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In the context of conventional quantum field theory, we present a general Lorentz-violating extension of the
minimal SU~3!3SU~2!3U~1! standard model includingCPT-even andCPT-odd terms. It can be viewed as
the low-energy limit of a physically relevant fundamental theory with Lorentz-covariant dynamics in which
spontaneous Lorentz violation occurs. The extension has gauge invariance, energy-momentum conservation,
and covariance under observer rotations and boosts, while covariance under particle rotations and boosts is
broken. The quantized theory is Hermitian and power-counting renormalizable, and other desirable features
such as microcausality, positivity of the energy, and the usual anomaly cancellation are expected. Spontaneous
symmetry breaking to the electromagnetic U~1! is maintained, although the Higgs expectation is shifted by a
small amount relative to its usual value and theZ0 field acquires a small expectation. A general Lorentz-
breaking extension of quantum electrodynamics is extracted from the theory, and some experimental tests are
considered. In particular, we study modifications to photon behavior. One possible effect is vacuum birefrin-
gence, which could be bounded from cosmological observations by experiments using existing techniques.
Radiative corrections to the photon propagator are examined. They are compatible with spontaneous Lorentz
andCPT violation in the fermion sector at levels suggested by Planck-scale physics and accessible to other
terrestrial laboratory experiments.@S0556-2821~99!01601-X#

PACS number~s!: 11.30.Er, 12.60.2i, 12.20.Fv, 41.20.Jb

I. INTRODUCTION

The minimal SU~3!3SU~2!3U~1! standard model, al-
though phenomenologically successful, leaves unresolved a
variety of issues. It is believed to be the low-energy limit of
a fundamental theory that also provides a quantum descrip-
tion of gravitation. An interesting question is whether any
aspects of this underlying theory could be revealed through
definite experimental signals accessible with present tech-
niques.

The natural scale for a fundamental theory including grav-
ity is governed by the Planck massM P , which is about 17
orders of magnitude greater than the electroweak scalemW
associated with the standard model. This suggests that ob-
servable experimental signals from a fundamental theory
might be expected to be suppressed by some power of the
ratio r'mW /M P.10217. Detection of these minuscule ef-
fects at present energy scales would be likely to require ex-
periments of exceptional sensitivity, preferably ones seeking
to observe a signal forbidden in conventional renormalizable
gauge theories.

To identify signals of this type, one approach is to exam-
ine proposed fundamental theories for effects that are quali-
tatively different from standard-model physics. For example,
at present the most promising framework for a fundamental
theory is string (M ) theory. The qualitative difference be-
tween particles and strings means that qualitatively new
physics is expected at the Planck scale. An interesting chal-
lenge would be to determine whether this could lead to ob-
servable low-energy effects.

In the present work, we consider the possibility that the
new physics involves a violation of Lorentz symmetry. It has
been shown that spontaneous Lorentz breaking may occur in
the context of string theories with Lorentz-covariant dynam-
ics @1#. Unlike the conventional standard model, string theo-

ries typically involve interactions that could destabilize the
naive vacuum and trigger the generation of nonzero expec-
tation values for Lorentz tensors. Note that some kind of
spontaneous breaking of the higher-dimensional Lorentz
symmetry is expected in any realistic Lorentz-covariant fun-
damental theory involving more than four spacetime dimen-
sions. If the breaking extends into the four macroscopic
spacetime dimensions, apparent Lorentz violation could oc-
cur at the level of the standard model. This would represent
a possible observable effect from the fundamental theory,
originating outside the structure of conventional renormaliz-
able gauge models.

A framework has been developed for treating the effects
of spontaneous Lorentz breaking in the context of a low-
energy effective theory@2#, where certain terms can be in-
duced that appear to violate Lorentz invariance explicitly. It
turns out that, from a theoretical perspective, the resulting
effects are comparatively minimal.

An important point is that Lorentz symmetry remains a
property of the underlying fundamental theory because the
breaking is spontaneous. This implies that various attractive
features of conventional theories, including microcausality
and positivity of the energy, are expected to hold in the low-
energy effective theory. Also, energy and momentum are
conserved as usual, provided the tensor expectation values in
the fundamental theory are spacetime-position independent.
Moreover, standard quantization methods are unaffected, so
a relativistic Dirac equation and a nonrelativistic Schro¨dinger
equation emerge in the appropriate limits.

Another important aspect of the spontaneous breaking is
that both the fundamental theory and the effective low-
energy theory remain invariant underobserverLorentz trans-
formations, i.e., rotations or boosts of an observer’s inertial
frame@2#. The presence of nonzero tensor expectation values
in the vacuum affects only invariance properties underpar-
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ticle Lorentz transformations, i.e., rotations or boosts of a
localized particle or field that leave unchanged the back-
ground expectation values.

