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The conventional definition of the running couplimgzs(x) in quantum chromodynamics is based on a
solution to the renormalization group equations which treats quarks as either completely massless at a renor-
malization scalew above their thresholds or infinitely massive at a scale below them. The coupling is thus
nonanalytic at these thresholds. In this paper we present an analytic extensigg(gf) which incorporates
the finite-mass quark threshold effects into the running of the coupling. This is achieved by using a commen-
surate scale relation to conneggis(u) to the physicaky, scheme at specific scales, thus naturally including
finite quark masses. The analytic extension inherits the exact analyticity af\tleeheme and matches the
conventionaMS scheme far above and below mass thresholds. Furthermore just asaip ssbeme, there is
no renormalization scale ambiguity, since the position of the physical mass thresholds is unambiguous.
[S0556-282(198)06321-9

PACS numbed(s): 11.15.Bt, 12.38.Bx

I. MOTIVATION main discontinuous. The inevitable result of the matching in
a MS-like scheme is that the running of tM&S coupling in
The running coupling in quantum chromodynamicsthe renormalization scale is nonanalytic—nondifferentiable
(QCD) in the modified minimal subtractiorMS) schemg1]  or even discontinuous—as the quark mass thresholds are
and other MS-like schemes is traditionally constructed bycrossed. Thus there is an intrinsic difficulty in_expressing
solving the renormalization group equations using perturbaphysical, smooth observables as an expansion iMB&ou-
tive approximants to the3 function which change discon- Ppling. It is clearly necessary to restore the finite quark mass
tinuously at the quark mass threshof@s-4]. This is equiva-  €ffects in their entirety in order to restore analyticity.
lent to using effective Lagrangians with a fixed number of Aesthetically, itis unnatural to characterize physical theo-
massless fermions in each energy range between the quaiRS in terms of an artificially constructed renormalization

mass thresholds. Thus in th&S scheme, the8(w) function ~ Scheme such adIS; it is more physical to use an effective
depends on the number of “massless” quarkés(u), charge as de_termlned from experiment to define the funda-
which is taken as a step function of the renormalization scal@€ntal couplingd13]. For example, in analogy to quantum
. Matching conditions at threshold require the equivalencé!€ctrodynamic$QED), one could choose to define the QCD
of one effective theory witm massless flavors to another COUPIiNg as the coefficient,(Q) in the static limit of the
effective theory with one massive andi{1) massless scattering potential between two heavy quark-antiquark test
quarks. It should be noted that this does not prevent one frofaharges,
including quark masses in thelS scheme. However, the
guark masses do not enter into tAéunction since the run- ay(Q)
ning of the coupling is mass independent. o V(Q?)=—4nCe 7
The one-loop matching conditiong5—7] in the MS
scheme require the coupling to be continuous if the matching
is done at the quark masses, although the derivative is diggt the momentum transfey’?=t=—Q?, where CF=(N§

continuous. In two-loop matchin@-10] the coupling itself  —1)/(2N.)=4/3 is the Casimir operator for the fundamen-
becomes discontinuous if the matching is done at the quarfg| representation in SW) (with Nc=3 for QCD). Such
masses, but it can be rendered continuous by modifying thgn effective charge automatically incorporates the quark
MS scheme[3]. Recently, the three-loop matching condi- mass threshold effects in the running, and thus it has an
tions have been computgdO], which, together with the analytic 8 function. The ay, scheme is particularly well
four-loop B function [11], give the possibility to evolve the suited to summing the effects of gluon exchange at low-
MS coupling to four loops with massless quarks. This giveanomentum transfer, such as in evaluating the final-state in-
a reduced dependence on the matching scale, as shown teraction corrections to heavy quark productidd] or in
[12], but possibly a nonphysical threshold dependence. Howevaluating the hard-scattering matrix elements underlying
ever, in such a treatment the derivatives of the coupling reexclusive processd45]. A physical effective charge has the
additional advantage that the Appelquist-Carazzone decou-
pling theoren(16] is automatically incorporated.
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phasized by Shirkov and othef$7]. Our definition allows (ii) Lattice calculations for thel/« and'Y spectra now
one to use a scheme based on MS-like renormalization, byarovide the most precise determinationcafat low momen-
which also, in a simple way, treats mass effects properljum scale§22—-25. It is important to know how finite quark
between the mass thresholds. Thus, instead of having th®ass effects enter into the running of this valueaqfto
number of effective flavorsNg) change discontinuously at lower- and higher-energy scales with as small an error as
(or nearby the quark threshold, we obtain an analytig(x)  Possible.

