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We consider the standard model with two Higgs doublets with the most general Yukawa coupling terms
~‘‘type III’’ !. In the model, the neutral-Higgs-mediated flavor-changing neutral currents~FCNC’s! are allowed,
but must be reasonably suppressed at low energies of probes. It has been known that the existing hierarchies of
quark masses render this suppression at low energies rather natural. On the other hand, the model has been
regarded by many as unnatural because of the absence of any symmetry that would ensure the persistence of
this suppression as the energy of the probes increases. The opinion has been based on the expectation that the
mentioned FCNC’s would increase by large factors at increasing energies. We perform a numerical analysis of
the flow of these FCN coupling parameters as governed by the one-loop renormalization group equations
~RGE’s!, in a simplified case when Yukawa couplings of the first quark generation are neglected. The analysis
shows a remarkable persistence of the mentioned FCNC suppression and thus indicates that the model is not
unnatural in the RGE sense. Further, we point out two mistakes in the Yukawa RGE’s of Machacek and
Vaughn at the one-loop level.@S0556-2821~98!00621-3#

PACS number~s!: 11.10.Hi, 12.15.Mm, 12.38.Bx, 12.60.Fr

I. INTRODUCTION

The ~standard! model with two Higgs doublets whose
Yukawa couplings in the quark sector have the most general
form was apparently first introduced in 1973 by Lee@1#. His
main motivation for introducing the model, later also known
as the general two-Higgs-doublet model~G2HDM! or ‘‘type
III’’ 2HDM, was to study new possibleCP-violating phe-
nomena. Others@2# continued investigating the phenomenol-
ogy of the model along these lines.

Subsequently, Glashow and Weinberg@3# in 1977
stressed that only those models with two Higgs doublets
whose Yukawa coupling sector possesses specific discrete
@or equivalently U~1!-type# family symmetries lead to auto-
matic and full suppression of the effective flavor-changing
neutral~FCN! Yukawa parameters, and ensure this suppres-
sion at any energy of the probes. They pointed out that there
are basically two types of such 2HDM’s—the so called
‘‘type I’’ and ‘‘type II’’ models, in which either one Higgs
doublet alone is responsible for all the quark masses
@2HDM~I!# or one Higgs doublet is responsible for all the
up-type quark masses and the other for the down-type quark
masses@2HDM~II !#. This point of Glashow and Weinberg
apparently had a great impact on the physics community,
especially because most of the mentioned flavor-changing

neutral currents~FCNC’s! mediated by neutral Higgs boson1

must be strongly suppressed at low energies of probes
(&Eew) due to the firm experimental evidence of FCNC sup-
pression. Consequently, the general 2HDM, which has no
such automatic and full suppression of the FCN Yukawa
coupling parameters, apparently was not investigated by
physicists until the late 1980’s.

Since the late 1980’s, there has been a moderate resur-
gence of investigation of the G2HDM@4–7#. These works
investigatelow-energyphenomena (E&Eew) as predicted by
G2HDM’s, with most of the FCN Yukawa coupling param-
eters~at low energies of probes! being generally nonzero but
reasonably suppressed.2 Reference@4# investigates predic-
tions of the model mainly forCP-violating, and Ref.@7#
mainly for FCNC-violating phenomena. The resulting ampli-
tudes then include FCN Yukawa coupling parameters at low
energies of probes.

The authors Cheng, Sher, and Yuan~CSY! @5# offered
arguments which render the G2HDM reasonably natural
from the aspect oflow-energyphysics, thus countering one
part of the reservations based on the arguments of Glashow
and Weinberg@3#. CSY basically proposed specificAnsätze
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1A more precise expression would be ‘‘neutral flavor-changing
scalar ~Yukawa! coupling,’’ since these couplings have no four-
vector current structure involvinggm.

2Low-energy experiments show that those flavor-changing neutral
coupling parameters which do not involve at quark are suppressed
in nature at low energiesE;mq , while for those involving at
quark there is no experimental evidence yet available.
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for the Yukawa parameters in the G2HDM at low energies of
probes, specifically the FCN Yukawa coupling parameters,
motivated largely by the existing mass hierarchy of quarks.
Therefore, theirAnsätzeare reasonably natural or, more con-
servatively, not ‘‘unnatural.’’ Motivation of theirAnsätzedid
not explicitly involve any family symmetries. Moreover,
they showed that theirAnsätze allow the masses of neutral
scalars to be as low as;102 GeV while still not violating
the available~low-energy! data on suppressed FCNC phe-
nomena. Later on, Antaramian, Hall, and Rasˇin ~AHR! @6#
proposed somewhat similar~but not identical! Ansätze,
which they motivated by their requirement that the Yukawa
interactions have certain approximate flavor symmetries. The
CSY and similarAnsätzewere mainly used by other authors
@4# and @7# in their investigations of low-energy phenom-
enology of the G2HDM.

We wish to reemphasize that the mentionedAnsätzecoun-
tered onlyone part of the arguments~based on Ref.@3#!
against the G2HDM. The symmetry arguments of Glashow
and Weinberg@3# did not just suggest that a natural 2HDM
should have a well motivated suppression of the flavor-
changing neutral Yukawa parameters atlow energies, but
that these FCN parameters should remain suppressed also
when the energy of probes increases. Based on this latter
point of Ref. @3#, a large part of physics community has
continued regarding the G2HDM as unnatural. The main
point against the G2HDM has consisted of the fear, or con-
jecture, that the FCN Yukawa coupling parameters in the
G2HDM, even though suppressed at low energies by reason-
ably motivated arguments, would behave unnaturally as the
energy of probes increases. Stated otherwise, it has been ex-
pected that at least some FCN Yukawa coupling parameters
would increase by a large factor or even by orders of mag-
nitude at increased energies~well below the Landau pole!,
due to the absence of explicit discrete@or U~1!-type# family
symmetries in the Yukawa sector. The absence of such sym-
metries, according to the argument, would in general result
in a strong ‘‘pull-up’’ effect on the small flavor changing by
the much larger flavor-conserving Yukawa coupling param-
eters as the evolving energy increases. In such a case, the
model would then generally contain a~thus unnatural! fine-
tuning: large ‘‘bare’’ FCN Yukawa coupling parameters at
high energies would have to be fine-tuned in order to obtain
at low energies their phenomenologically acceptable sup-
pression.

Therefore, we investigate this question in the present pa-
per, by performing a numerical analysis of the one-loop
renormalization group equations~RGE’s! of the G2HDM. In
Sec. II we present the model and write down conditions for
the suppression of FCN Yukawa coupling parameters at low
energies~CSY Ansatz!. In Sec. III we write down the one-
loop RGE’s for the Yukawa coupling parameters in the
G2HDM in a specific form convenient for numerical analy-
ses. A short derivation of the RGE’s is given in the Appen-
dix. Section III contains comparisons with the existing litera-
ture on RGE’s. In Sec. IV we then numerically investigate
the RGE evolution of the Yukawa coupling parameters for
quarks, neglecting for simplicity the Yukawa parameters of
the light first generation of quarks. We present the resulting

evolutions of the FCN Yukawa coupling parameters for vari-
ous low-energyAnsätze, i.e., essentially for variations of the
CSY Ansätze. We also observe some other interesting prop-
erties of the presented evolution. Section V contains a sum-
mary and conclusions.

II. THE MODEL AND LOW ENERGY ANSÄTZE

Yukawa interactions for quarks in the G2HDM in any
SU(2)L basis have the most general form

LG2HDM
~E! 52 (

i , j 51

3

$D̃ i j
~1!~qD L

~ i !F~1!!d̃R
~ j !1D̃ i j

~2!~qD L
~ i !F~2!!d̃R

~ j !

1Ũ i j
~1!~qD L

~ i !F̃~1!!ũR
~ j !1Ũ i j

~2!~qD L
~ i !F̃~2!!ũR

~ j !1H.c.%

1$ l̄ Fl terms%. ~1!

The tildes above the Yukawa coupling parameters and above
the quark fields mean that these quantities are in an arbitrary
SU(2)L basis~i.e., weak basis, not the mass basis!. The su-
perscript (E) at the Lagrangian density means that the theory
has a finite effective energy cutoffE, and the reference to
this evolution energyE was omitted at the fields and at the
Yukawa coupling parameters in order to have simpler nota-
tion ~E;102 GeV for renormalized quantities!. The follow-
ing notation is used:

F~k![S f~k!1

f~k!0 D[
1

&
S f1

~k!1 if2
~k!

f3
~k!1 if4

~k!D , ~2!

F̃~k![ it2F~k!†T[
1

&
S f3

~k!2 if4
~k!

2f1
~k!1 if2

~k!D , ~3!

q̃~ i !5S ũ~ i !

d̃~ i !D : q̃~1!5S ũ

d̃
D , q̃~2!5S c̃

s̃
D , q̃~3!5S t̃

b̃
D , ~4!

^F~1!&05
eih1

&
S 0
v1

D , ^F~2!&05
eih2

&
S 0
v2

D , v1
21v2

25v2.

~5!

