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The conventional definition of the running couplingaMS(m) in quantum chromodynamics is based on a
solution to the renormalization group equations which treats quarks as either completely massless at a renor-
malization scalem above their thresholds or infinitely massive at a scale below them. The coupling is thus
nonanalytic at these thresholds. In this paper we present an analytic extension ofaMS(m) which incorporates
the finite-mass quark threshold effects into the running of the coupling. This is achieved by using a commen-
surate scale relation to connectaMS(m) to the physicalaV scheme at specific scales, thus naturally including
finite quark masses. The analytic extension inherits the exact analyticity of theaV scheme and matches the
conventionalMS scheme far above and below mass thresholds. Furthermore just as in theaV scheme, there is
no renormalization scale ambiguity, since the position of the physical mass thresholds is unambiguous.
@S0556-2821~98!06321-8#

PACS number~s!: 11.15.Bt, 12.38.Bx

I. MOTIVATION

The running coupling in quantum chromodynamics
~QCD! in the modified minimal subtraction (MS) scheme@1#
and other MS-like schemes is traditionally constructed by
solving the renormalization group equations using perturba-
tive approximants to theb function which change discon-
tinuously at the quark mass thresholds@2–4#. This is equiva-
lent to using effective Lagrangians with a fixed number of
massless fermions in each energy range between the quark
mass thresholds. Thus in theMS scheme, theb~m! function
depends on the number of ‘‘massless’’ quarks,NF(m),
which is taken as a step function of the renormalization scale
m. Matching conditions at threshold require the equivalence
of one effective theory withn massless flavors to another
effective theory with one massive and (n21) massless
quarks. It should be noted that this does not prevent one from
including quark masses in theMS scheme. However, the
quark masses do not enter into theb function since the run-
ning of the coupling is mass independent.

The one-loop matching conditions@5–7# in the MS
scheme require the coupling to be continuous if the matching
is done at the quark masses, although the derivative is dis-
continuous. In two-loop matching@8–10# the coupling itself
becomes discontinuous if the matching is done at the quark
masses, but it can be rendered continuous by modifying the
MS scheme@3#. Recently, the three-loop matching condi-
tions have been computed@10#, which, together with the
four-loop b function @11#, give the possibility to evolve the
MS coupling to four loops with massless quarks. This gives
a reduced dependence on the matching scale, as shown in
@12#, but possibly a nonphysical threshold dependence. How-
ever, in such a treatment the derivatives of the coupling re-

main discontinuous. The inevitable result of the matching in
a MS-like scheme is that the running of theMS coupling in
the renormalization scale is nonanalytic—nondifferentiable
or even discontinuous—as the quark mass thresholds are
crossed. Thus there is an intrinsic difficulty in expressing
physical, smooth observables as an expansion in theMS cou-
pling. It is clearly necessary to restore the finite quark mass
effects in their entirety in order to restore analyticity.

Aesthetically, it is unnatural to characterize physical theo-
ries in terms of an artificially constructed renormalization
scheme such asMS; it is more physical to use an effective
charge as determined from experiment to define the funda-
mental coupling@13#. For example, in analogy to quantum
electrodynamics~QED!, one could choose to define the QCD
coupling as the coefficientaV(Q) in the static limit of the
scattering potential between two heavy quark-antiquark test
charges,

V~Q2!524pCF

aV~Q!

Q2 , ~1!

at the momentum transferq25t52Q2, where CF5(NC
2

21)/(2NC)54/3 is the Casimir operator for the fundamen-
tal representation in SU(NC) ~with NC53 for QCD!. Such
an effective charge automatically incorporates the quark
mass threshold effects in the running, and thus it has an
analytic b function. The aV scheme is particularly well
suited to summing the effects of gluon exchange at low-
momentum transfer, such as in evaluating the final-state in-
teraction corrections to heavy quark production@14# or in
evaluating the hard-scattering matrix elements underlying
exclusive processes@15#. A physical effective charge has the
additional advantage that the Appelquist-Carazzone decou-
pling theorem@16# is automatically incorporated.

In this paper we shall construct an analytic extension of
theaMS scheme, which we callãMS, by connecting the cou-
pling directly to the analytic and physically definedaV
scheme. The necessity for an analytic coupling has been em-
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phasized by Shirkov and others@17#. Our definition allows
one to use a scheme based on MS-like renormalization, but
which also, in a simple way, treats mass effects properly
between the mass thresholds. Thus, instead of having the
number of effective flavors (NF) change discontinuously at
~or nearby! the quark threshold, we obtain an analyticNF(m)
which is a continuous function of the renormalization scalem
and the quark massesmi . Thus the analytically extended
scheme inherits the mass dependence of the physical scheme.
In addition, the renormalization scalem that appears in the
analytically extended schemeãMS is directly related to the
momentum transfer appearing in theaV scheme and thus has
a definite and simple physical interpretation.1