which is a continuous function of the renormalization sqale  (iii) Finite mass threshold effects in supersymmetric
and the quark masses,. Thus the analytically extended g_rand unified theories are important when analyzing the run-

scheme inherits the mass dependence of the physical schenfid?d and unification of couplings over very large ranges. It
In addition, the renormalization scaje that appears in the has been dlscu_ssed, for e_xample, in RIS, 27). However,
analytically extended schenfeys is directly related to the the scale used in the runnlng_and for the thres_hold effects has
momentum transfer appearing in the scheme and thus has not begn related to the physical scale which is naturally ob-
a definite and simple physical interpretation taln_ed in our approach. ; ; ; ;
simp'e pny pretation. ~ . (iv) It is natural to unify theories by matching physical
The essential advantage of the modified schemg iS ., jings and masses at the unification scale. This can be
that it prqwdes an ana_lytlc mterpglgﬂon of conventional Ms'accomplished in thew, scheme or, equivalentVys.
renormalized expressions by utilizing the mass dependence
of the physicalay,, scheme. In effect, quark thresholds are
treated analytically to all orders m?/Q?; i.e., the evolution
of our analytically extended coupling in the intermediate re- In the case of the Abelian theory, the coupliag derived
gions reflects the actual mass dependence of a physical €fom the heavy lepton potential is equivalent to using the
fective charge and the analytic properties of particle produceffective charge defined from the running of the photon
tion in a physical process. Just as in Abelian QED, the maspropagator. In the non-Abelian theory the gluon propagator
dependence of the effective potential and the analytically exis not gauge invariant; one thus has to turn to a physical
tended schemeys reflects the analyticity of the physical gauge-invariant observable such as the heavy quark poten-
thresholds for particle production in the crossed channefial.
Furthermore, the definiteness of the dependence in the quark The effective charger,(Q), defined as in Eq(1), can be
masses automatically constrains the renormalization scalé@lculated as a perturbation expansionwis:
Alternatively, one could connedts to another physical

II. DETAILS OF ay,

charge such aap defined frome™e™ annihilation. Q ai/n_s(:“)
Our approach should be compared with the standard treat- av(Q)= ams(p) +vars wl w
ment of quark mass threshold effects in 18 scheme. For 3
fixed order inag the corrections due to finite quark mass . _(9 ays(#) g ©
threshold effects which we are considering in this paper have ZMS| o '

been calculated for the hadronic width of théoson and the
r~lepton semihadronic decay raf¢8-20,9. The calcula- The first two nontrivial terms in the perturbative series have

tions have been made both exactly to oreéfs and as ex- been computed in the!S schemé28-33. A comprehensive
pansions in terms an?/Q? and Q% m? for light and heavy analysis ofey to ordera® has recently been given by Peter
guarks, respectively. Note that in principle the determinatiort 33}:
of the finite mass threshold effects for physical observables
in dimensional regularization schemes would require a com-
plete all-orders analysis of the higher-twist mass corrections
to the effective Lagrangian of the theory.
There are a number of other reasons to construct an ana- 133 2472— 7% 11 ,
lytic extension of thenps scheme: Voms(u=Q)= (m+ 61 4 §3) N&
(i) The comparison of the values of the coupliag as
determined from different experiments and at different mo-
mentum scales is an essential test of Q@@ a recent re- _(
view of existing measurements, gg]). One source of er-
ror is neglect of quark masses in the determinationgénd
in the subsequent running of the coupling from the scale 35 3
where it has been determined to the conventional reference +[<3—2— 2 §3)CF
scale, thez-boson mass.

2 5
vis(n=Q) == 3 Nc+ & Bo=2.583-0.278\¢,
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@_Z§3 F c+g/31
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c ,30+§3ﬁo

7
| =t
. . o . ( 144" 7%
A somewhat similar approach has been tried iid], but using
the unphysical momentum space subtraciib®fOM) renormaliza-

_ 2
tion scheme to implement the mass thresholds. =39.650-4.14MNg+0.077Ng, )
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whereB, and 3, are the first two universal coefficients in the momentum transfer in the heavy quark potential and#he
B function. It is also known that the next coefficient in the function is given by

expansion is nonanalytic ik=0, since it contains a la{

term[30]. This nonanalyticity does not originate from fermi-

2 3 4 5
onic corrections to the heavy quark potential. This can beM: 0 &V Py a\2’ P2 a\,o{ $> a‘;
seen by adopting a physical gauge. In such gauges we wouldd In Q ™ ™ T 77
reproduce the same analyticity structure for fermionic cor- (4)

rections in QCD as we find in QED. In QED, however, we

have no problem with analyticity at any order in perturbationThe first two terms in this series coincide with the universal
theory. Note that the total derivative of, with respect to and well-known first two terms in the Callan-Symanzk
the renormalization scale of the ays scheme is zero, since function [35], i.e., 4=, and )= g,, but the higher-