In Eq. ~5!, v @[v(E)# is the usual vacuum expectation value
~VEV! needed for the electroweak symmetry breaking, i.e.,
v(Eew)'246 GeV. The phase differenceh[h22h1 be-
tween the two VEV’s in Eq.~5! may be nonzero; it repre-
sentsCP violation originating at low energies from the sca-
lar 2HD sector~see Ref.@8#!. The leptonic sector will be
ignored throughout.

We note that the popular ‘‘type I’’ and ‘‘type II’’ models
are special cases~subsets! of this framework, with some of
the Yukawa matrices being exactly zero:Ũ (1)5D̃ (1)50
@2HDM~I!#; Ũ (1)5D̃ (2)50 @2HDM~II !#. In these two special
models, suggested by Glashow and Weinberg@3#, the flavor-
changing neutral Yukawa coupling parameters are exactly
zero. This is so because one of the two nonzero Yukawa
matrices is proportional to the mass matrix of the up-type
quarks, and the other to the mass matrix of the down-type
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quarks. Since flavors refer to the physical quarks, and the
quark mass matrices in the physical~mass! basis are diagonal
by definition, the FCN Yukawa coupling parameters~i.e.,
off-diagonal elements! are zero. Moreover, this is true at any
energy of probes~cutoff energy! E8. Stated otherwise, when
the original cutoff E is changed toE8, no loop-induced
~ln E8 cutoff-dependent! FCN Yukawa coupling parameters
appear, i.e., the original form of the Lagrangian is preserved
under the change of the cutoff. This can be formulated also
in terms of explicit U~1!-type family symmetries governing
the Yukawa part of the Lagrangian density in the 2HDM~I!
and 2HDM~II !. These symmetries ensure that, in the course
of the change of the cutoff~i.e., evolution energy or the
energy of probes!, the original form of the Yukawa Lagrang-
ian density is preserved. In the 2HDM~II ! the symmetry
transformation is d̃R

( j )→eiad̃R
( j ) , F (1)→e2 iaF (1) ( j

51,2,3), the other fields remaining unchanged; in the
2HDM~I!, d̃R

( j )→eiad̃R
( j ) , ũR

( j )→e2 iaũR
( j ) , F (2)→e2 iaF (2).

In contrast to the 2HDM~I! and 2HDM~II !, the G2HDM
has no explicit family symmetry enforcing the complete sup-
pression of the FCN Yukawa coupling parameters. There are
at least two consequences of this fact.

~1! The FCN Yukawa parameters in the G2HDM are in
general nonzero. At low energies of probes (E;Eew), those
FCN Yukawa parameters which do not involve the top quark
must be given quite small values~not necessarily zero! for
phenomenological viability of the model.

~2! Even if the FCN Yukawa parameters are zero at some
low energy of probes, they become in general nonzero at
higher energies. If some FCN Yukawa parameters are small
~but nonzero! at small energies, there exists in principle the
possibility that they increase by a large factor, or even by
orders of magnitude, when the energy of probes increases
~but remains a safe distance away from the Landau pole!,
because of the absence of an explicit protective family sym-
metry.
The Lagrangian density3 ~1! can be written in a form more
convenient for consideration of the FCN Yukawa coupling
parameters, by redefining the scalar isodoublets in the fol-
lowing way:

F8~1!5~cosb!F~1!1~sin b!e2 ihF~2!,

F8~2!52~sin b!F~1!1~cosb!e2 ihF~2!,
~6!

where

h5h22h1 , tanb5
v2

v1
⇒cosb5

v1

v
, sin b5

v2

v
.

~7!

Therefore, the VEV’s of the redefined scalar isodoublets are

e2 ih1^F8~1!&05
1

&
S 0
v D , ^F8~2!&05

1

&
S 0
0D . ~8!

The isodoubletF8(1) is therefore responsible for the masses
of the quarks, and couplings ofF8(2) to the quarks lead to
the FCN Yukawa couplings, as will be seen below. The
original Yukawa Lagrangian density~1! of the G2HDM can
then be rewritten in terms of these redefined scalar fields as

LG2HDM
~E! 52 (

i , j 51

3

$G̃i j
~D !~qD L

~ i !F8~1!!d̃R
~ j !1G̃i j

~U !~qD L
~ i !F̃8~1!!ũR

~ j !

1H.c.%2 (
i , j 51

3

$D̃ i j ~qD L
~ i !F8~2!!d̃R

~ j !

1Ũ i j ~qD L
~ i !F̃8~2!!ũR

~ j !1H.c.%, ~9!

where the Yukawa matricesG̃(U) andG̃(D) are rescaled mass
matrices, andŨ andD̃ the corresponding ‘‘complementary’’
Yukawa matrices, in an~arbitrary! SU(2)L basis~weak ba-
sis!:

G̃~U !5&M̃ ~U !/v5~cosb!Ũ ~1!1~sin b!e2 ihŨ ~2!,

G̃~D !5&M̃ ~D !/v5~cosb!D̃ ~1!1~sin b!e1 ihD̃ ~2!,
~10!

Ũ52~sin b!Ũ ~1!1~cosb!e2 ihŨ ~2!,

D̃52~sin b!D̃ ~1!1~cosb!e1 ihD̃ ~2!. ~11!

By a biunitary transformation involving unitary matrices
VL

U , VR
U , VL

D , andVR
D , the Yukawa parameters can be ex-

pressed in the mass basis of the quarks, where the~rescaled!
mass matricesG(U) andG(D) are diagonal and real:

G~U !5
&

v
M ~U !5VL

UG̃~U !VR
U†@Mi j

~U !5d i j mi
~u!#,

U5VL
UŨVR

U† , ~12!

G~D !5
&

v
M ~D !5VL

DG̃~D !VR
D†@Mi j

~D !5d i j mi
~d!#,

D5VL
DD̃VR

D† , ~13!

uL5VL
UũL , uR5VR

UũR , dL5VL
Dd̃L , dR5VR

Dd̃R .
~14!

The absence of tildes above the Yukawa coupling parameters
and above the quark fields means that these quantities are in
the quark mass basis~at a given evolution energyE!. La-
grangian density~9! can be written now in the quark mass
basis. The ‘‘neutral current’’ part of the Lagrangian density
in the quark mass basis is

3Throughout this section we omit, for simpler notation, reference
to the evolution~cutoff! energyE at the quark fields, at the scalar
fields and their VEV’s, and at the Yukawa coupling parameters.
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LG2HDM
~E!nc 52

1

&
(
i 51

3

$Gii
~D !d̄L

~ i !dR
~ i !~f38

~1!1 if48
~1!!

1Gii
~U !ūL

~ i !uR
~ i !~f38

~1!2 if48
~1!!1H.c.%

2
1

&
(

i , j 51

3

$Di j d̄L
~ i !dR

~ j !~f38
~2!1 if48

~2!!

1Ui j ūL
~ i !uR

~ j !~f38
~2!2 if48

~2!!1H.c.%. ~15!

On the other hand, the ‘‘charged current’’ part of the La-
grangian density in the quark mass basis is

LG2HDM
~E!cc 52

1

&
(

i , j 51

3

$~VG~D !! i j ūL
~ i !dR

~ j !~f18
~1!1 if28

~1!!

2~V†G~U !! i j d̄L
~ i !uR

~ j !~f18
~1!2 if28

~1!!1H.c.%

2
1

&
(

i , j 51

3

$~VD! i j ūL
~ i !dR

~ j !~f18
~2!1 if28

~2!!

2~V†U ! i j d̄L
~ i !uR

~ j !~f18
~2!2 if28

~2!!1H.c.%. ~16!

Here, we denoted byV the Cabibbo-Kobayashi-Maskawa
~CKM! matrix

V[VCKM5VL
UVL

D† . ~17!

We see from Eq.~15! that theU andD matrices, as defined
by Eqs.~11!–~13! through the original Yukawa matricesŨ ( j )

and D̃ ( j ) of the G2HDM Lagrangian density~1!, allow the
model to possess in general scalar-mediated FCNC’s.
Namely, in the quark mass basis only the~rescaled! quark
mass matricesG(U) andG(D) of Eqs.~12!, ~13! @see also Eq.
~10!# are diagonal, but the matricesU andD in this general
framework are in general not diagonal. The off-diagonal el-
ements of the matricesU andD are the FCN Yukawa cou-
pling parameters

LG2HDM
~E!FCN52

1

&
(

i , j 51~ iÞ j !

3

$Di j d̄L
~ i !dR

~ j !~f38
~2!1 if48

~2!!

1~D†! i j d̄R
~ i !dL

~ j !~f38
~2!2 if48

~2!!%

2
1

&
(

i , j 51~ iÞ j !

3

$Ui j ūL
~ i !uR

~ j !~f38
~2!2 if48

~2!!

1~U†! i j ūR
~ i !uL

~ j !~f38
~2!1 if48

~2!!%. ~18!

It should be noted that the original four Yukawa matrices
Ũ ( j ) andD̃ ( j ) ( j 51,2) in an SU(2)L basis are already some-
what constrained by the requirement that~at low energy! the
squares of4 M (U) andM (D) are diagonalized by unitary trans-

formations involving such unitary matricesVL
U andVL

D , re-
spectively, which are related to each other byVL

UVL
D†5V.

