~6.3! with

R45d01d1 ln~m2/s!1d2 ln2~m2/s!

1d3 ln3~m2/s!1d4 ln4~m2/s!. ~6.18!

When substituted into Eq.~6.17!, the known four-loop coef-
ficients of thenf53b function ~3.2! andg function ~4.2! are
sufficient in themselves to determine the constantsd1 , d2 ,
d3 , and d4 . These numbers are found, respectively, to be
1562.96, 1583.62, 356.036, and 20.143. We thus see that
values ofd1 , d2 , andd3 determined by the renormalization
group equation~6.17! differ, respectively, from the values in
Eq. ~6.16! via APAP methods by 13.1%, 3.2%, and 13.6%.
Although the estimate ford4 does not share this otherwise
remarkable agreement, it should be noted that the very small
APAP estimate ford4 given in Eq.~6.16! follows from the
near cancellation of much larger numbers. Both the APAP
estimate ford4 and the value obtained from Eq.~6.17! are
quite small in magnitude compared to the other coefficients.

It is also worth noting that the underlinedR4 terms in Eqs.
~6.15! are not very different from those one would obtain
using either theR3

2/R2 estimate suggested by a@2u1# approx-
imant, as discussed following Eq.~2.10!, or the APAP algo-
rithm ~2.12! applied directly to the known~nonunderlined!
terms of Eqs.~6.15!. The increase in the size of coefficients
with increasing powers ofx suggests the utility of a@2u2#
Padésummation for these three expressions as an improve-
ment over truncating off what may be substantialO(x5) cor-
rections to Eqs.~6.15!. By applying Eqs.~2.15!–~2.19! to the
three equations~6.15!, we obtain the following@2u2# approxi-
mants to the full perturbative content of the first three finite-
energy sum rules:

F0~s0!5
3s0

2

16p2 F113.8073x16.8124x2

122.8594x223.947x2G , ~6.19a!
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F1~s0!5
s0

3

8p2 F112.3917x111.308x2

123.9416x27.0930x2G , ~6.19b!

F2~s0!5
3s0

4

32p2 F112.2174x112.791x2

123.9492x23.1670x2G . ~6.19c!

Both Eqs.~6.15a! and~6.19a! are indicative of a need for
s0

1/2 to be substantially larger than 1 GeV for finite-energy
sum rules to be useful in the scalar and pseudoscalar chan-
nels. If s0

1/251 GeV, we see from Fig. 1 thatx(1 GeV)
50.153. For this value ofx, each successive term in the
square brackets of Eq.~6.15a! is approximately unity, indica-
tive of nonconvergence. This is reflected by a near-vanishing
of the denominator of Eq.~6.19a!, implying a divergent re-
sult for the summation of the full perturbative series. Ifs0

53.24 GeV2, we see from Fig. 1 thatx(s0
1/2)>0.10. The

truncated series~6.15a! is then seen to yield a value that is
only 87% of that obtained via the Pade´ summation~6.19a!,
indicative of the magnitude of the higher-order terms miss-
ing from Eq.~6.15a!. Note that a choice fors0 near or some-
what above 3 GeV2 is suggested by Laplace sum-rule fits in
both the pseudoscalar@15# and scalar@16# resonance chan-
nels.

The finite energy sum ruleF0(s0) provides an example of
how it is not enough just to have precise higher-order results.
Even though Eq.~6.15a! includes four-loop effects as well as
an APAP-algorithm estimate of five-loop effects, the five
terms listed demonstrate only sluggish convergence for a re-
alistic choice ofs0 . There is found to be enough of a differ-
ence between the truncated series~6.15a! and its Pade´-
summation~6.19a! to suggest the advisability of using the
latter.

VII. SUMMARY

Using a Pade´-motivated algorithm~2.12!, we have esti-
mated in Sec. III the five-loop contributions to theb function
for nf5$3,4,5,6%, and we have compared the evolution of
as(m) from m5Mz obtained from two-loop, three-loop,
four-loop, and Pade´-summation estimates of the fullb func-
tion. Low energy values ofas obtained from the four-loopb
functions with quoted flavor thresholds and appropriate
threshold matching conditions are within 1% of those ob-
tained from the Pade´-summationb functions, a small effect
compared to the much larger sensitivity ofas(1 GeV) and
as(mt) to present uncertainties inas(Mz) and c- and b-
quark flavor thresholds.

We concluded Sec. III by extracting the most general set
of @2u2# Padé-summation estimates of 3, 4, 5, and 6 flavor
QCD b functions whose Maclaurin expansions yield known
four-loop results for their first four terms. For positive values
of as , these Pade´-summation estimates of theb function
were shown to alternate denominator and numerator zeros,
regardlessof the size of the~presently unknown! five-loop
term serving as a free parameter in these@2/2#-approximants.
Such alternation necessarily implies that all positive numera-

tor zeros representultraviolet fixed points, behavior which, if
applicable to the trueb function, would decouple the~suit-
ably defined! infrared region from perturbative QCD.

In Sec. IV, we applied Pade´-improvement methods to the
running quark mass by estimating five-loop contributions to
the g functions for 3, 4, 5, and 6 quark flavors. We then
extracted an estimate for theO(x4) contribution to closed-
form expressions formq@as(m)/p# that had been obtained
earlier @4,6# to O(x3). We compared the evolution of three-
loop, four-loop, and Pade´-summation estimates ofmb(m),
once again finding very little relative difference~0.01%! be-
tween Pade´-summation and four-loop determinations of
mb(m) over the rangem,mt , given identical five-flavor-
threshold initial conditions. Corresponding agreement was
still seen to occur at the 1% level for light quarks.

In Sec. V we applied the results of the previous two sec-
tions to higher-loop calculations of the Higgs decay ratioH
→gg andH→bb̄, rates which are sensitive to running cou-
plings and running masses, as well as higher-loop corrections
that are polynomial inas(mH). The calculated three-loop
H→gg rate is shown to be within 3% of our Pade´-
improvement estimate, given identical choices forMH ,
a(Mz), and mb-threshold initial conditions. Similarly, the
calculated four-loopH→bb̄ rate is seen to differ from full
Padéimprovement by at most 0.01%.

All the results summarized up until this point are indica-
tive of close agreement between known perturbation theory
and Pade´-approximant improvements intended to take into
account higher-order effects. Consequently, the theoretical
uncertainties associated with the truncation of any such cal-
culations at the three-or-four-loop order are shown to be
small. In Sec. VI, we considered quantities known to four-
loop order for which this isnot the case, the purely pertur-
bative content of QCD sum rules in scalar/pseudoscalar-
resonance channels. We constructed a Pade´-algorithm
estimate of the purely perturbativeO(as

4) contribution to the
imaginary part of scalar/pseudoscalar correlation functions,
and we obtained@2u2# Padé-summation estimates of the all-
orders content of the first three finite energy sum rules. We
found the overall convergence of the primary sum rule to be
doubtful for values of the QCD continuum threshold near
s051 GeV2. Even fors0 above 3 GeV2, we found a greater-
than-10% discrepancy between Pade´-summation and four-
loop-order contributions to this sum rule, suggesting the ex-
istence of substantial theoretical uncertainties from higher-
than-four-loop contributions.
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