ay is a physical observable. order terms,y{?), etc., depend on the observable under
The scalg(Q) dependence of the effective charge definesstudy?
the equivalent of the Gell-Mann—Lows function for the For completeness we give the coefficients in the Q€D

effective charge in QED34]. In the case ofw,, Q is the function with the normalization used above:

o 11 1
9= Nc— 3 Np=5.500-0.33N¢,

V=TI N2~ > NNe—  CoNp=12.750- 156N
127°¢ 12 CTF g CFTFT S R

2o (D) (0). 2 0,
P = Baws— v v js— o )Ul,m"‘ PO,

3
ct

103 11247°—=% 121
=\t —F5a——— T 753
48 384 144

343 11
Ne+

“ 288 12%8

NC 102
CF+3_2F

=193.074-27.014Ng+ 0.65N2.

The results given above in theys scheme have been ob- The analytic dependence eafy, is then transferred to the
tained using massless QCD. The effects of nonvanishingnalytically extendedvizs scheme. The usual massless ex-
guark masses can be taken into account by using pressions are recovered far above or far below any individual
Q?-dependeniNg, which will be derived from the one-loop quark mass threshold.
massive vacuum polarization function in the next section.
A. Calculation of the mass dependence
for the running coupling
Ill. CALCULATION OF THE RUNNING COUPLING

TO ONE-LOOP ORDER The couplingay(Q), which is derived from heavy quark

scattering, is closely related to the renormalization of the
Our approach in this paper is as follows: thg(Q)

scheme automatically includes the effects of finite quark

masses in the same manner that lepton masses appear if5ome authors denote the coefficiaff®) by A, instead. The

Abelian QED. We can then relate théS scheme to ther,  convention used here is to emphasize the difference between the

scheme through a commensurate scale rel@86h which is  dependence on the physical sc&leand the unphysical renormal-
effectively a scale transformation between the two schemeszation scaleu.
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FIG. 1. Single insertion of massive quark-antiquark loop into a
gluon propagator, giving the quark part of the one-loop gluon
vacuum polarization. 06 | N

gluon propagator. In physical gauges with=Z2,, the cou-
pling renormalization is due purely to self-energy insertions L i
in the propagatof. 04 | -
For the purposes of this paper, it will be sufficient to
restrict our analysis to one-loop ordeig., y(?.
The physical running coupling in the, scheme, normal-
ized at an arbitrary momentum transfer sc@lg, may be 02
represented as

LI B S B B

aV(QO) (5) ° ”1IO_1 I II”I“WI I II“”;IO I II“”;IOZ —

l_H(QIQOIQV(QO)). 0

ay(Q)=

The vacuum polarization functiod may be computed from FIG. 2. The curve shows the contribution to the continuxlfg%

the perturbative expansion of the renormalized propagatdor just one quark as a function pf=Q2/m? wherem is the mass

between heavy quarks. The coupling is then of the quark.N{®, is found by using the massive quark part of the
one-loop gluon propagator instead of using the theta function

- - thresholds conventionally used in dimensional regularization
av(Q)=ay(Qo)[ 1+ T+ TP+ 113+ -], (6)  schemes.

where we have used the shorthdibe I1(Q, Qg , ay(Qy)) for _ n.
the renormalized sum of all one-particle irreducigleP]) I2(Q,Qq, ) =Te >, =
diagrams for the gluon self-energy. Since the coupling has =1 37
the valuea,,(Qg) =« at the physical renormalization point
Q=Qo, the self-energy obeys the boundary condition X
1(Qo,Qq, @) =0.

We begin by considering the integral representation of the 1
quark part of the one-loop gluon vacuum polarization dia- —f 62(1-2)In[1+2(1-2)p;i(Qo)]|,
gram (see Fig. I 0

jolazu—z)ln[1+z(1—z>pi<Q>]

where p=Q?%/m?, T=%, the superscript0) indicates the
one-loop order, the subscrigtindicates the quark part, and

Strictly speaking, this is only true up to one loop in QCD and two
loops in QED. At higher orders new types of diagrams appear in théhe sum runs over all guarl(s). Thus the quark component
f the one-loopy function is

potential which cannot be described as simple self-energy insertiord
in the propagator. In QCD such a diagram is the so-callétl “
graph” [37] and in QED the light-by-light sc'atterlng' diagram hgs © L (FO{/ .
the same effect. In the QED case, the light-by-light scattering v.q(Q)= 3 -
graphs have an anomalous dependence on the external charges and
a cut structure corresponding to particle production. In addition, we
note that the nonanalytic contributions &g, in higher orders in