The essential advantage of the modified schemeãMS is
that it provides an analytic interpolation of conventional MS-
renormalized expressions by utilizing the mass dependence
of the physicalaV scheme. In effect, quark thresholds are
treated analytically to all orders inm2/Q2; i.e., the evolution
of our analytically extended coupling in the intermediate re-
gions reflects the actual mass dependence of a physical ef-
fective charge and the analytic properties of particle produc-
tion in a physical process. Just as in Abelian QED, the mass
dependence of the effective potential and the analytically ex-
tended schemeãMS reflects the analyticity of the physical
thresholds for particle production in the crossed channel.
Furthermore, the definiteness of the dependence in the quark
masses automatically constrains the renormalization scale.
Alternatively, one could connectaMS to another physical
charge such asaR defined frome1e2 annihilation.

Our approach should be compared with the standard treat-
ment of quark mass threshold effects in theMS scheme. For
fixed order inas the corrections due to finite quark mass
threshold effects which we are considering in this paper have
been calculated for the hadronic width of theZ boson and the
t-lepton semihadronic decay rate@18–20,9#. The calcula-
tions have been made both exactly to orderaMS

2 and as ex-
pansions in terms ofm2/Q2 andQ2/m2 for light and heavy
quarks, respectively. Note that in principle the determination
of the finite mass threshold effects for physical observables
in dimensional regularization schemes would require a com-
plete all-orders analysis of the higher-twist mass corrections
to the effective Lagrangian of the theory.

There are a number of other reasons to construct an ana-
lytic extension of theaMS scheme:

~i! The comparison of the values of the couplingas as
determined from different experiments and at different mo-
mentum scales is an essential test of QCD~for a recent re-
view of existing measurements, see@21#!. One source of er-
ror is neglect of quark masses in the determination ofas and
in the subsequent running of the coupling from the scale
where it has been determined to the conventional reference
scale, theZ-boson mass.

~ii ! Lattice calculations for theJ/c and Y spectra now
provide the most precise determination ofas at low momen-
tum scales@22–25#. It is important to know how finite quark
mass effects enter into the running of this value ofas to
lower- and higher-energy scales with as small an error as
possible.

~iii ! Finite mass threshold effects in supersymmetric
grand unified theories are important when analyzing the run-
ning and unification of couplings over very large ranges. It
has been discussed, for example, in Refs.@26, 27#. However,
the scale used in the running and for the threshold effects has
not been related to the physical scale which is naturally ob-
tained in our approach.

~iv! It is natural to unify theories by matching physical
couplings and masses at the unification scale. This can be
accomplished in theaV scheme or, equivalently,ãMS.

II. DETAILS OF aV

In the case of the Abelian theory, the couplingaV derived
from the heavy lepton potential is equivalent to using the
effective charge defined from the running of the photon
propagator. In the non-Abelian theory the gluon propagator
is not gauge invariant; one thus has to turn to a physical
gauge-invariant observable such as the heavy quark poten-
tial.

The effective chargeaV(Q), defined as in Eq.~1!, can be
calculated as a perturbation expansion inaMS:

aV~Q!5aMS~m!1v1,MSS Q

m D aMS
2

~m!

p

1v2,MSS Q

m D aMS
3

~m!

p2 1¯ . ~2!

The first two nontrivial terms in the perturbative series have
been computed in theMS scheme@28–33#. A comprehensive
analysis ofaV to ordera3 has recently been given by Peter
@33#:

v1,MS~m5Q!52
2

3
NC1

5

6
b052.58320.278NF ,

v2,MS~m5Q!5S 133

144
1

24p22p4

64
2

11

4
z3DNC

2

2S 385

192
2

11

4
z3DCFNC1

5

6
b1

1F S 35

32
2

3

2
z3DCF

1S 2
217

144
1

7

4
z3DNCGb01

25

36
b0

2

539.65024.147NF10.0772NF
2, ~3!

1A somewhat similar approach has been tried in@17#, but using
the unphysical momentum space subtraction~MOM! renormaliza-
tion scheme to implement the mass thresholds.
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whereb0 andb1 are the first two universal coefficients in the
b function. It is also known that the next coefficient in the
expansion is nonanalytic ina50, since it contains a ln(a)
term @30#. This nonanalyticity does not originate from fermi-
onic corrections to the heavy quark potential. This can be
seen by adopting a physical gauge. In such gauges we would
reproduce the same analyticity structure for fermionic cor-
rections in QCD as we find in QED. In QED, however, we
have no problem with analyticity at any order in perturbation
theory. Note that the total derivative ofaV with respect to
the renormalization scalem of theaMS scheme is zero, since
aV is a physical observable.