Here,V is the CKM matrix which is, for any specific chosen
phase convention, more or less known at low energies.

In order to have at low evolution energies (E;Eew) a
phenomenologically viable suppression of the scalar-
mediated FCNC’s, the authors Cheng, Sher, and Yuan~CSY!
@5# basically argued that the elements of theU andD matri-
ces~in the quark mass basis and at low evolution energiesE!
should have the form

Ui j ~E!5j i j
~u!
&

v
Ami

~u!mj
~u!, Di j ~E!5j i j

~d!
&

v
Ami

~d!mj
~d!,

~19!

where

j i j
~u! ,j i j

~d!;1 for E;Eew. ~20!

This form is in general phenomenologically acceptable. It is
strongly motivated by the actual mass hierarchies of the
quarks. At least for the diagonal elements, it is suggested by
the requirement that~at a givenlow energy;Eew! there be
no fine-tuning on the right of Eqs.~10!, ~11! when these
equations are written in the quark mass basis~i.e., no tildes
over the matrices!. For definiteness, consider the up-type sec-
tor. The diagonal elementsU j j

( i ) are in general;mj
(u)/v un-

less fine-tuning is involved on the right of Eq.~10!. Conse-
quently, alsoU j j ;mj

(u)/v unless fine-tuning is involved on
the right of Eq.~11!. This consideration further suggests~but
not necessarily implies! that the off-diagonal elementsU jk

( i )

andU jk have values between those of the corresponding di-
agonal elementsU j j

( i );mj
(u)/v and Ukk

( i );mk
(u)/v, for ex-

ample, roughly the geometrical mean of those, leading thus
to the CSYAnsatz~19!, ~20!.5 Therefore, this~CSY! form is
considered to be reasonably natural.

From the CSYAnsatz~19!, ~20! we see that the FCN
Yukawa vertices involving the heavy top quark are the only
ones that are not strongly suppressed~at low evolution ener-
gies!. As mentioned in the Introduction, scalar-exchange-
mediated FCNC processes involving the top quark vertices
~not loops with top quarks! are not constrained by present
experiments. Later in Sec. IV we will use low-energy condi-
tions ~19!, ~20! for a numerical investigation of the RGE
flow of the FCN Yukawa coupling parameters.

III. ONE-LOOP RGE’S IN A CONVENIENT
PARAMETRIZATION

In the Appendix we outlined a derivation of the relevant
set of one-loop RGE’s for the scalar fields and their VEV’s
~A10!–~A14!, for the quark fields~A16!, ~A19!–~A21!, and
for the Yukawa matricesŨ (k) andD̃ (k) ~A25!, ~A26!. One of
the reasons for performing an independent derivation is that

4Strictly speaking, the following ‘‘squares’’:M (U)M (U)† and
M (D)M (D)†.

5For the complete suppression of FCN Yukawa couplingsU jk

50 ~for j Þk! we would then need fine-tuning on the right of Eq.
~11!.
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we consider the method of finite cutoffs@9#, which was used
in the derivation, as physically very intuitive. This contrasts
with other methods often applied in the literature, which are,
however, usually mathematically more efficient at two-loop
and higher-loop levels. Another reason is that there is a cer-
tain disagreement between the results on one-loop beta func-
tions derived for a general~semi!simple gauge groupG in
various parts of literature—see comparisons and the discus-
sion toward the end of this section.

We can rewrite all the RGE’s derived in the Appendix,
now in a a more convenient set of parameters. These are the
VEV parametersv[Av1

21v2
2, tanb[v2 /v1, and h[h2

2h1 @see Eq.~5!#, and matricesG̃(U), G̃(D), Ũ, andD̃ @see
Eqs. ~10!, ~11!#—this representation is more convenient for
discerning the running of the FCN Yukawa coupling param-
eters. Applying lengthy, but straightforward, algebra to the
hitherto obtained RGE’s then results in the following RGE’s
in terms of the mentioned set of parameters

16p2
d~v2!

d ln E
522Nc Tr@G̃~U !G̃~U !†1G̃~D !G̃~D !†#v21F3

2
g1

21
9

2
g2

2Gv2, ~21!

16p2
d~ tan b!

d ln E
52

Nc

2 cos2 b
Tr@G̃~U !Ũ†1ŨG̃~U !†1G̃~D !D̃†1D̃G̃~D !†#, ~22!

16p2
d~h!

d ln E
5

Nc

i sin~2b!
Tr@G̃~U !Ũ†2ŨG̃~U !†2G̃~D !D̃†1D̃G̃~D !†#, ~23!

16p2
d

d ln E
~Ũ !5Nc$2 Tr@ŨG̃~U !†1G̃~D !D̃†#G̃~U !1Tr@ŨŨ†1D̃D̃†#Ũ%1

1

2
Nc~cot b!Ũ Tr@2G̃~U !Ũ†1ŨG̃~U !†1G̃~D !D̃†

2D̃G̃~D !†#1H 1

2
@ŨŨ†1D̃D̃†1G̃~U !G̃~U !†1G̃~D !G̃~D !†#Ũ1Ũ@Ũ†Ũ1G̃~U !†G̃~U !#22D̃D̃†Ũ

22G̃~D !D̃†G̃~U !2AUŨJ , ~24!

16p2
d

d ln E
~D̃ !5Nc$2 Tr@D̃G̃~D !†1G̃~U !Ũ†#G̃~D !1Tr@ŨŨ†1D̃D̃†#D̃%1

1

2
Nc~cot b!D̃ Tr@2G̃~D !D̃†1D̃G̃~D !†1G̃~U !Ũ†

2ŨG̃~U !†#1H 1

2
@ŨŨ†1D̃D̃†1G̃~U !G̃~U !†1G̃~D !G̃~D !†#D̃1D̃@D̃†D̃1G̃~D !†G̃~D !#22ŨŨ†D̃

22G̃~U !Ũ†G̃~D !2ADD̃J , ~25!

16p2
d

d ln E
~G̃~U !!5Nc Tr@G̃~U !G̃~U !†1G̃~D !G̃~D !†#G̃~U !1

1

2
Nc~ tan b!G̃~U ! Tr@2G̃~U !Ũ†1ŨG̃~U !†1G̃~D !D̃†2D̃G̃~D !†#

1
1

2
@ŨŨ†1D̃D̃†1G̃~U !G̃~U !†1G̃~D !G̃~D !†#G̃~U !1G̃~U !@Ũ†Ũ1G̃~U !†G̃~U !#22D̃G̃~D !†Ũ

22G̃~D !G̃~D !†G̃~U !2AUG̃~U !, ~26!

16p2
d

d ln E
~G̃~D !!5Nc Tr@G̃~U !G̃~U !†1G̃~D !G̃~D !†#G̃~D !1

1

2
Nc~ tan b!G̃~D ! Tr@2G̃~D !D̃†1D̃G̃~D !†1G̃~U !Ũ†2ŨG̃~U !†#

1
1

2
@ŨŨ†1D̃D̃†1G̃~U !G̃~U !†1G̃~D !G̃~D !†#G̃~D !1G̃~D !@D̃†D̃1G̃~D !†G̃~D !#22ŨG̃~U !†D̃

22G̃~U !G̃~U !†G̃~D !2ADG̃~D !. ~27!
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Equation~21! is in the Landau gauge, while the other RGE’s
~22!–~27! are gauge independent.

For a general~semi!simple gauge groupG, RGE’s for
various parameters have been derived at one-loop level
@10,11#, and at two-loop level@12–14#. First we should note
that these groups of authors are using conventions which,
particularly as to the fermionic sector, differ from each other.

Cheng, Eichten, and Li@10# were using the usual four-
component Dirac spinors for quarks. While they allowed an
arbitrary number of~real! scalar degrees of freedom, their
one-loop RGE’s for the Yukawa coupling parameters are di-
rectly applicable only when these parameters are real~non-
complex!.

The one-loop RGE results of Vaughn@11# and one- and
two-loop results of Machacek and Vaughn@12# were written
for the general case of complex Yukawa coupling param-
eters. Their scalar fieldsfa were real, and for fermions
~quarks! they were using two-component spinor fieldsc j as
defined by Sikivie and Gu¨rsey @15# @j ,k51,...,2n, wheren
is the number of fermion~quark! flavors#.6 The Yukawa La-
grangian density was written in Refs.@11,12# in the form

LY.52Y jk
a c j

Tis2ckfa1H.c., ~28!

with s2 being the second Pauli matrix. Rewriting our RGE’s
~from the Appendix! for the scalar and quark fields, and for
the Yukawa parameters, in terms of the spinor fields of Ref.
@15# and of real scalar field components, we notice several
differences when compared with one-loop results of Refs.
@11, 12#. We can deduce from our RGE’s for the Yukawa
coupling parameters that RG equation~3.4! of Ref. @12# ~sec-
ond entry!, or equivalently, RG Eqs.~2.2!, ~2.3! of Ref. @11#,
for Ya Yukawa matrices in their language should read

~4p!2
dYa

d ln E U
12 l.

[~4p!2bau12 l.

52@YbYb†Ya1YaYb†Yb#18YbYa†Yb

14kYb Tr~Yb†Ya1Ya†Yb!