7 day |©

a_\2/d|nQ

q
o dII(Q,Qo, )

QCD arise from corrections to theH' graph.” Therefore it could ag dinQ ™
be argued that these types of diagrams should be excluded when
defining theV scheme in QCD and QED. ‘o - .
“We expect the main effects from including the quark masses a-trhIS glve§ the contribution taN- from quark flavor,
the one-loop level as this is the leading term in thdunction.
However, at small scales the higher-order terms will become im-
portant, especially since the relative importance of Kieterm is SThis result was first obtained by Georgi and PolitZ89] in the
larger for ™ than for(?). A study at the two-loop level requires MOM scheme and was applied to general gauge theories by Ross

the massive two-loop diagrams, which is work in progress. [40].
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] and thence into the QCD one-loop renormalization group
1 equation for the coupling constant:

2
@y
- —. (10

We may then solve this renormalization group equation to
yield an expression fow,, which is analytic at mass thresh-
olds. Note that the mass dependence of ¢hiinction ap-
plies specifically to ther, schemé.

B. Commensurate scale relation betweew, and awys

_ We now relate the mass dependence ofdfyescheme to
the MS scheme using the commensurate scale relation
[13,36 between the two schemes. We use the next-to-next-
to-leading-ordefNNLO) results of Petef33]. The first step

50 60 70 80 80 is to invert Eq.(2) to obtainagys as an expansion imy,:
Q [GeV] o . (Q) a\z/(M)
ays = —
FIG. 3. Continuous\®, for various quarks; lightest to heaviest MS v Vim 0
goes top to bottontd,c,b,tas one proceed downwards; thends 3
plots are virtually identical at this scale to tHe Q runs from 1 to m 2 ay(M) e (11)
M, GeV [for reference, the quark massés GeV) used arem, 2VIM i ’

=0.004,my4=0.008,m;=0.200,m.= 1.5, my=4.5, andm,=175].

The needed commensurate scale relation is obtained by fix-

(0) —_ - P
vip)= gﬂ 1+ 21-2)p

=1-——

1 72(1-2)%p;dz ing the scalesM in Eqg. (11) such that the (®-

and y1-dependent parts of the coefficients,, and m,,,

are absorbed into the running of the couplieg(M). This

24 o ensures that all vacuum polarization dependence is summed
+ tanh ! \/——, (8) into the heavy quark potential. Application of this procedure

Pi pPa+p; pit4 in NNLO, using the multiscale approa¢86], gives the fol-

lowing scale-fixed relation between, and the conventional

which is displayed in Fig. 2 as a function pf Thus, by MS:

keeping the explicit quark mass dependemte pecomes an
analytic function of the scal®.

. 2 - ay(QY)
In fact, the approximate form aps(Q) = ay(Q*) + = Ng ———~
5 -1
NEPY(pi)= @+ ) ) (5 24mtowt 11,
pi T\ T2t e 2 fNe

gives an accurate approximation to the exact form to within
1% over the entire range of the momentum tranSfer.

The one-loop analytitN \, is shown in Fig. 3 for various
quark flavorg[for reference, the quark masss GeV) we
used arem,=0.004, my=0.008, mg=0.200, m;=1.5, m,
=4.5, andm,=175].

We may now substitute theg \, into the one-loop QCLY
function coefficient,

385 11 ad(Q** )
1o~ 7 %3)CFNe| ——=—

2 *% *kk
:aV(Q*)+2aV(S )+4625—V(Q )

(12

5This approximate form can be obtained from using a rigorous ‘Given ay(Q,), one can obtain the coupling at other scales in-
double-asymptotic-series approach, knowing the behavior of theluding the mass dependence by numerical iteration such as the
function at the low- and high-momentum transféd]. fourth-order Runge-Kutta algorithm.
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above or below the quark mass threshbithe coefficients 5 2N¢ ad(Q**)

in the perturbation expansion have their conformal values; as(Q)=ay(Q*)+ T—+--- , (16)
i.e., the same coefficients would occur even if the theory had Tr

been conformally invariant with/®=0 and thus do not
contain the diverging ¢(®as)™n! growth characteristic of
an infrared renormalof42]. The NLO coefficientz N¢ is a
feature of the non-Abelian couplings of QCD and is not
present in QED. The commensurate scé)dsandQ** are

for all scalesQ. Equation(16) not only provides an analytic
extension of dimensionally regulated schemes, but it also ties
down the renormalization scale to the physical masses of the
quarks as they enter into the vacuum polarization contribu-
tions toay,. There is thus no scale ambiguity in perturbative