The scale~Q! dependence of the effective charge defines
the equivalent of the Gell-Mann–Lowc function for the
effective charge in QED@34#. In the case ofaV , Q is the

momentum transfer in the heavy quark potential and thec
function is given by

daV~Q!

d ln Q
52c~0!

aV
2

p
2c~1!

aV
3

p22cV
~2!

aV
4

p32cV
~3!

aV
5

p42¯ .

~4!

The first two terms in this series coincide with the universal
and well-known first two terms in the Callan-Symanzikb
function @35#, i.e., c (0)5b0 and c (1)5b1 , but the higher-
order terms,cV

(2) , etc., depend on the observable under
study.2

For completeness we give the coefficients in the QCDc
function with the normalization used above:

c~0!5
11

6
NC2

1

3
NF55.50020.333NF ,

c~1!5
17

12
NC

2 2
5

12
NCNF2

1

4
CFNF512.75021.583NF ,

cV
~2!5b2,MS2c~1!v1,MS2c~0!v1,MS

2
1c~0!v2,MS

5S 103

48
1

11~24p22p4!

384
1

121

144
z3DNC

3 1F S 2
445

576
2

24p22p4

192
2

11

9
z3DNC

2

1S 2
343

288
1

11

12
z3DNCCF1

1

32
CF

2 GNF1F S 1

576
1

7

36
z3DNC1S 23

144
2

1

6
z3DCFGNF

2

5193.074227.014NF10.652NF
2.

The results given above in theaMS scheme have been ob-
tained using massless QCD. The effects of nonvanishing
quark masses can be taken into account by using a
Q2-dependentNF , which will be derived from the one-loop
massive vacuum polarization function in the next section.

III. CALCULATION OF THE RUNNING COUPLING
TO ONE-LOOP ORDER

Our approach in this paper is as follows: theaV(Q)
scheme automatically includes the effects of finite quark
masses in the same manner that lepton masses appear in
Abelian QED. We can then relate theMS scheme to theaV
scheme through a commensurate scale relation@36#, which is
effectively a scale transformation between the two schemes.

The analytic dependence ofaV is then transferred to the
analytically extendedãMS scheme. The usual massless ex-
pressions are recovered far above or far below any individual
quark mass threshold.

A. Calculation of the mass dependence
for the running coupling

The couplingaV(Q), which is derived from heavy quark
scattering, is closely related to the renormalization of the

2Some authors denote the coefficientcV
(2) by b̂2,V instead. The

convention used here is to emphasize the difference between the
dependence on the physical scaleQ and the unphysical renormal-
ization scalem.
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gluon propagator. In physical gauges withZ15Z2 , the cou-
pling renormalization is due purely to self-energy insertions
in the propagator.3

For the purposes of this paper, it will be sufficient to
restrict our analysis to one-loop order,4 i.e., c (0).

The physical running coupling in theaV scheme, normal-
ized at an arbitrary momentum transfer scaleQ0 , may be
represented as

aV~Q![
aV~Q0!

12P̃„Q,Q0 ,aV~Q0!…
. ~5!

The vacuum polarization functionP̃ may be computed from
the perturbative expansion of the renormalized propagator
between heavy quarks. The coupling is then

aV~Q!5aV~Q0!@11P̃1P̃21P̃31¯#, ~6!

where we have used the shorthandP̃[P̃„Q,Q0 ,aV(Q0)… for
the renormalized sum of all one-particle irreducible~1PI!
diagrams for the gluon self-energy. Since the coupling has
the valueaV(Q0)[a0 at the physical renormalization point
Q5Q0 , the self-energy obeys the boundary condition
P̃(Q0 ,Q0 ,a0)50.

We begin by considering the integral representation of the
quark part of the one-loop gluon vacuum polarization dia-
gram ~see Fig. 1!:

P̃q
~0!~Q,Q0 ,a0!5TF(

i 51

n
a0

3p

3S E
0

1

6z~12z!ln@11z~12z!r i~Q!#

2E
0

1

6z~12z!ln@11z~12z!r i~Q0!# D ,

where r5Q2/m2, TF5 1
2 , the superscript~0! indicates the

one-loop order, the subscriptq indicates the quark part, and
the sum runs over all quarks~n!. Thus the quark component
of the one-loopc function is

cV,q
~0! ~Q!52

NF,V
~0!

3
52F p

aV
2

daV

d ln QG
q

~0!

52
p

a0

dP̃q
~0!~Q,Q0 ,a0!

d ln Q
. ~7!

This gives5 the contribution toNF from quark flavori,

3Strictly speaking, this is only true up to one loop in QCD and two
loops in QED. At higher orders new types of diagrams appear in the
potential which cannot be described as simple self-energy insertions
in the propagator. In QCD such a diagram is the so-called ‘‘H
graph’’ @37# and in QED the light-by-light scattering diagram has
the same effect. In the QED case, the light-by-light scattering
graphs have an anomalous dependence on the external charges and
a cut structure corresponding to particle production. In addition, we
note that the nonanalytic contributions toaV in higher orders in
QCD arise from corrections to the ‘‘H graph.’’ Therefore it could
be argued that these types of diagrams should be excluded when
defining theV scheme in QCD and QED.