23g2$C2~F !,Ya%, ~29!

wherek51/2. Stated otherwise, the cubic Yukawa terms on
the right of this RGE are effectively those given in Refs.@11,
12#, but multiplied7 by a factor of 4, and the trace there is
replaced now by its real~symmetric! part. Similar differ-

ences arise when comparing our RGE’s for scalar and quark
fields with those of Ref.@12#. Instead of Eq.~37! of Ref. @12#
~first entry!, we get

~4p!2gab
s u12 l.54k Tr~YaYb†1Ya†Yb!

2g2~21a!C2~S!dab , ~30!

where againk51/2 and gs is defined viadfa /d ln E5
2g ab

s fb . Here,fa are the real scalar fields, anda in Eq. ~30!
is the gauge parameter~a[12j51 in the Landau gauge!.
Instead of Eq.~4.5! of Ref. @12# ~first entry!, we get

~4p!2g Fu12 l.52Ya†Ya1g2C2~F !~12a!, ~31!

whereg F is defined viadc j /d ln E52g ji
Fci . Here,c i are

left-handed two-component spinors as defined in Ref.@15#.
Jack and Osborn@13#, on the other hand, worked with

Majorana fermions, using the background field method. The
Dirac fermions can then be expressed as sums of two Majo-
rana fermions. Their one-loop beta functions for the Yukawa
coupling parameters of the~real! scalars with the~Majorana!
fermions, can be reexpressed in the notation with left-handed
two-component spinorsc j as introduced by Ref.@15# and
used by Refs.@11,12#. After somewhat lengthy algebra, it
can be shown that the one-loop results of Ref.@13# lead
precisely to formula~29!. Therefore, we finally conclude that
our one-loop RGE formulas for the Yukawa coupling param-
eters, derived in the Appendix and rewritten in Eq.~29! in
the language of Ref.@15#, are not in agreement withthose of
Vaughn@11# and of Machacek and Vaughn@12#, andare in
agreement withthe results of Jack and Osborn@13#. More-
over, the latter authors emphasize that their RGE results
agree with those of van Damme@14#.8

For several reasons, we considered it instructive to per-
form an independent derivation of the one-loop RGE’s for
the scalar and quark fields and for the Yukawa matrices in
the discussed general 2HDM. One reason is that the one-loop
results of Refs.@11# and@12# do not agree entirely with those
by other authors@13,14#. Another reason is that the exist-
ing works on the one- and two-loop RGE’s for general
~semi!simple gauge groupsG use various conventions for
the fermionic fields, and are usually written in a language
difficult for nonspecialists in the method used. The third rea-
son is that these works do not apply the method of finite
cutoffs @9# which we consider especially appealing and
physically intuitive—although, at two-loops, probably not

6The usual four-component Dirac spinor field columnsC ( j ) in the
chiral basis~i.e., the basis of Ref.@16#! are made up ofc j ~upper
two components! and2 is2c j 1n

†T ~lower two components ofC ( j )!,
where j 51,...,n.

7If Machacek and Vaughn had introduced in the Lagrangian den-
sity an additional factor of (1/2) in front of the sum~28! ~which
they did not!, the factor 4 in the cubic Yukawa terms on the right of
~29! would not have occurred.

8Here we also mention that Fischler and Oliensis@17# have de-
rived RGE’s for Yukawa coupling parameters of the minimal SM at
two-loop level.

G. CVETIČ, S. S. HWANG, AND C. S. KIM PHYSICAL REVIEW D58 116003

116003-6



the most efficient one. With our independent cross-check we
are confident that the one-loop results of Ref.@13# are cor-
rect.

IV. NUMERICAL EXAMPLES OF EVOLUTION

Here we present a few simple but hopefully typical ex-
amples of the RGE evolution of parameters in the G2HDM.
Some preliminary numerical results were presented by us in
Ref. @18#. For simplicity, we assumed there is noCP

violation—all original four Yukawa matricesŨ ( j ), D̃ ( j ) are
real, and the VEV phase differenceh is zero—and the
Yukawa parameters of the first quark generation as well as
those of the leptonic sector are neglected~the quark Yukawa
mass matrices are therefore 232!.

For the boundary conditions to the RGE’s, at the evolu-
tion energyE5MZ , we first take the CSYAnsatz~19!, ~20!,
with j i j

(u)515j i j
(d) or j i j

(u)525j i j
(d) for all i , j 51,2. We

stress thati 51 refers now to the second quark family (c,s),
andi 52 to the third family (t,b). For the (232) orthogonal
CKM mixing matrix V we take V12(MZ)50.045
52V21(MZ). The values of other parameters atE5MZ are
chosen to be tanb51.0, v[Av1

21v2
25246.22 GeV; a3

50.118, a250.332, a150.101; mc50.77 GeV, ms
50.11 GeV,mb53.2 GeV, andmt5171.5 GeV. The latter
quark mass values correspond tomc(mc)'1.3 GeV,
ms(1 GeV)'0.2 GeV, mb(mb)'4.3 GeV, and mt

phys

'174 GeV @mt(mt)'166 GeV#. For a3(E) we used two-
loop evolution formulas, with threshold effect atE'mt

phys

taken into account; fora j (E) ( j 51,2) we used one-loop
evolution formulas.

The described simplified framework resulted in 18
coupled RGE’s~for 18 real parameters:v2, tanb, Ũ i j , D̃ i j ,
G̃i j

(U) , G̃i j
(D)!, with the mentioned boundary conditions atE

5MZ . The system of RGE’s was solved numerically, using
Runge-Kutta subroutines with adaptive step-size control
~given in Ref. @19#!. The numerical results were cross
checked in several ways, including the following:FORTRAN

programs for the RGE evolution and for the biunitary trans-
formations were constructed independently by two of the
authors~S.S.H. and G.C.!, and they yielded identical numeri-
cal results presented in this section.

The results for the FCN Yukawa parameter ratios
Xi j (E)/Xi j (MZ) ~X5U,D; iÞ j ! are given for the case
j i j

(u)515j i j
(d) in Fig. 1. From the figure we immediately no-

tice that the FCN coupling parameters are remarkably stable
as the energy of probes increases. Even those FCN Yukawa
coupling parameters which involvet quark remain quite
stable. Only very close to the top-quark-dominated Landau
pole9 (Epole'0.8431013 GeV) do the coupling parameters
start increasing substantially. For example, in the down-type
FCN sector (b-c) the corresponding ratioD21(E)/D21(MZ)
acquires its double initial value~i.e., value 2! at E

'0.7Epole, which is very near the~Landau! pole. About the
same holds also forU21(E)/U21(MZ). For the ratio
D12(E)/D12(MZ) the corresponding energy is even closer to
Epole. For the t-quark-dominatedU12(E)/U12(MZ) it is
somewhat lower.

In Fig. 2, evolution of the same FCN ratios is depicted for
the case of the low-energy CSY parametersj i j

(u)525j i j
(d) .

The t-quark-dominated Landau pole is now substantially
lower (Epole;10 TeV), but the behavior of the FCN ratios
remains qualitatively the same. Moreover, when some of the
CSY parametersj i j are varied, the stability of the FCN ratio
persists, and the Landau pole is influenced almost entirely by
the t-quark-dominated CSY parameterj22

(u) . We also looked
into cases when the CSY ansatz is effectively abandoned. If
we suppress the up-type off-diagonal element atE5MZ

drastically, for example, by takingj12
(u)5j21

(u)'0.0516@cor-
responding toUi j (MZ)5Di j (MZ) for iÞ j # and all otherj i j
parameters equal to 1, we obtain results depicted in Fig. 3,
which are very close to those of Fig. 1.

From all these figures we conclude that the FCN Yukawa
coupling parameters in the general 2HDM show remarkable
stability when the~Euclidean! energy of probes increases.
This stability persists up to the energy regions which are, on
the logarithmic scale, quite close to the top-quark-dominated

9The value ofEpole is strongly dependent on the given value of
parameterj, as shown later in Fig. 6.

FIG. 1. FCN Yukawa parameter ratiosUi j (E)/Ui j (MZ),
Di j (E)/Di j (MZ) ( iÞ j ) in the G2HDM as the Euclidean energy of
probesE increases. These parameters are in the quark mass basis.
At E5MZ , the CSYAnsatzwas taken withj i j

(u)5j i j
(d)51 ~for all

i , j 51,2!.

FIG. 2. Same as in Fig. 1, but for the choicej i j
(u)5j i j

(d)52 ~for
all i , j 51,2!.
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Landau pole. The general 2HDM appears to possess this sta-
bility even when the off-diagonal low-energy parameters
uj i j u ~19!, ~20! have values much smaller than 1~while the
diagonal parameters arej j j ;1!.