given by expansions inv, or ays.
5 Taking the logarithmic derivative of the commensurate
Q*=0Q exp{g =2.30Q, (13)  scale relation given by Eq16) with respect to IrQ, we can
define they function for theays scheme as follows:
105 9 Ce *%
** -0 @ - _ ~ 2N¢ ay(Q*™)
Q7 =Q XF{ 128 8 53) No IS Q)= Y(Q*) +2 5 ——— y(Q**). (17)
103 21 ~
+ EZ+E§3 To lowest order this givesb%(Q)=¢§,‘l’(Q*), which in
turn gives the following relation betweeﬁ:h(FO?\,,—S andN{©):
=6.53%, (14) , ,
NI —NO
whereas to this orde®*** is not constrained. However, a N ms(Q)=NgW(Q™), (18)

first approximation is obtained by settif** =Q** . Also

note thatQ* is unchanged when going from NLO to NNLO. Where, to lowest ordeQ* =exp(5/6RQ. .

The scaleQ* arises because of the convention used in de- We can also use the approximate form given by @gto

fining the modified minimal subtraction scheme. Com_paringWrlte

the scalesQ and Q*, we find that the scale in th#S 1

scheme(Q) is a factor~0.4 smaller than the physical scale N(FO;\TS(Pi)E _5) ;(1+ =

(Q%). ’ piexXp(3) Pi
Alternatively, one can write the relation betweefs and

ay as a single-scale commensurate scale rel@ddh Inthis  In other words, the contribution from one flavor i80.5

-1

1+ (19

procedureQ* = Q** where when the scal® equals the quark mass;. Thus the stan-
dard procedure of matchingys(u) at the quark masses is a
Q*=0Q eXW’E+[<3_5_ § 53)CF— (E_ z 53) Ng ﬂ] zeroth-order approximation to the continudis.
6 [132 2 48 4 ™ Adding all flavors together gives the totd}<(Q)

(15  which is shown in Fig. 4. For reference the continudysis
The conformal coefficients are the same in the two@lSO compared wilth the conventional procedure of talkilag
procedure€. However, the single-scale form has the advan-to be a step function at the quark mass thresholds. The figure
tage that the non-Abelian perturbation theory matches in S"OWS cIeaLIyothat there are hardly any plateaus at all for the
simple way the corresponding Abelian perturbation theory ircontinuousN}(Q) in between the quark masses. Thus
the limit No—0 with Cras andNg/Cg fixed [43]. For N there is really no scale below 1 TeV whe Of\,l—S(Q) can be

=3 we have InQ*/Q)=5/6+4.178x /. approximated by a constant. In other words, forQubelow
1 TeV there is always one quark with mass such that
C. Definition of the analytic ays m?<Q? or Q?>m? is not true. We also note that if one

We now adopt the commensurate scale relation with th(¥"OUId use any other scale than the Brodsky-Lepage-

: . . - i Q)
effective charge of the effective potential as a definition oflackenzie(BLM) scale forNg (Q), the result would be
the extended schenteys: to increase the difference between the analiticand the

standard procedure of using the step function at the quark
mass thresholds.

8Note that the NNLO results depend crucially on whether or not

the “H graph” is included in the definition of the heavy quark D. Comparing the analytic ays(Q) with apys

potential since it is the unique source of théNZ terms in the We can obtain the renormalization group equation for the
NNLO coefficient. We thank M. Peter for communications on this analytic extension of theMS coupling aM_S by using
point, N© (Q), etc.:

%Both the multiple- and single-scale setting methods generate a F-MS

term proportional t&C:Nc in the NNLO conformal coefficient. The daee NZ—(Q)
origin of this term, which has the same color factor as an iteration aws(Q) _ —E@(Q) *Ms 4 (20)
of the potential, is not clear and should be further investigated. dinQ MS T '
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News(Q) 00 Q) — ot (Q)1/ s (Q)
[ HARRRN | T T T ] 0.03 T T T T T
6 / H .
5.5 :— —: 0.02 _
s | . [ ]
. 0.01 |- .
b ] [ _ NEw(2Q)
5 0 LN N e . % —__
4 - — - L
b r I ~——"” ............... 1
4 i - i
35 - ] -0.01 /, foozTS(Q/Z) N
i ' / ]
b 4 !
3 ] - E §
-0.02
1 10 10° 10° 1 10 107 0’
Q [GeV] Q [GeV]
__FIG. 4. The continuougl(F?)M—S in the analytic extension of the FIG. 5. The solid curve shows the relative difference between

MS scheme as a function of the physical sc@léFor reference the the solutions to the one-loop renormalization group equation using
continuousN¢ is also compared with the conventional procedure ofcontinuousNg, ays(Q), and conventional discrete theta-function
taking Ng to be a step function at the quark mass threshplds. thresholdsays(Q). The dasheddotted curve shows the same
quantity, but using the scale@ (Q/2) in N(FO)M—S The solutions
have been obtained numerically starting from the world average