This framework for treating spontaneous Lorentz viola-
tion has been used to obtain a general extension of the mini-
mal SU~3!3SU~2!3U~1! standard model that violates both
Lorentz invariance andCPT @2#. In addition to the desirable
features of energy-momentum conservation, observer Lor-
entz invariance, conventional quantization, hermiticity, and
the expected microcausality and positivity of the energy, this
standard-model extension maintains gauge invariance and
power-counting renormalizability. It would emerge from any
fundamental theory~not necessarily string theory! that gen-
erates the standard model and contains spontaneous Lorentz
andCPT violation.

The present work continues our previous theoretical in-
vestigations of spontaneous Lorentz andCPT breaking.
Working first at the level of the standard model, we provide
explicitly in Sec. II the full Lorentz-violating extension, in-
cluding theCPT-even Lorentz-breaking terms described im-
plicitly in Ref. @2#. We also give some details of the modifi-
cations to the usual electroweak symmetry breaking.

Since many sensitive measures of Lorentz andCPT sym-
metry involve tests of quantum electrodynamics~QED!, it is
useful to extract from the standard-model extension a gener-
alized QED that allows for possible Lorentz andCPT vio-
lations. This extended QED, given in Sec. III, involves modi-
fications of the usual QED in both the fermion and the
photon sectors. Some comments are also given in Sec. III
about the implications of this theory for experimental tests
with electrons and positrons.

In the remainder of this paper, we focus primarily on the
photon sector of the extended QED, presenting a study of the
theoretical and experimental implications of the modifica-
tions to photon properties arising from the possible Lorentz
and CPT violations. Section IV discusses changes in the
basic theory, including the modified Maxwell equations and
properties of their solutions. One possible effect is vacuum
photon birefringence, and some associated features are de-
scribed. We show that feasible measurements limiting bire-
fringence on cosmological scales could tightly constrain the
Lorentz-violating terms. In Sec. V, some important consis-
tency checks on the theory at the level of radiative correc-
tions are presented, largely at the one-loop level. The types
of Lorentz violation that can be affected by radiative correc-
tions are identified, and explicit calculations are given. We
show that the effects are compatible with spontaneous Lor-
entz andCPT violation in the fermion sector at levels acces-
sible to other QED experiments.

Since the standard-model extension provides a quantita-
tive microscopic theory of Lorentz andCPT violation, it is
feasible to identify potentially observable signals and to es-
tablish bounds from various experiments other than ones in
the photon sector. Numerous tests of Lorentz invariance and
CPT exist. The present theory provides a single coherent
framework at the level of the standard model and QED that
can be used as a basis for the analysis and comparison of
these tests. Although many experiments are insensitive to the
suppressed effects motivating our investigation, certain high-

precision ones might have observable signals within this
framework. In particular, the results in the present paper
have been used to examine possible bounds onCPT and
Lorentz violations from measurements of neutral-meson os-
cillations @3–6#, from tests of QED in Penning traps@7,8#,
and from baryogenesis@9#. Several other investigations are
underway, including a study@10# of possible Lorentz and
CPT effects on hydrogen and antihydrogen spectroscopy
@11# and another @12# of limits attainable in clock-
comparison experiments@13#.

The analyses of the standard-model and QED extensions
performed in the present work leave unaddressed a number
of significant theoretical issues arising at scales between the
electroweak mass and the Planck mass. These include the
‘‘dimension problem’’ of establishing whether spontaneous
Lorentz breaking in the fundamental theory near the Planck
scale indeed extends to the four physical spacetime dimen-
sions and, if so, the mechanism for its suppression or, if not,
why exactly four spacetime dimensions are spared. Other
issues include the effects of mode fluctuations around the
tensor expectation values and possible constraints and effects
arising from a nonminimal standard model or~super!unifica-
tion below the Planck scale.

Another potentially important topic is the implication of
spontaneous Lorentz violation for gravity at observable en-
ergies. Like the usual standard model, the standard-model
extension considered here disregards gravitational effects.
The particle Lorentz symmetry that is broken in this theory is
therefore effectively a global symmetry, and so one might
expect Nambu-Goldstone modes. Since gravity is associated
with local Lorentz invariance, it is natural to ask about the
role of these modes in a version of the standard-model ex-
tension that includes gravity. In a gauge theory, when a suit-
able scalar acquires a nonzero expectation value, the Higgs
mechanism occurs: the propagator for the gauge boson is
modified, and a mass is generated. Similarly, in a theory with
gravitational couplings, when a Lorentz tensor acquires a
nonzero expectation value, the graviton propagator can be
modified. However, no mass for the graviton is induced be-
cause the gravitational connection is related to the derivative
of the metric rather than to the metric itself@1#. In this sense,
there is no gravitational Higgs effect.