We can also compare the RGE evolution of the Yukawa
parameters in the G2HDM with those of the MSM, 2HD-
M~II !, and 2HDM~I!. The authors of Refs.@20,21# proposed
that~heavy! quark mass and Higgs masses in the MSM could
be determined by the infrared fixed points of the RGE’s.
These questions were numerically investigated also in differ-
ent variants of the 2HDM~II ! and 2HDM~I! @22#. The authors
of the latter work found out that relatively unambiguous pre-
dictions can be made only if there is a heavy quark genera-
tion and the~heavy! quarks couple to both Higgs doublets. It
is interesting to note that in the G2HDM, the heaviest (t)
quark also has an infrared fixed point behavior, as suggested
from Figs. 1–3. This is further suggested from Figs. 4, 5
which represent evolution of the ratiosX(E)/X(MZ) involv-
ing the flavor-nonchanging neutral Yukawa parameters~X
5U j j or D j j ! or the ‘‘mass’’ Yukawa parameters~X5Gj j

(U)

or Gj j
(D)!. By the infrared fixed point behavior we mean that

for a given approximate Landau pole energyEpole, we have
very weak sensitivity ofX(MZ) on the otherwise large value
X(Epole)*1. The reason for this similarity with the MSM
and 2HDM~II ! and 2HDM~I! lies probably in the conjunction
of the facts that the CSYAnsatz~19!, ~20! implies domi-
nance of thet-related Yukawa coupling parameters and that

the QCD contribution to the evolution of these parameters
has the sign which is in general opposite to that of the
~t-related! Yukawa parameter contributions. Inspecting the
work @22# further, we note that it would also be interesting to
investigate the RGE behavior of the quartic Higgs coupling
parameters in the G2HDM. This would tell us when these
parameters have infrared fixed point behavior and thus when
the physical Higgs boson mass spectrum can be determined.

In this context, we mention that the idea of RGE fixed
points had been introduced earlier by Chang@23#. He, and
subsequently others@24#, investigated connection of RGE
fixed points with asymptotic freedom in massive gauge theo-
ries. Cabibboet al. @25# were apparently the first to investi-
gate mass constraints in the minimal SM by imposing bound-
ary conditions on~perturbative! RGE’s at the unification
energy of grand unified theories@SU~5! or O~10!#. A some-
what related analysis was performed later by the authors of
Ref. @26# who used SU~5! fixed-point conditions.

It should be stressed that the presented numerical results
are independent of the chosen value of the VEV ratio, tanb,
at E5MZ . This is connected with our choice of the CSY
boundary conditions~19!, ~20! at E5MZ for the Yukawa
matrices in the quark mass basis~all j i j ’s taken real! and the
reality of the chosen Cabibbo-Kobayashi-Maskawa~CKM!
matrix at E5MZ . These boundary conditions result in real
andb-independent Yukawa matricesŨ, D̃, G̃(U), G̃(D) in a
weak @SU(2)L# basis10 at E5MZ . The RGE’s ~24!–~27!
then imply that these matrices remain real and independent
of b at any evolution energyE, and that also their counter-

10We chose atE5MZ the following weak basis:Ũ5U, G̃(U)

5G(U), D̃5VD, G̃(D)5VG(D), whereV is the CKM matrix ~at
E5MZ!. According to relations~10!, ~11!, the reality of the

Yukawa matricesŨ, D̃, G̃(U), and G̃(D) at low energyE5MZ

would follow, for example, from the requirement of noCP viola-

tion in the Yukawa sector~i.e., the original Yukawa matricesŨ ( j )

and D̃ ( j ) are all real! together withthe requirement of noCP vio-
lation in the scalar sector~i.e., the VEV phase differenceh50! at
that low energy.

FIG. 3. Same as in Fig. 1, but for the choicej12
(u)5j21

(u)

50.05163~otherj i j ’s are 1!.

FIG. 4. Same as in Fig. 1, but for the neutral current Yukawa
coupling parametersU j j and D j j ( j 51,2) which do not change
flavor.

FIG. 5. Same as in Fig. 1, but for the ‘‘mass’’ Yukawa param-
eters Gj j

(U) and Gj j
(D) ( j 51,2) instead. SinceG(U)(E) and G(D)

3(E) matrices are diagonal by definition~quark mass basis!, these
neutral current Yukawa matrices have zero FCN components auto-
matically.
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partsU, D, G(U), andG(D) in the quark mass basis, as well
as the CKM matrixV, remain real and independent ofb at
any energyE. Stated otherwise, if there isb-independence
and noCP violation ~neither in the original Yukawa matri-
ces nor in the scalar sector! at low energy (E5MZ), then
these properties persist at all higher energies of evolution.11

This feature is in stark contrast with the situation in the
2HDM~II ! where the Yukawa matrices strongly depend onb
already at low energies, e.g.,gt(MZ)5mt(MZ)&/vu

5mt(MZ)&/@v sinb(MZ)#. Also the location of the Landau
pole in the 2HDM~II ! then crucially depends on
b(MZ)—smallerb(MZ) implies largergt(MZ) and hence a
drastically lower Landau pole.

On the other hand, the G2HDM treats the up-type and the
down-type sectors of quarks~the two VEV’s v1 and v2!
nondiscriminatorily. Therefore, it should be expected that
any reasonable boundary conditions for Yukawa coupling
parameters at low energies should also be independent ofb
in such frameworks, and this independence then persists to a
large degree also at higher energies. Also the locations of the
Landau poles~i.e., of the approximate scales of the onset of
new physics! should then be expected to be largelyb inde-
pendent. In this sense, the G2HDM has more similarity to
the minimal SM~MSM! than to the 2HDM~II !. The persis-
tence of completeb independence of the Yukawa coupling
parameters at high energies and of the Landau poles, how-
ever, can then be ‘‘perturbed’’ byCP violation because
RGE’s ~24!–~27! are somewhatb dependent when the
Yukawa matricesŨ, etc., are not real.

In addition to the connection between~low-energy! CP
violation andb dependence of high-energy results, there is
yet another feature that distinguishes the G2HDM from the
MSM—the Landau pole of the G2HDM is in general much
lower than that of the MSM. We can see that in the following
way: let us consider that only the Yukawa parameters con-
nected with the top quark degree of freedom are substantial,
i.e., G22

(U)5gt;1 and U225gt8;1. We have gt(E)
5mt(E)&/v(E), as in the MSM, andgt8(E) is an additional
large Yukawa parameter—both crucially influence location
of the Landau pole. Inspecting RGE’s~24! and ~26! for this
special approximation of two variablesgt and gt8 , we see
that RGE forgt is similar to that in the MSM, but with an
additional large positive term on the right (3/2)(gt8)

2gt . The
RGE for gt8 has a similar structure as the RGE forgt , but
with substantially larger coefficients at the positive terms on
the right. As a result,gt8(E) is in general larger thangt(E).
Our specific numerical examplej i j

(u)5j i j
(d)51 shows that

gt8(E) is on average~average over the whole evolution en-
ergy range! almost twice as large asgt(E). If we then simply
replace in the mentioned additional term (3/2)(gt8)

2gt the
parameter (gt8)

2 by 3.5gt
2 , we obtain from the resulting

‘‘modified’’ MSM RGE for gt a value for the Landau pole in
the region of 1012– 1013 GeV, which is roughly in agreement
with the actual value of the Landau pole of our numerical
example Epole'0.8431013 GeV. And this value is much
lower than Epole in the MSM which is above the Planck
scale. As already mentioned, the value ofEpole is largely
influenced by the value of the top-quark-dominated param-
eterj22

(u) . Of course, when we allow thej i j (j22
(u)) parameters

of the CSYAnsatz~19!, ~20! at E5MZ to deviate from 1, we
obtain larger log(Epole) for smallerj i j , and smaller log(Epole)
for larger j i j . In Fig. 6 we depicted this variation of the
Landau pole energy when the CSY low-energy parameters
j i j are varied.

It is also interesting to note that RGE~23! for the evolu-
tion of the difference of the VEV phases~h! implies in the
G2HDM that h can change when the energy of probes
changes. This would generally occur when we haveCP vio-
lation in the Yukawa sector~i.e., complex Yukawa matrices!.
Even whenh50 at some low energy, it may become non-
zero at some higher energy due to theCP violation in the
Yukawa sector. This contrasts with the 2HDM~II ! or
2HDM~I! where the right side of Eq.~23! is zero always and
thus theCP violation in the Yukawa sector does not influ-
enceh.

V. SUMMARY AND CONCLUSIONS

We performed a numerical analysis of the one-loop
RGE’s in the general two-Higgs-doublet model~G2HDM!.
In the analysis, we neglected the Yukawa coupling param-
eters of the light first quark generation, as well as the contri-
butions of the leptonic sector. At low energies of probes, we
first adopted the CSYAnsatz~19!, ~20! which is largely mo-
tivated by the existing quark mass hierarchies. We found out
that the flavor-changing neutral~FCN! Yukawa parameters
remain remarkably stable when the energy of probes in-
creases all the way to the vicinity of the~t-quark-dominated!
Landau pole. This conclusion survives even when the CSY
Ansatzis effectively abandoned, i.e., when the off-diagonal
low-energy parameters are additionally suppressed:uj i j

(u)u
!1 (iÞ j ). This behavior indicates that the G2HDM does
not behave unnaturally with respect to the RGE evolution of

11CP conservation in the pure scalar sector at a low energyE
5MZ ~i.e., h50! also persists then at all higher energies of evolu-
tion, sincedh/d ln E50 by the reality of the Yukawa matrices,
according to RGE~23!.