The solution to Eq(20) provides an analytic scale-fixed [21] ap(M ;) = 0.118.

extension ofays(w), which we have denoted agys. The
result can be compared with the standard method of compufy 1o m_. This is a significant difference at the level of the

ing as, based on the evolution with distingtfunctions for - yrecision of currenta determinations. The primary factor
different quark mass regimes. When doing this comparisoiyhich influences the running is the value of the one-lgop

one has to keep in mind that it is possible to take quark masgnction, (=1 —IN:: a larger value ofNg gives a

threshold effects into account also in tM& scheme when smaller ,p(o) and makesyg run more slowly; conversely, a
calculating an observable. In the next section we will com-smaller value ofNg gives a larger{®) and a runs more
pare our analytic extension of thdS scheme with the stan- quickly.
dard treatment of quark mass threshold effects for the had- We can trace the difference in the couplings as follows:
ronic width of theZ boson. However, for most observables gt M, , the continuous functioﬁI(FO?\,,—S is above the discrete
the quark mass threshold effects are not known and thus it igyreshold value of 5, but goes below it at 30 GeV; it remains
also important to compareys and ays directly. below the discrete threshold value umtij, where it becomes
Figure 5 shows the relative difference between the tWQarger and remains larger untit3 GeV, where it becomes
different solutigns of the one-logp renormalization groupgmaller again, etc.
equation, i.e.[ aps(Q) ~ ams(Q) [/aws(Q). The solutions  Thys, running down fronM, s runs slower thamrgs
have been obtained numerically starting from the world avy,nij| 30 GeV where the difference between them begins to
erage[21] ays(Mz)=0.118. The figure shows that taking close asays runs faster thamrys: at ~8 GeV, the differ-
the quark masses into account .in the running leads to effectshce starts to increase again until thequark threshold
of the order of 1%, most especially pronounced near threshivhereaM—s starts to run slower thaays and the difference
olds. _ _ . between the two decreases unti8 GeV, etc. This behavior
In addition, the figure shows the results obtained by usingyrms the peaks seen in Fig. 5. Thus we see Thgs will
two different scales im(po,?m—s(Q), namely, L and Q/2,  end up higher thanays when running down to low-
when solving Eq.(20). This shows clearly that the BLM  momentum transfers starting from .
scale minimizes the difference between solutions using the
continuous and discontinuousl:. The other two scale IV. APPLICATIONS
choices gives differences of several percent for si@all
We see from the figure that the effect of treating thresh- In this section we will show how to compute an observ-
olds continuously can be of the order of a few percent in theable using the analytic extension of kS scheme and com-
magnitude of the QCD coupling when running down from pare with the standard treatment of quark mass threshold
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effects in theMS scheme. The essential difference between
the perturbative expansions in thgs and ays couplings is

(ND) / ~ (N> *
a¥i<s>=aM—;<Q>[l+ Q%) 2 F(m?g)

terms that contain quark masses. In the analytic scheme the 7 ™ m a=1

quark mass effects are automatically included, whereas in the 6 5

MS scheme they have to be included by hand for each ob- n 2 G(% . (23)
servable. Q=N +1 S

For some observables, such as the hadronic width aZ the
boson and the-lepton semihadronic decay rate, correctionswhere
due to nonzero quark masses have been calculated within the
MS schemg18-20,9. To be specific we are interested in .
the so-called double-bubble diagrams where the outer quark Q" =exp 3| - 13 {3
loop which couples to the weak current is considered mass-
less and the inner quark loop is massive. Other types of masSperationally, one next simply drops all the mass-dependent
corrections, such as the double-triangle graphs where the exerms in the above expression and replaces the fikedou-
ternal current is electroweak, are not taken into account b}SImg a( v with the analytics. (For an observable calcu-
the analytic extension of th®IS scheme(For a recent re-
view of higher-order corrections to th&boson width, see

Js=0.7076/s. (29

lated W|th massless quarks, this step reduces to replacing the
coupling) In this way both the massledk contribution as

[44].) well as the mass-dependent contributions from double-

To illustrate how to compute an observable using the ands pple diagrams are absorbed into the coupling and we are
lytic extension of theVlS scheme and compare with the stan- s with a very simple expression

dard treatment in the\S scheme, we consider the QCD

corrections to the quark part of the nonsinglet hadronic width a?‘sq(s) as(Q*)
of theZ boson 'S, . Writing the QCD corrections in terms =
of an effective charge, we have