4We expect the main effects from including the quark masses at
the one-loop level as this is the leading term in thec function.
However, at small scales the higher-order terms will become im-
portant, especially since the relative importance of theNF term is
larger forc (1) than forc (0). A study at the two-loop level requires
the massive two-loop diagrams, which is work in progress@38#.

5This result was first obtained by Georgi and Politzer@39# in the
MOM scheme and was applied to general gauge theories by Ross
@40#.

FIG. 2. The curve shows the contribution to the continuousNF,V
(0)

for just one quark as a function ofr5Q2/m2 wherem is the mass
of the quark.NF,V

(0) is found by using the massive quark part of the
one-loop gluon propagator instead of using the theta function
thresholds conventionally used in dimensional regularization
schemes.

FIG. 1. Single insertion of massive quark-antiquark loop into a
gluon propagator, giving the quark part of the one-loop gluon
vacuum polarization.
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NF,V
~0! ~r i !56E

0

1 z2~12z!2r idz

11z~12z!r i

512
6

r i
1

24

r i
3/2A41r i

tanh21 A r i

r i14
, ~8!

which is displayed in Fig. 2 as a function ofr. Thus, by
keeping the explicit quark mass dependence,NF becomes an
analytic function of the scaleQ.

In fact, the approximate form

NF,V
~0! ~r i !>S 11

5

r i
D 21

~9!

gives an accurate approximation to the exact form to within
1% over the entire range of the momentum transfer.6

The one-loop analyticNF,V is shown in Fig. 3 for various
quark flavors@for reference, the quark masses~in GeV! we
used aremu50.004, md50.008, ms50.200, mc51.5, mb
54.5, andmt5175#.

We may now substitute theNF,V into the one-loop QCDc
function coefficient,

cV
~0!~Q!5

11

2
2

1

3
NF,V

~0! ~r i !,

and thence into the QCD one-loop renormalization group
equation for the coupling constant:

daV

d ln Q
52cV

~0!
aV

2

p
. ~10!

We may then solve this renormalization group equation to
yield an expression foraV which is analytic at mass thresh-
olds. Note that the mass dependence of thec function ap-
plies specifically to theaV scheme.7

B. Commensurate scale relation betweenaV and aMS

We now relate the mass dependence of theaV scheme to
the MS scheme using the commensurate scale relation
@13,36# between the two schemes. We use the next-to-next-
to-leading-order~NNLO! results of Peter@33#. The first step
is to invert Eq.~2! to obtainaMS as an expansion inaV :

aMS~Q!5aV~M !1m1,VS Q

M D aV
2~M !

p

1m2,VS Q

M D aV
3~M !

p2 1¯ . ~11!

The needed commensurate scale relation is obtained by fix-
ing the scales M in Eq. ~11! such that the c (0)-
and c (1)-dependent parts of the coefficientsm1,V and m2,V
are absorbed into the running of the couplingaV(M ). This
ensures that all vacuum polarization dependence is summed
into the heavy quark potential. Application of this procedure
in NNLO, using the multiscale approach@36#, gives the fol-
lowing scale-fixed relation betweenaV and the conventional
MS:

aMS~Q!5aV~Q* !1
2

3
NC

aV
2~Q** !

p

1H 2S 5

144
1

24p22p4

64
2

11

4
z3DNC

2

1S 385

192
2

11

4
z3DCFNCJ aV

3~Q*** !

p2

5aV~Q* !12
aV

2~Q** !

p
14.625

aV
3~Q*** !

p2 ,

~12!

6This approximate form can be obtained from using a rigorous
double-asymptotic-series approach, knowing the behavior of the
function at the low- and high-momentum transfer@41#.

7Given aV(Q0), one can obtain the coupling at other scales in-
cluding the mass dependence by numerical iteration such as the
fourth-order Runge-Kutta algorithm.

FIG. 3. ContinuousNF,V
(0) for various quarks; lightest to heaviest

goes top to bottom~d,c,b,tas one proceed downwards; theu ands
plots are virtually identical at this scale to thed!. Q runs from 1 to
MZ GeV @for reference, the quark masses~in GeV! used aremu

50.004,md50.008,ms50.200,mc51.5, mb54.5, andmt5175#.
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above or below the quark mass threshold.8 The coefficients
in the perturbation expansion have their conformal values;
i.e., the same coefficients would occur even if the theory had
been conformally invariant withc (0)50 and thus do not
contain the diverging (c (0)as)

nn! growth characteristic of
an infrared renormalon@42#. The NLO coefficient23 NC is a
feature of the non-Abelian couplings of QCD and is not
present in QED. The commensurate scalesQ* andQ** are
given by

Q* 5Q expF5

6G52.300Q, ~13!