The theory described here appears at present to be the sole
candidate for a consistent extension of the standard model
providing a microscopic theory of Lorentz violation. A com-
plete review of alternative approaches to possible Lorentz
and CPT violation lies beyond the scope of this paper.
Works known to us of relevance in the present context are
referenced in the body of the text below. Among other ideas
in the literature are several distinctive ones developed from
perspectives very different from ours. Following early work
by Dirac and Heisenberg, several authors have considered an
unphysical spontaneous Lorentz breaking in an effort to in-
terpret the photon as a Nambu-Goldstone boson@14#.
Nielsen and his colleagues have suggested the converse of
the philosophy in the present work: that the observed Lorentz
symmetry in nature might be a low-energy manifestation of a
fundamental theorywithoutLorentz invariance. A discussion
of this idea and a brief review of the literature on Lorentz
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breaking prior to the establishment of the usual minimal
standard model may be found in Ref.@15#. Hawking has
suggested@16# the possibility that conventional quantum me-
chanics is invalidated by gravitational effects and that this
might lead toCPT violation, among other effects. The im-
plications for experiments in the kaon system@17# are known
to be entirely different from those arising in the present
standard-model extension, which is based on conventional
quantum theory. There is also a body of literature pertaining
to unconventional theories of gravity~without standard-
model physics!, among which are some models containing
various possible sources of local Lorentz violation@18#.

II. STANDARD-MODEL EXTENSION

In this section, we extend the minimal standard model by
adding all possible Lorentz-violating terms that could arise
from spontaneous symmetry breaking at a fundamental level
but that preserve SU~3!3SU~2!3U~1! gauge invariance and
power-counting renormalizability. Terms that are odd under
CPT are explicitly given in Ref.@2# but are also included
here for completeness.

The general form of a Lorentz-violating term involves a
part that acts as a coupling coefficient and a part constructed
from the basic fields in the standard model. The requirements
of the derivation impose various limitations on the possible
structures of both parts. Taken together, these requirements
place significant constraints on the form of terms in the
standard-model extension.

The part acting as a coupling coefficient carries spacetime
indices reflecting the properties under observer Lorentz
transformations of the relevant nonzero expectation values
from the fundamental theory. The coupling coefficient may
be complex, but it is constrained by the requirement that the
Lagrangian be Hermitian. For a coupling coefficient with an
even number of spacetime indices, the pure trace component
is irrelevant for present purposes because it maintains Lor-
entz invariance. A coupling coefficient of this type can there-
fore be taken traceless.

The field part may involve covariant derivatives and, if
fermions are involved,g matrices. Gauge invariance requires
that the field part be a singlet under SU~3!3SU~2!3U~1!,
while power-counting renormalizability implies that it must
have mass dimension no greater than four. The requirement
that the standard-model extension originates from spontane-
ous Lorentz breaking in a covariant fundamental theory im-
plies the whole Lorentz-violating term must be a singlet un-
der observer Lorentz transformations, so the field part must
have indices matching those of the coupling coefficient.

Following the discussion in the introduction, all coupling
coefficients are assumed to be heavily suppressed by some
power of the ratior of the light scale to the Planck scale. In
the absence of a satisfactory explanation of the suppression
mechanism, it would seem premature to attempt specific de-
tailed predictions about the relative sizes of different cou-
pling coefficients. As a possible working hypothesis, one
might attribute comparable suppression factors to all terms at
the level of the standard-model extension. Note that a term
with the field part having mass dimensionn must have a

coupling coefficient with mass dimension 42n, and the rel-
evant scale for these effects is roughly the Planck mass. The
hypothesis would therefore suggest that in the low-energy
theory a term with the field part of mass dimensionn11
would have a coupling coefficient suppressed by an addi-
tional power ofr relative to the coefficient of a field term of
mass dimensionn. This scheme would be compatible with
interpreting the standard model as an effective field theory,
in which each additional derivative coupling would involve
an additional suppression factor in the coupling coefficient. It
would imply a distinct hierarchy among the coupling coeffi-
cients introduced below, and would suggest that certain de-
rivative couplings could be neglected relative to comparable
nonderivative ones. However, since this hypothesis presently
has no basis in a detailed theory, in what follows we have
chosen to retain on an equal footing all renormalizable terms
compatible with the gauge symmetries of the standard model
and with an origin in spontaneous Lorentz breaking.

In what follows, we denote the left- and right-handed lep-
ton and quark multiplets by

LA5S nA

l A
D

L

, RA5~ l A!R ,

QA5S uA

dA
D

L

, UA5~uA!R , DA5~dA!R , ~1!

where

cL[ 1
2 ~12g5!c, cR[ 1

2 ~11g5!c, ~2!

as usual, and whereA51,2,3 labels the flavor: l A
[(e,m,t), nA[(ne ,nm ,nt), uA[(u,c,t), dA[(d,s,b).
We denote the Higgs doublet byf, and in unitary gauge we
represent it as

f5
1

&
S 0
r f

D . ~3!