= (25
a aw
This simple expression reflects the fact that the effects of
quarks in the perturbative coefficients, both massless and
massive, should be absorbed into the running of the cou-
pling. L
To compare with the ordinaylS treatment, we need the
functionsF andG in Eq. (23). Expansions in terms ah?/s
where the effective charge'r“i(s) contains all QCD correc- ands/m? can be found if18,19,9, whereas they have been
tions: calculated numerically ifi20]. In addition, theag’ correction
due to heavy quarks has been calculated as an expansion in

(S)

GeM 3
T haig= Py E {092+ (g2 1+ cF

(21)

(ND) LN N s/m? in [9]. It should also be noted that the functiGhwas
ay q(S) s (1) s (1) | & 3 1_1+ 2 first calculated for QED45]. Here we will use the following
T ™ T &l 123 3 expansions:
mé 1 [ m? B mz)z 13 (mz)
+F ?)—§| ﬁ F S)_(S 3 4{3—In S
6 ) (m2)3 136 16 56I (mz)
S G(@ ]+ , 22 ) |24z 272 e
Q=N +1 S
8 m?
—2—7In2(?) , (26)
The functionsF and G are the effects of nonzero quark
masses for light and heavy quarks, respectively. In the fol-
lowing we will not restrict ourselves to the cas&s=M; G(m_) _S 44 2 In( S )
since we want to compare the two treatments of masses for\ S m? |675 " 135
arbitrarys. Thereby the number of light flavoid, will also S \2 1303 1 s
vary with s. We will also assume that the matching is + _2) - - In(—) , (27)
done at the quark masses. Thus a quark with mas. is m 1058400 2520

considered as light, whereas a quark with mass u is
considered as heavy. which are good to within a few percent far?/s<0.25 and

To calculatea$(s) in the analytic extension of thiS S/ m?<4, respectively. We will also use the relatif20]
scheme, one first has to apply the BLM scale-setting proce- ) ) )
dure, which absorbs all the massless effects of nonkkro F(m—) —G(m— n f In(m—> _( 11+ ¢ ) (29)
into the running of the coupling. This gives 6 S 12 3°3

S
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Nrsa(s/m”?) (&~ e sl/
i B S 0.004 T
0'8 -_ _- b
N ] 0.003
06 F -
04 | . 0.002 [
0z | ]
0.001 |
0 r | -
-0.2 + -
0
-0.4 -
06 Bl el el el S 000t Lmwwsal v il 0t
107 107" 1 10 10° 3 10 10? 10°
s/m? V3 [GeV]
FIG. 6. The effective contribution thix in the o coefficient in FIG. 7. The relative difference between the calculation of

the standardS scheme from a quark with massas a function of ~ @r'¢(S) in the analytic extension of thelS scheme and the stan-

s/m? (using = /). The discontinuity between the two expansions dard treatment of masses in thtS scheme. The discontinuities are

in s/fm? andm?/s can be seen at the nonanalytic pcfn?= 4. due to the mismatch between them? andm?/s expansions of the
functionsF and G.

to getFin the |r12terval 0.25m?/s<1 since the expansion of constant in the running, this effect has to be taken into ac-
F in terms ofm®/s breaks down fom?/s>0.25. _ count by adding a positive contribution to thé coefficient,
Before carrying out the comparison of the analytic exteny ¢ ' the functionG. Since the massless contribution is nega-
sion of theMS scheme with the standard treatment, it istive, this means that the contributionk becomes negative
instructive to look at the effective contribution m?‘i(S) for a heavy quark. Once the threshold has been crossed, the
from one flavor with mase as a function ok. To make the number of flavors in the running changes and the need to
arguments more transparent, we will use the renormalizationompensate for a too smatzs vanishes rapidly as the scale
scalex = /s when doing this. For sma#, when the quark is IS increased above the threshold. For scales well above the
considered heavy, the contribution is given B{m?/s), thresh_old, th_e mass effects are neg_ligible and the massless
whereas for larges the quark is considered as light and resultis regained a8 goes to zero. This should be compared
contributes with F(m?/s)— £+ 2¢5. Normalizing to the with the analyticMS scheme wherBlg is increased continu-

massless contribution- £+ 2¢, gives the contribution to ©usly in the running.

the effectiveNr in the a2 coefficient: To compare the analytic extension of S scheme with
the standardvS result forep'5(s), we will apply the BLM
( m? scale-setting procedure also for the standstfi scheme.
G<?) This is to ensure that any differences are due to the different
27 for Vs<m, ways of treating quark masses and not due to the scale
s -+ choice. In other words, we want to compare E@®3) and
eff [ 2 |_ . . . (5)
Ng s m2> = m2 (29) (25. As the normalization point, we useyd(M)=0.118,
F(—) -L+27 which we evolve down taQ* =0.7076M, using leading-
s for ys>m, order massless evolution witli-=5. This value is then used
| —EtiG to calculatea}y(Mz) =0.1243 in theMS scheme using Eq.
(23). Finally, Eq. (25 gives the normalization point for
which is shown in Fig. 6 as a function efm?. aws(Q*).