Q** 5Q expF S 105

128
2

9

8
z3D CF

NC

1S 103

192
1

21

16
z3D G

56.539Q, ~14!

whereas to this orderQ*** is not constrained. However, a
first approximation is obtained by settingQ*** 5Q** . Also
note thatQ* is unchanged when going from NLO to NNLO.
The scaleQ* arises because of the convention used in de-
fining the modified minimal subtraction scheme. Comparing
the scalesQ and Q* , we find that the scale in theMS
scheme~Q! is a factor;0.4 smaller than the physical scale
(Q* ).

Alternatively, one can write the relation betweenaMS and
aV as a single-scale commensurate scale relation@42#. In this
procedureQ* 5Q** where

Q* 5Q expH 5

6
1F S 35

32
2

3

2
z3DCF2S 19

48
2

7

4
z3DNCG aV

p J .

~15!

The conformal coefficients are the same in the two
procedures.9 However, the single-scale form has the advan-
tage that the non-Abelian perturbation theory matches in a
simple way the corresponding Abelian perturbation theory in
the limit NC→0 with CFas andNF /CF fixed @43#. For NC
53 we have ln(Q* /Q)55/614.178aV /p.

C. Definition of the analytic ãMS

We now adopt the commensurate scale relation with the
effective charge of the effective potential as a definition of
the extended schemeãMS:

ãMS~Q![aV~Q* !1
2NC

3

aV
2~Q** !

p
1¯ , ~16!

for all scalesQ. Equation~16! not only provides an analytic
extension of dimensionally regulated schemes, but it also ties
down the renormalization scale to the physical masses of the
quarks as they enter into the vacuum polarization contribu-
tions toaV . There is thus no scale ambiguity in perturbative
expansions inaV or ãMS.

Taking the logarithmic derivative of the commensurate
scale relation given by Eq.~16! with respect to lnQ, we can
define thec function for theãMS scheme as follows:

c̃MS~Q![cV~Q* !12
2NC

3

aV~Q** !

p
cV~Q** !. ~17!

To lowest order this givesc̃MS
(0)(Q)5cV

(0)(Q* ), which in

turn gives the following relation betweenÑF,MS
(0) andNF,V

(0) :

ÑF,MS
~0!

~Q!5NF,V
~0! ~Q* !, ~18!

where, to lowest order,Q* 5exp(5/6)Q.
We can also use the approximate form given by Eq.~9! to

write

ÑF,MS
~0!

~r i !>S 11
5

r iexp~ 5
3 !

D 21

>S 11
1

r i
D 21

. ~19!

In other words, the contribution from one flavor is.0.5
when the scaleQ equals the quark massmi . Thus the stan-
dard procedure of matchingaMS(m) at the quark masses is a
zeroth-order approximation to the continuousNF .

Adding all flavors together gives the totalÑF,MS
(0) (Q)

which is shown in Fig. 4. For reference the continuousNF is
also compared with the conventional procedure of takingNF
to be a step function at the quark mass thresholds. The figure
shows clearly that there are hardly any plateaus at all for the
continuousÑF,MS

(0) (Q) in between the quark masses. Thus

there is really no scale below 1 TeV whereÑF,MS
(0) (Q) can be

approximated by a constant. In other words, for allQ below
1 TeV there is always one quark with massmi such that
mi

2!Q2 or Q2@mi
2 is not true. We also note that if one

would use any other scale than the Brodsky-Lepage-
Mackenzie~BLM ! scale forÑF,MS

(0) (Q), the result would be
to increase the difference between the analyticNF and the
standard procedure of using the step function at the quark
mass thresholds.

D. Comparing the analytic ãMS„Q… with aMS

We can obtain the renormalization group equation for the
analytic extension of theMS coupling ãMS by using
ÑF,MS

(0) (Q), etc.:

dāMS~Q!

d ln Q
52c̃MS

~0!
~Q!

ãMS
2

~Q!

p
1¯ . ~20!

8Note that the NNLO results depend crucially on whether or not
the ‘‘H graph’’ is included in the definition of the heavy quark
potential since it is the unique source of thep4NC

2 terms in the
NNLO coefficient. We thank M. Peter for communications on this
point.