FIG. 6. Variation of the Landau pole energy when the low-
energy parametersj i j

(u)5j i j
(d)[j of the CSYAnsatz~19!, ~20! are

varied. Forj52.5, the onset scale of new physics is already quite
low: Epole'2 TeV.
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the vertices of the Higgs-exchanged flavor-changing neutral
currents. Since the G2HDM, in contrast to the 2HDM~II ! and
2HDM~I!, has no explicit and exact discrete@or U~1!# family
symmetries which would ensure persistence of the FCN
Yukawa suppression at increasing energies of probes, the
behavior of FCN Yukawa parameters found numerically in
the present paper may be somewhat surprising. The general
suspicion about the G2HDM in the past had centered on the
fact that absence of the mentioned family symmetries in the
Lagrangian density would in general not keep FCN Yukawa
parameters suppressed under the RGE evolution and would
thus render the model unnatural and fraught with fine-tuning
of ‘‘bare’’ FCN Yukawa parameters. In other words, the
RGE’s of the G2HDM would in general allow a ‘‘pull-up’’
effect by the diagonal Yukawa parameters on the much
smaller off-diagonal~FCN! ones. This would increase the
values of the latter by a large factor or even by orders of
magnitude when the energy of probes increases by one or
several orders of magnitude. Our numerical analysis shows
that this does not happen, at least as long as the low-energy
parameters of the CSYAnsatz~19!, ~20! satisfy uj i j u&1 for
iÞ j and j j j ;1. Perhaps it is the latter condition~for the
diagonalj parameters! which causes the mentioned persis-
tence of the FCN Yukawa suppression. The latter condition,
together with the known form of the CKM matrix, effec-
tively represents an approximate symmetry in which only the
third quark generation has substantially nonzero Yukawa pa-
rameters~and almost no CKM mixing!. This can also be
called approximate flavor democracy.

Further, the high-energy Yukawa coupling parameters
in the model have in general little dependence on the VEV
ratio tanb as long as theCP violation is weak. Moreover,
we found out that the G2HDM has an interesting behavior
of the Landau pole energies. They can become quite
low (;1 TeV) already at not very highj i j parameters
(j22

(u)<3), as shown in Fig. 6. These energies, signaling the
breakdown of the perturbative approach in the G2HDM, can
be interpreted as possible scales of the onset of a new phys-
ics and/or a strong coupling regime.
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APPENDIX: ONE-LOOP RGE’S IN THE GENERAL 2HDM

We outline here a derivation of the one-loop RGE’s for
the scalar and quark fields and for the Yukawa coupling ma-
tricesD̃ (k) andŨ (k) (k51,2) in the general two-Higgs dou-
blet model ~G2HDM! whose Lagrangian density in the

Yukawa sector is represented by Eq.~1!. The derivation fol-
lows the finite cutoff interpretation of RGE’s as presented,
for example, in Ref.@19#. We consider it useful to present the
derivation because the approach used here is physically very
intuitive, and because the existing relevant literature on
RGE’s in general~semi!simple Lie gauge groups is written
in a rather cryptic manner and not all the works agree com-
pletely with each other. In Sec. III we also compared the
results obtained here with those implied by the existing lit-
erature.

1. One-loop RGE’s for the scalar fields

To obtain the evolution of the scalar fieldsf i
(k)(E) with

‘‘cutoff’’ energy E, the truncated~one-loop! two-point
Green functions2 iS i j

(k,l )(p2;E2), represented diagrammati-
cally in Fig. 7, have to be calculated first. More specifically,
it suffices to calculate only their cutoff-dependent parts
}p2 ln E2 which are responsible for effective12 kinetic-
energy-type terms;]nf i

(k)(E)]nf j
(l )(E). In the course of

the calculations, all the massesm;Eew of the relevant par-
ticles in the diagrams are ignored. This would correspond to
the picture with a finite but large ultraviolet energy cutoff
E@Eew. Therefore, calculations need not be performed in
the mass basis of the relevant particles. These particles are
regarded as effectively massless in the approximation, the
transformations between the original bases of the relevant
fields and their mass bases are unitary, and therefore the
~mass-independent parts of the! calculated Green functions
are the same in both bases.

Calculation of the Green functions2 iS i , j
(k,l )(p2;E2) is

then straightforward. The relevant massless integrals over
internal quark-loop momentaq can be carried out in the
Euclidean metric @q̄5(2 iq0,2qj ), p̄5(2 ip0,2pj )#,
where the upper bound in the loop integral isq̄2<E2. After
rotating back into Minkowski metric (p̄2°2p2), we obtain
the following.

~1! Green functions whose external legsf i
(k) and f j

(l )

have the same scalar indices (i 5 j ):

2 iS j , j
~k,l !~p2;E2!

5 i
Nc

32p2 p2 lnS E2

m2DTr@Ũ ~k!Ũ ~ l !†1Ũ ~ l !Ũ ~k!†

1D̃ ~k!D̃ ~ l !†1D̃ ~ l !D̃ ~k!†] ~E!, ~A1!

12For clearer notation, we denote in this section the evolving~UV
cutoff! energyE at the fields not as a superscript, but rather as an
argument.

FIG. 7. The diagram leading to the two-point Green function
2 iS i j

(k,l )(p2;E2). Full lines represent quark propagators.
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where j 51,2,3,4~no running overj !, k,l 51,2, andm is an
arbitrary but fixed mass (m;Eew).

~2! Green functions whose external legsf j
(k) and f j 8

(l )

have complementary scalar indices (j j 8)5(12), ~21!, ~34!,
~43!:

2 iS
~ j , j 8!

k,l
~p2;E2!5~21! j

Nc

32p2 p2 lnS E2

m2DTr@Ũ ~k!Ũ ~ l !†

2Ũ ~ l !Ũ ~k!†2D̃ ~k!D̃ ~ l !†1D̃ ~ l !D̃ ~k!†#

3~E!. ~A2!

~3! Green functions2 iS i , j
(k,l ) where other indices are

zero.
All these Green functions can be induced alternatively at
the tree level by kinetic energy terms. For example, in the
theory with UV cutoff E, the kinetic energy term
]nf i

(k)(E)]nf j
(l )(E) induces~at the tree level! the two-point

Green function value2 iS i , j
(k,l )(p2;E2)5 ip2 if f i

(k)(E)
Þf j

(l )(E), and the value 2ip2 if f i
(k)(E)[f j

(l )(E). Now,
following the finite-cutoff interpretation of RGE’s as de-
scribed, for example, in Ref.@9#, we compare the kinetic
energy terms in the theory with the UV cutoffE and in the
equivalent theory with the slightly different cutoff (E
1dE). The two-point Green functions in these two equiva-
lent theories must be identical. Imposition of this require-
ment in the tree plus one-loop approximation then leads to
the following relation:

1

2 (
j 51

4

(
k51

2

]nf j
~k!~E!]nf j

~k!~E!

5
1

2 (
j 51

4

(
k51

2

]nf j
~k!~E1dE!]nf j

~k!~E1dE!

1
Nc

32p2 ~d ln E2!

3H (
j 51

4

(
k,l 51

2

Akl ~E!]nf j
~k!~E!]nf j

~ l !~E!

1 (
~ j , j 8!

(
k,l 51

2

~21! j 81l Bkl ~E!

3]nf j
~k!~E!]nf j 8

~ l !
~E!J , ~A3!

where the summation in the last sum runs over the already
mentioned complementary indices (j j 8)5(12), ~21!, ~34!,
~43!, d(ln E2)[ln(E1dE)22ln E252dE/E, and elements of
the real symmetric matricesA(E) and B(E) are related to
the Green function expressions~A1! and ~A2!, respectively,

Akl ~E!5
1

2
Tr@Ũ ~k!Ũ ~ l !†1Ũ ~ l !Ũ ~k!†

1D̃ ~k!D̃ ~ l !†1D̃ ~ l !D̃ ~k!†#~E!, ~A4!

Bkl ~E!5~21! l
i

2
Tr@Ũ ~k!Ũ ~ l !†2Ũ ~ l !Ũ ~k!†

2D̃ ~k!D̃ ~ l !†1D̃ ~ l !D̃ ~k!†#~E!. ~A5!

Equation~A3! is described in the following way: the double
sum on the left and the first double sum on the right repre-
sent the kinetic energy terms of the scalars in the formulation
with UV cutoff E and (E1dE), respectively. The one-loop
contributions of Fig. 7 with the loop momentumuq̄u in the
Euclidean energy intervalE<uq̄u<L are already contained
in the kinetic energy terms of the left effectively at the tree
level ~L is a large cutoff where the theory is presumed to
break down!. On the other hand, the kinetic energy terms of
the (E1dE) cutoff formulation@the first double sum on the
right of Eq. ~A3!# effectively contain, at the tree level, the
one-loop effects of Fig. 7 for the slightly smaller energy
interval (E1dE)<uq̄u<L. Therefore, the Green function
contributions13 2 idS i , j

(k,l )(p2;E2) of Fig. 7 from the loop-

momentum intervalE<uq̄u<(E1dE) had to be included on
the right of Eq.~A3!—these are the terms in the last two
double sums there. This is illustrated in Fig. 8.