At first it might seem unnatural that the effective contri-  Figure 7 shows the relative difference between the two

bution to Ng in the a2 coefficient is negative for heavy EXPressions forp () given by Eqgs(23) and(25), respec-

quarks. However, this is a characteristic feature of the starfiVély- AS can be seen from the figure, the relative difference

dardMS scheme which arises from the fact that the numbefS Smaller than 0.2% for scales above 1 GeV. Thus the ana-

of flavors in the running of the coupling is kept constant. !ytic extension of theViS scheme takes the mass corrections

Starting from a scale well below the threshold, the number oft0 account in a very simple way without having to include
flavors in the running as well as in the? coefficient is not ~ an infinite series of higher-dimension operators or doing
affected by the heavy quark. As the threshold is approacheﬁompl'catEd multiloop diagrams with explicit masses.

from below, the number of flavors in the running should
increase, which would make the running of the coupling
slower (since ¢(® would be smallex, which in turn should An essential feature of the,/(Q) scheme is that there is
lead to a largerrys. But since the number of flavors is kept no renormalization scale ambiguity, sinQ is the physical

V. CONCLUSION
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momentum transfer. The, scheme naturally takes into ac- ing the BLM scale-setting procedure, based on the massless
count quark mass thresholds, which is of particular phenomNg contribution, the analytic extension of thdS scheme
enological importance to QCD applications in the interven-correctly absorbs both massless and mass-dependent quark
ing mass region between those thresholds. In this paper weontributions from QCD diagrams, such as the double-
have utilized commensurate scale relations to provide ahubble diagram, into the running of the coupling. This gives
analytic extension of the conventiondS scheme in which the opportunity to convert a calculation made in thiS
many of the advantages of thg, scheme are inherited by Scheme with massless quarks into an expression which in-
the ays scheme, but only minimal changes have to be madéludes quark mass corrections from QCD diagrams by using
to the standardrys scheme. Given the commensurate scalehe BLM scale and replacingys with ays.
relation, Eq.(16), connectingrs to .y, expansions ifvys For simplicity we have analyzed the mass corrections
are effectively expansions imy to the given order in pertur- arising from analyticity only to leading order in QCD. For
bation theory at a corresponding commensurate scale. Unlikiirther precision, our analysis will need to be systematically
the conventionakvys scheme, the modifiedys scheme is improved. For examp!e, at higher _orders the commensurate
analytic at quark mass thresholds, and it thus provides &cale relation connectingy to afs will have to be corrected
natural expansion parameter for perturbative representatio4th finite mass effects. We have seen that the BLM scale
of observables. In the Abelian limNc— 0, theays scheme ~ Minimizes the d|ffe_rence between th_e analytic and_the con-
agrees with the standard effective charge method of QED. ventional as coupling. Thus these kinds of corrections are

We have found that taking finite quark mass effects intonot likely to decrease the difference between the analytic and
account analytically in the running, rather than using a fixedhe conventionakys coupling.
N between thresholds, leads to effects of the order of 1% Finally, we note the potential importance of utilizing the
for the one-loop running coupling, with the largest differ- av effective charge or the equivalent analydigis scheme in
ences occurring near thresholds. These differences are irgupersymmetric and grand unified theories, particularly since
portant for observables that are calculated neglecting quarthe unification of couplings and masses would be expected to
masses and could in principle turn out to be significant inoccur in terms of physical quantities rather than parameters
comparing low- and high-energy measurements of the strongefined by theoretical convention.
coupling. L

We have also found that our extension of 18 scheme,
including quark mass effects analytically, reproduces the We would like to thank A. Hebecker, C. Lee, H. J. Lu, G.
standard treatment of quark masses in M8 scheme to Mirabelli, M. Peter, D. Pierce, O. Puzyrko, A. Rajaraman,
within a fraction of a percent. The standard treatmentand W. Kai Wong for useful discussions and comments. This
amounts to either calculating multiloop diagrams with ex-work was supported in part by the Department of Energy,
plicit quark masses or adding higher-dimension operators toontract DE-AC03-76SF00515, Deutsche Forschungsge-
the effective Lagrangian. These corrections can be viewed aseinschaft, Reference No. Me 1543/1-1, and the Swedish
compensating for the fact that the number of flavors in theNatural Science Research Council, contract F-PD 11264-
running is kept constant between mass thresholds. By utiliz301.
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