9Both the multiple- and single-scale setting methods generate a
term proportional toCFNC in the NNLO conformal coefficient. The
origin of this term, which has the same color factor as an iteration
of the potential, is not clear and should be further investigated.
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The solution to Eq.~20! provides an analytic scale-fixed
extension ofaMS(m), which we have denoted asãMS. The
result can be compared with the standard method of comput-
ing aMS, based on the evolution with distinctc functions for
different quark mass regimes. When doing this comparison
one has to keep in mind that it is possible to take quark mass
threshold effects into account also in theMS scheme when
calculating an observable. In the next section we will com-
pare our analytic extension of theMS scheme with the stan-
dard treatment of quark mass threshold effects for the had-
ronic width of theZ boson. However, for most observables
the quark mass threshold effects are not known and thus it is
also important to compareãMS andaMS directly.

Figure 5 shows the relative difference between the two
different solutions of the one-loop renormalization group
equation, i.e.,@ãMS(Q)2aMS(Q)#/ãMS(Q). The solutions
have been obtained numerically starting from the world av-
erage@21# aMS(MZ)50.118. The figure shows that taking
the quark masses into account in the running leads to effects
of the order of 1%, most especially pronounced near thresh-
olds.

In addition, the figure shows the results obtained by using
two different scales inÑF,MS

(0) (Q), namely, 2Q and Q/2,
when solving Eq.~20!. This shows clearly that the BLM
scale minimizes the difference between solutions using the
continuous and discontinuousNF . The other two scale
choices gives differences of several percent for smallQ.

We see from the figure that the effect of treating thresh-
olds continuously can be of the order of a few percent in the
magnitude of the QCD coupling when running down from

MZ to mc . This is a significant difference at the level of the
precision of currentas determinations. The primary factor
which influences the running is the value of the one-loopc
function, c (0)5 11

2 2 1
3 NF : a larger value ofNF gives a

smallerc (0) and makesas run more slowly; conversely, a
smaller value ofNF gives a largerc (0) and as runs more
quickly.

We can trace the difference in the couplings as follows:
at MZ , the continuous functionÑF,MS

(0) is above the discrete
threshold value of 5, but goes below it at 30 GeV; it remains
below the discrete threshold value untilmb where it becomes
larger and remains larger until;3 GeV, where it becomes
smaller again, etc.

Thus, running down fromMZ , ãMS runs slower thanaMS
until 30 GeV where the difference between them begins to
close asãMS runs faster thanaMS; at ;8 GeV, the differ-
ence starts to increase again until theb quark threshold
whereãMS starts to run slower thanaMS and the difference
between the two decreases until;3 GeV, etc. This behavior
forms the peaks seen in Fig. 5. Thus we see thatãMS will
end up higher thanaMS when running down to low-
momentum transfers starting fromMZ .

IV. APPLICATIONS

In this section we will show how to compute an observ-
able using the analytic extension of theMS scheme and com-
pare with the standard treatment of quark mass threshold

FIG. 4. The continuousÑF,MS
(0) in the analytic extension of the

MS scheme as a function of the physical scaleQ. ~For reference the
continuousNF is also compared with the conventional procedure of
taking NF to be a step function at the quark mass thresholds.!

FIG. 5. The solid curve shows the relative difference between
the solutions to the one-loop renormalization group equation using
continuousNF , ãMS(Q), and conventional discrete theta-function
thresholdsaMS(Q). The dashed~dotted! curve shows the same
quantity, but using the scale 2Q (Q/2) in ÑF,MS

(0) . The solutions
have been obtained numerically starting from the world average
@21# aMS(MZ)50.118.
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effects in theMS scheme. The essential difference between
the perturbative expansions in theaMS andãMS couplings is
terms that contain quark masses. In the analytic scheme the
quark mass effects are automatically included, whereas in the
MS scheme they have to be included by hand for each ob-
servable.

For some observables, such as the hadronic width of theZ
boson and thet-lepton semihadronic decay rate, corrections
due to nonzero quark masses have been calculated within the
MS scheme@18–20,9#. To be specific we are interested in
the so-called double-bubble diagrams where the outer quark
loop which couples to the weak current is considered mass-
less and the inner quark loop is massive. Other types of mass
corrections, such as the double-triangle graphs where the ex-
ternal current is electroweak, are not taken into account by
the analytic extension of theMS scheme.~For a recent re-
view of higher-order corrections to theZ-boson width, see
@44#.!

To illustrate how to compute an observable using the ana-
lytic extension of theMS scheme and compare with the stan-
dard treatment in theMS scheme, we consider the QCD
corrections to the quark part of the nonsinglet hadronic width
of theZ boson,Ghad,q

NS . Writing the QCD corrections in terms
of an effective charge, we have

Ghad,q
NS 5

GFMZ
3

2p&
(

q
$~gV

q !21~gA
q !2%F11

3

4
CF

aG,q
NS ~s!

p G ,
~21!

where the effective chargeaG,q
NS (s) contains all QCD correc-

tions:

aG,q
NS ~s!

p
5

a
MS

~NL!
~m!

p
X11

a
MS

~NL!
~m!

p H (
q51

NL F2
11

12
1

2

3
z3

1FS mq
2

s D 2
1

3
lnS m

As
D G

1 (
Q5NL11

6

GS mQ
2

s D J 1¯C. ~22!