In order to find RGE’s for the scalar fieldsf j
(k)(E), we

make the followingAnsatzfor the solution of Eq.~A3!:

fW j~E1dE!5fW j~E!1da~ j !~E!fW j~E!1db~ j !~E!fW j 8~E!,
~A6!

where fW j is two-component column made up off j
(1) and

f j
(2) , da ( j )(E) anddb ( j )(E) are infinitesimally small 232

matrices anddb ( j ) has zero diagonal elements, and scalar

13More precisely: the corresponding effective kinetic energy
terms.

FIG. 8. Diagrammatic illustration of the RGE relation~A3! leading to the evolution of the scalar fields.f i
(k) stands forf i

(k)(E) anddf
stands forf(E1dE)2f(E) ~f is a generic notation forf j

(l )’s!. The cross represents the contribution of the change of the kinetic energy
terms originating from the changesdf of scalar fields.
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indices (j j 8) are again complementary. InsertingAnsatz
~A6! into RGE relation~A3!, we obtain relations

dakl
~ j !~E!1da l k

~ j !~E!52Nc~d ln E2!Akl ~E!/~16p2!,
~A7!

dbkl
~ j !~E!1db l k

~ j 8!~E!5~21! j 1l Nc~d ln E2!

3Bkl ~E!/~16p2!. ~A8!

In principle, these relations alone do not define the elements
dakl

( j )(E) and dbkl
( j )(E). However, RGE evolution of the

isodoublet fieldsF (1)(E) and F (2)(E) should be invariant

under the exchange of Higgs generation indices 1↔2, be-
cause these two Higgs doublets appear in the original La-
grangian density~1! in a completely 1↔2 symmetric man-
ner. We will see in retrospect that this exchange symmetry is
respected once we impose the conditions

dakl
~ j !~E!5da l k

~ j !~E!, dbkl
~ j !~E!5db l k

~ j 8!~E!. ~A9!

Relations~A7!–~A9! lead to specific expressions for the evo-
lution coefficientsdakl

( j )(E) and dbkl
( j )(E). When inserting

these coefficients back intoAnsatz~A6!, we obtain the one-
loop RGE’s for the evolution of the scalar fields:

16p2

Nc

d

d ln E
f j

~1!~E!52Tr@Ũ ~1!Ũ ~1!†1D̃ ~1!D̃ ~1!†#f j
~1!2

1

2
Tr@Ũ ~1!Ũ ~2!†1Ũ ~2!Ũ ~1!†1D̃ ~1!D̃ ~2!†1D̃ ~2!D̃ ~1!†#f j

~2!

1 i ~21! j
1

2
Tr@Ũ ~1!Ũ ~2!†2Ũ ~2!Ũ ~1!†2D̃ ~1!D̃ ~2!†1D̃ ~2!D̃ ~1!†#f j 8

~2! , ~A10!

16p2

Nc

d

d ln E
f j

~2!~E!52Tr@Ũ ~2!Ũ ~2!†1D̃ ~2!D̃ ~2!†#f j
~2!2

1

2
Tr@Ũ ~1!Ũ ~2!†1Ũ ~2!Ũ ~1!†1D̃ ~1!D̃ ~2!†1D̃ ~2!D̃ ~1!†#f j

~1!

1 i ~21! j 11
1

2
Tr@Ũ ~1!Ũ ~2!†2Ũ ~2!Ũ ~1!†2D̃ ~1!D̃ ~2!†1D̃ ~2!D̃ ~1!†#f j 8

~1! , ~A11!

where againj 8 is the scalar index complementary to indexj : ( j j 8)5(12), ~21!, ~34!, ~43!. These RGE’s lead to RGE’s for
scalar isodoubletsF (k):

16p2

Nc

d

d ln E
F~k!~E!

52 (
l 51

2

Tr@Ũ ~k!Ũ ~ l !†1D̃ ~ l !D̃ ~k!†#F~ l !.

~A12!

We really see that this set of one-loop RGE’s is invariant
under the exchange 1↔2, as required by the form of the
Yukawa Lagrangian density~1!.

In addition to quark loops, there are also loops of the
electroweak gauge bosons contributing to one-loop two-
point Green functions of the scalars. However, since these
gauge bosons couple to the Higgs isodoublets identically as
in the minimal standard model~MSM!, their contributions14

to the right of RGE’s~A10!–~A12! are the same as in the
MSM.15 Hence, the full one-loop RGE’s for the the scalar
isodoublets in the G2HDM, in the Landau gauge, are

16p2
d

d ln E
F~k!~E!

52Nc(
l 51

2

Tr@Ũ ~k!Ũ ~ l !†1D̃ ~ l !D̃ ~k!†#F~ l !

1F3

4
g1

2~E!1
9

4
g2

2~E!GF~k!~E!,

~A13!

and completely analogous gauge boson contributions also
have to be added on the right of Eqs.~A10!, ~A11!. These
RGE’s are simultaneously also RGE’s for the corresponding
VEV’s ~5!:

16p2
d

d ln E
~eihkvk!

52Nc(
l 51

2

Tr@Ũ ~k!Ũ ~ l !†1D̃ ~ l !D̃ ~k!†#~eih l v l !

1F3

4
g1

2~E!1
9

4
g2

2~E!G~eihkvk!. ~A14!

In this paper we do not discuss the question of quadratic
cutoff termsL2 which appear in the radiative corrections to

14They are gauge dependent.
15For these contributions of EW gauge bosons in the MSM, see,

for example, Arasonet al. @27#, Appendix A. However, note that
they use for the U(1)Y gauge couplingg1 a different, GUT-
motivated convention: (g1

2)Arasonet al.5(5/3)(g1
2)here.
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VEV’s in any SM framework. In the MSM, their
consideration—under the assumption of the top quark domi-
nance of the radiative corrections in the scalar sector—leads
to severe upper bounds on the ultraviolet cutoffL for a sub-
stantial subset of values of the bare doublet mass and of the
bare scalar self-interaction parametersM2(L) andl~L!, see
Ref. @28#.

In order to derive one-loop RGE’s for the Yukawa matri-
ces Ũ (k) and D̃ (k), the results~A10!–~A13! are needed. In
addition, RGE’s for evolution of the quark fieldsũL,R

( j ) and

d̃L,R
( j ) are also needed.

2. One-loop RGE’s for the quark fields

These RGE’s can be derived in close analogy with the
derivation of the evolution of scalar fields of the previous
section. Now, the diagrams~Green functions! of Figs. 7 and
8 are replaced by those of Figs. 9 and 10, and the scalar field
kinetic energy terms in Eq.~A3! are replaced by those of the
quark fields. The Green function of Fig. 9, with the incoming
ũ( i ) and outgoingũ( j ) of momentump, in the framework
with UV cutoff E, is

2 iS~p;E;ũ~ i !,ũ~ j !!

5
i

64p2 lnS E2

m2D p” H 2~11g5! (
l 51

2

@Ũ ~ l !†Ũ ~ l !# j i

1~12g5! (
l 51

2

@Ũ ~ l !Ũ ~ l !†1D̃ ~ l !D̃ ~ l !†# j i J . ~A15!

The Green function with the incomingd̃( i ) and outgoingd̃( j )

of momentump is obtained from the above expression by
simply exchangingŨ (l )↔D̃ (l ) and Ũ (l )†↔D̃ (l )†. The
quark fields evolve according to theAnsatz

dq̃~k!~E!L,R5d fq~E!kl
~L,R!q̃~ l !~E!L,R , ~A16!

wheredq̃(E) generically stands forq̃(E1dE)2q̃(E) @ q̃(k)

5ũ(k),d̃(k)# and subscriptsL,R denote the handedness of the
quark fields:q̃L[(12g5)q̃/2, q̃R[(11g5)q̃/2. In complete
analogy with the previous section, we obtain from thisAn-
satzand from the RGE relation16 illustrated in Fig. 10 the
following relations for the quark field evolution matrices
d fu :

d fu~E! i j
~L !* 1d fu~E! j i

~L !

52
~d ln E2!

32p2 (
k51

2

@Ũ ~k!Ũ ~k!†1D̃ ~k!D̃ ~k!†# j i ~E!,

~A17!

d fu~E! i j
~R!* 1d fu~E! j i

~R!

52
2~d ln E2!

32p2 (
k51

2

@Ũ ~k!†Ũ ~k!# j i ~E!. ~A18!

The relations for thed fd evolution matrices of the down-type
sector are obtained from the above by simple exchanges
Ũ (l )↔D̃ (l ) and Ũ (l )†↔D̃ (l )†. A Hermitean solution to
these relations is

d fu~E! i j
~L !52

~d ln E2!

64p2 (
k51

2

@Ũ ~k!Ũ ~k!†1D̃ ~k!D̃ ~k!†# i j ~E!

5d fd~E! i j
~L ! , ~A19!

d fu~E! i j
~R!52

2~d ln E2!

64p2 (
k51

2

@Ũ ~k!†Ũ ~k!# i j ~E!,

~A20!

d fd~E! i j
~R!52

2~d ln E2!

64p2 (
k51

2

@D̃ ~k!†D̃ ~k!# i j ~E!.

~A21!

The results~A19!–~A21!, in conjunction with Eq.~A16!,
represent one-loop RGE’s for evolution of the quark fields in

FIG. 9. The diagram leading to the two-point Green function

2 iS(p;E;ũ( i ),ũ( j )). Dashed and full lines represent scalar and
quark propagators, respectively.

FIG. 10. Diagrammatic illustration of the RGE relation leading to the evolution of quark fields. This relation means that the two-point
Green functions with truncated external quark legs, at one-loop level, are the same in the theory withE cutoff and in the theory withE
1dE cutoff. Conventions are the same as in previous figures.

16RGE relation represented by Fig. 10 is analogous to relation~A3! represented by Fig. 8.
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the G2HDM, but without the gauge boson contributions. The
latter contributions are the same as in the MSM and can be
included in Eqs.~A19!–~A21!.

3. One-loop RGE’s for the Yukawa coupling matrices

To derive these RGE’s, we need, in addition to the results
of the two previous sections, also another Green function. It

is represented by the diagram of Fig. 11. When the external
legs there areũ( i ) ~incoming, with momentumk!, ũ( j ) ~out-
going, with momentump1k!, and f3

(l ) @or f4
(l )#, it turns

out that only the diagram with thechargedscalar exchange
contributes, and the resulting truncated three-point Green
function, in the framework with the UV cutoffE, is

G~3!~k,p;E;ũ~ i !,ũ~ j !;f3
~ l !!

52
i

32p2&
lnS E2

m2D (
r 51

2

$~11g5!@D̃ ~r !D̃ ~ l !†Ũ ~r !# j i

1~12g5!@Ũ ~r !†D̃ ~ l !D̃ ~r !†# j i %. ~A22!

The corresponding Green function with the down-type quark
external legs is obtained from the above by the exchanges
Ũ (s)↔D̃ (s) and Ũ (s)†↔D̃ (s)†.

Now, the one-loop RGE’s for the Yukawa matrices are obtained in analogy with the reasoning leading, in the case of
two-point scalar Green functions, to the RGE relation~A3! ~see Fig. 8!. It is straightforward to check that the contribution of
the quark loops in the scalar external leg cancel the contributions coming from the renormalizations of the scalar fields in the
kinetic energy terms of the scalars—this is illustrated in Fig. 12. Furthermore, it can be checked that the contributions of the
scalar exchanges on the external quark legs cancel the contributions coming from the renormalizations of the quark fields in
the kinetic energy terms of the quarks—illustrated in Fig. 13. All in all, the one particle reducible~1PR! one-loop contributions
are canceled by the contributions of field renormalizations in the kinetic energy terms. Therefore, the only one-loop terms
contributing to evolution of theŨ (k) Yukawa matrices are those depicted in Fig. 14. The three diagrams with crosses there
correspond to contributions of the following changesin the Yukawa couplingterms: Yukawa matrix change~renormalization!
dŨ(k) @[Ũ (k)(E1dE)2Ũ (k)(E)#—Fig. 14~b!; the scalar field renormalizationdf̃s

(k) @[f̃s
(k)(E1dE)2f̃s

(k)(E)#—Fig.

14~c!; the quark field renormalizationdũ( i ) anddũ( j )—Fig. 14~d!. Figure 14 is a diagrammatical representation of the physical
requirement that the three-point~quark-antiquark-scalar! Green function, at one-loop level, in the theory with the cutoffE
1dE @left side of Fig. 14:~a!1•••1~e!# be the same as in the theory with the slightly lower cutoffE ~right side!.

Using the results of this and the previous sections of the Appendix, we can then write down the one-loop RGE forŨ (k)

corresponding to Fig. 14, at the right-handed component@}(11g5)# of the three-point Green function

Ũ j i
~k!1dŨji

~k!1
1

32p2 ~d ln E2!H 2Nc(
l 51

2

Tr@Ũ ~k!Ũ ~ l !†1D̃ ~ l !D̃ ~k!†#Ũ ~ l !2
1

2 (
l 51

2

@~Ũ ~ l !Ũ ~ l !†1D̃ ~ l !D̃ ~ l !†!Ũ ~k!

12Ũ ~k!Ũ ~ l !†Ũ ~ l !#12 (
l 51

2

@D̃ ~ l !D̃ ~k!†Ũ ~ l !#J j i 5Ũ j i
~k! . ~A23!

Taking the left-handed component of the three-point Green function results in the Hermitean conjugate of Eq.~A23!, i.e., in
an equivalent relation. The first sum on the left (}Nc) of Eq. ~A23! corresponds to Fig. 14~c! @cf. Eqs.~A10!–~A12!#, the
second sum to Fig. 14~d! @cf. Eqs.~A19!, ~A20!#, and the third sum to Fig. 14~e! @cf. Eq. ~A22!#. The left-handed part of the
Green function yields just the Hermitean conjugate of the above matrix relation. The analogous consideration of the three-point

FIG. 11. One-particle-irreducible~1PI! diagram contributing to
the evolution of the Yukawa coupling parameters. Conventions are
the same is in previous figures.

FIG. 12. Cancellation of contributions from the quark loop~one-particle-reducible! with those of the scalar field renormalizations in the
kinetic energy term of the scalars, for the energy cutoff interval (E,E1dE).
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Green functions with the down-type external quark legsd̃( i ) and d̃( j ) gives relations which can be obtained from the above
relation again by the exchangesŨ (s)↔D̃ (s) and Ũ (s)†↔D̃ (s)†. These relations can be rewritten in a more conventional form

16p2
d

d ln E
Ũ ~k!~E!5H Nc(

l 51

2

Tr@Ũ ~k!Ũ ~ l !†1D̃ ~ l !D̃ ~k!†#Ũ ~ l !1
1

2 (
l 51

2

@Ũ ~ l !Ũ ~ l !†1D̃ ~ l !D̃ ~ l !†#Ũ ~k!

1Ũ ~k! (
l 51

2

Ũ ~ l !†Ũ ~ l !22 (
l 51

2

@D̃ ~ l !D̃ ~k!†Ũ ~ l !#J , ~A24!

and an analogous RGE forD̃ (k). These RGE’s still do not contain one-loop effects of exchanges of gauge bosons. However,
since the couplings of quarks and the Higgs doublets to the gauge bosons are identical to those in the usual MSM, 2HDM~I!,
and 2HDM~II !, their contributions on the right of the above RGE’s are identical to those in these theories. Therefore, the final
form of the one-loop RGE’s for the Yukawa matrices in the general 2HDM now reads

16p2
d

d ln E
Ũ ~k!~E!5H Nc(

l 51

2

Tr@Ũ ~k!Ũ ~ l !†1D̃ ~ l !D̃ ~k!†#Ũ ~ l !1
1

2 (
l 51

2

@Ũ ~ l !Ũ ~ l !†1D̃ ~ l !D̃ ~ l !†#Ũ ~k!1Ũ ~k! (
l 51

2

Ũ ~ l !†Ũ ~ l !

22 (
l 51

2

@D̃ ~ l !D̃ ~k!†Ũ ~ l !#2AUŨ ~k!J , ~A25!

16p2
d

d ln E
D̃ ~k!~E!5H Nc(

l 51

2

Tr@D̃ ~k!D̃ ~ l !†1Ũ ~ l !Ũ ~k!†#D̃ ~ l !1
1

2 (
l 51

2

@Ũ ~ l !Ũ ~ l !†1D̃ ~ l !D̃ ~ l !†#D̃ ~k!1D̃ ~k! (
l 51

2

D̃ ~ l !†D̃ ~ l !

22 (
l 51

2

@Ũ ~ l !Ũ ~k!†D̃ ~ l !#2ADD̃ ~k!J , ~A26!

where the functionsAU andAD , characterizing the contributions of the gauge boson exchanges, are gauge independent and are
the same as in the MSM, 2HDM~I!, and 2HDM~II !:

FIG. 13. Cancellation of contributions from the scalar exchange on the quark legs~1PR! with those of the quark field renormalizations
in the kinetic energy term of the quarks, for the energy cutoff interval (E,E1dE).

FIG. 14. Diagrammatic representation of the RGE for the up-type Yukawa matrixŨ. Only the 1PI scalar exchange~e! and the effects of
the renormalizations of the Yukawa matrix, of the scalar fields and the quark fields in the Yukawa couplings@~b!, ~c!, ~d!, respectively#

contribute when the cutoff is changed fromE ~RHS! to E1dE ~LHS!. Note thatdŨ stands forŨ(E1dE)2Ũ(E), etc. The contributions
of the gauge boson exchanges were not considered in the figure.
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AU53
~Nc

221!

Nc
g3

21
9

4
g2

21
17

12
g1

2 , AD5AU2g1
2 ,

~A27!

and the gauge coupling parametersgj satisfy the one-loop
RGE’s

16p2
d

d ln E
gj52Cjgj

3 , ~A28!

with the coefficientsCj being those for the 2HDM’s (NH
52)

C35
1

3
~11Nc22nq!, C2572

2

3
nq , C152

1

3
2

10

9
nq .

~A29!

Here, nq is the number of effective quark flavors, e.g., for
E.mt we havenq'6; for mb,E,mt we havenq'5, etc.
This completes the derivation of the one-loop RGE’s.
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