The functionsF and G are the effects of nonzero quark
masses for light and heavy quarks, respectively. In the fol-
lowing we will not restrict ourselves to the caseAs5MZ
since we want to compare the two treatments of masses for
arbitrarys. Thereby the number of light flavorsNL will also
vary with s. We will also assume that the matching ofNF is
done at the quark masses. Thus a quark with massm,m is
considered as light, whereas a quark with massm.m is
considered as heavy.

To calculateaG,q
NS (s) in the analytic extension of theMS

scheme, one first has to apply the BLM scale-setting proce-
dure, which absorbs all the massless effects of nonzeroNF
into the running of the coupling. This gives

aG,q
NS ~s!

p
5

a
MS

~NL!
~Q* !

p H 11
a

MS

~NL!
~Q* !

p F (
q51

NL

FS mq
2

s D
1 (

Q5NL11

6

GS mQ
2

s D G1¯J , ~23!

where

Q* 5expF3S 2
11

12
1

2

3
z3D GAs50.7076As. ~24!

Operationally, one next simply drops all the mass-dependent
terms in the above expression and replaces the fixedNF cou-

pling a
MS

(NL)
with the analyticãMS. ~For an observable calcu-

lated with massless quarks, this step reduces to replacing the
coupling.! In this way both the masslessNF contribution as
well as the mass-dependent contributions from double-
bubble diagrams are absorbed into the coupling and we are
left with a very simple expression

aG,q
NS ~s!

p
5

ãMS~Q* !

p
. ~25!

This simple expression reflects the fact that the effects of
quarks in the perturbative coefficients, both massless and
massive, should be absorbed into the running of the cou-
pling.

To compare with the ordinaryMS treatment, we need the
functionsF andG in Eq. ~23!. Expansions in terms ofm2/s
ands/m2 can be found in@18,19,9#, whereas they have been
calculated numerically in@20#. In addition, theas

3 correction
due to heavy quarks has been calculated as an expansion in
s/m2 in @9#. It should also be noted that the functionG was
first calculated for QED@45#. Here we will use the following
expansions:

FS m2

s D5S m2

s D 2F13

3
24z32 lnS m2

s D G
1S m2

s D 3F136

243
1

16

27
z21

56

81
lnS m2

s D
2

8

27
ln2S m2

s D G , ~26!

GS m2

s D5
s

m2 F 44

675
1

2

135
lnS s

m2D G
1S s

m2D 2F2
1303

1058400
2

1

2520
lnS s

m2D G , ~27!

which are good to within a few percent form2/s,0.25 and
s/m2,4, respectively. We will also use the relation@20#

FS m2

s D5GS m2

s D1
1

6
lnS m2

s D2S 2
11

12
1

2

3
z3D ~28!
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to getF in the interval 0.25,m2/s,1 since the expansion of
F in terms ofm2/s breaks down form2/s.0.25.

Before carrying out the comparison of the analytic exten-
sion of the MS scheme with the standard treatment, it is
instructive to look at the effective contribution toaG,q

NS (s)
from one flavor with massm as a function ofs. To make the
arguments more transparent, we will use the renormalization
scalem5As when doing this. For smalls, when the quark is
considered heavy, the contribution is given byG(m2/s),
whereas for largers the quark is considered as light and
contributes with F(m2/s)2 11

12 1 2
3 z3 . Normalizing to the

massless contribution2 11
12 1 2

3 z3 gives the contribution to
the effectiveNF in the as

2 coefficient:

NF,MS
eff S s

m2D55
GS m2

s D
2 11

12 1 2
3 z3

for As,m,

FS m2

s D2 11
12 1 2

3 z3

2 11
12 1 2

3 z3

for As.m,

~29!

which is shown in Fig. 6 as a function ofs/m2.
At first it might seem unnatural that the effective contri-

bution to NF in the as
2 coefficient is negative for heavy

quarks. However, this is a characteristic feature of the stan-
dardMS scheme which arises from the fact that the number
of flavors in the running of the coupling is kept constant.
Starting from a scale well below the threshold, the number of
flavors in the running as well as in theas

2 coefficient is not
affected by the heavy quark. As the threshold is approached
from below, the number of flavors in the running should
increase, which would make the running of the coupling
slower ~sincec (0) would be smaller!, which in turn should
lead to a largeraMS. But since the number of flavors is kept

constant in the running, this effect has to be taken into ac-
count by adding a positive contribution to theas

2 coefficient,
i.e., the functionG. Since the massless contribution is nega-
tive, this means that the contribution toNF becomes negative
for a heavy quark. Once the threshold has been crossed, the
number of flavors in the running changes and the need to
compensate for a too smallaMS vanishes rapidly as the scale
is increased above the threshold. For scales well above the
threshold, the mass effects are negligible and the massless
result is regained asF goes to zero. This should be compared
with the analyticMS scheme whereNF is increased continu-
ously in the running.

To compare the analytic extension of theMS scheme with
the standardMS result foraG,q

NS (s), we will apply the BLM
scale-setting procedure also for the standardMS scheme.
This is to ensure that any differences are due to the different
ways of treating quark masses and not due to the scale
choice. In other words, we want to compare Eqs.~23! and
~25!. As the normalization point, we useaMS

(5)(MZ)50.118,
which we evolve down toQ* 50.7076MZ using leading-
order massless evolution withNF55. This value is then used
to calculateaG,q

NS (MZ)50.1243 in theMS scheme using Eq.
~23!. Finally, Eq. ~25! gives the normalization point for
ãMS(Q* ).

Figure 7 shows the relative difference between the two
expressions foraG,q

NS (s) given by Eqs.~23! and~25!, respec-
tively. As can be seen from the figure, the relative difference
is smaller than 0.2% for scales above 1 GeV. Thus the ana-
lytic extension of theMS scheme takes the mass corrections
into account in a very simple way without having to include
an infinite series of higher-dimension operators or doing
complicated multiloop diagrams with explicit masses.

V. CONCLUSION

An essential feature of theaV(Q) scheme is that there is
no renormalization scale ambiguity, sinceQ2 is the physical

FIG. 6. The effective contribution toNF in theas
2 coefficient in

the standardMS scheme from a quark with massm as a function of
s/m2 ~usingm5As!. The discontinuity between the two expansions
in s/m2 andm2/s can be seen at the nonanalytic points/m254.

FIG. 7. The relative difference between the calculation of
aG,q

NS (s) in the analytic extension of theMS scheme and the stan-
dard treatment of masses in theMS scheme. The discontinuities are
due to the mismatch between thes/m2 andm2/s expansions of the
functionsF andG.
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momentum transfer. TheaV scheme naturally takes into ac-
count quark mass thresholds, which is of particular phenom-
enological importance to QCD applications in the interven-
ing mass region between those thresholds. In this paper we
have utilized commensurate scale relations to provide an
analytic extension of the conventionalMS scheme in which
many of the advantages of theaV scheme are inherited by
the ãMS scheme, but only minimal changes have to be made
to the standardaMS scheme. Given the commensurate scale
relation, Eq.~16!, connectingãMS to aV , expansions inãMS
are effectively expansions inaV to the given order in pertur-
bation theory at a corresponding commensurate scale. Unlike
the conventionalaMS scheme, the modifiedãMS scheme is
analytic at quark mass thresholds, and it thus provides a
natural expansion parameter for perturbative representations
of observables. In the Abelian limitNC→0, theãMS scheme
agrees with the standard effective charge method of QED.

We have found that taking finite quark mass effects into
account analytically in the running, rather than using a fixed
NF between thresholds, leads to effects of the order of 1%
for the one-loop running coupling, with the largest differ-
ences occurring near thresholds. These differences are im-
portant for observables that are calculated neglecting quark
masses and could in principle turn out to be significant in
comparing low- and high-energy measurements of the strong
coupling.

We have also found that our extension of theMS scheme,
including quark mass effects analytically, reproduces the
standard treatment of quark masses in theMS scheme to
within a fraction of a percent. The standard treatment
amounts to either calculating multiloop diagrams with ex-
plicit quark masses or adding higher-dimension operators to
the effective Lagrangian. These corrections can be viewed as
compensating for the fact that the number of flavors in the
running is kept constant between mass thresholds. By utiliz-

ing the BLM scale-setting procedure, based on the massless
NF contribution, the analytic extension of theMS scheme
correctly absorbs both massless and mass-dependent quark
contributions from QCD diagrams, such as the double-
bubble diagram, into the running of the coupling. This gives
the opportunity to convert a calculation made in theMS
scheme with massless quarks into an expression which in-
cludes quark mass corrections from QCD diagrams by using
the BLM scale and replacingaMS with ãMS.

For simplicity we have analyzed the mass corrections
arising from analyticity only to leading order in QCD. For
further precision, our analysis will need to be systematically
improved. For example, at higher orders the commensurate
scale relation connectingaV to aMS will have to be corrected
with finite mass effects. We have seen that the BLM scale
minimizes the difference between the analytic and the con-
ventionalaMS coupling. Thus these kinds of corrections are
not likely to decrease the difference between the analytic and
the conventionalaMS coupling.

Finally, we note the potential importance of utilizing the
aV effective charge or the equivalent analyticãMS scheme in
supersymmetric and grand unified theories, particularly since
the unification of couplings and masses would be expected to
occur in terms of physical quantities rather than parameters
defined by theoretical convention.
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