The conjugate doublet isfc. The SU~3!, SU~2!, and U~1!
gauge fields are denoted byGm , Wm , andBm , respectively.
The corresponding field strengths areGmn , Wmn , andBmn ,
with the first two understood to be Hermitian adjoint matri-
ces whileBmn is a Hermitian singlet. The corresponding cou-
plings areg3 , g, andg8. The electromagnetic U~1! chargeq
and the angle uW are defined throughq5g sinuW
5g8 cosuW, as usual. The covariant derivative is denoted by
Dm , and A]JmB[A]mB2(]mA)B. The Yukawa couplings
are GL , GU , GD . Throughout most of this work we use
natural units, which could be obtained from the SI system by
redefining\5c5e051, and we adopt the Minkowski metric
hmn with h00511.

The complete Lagrangian for the Lorentz-breaking
standard-model extension can be separated into a sum of
terms. For completeness, we first provide the Lagrangian
terms in the usual SU~3!3SU~2!3U~1! minimal standard
model:

Llepton5
1
2 i L̄ AgmDJ mLA1 1

2 iR̄AgmDJ mRA , ~4!
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Lquark5
1
2 iQ̄AgmDJ mQA1 1

2 iŪ AgmDJ mUA1 1
2 iD̄ AgmDJ mDA ,

~5!

LYukawa52@~GL!ABL̄AfRB1~GU!ABQ̄AfcUB

1~GD!ABQ̄AfDB#1H.c., ~6!

LHiggs5~Dmf!†Dmf1m2f†f2
l

3!
~f†f!2, ~7!

Lgauge52 1
2 Tr~GmnGmn!2 1

2 Tr~WmnWmn!2 1
4 BmnBmn. ~8!

The usualu terms have been omitted, and possible analogous
total-derivative terms that break Lorentz symmetry are dis-
regarded in this work.

In the fermion sector of the standard-model extension, the
contribution to the Lagrangian can be divided into four parts
according to whether the term isCPT even or odd and
whether it involves leptons or quarks:

L lepton
CPT-even5 1

2 i ~cL!mnABL̄AgmDJ nLB

1 1
2 i ~cR!mnABR̄AgmDJ nRB , ~9!

L lepton
CPT-odd52~aL!mABL̄AgmLB2~aR!mABR̄AgmRB , ~10!

L quark
CPT-even5 1

2 i ~cQ!mnABQ̄AgmDJ nQB

1 1
2 i ~cU!mnABŪAgmDJ nUB

1 1
2 i ~cD!mnABD̄AgmDJ nDB , ~11!

L quark
CPT-odd52~aQ!mABQ̄AgmQB

2~aU!mABŪAgmUB2~aD!mABD̄AgmDB .

~12!

In these equations, the various coupling coefficientscmn and
am are understood to be Hermitian in generation space. The
coefficientsam have dimensions of mass. The dimensionless
coefficientscmn can have both symmetric and antisymmetric
parts but can be assumed traceless. A nonzero trace would
not contribute to Lorentz violation and in any case can be
absorbed by a conventional field normalization ensuring the
usual kinetic operator for the matter fields.

The standard-model extension also contains Lorentz-
violating couplings between the fermions and the Higgs
field, having the gauge structure of the usual Yukawa cou-
plings but involving nontrivialg matrices. These terms are
all CPT even:

L Yukawa
CPT-even52 1

2 @~HL!mnABL̄AfsmnRB

1~HU!mnABQ̄AfcsmnUB

1~HD!mnABQ̄AfsmnDB#1H.c. ~13!

The coefficientsHmn are dimensionless and antisymmetric,
but like the Yukawa couplingsGL,U,D they arenot necessar-
ily Hermitian in generation space.

The possible contributions in the Higgs sector can be
CPT even orCPT odd:

LHiggs
CPT-even5 1

2 ~kff!mn~Dmf!†Dnf1H.c.

2 1
2 ~kfB!mnf†fBmn2 1

2 ~kfW!mnf†Wmnf,

~14!

L Higgs
CPT-odd5 i ~kf!mf†Dmf1H.c. ~15!

In Eq. ~14!, the dimensionless coefficientkff can have sym-
metric real and antisymmetric imaginary parts. The other co-
efficients in Eq.~14! have dimensions of mass and must be
real antisymmetric. The coefficientkf for theCPT-odd term
~15! also has dimensions of mass and can be an arbitrary
complex number.

The gauge sector has bothCPT-even andCPT-odd con-
tributions. TheCPT-even ones are

L gauge
CPT-even52 1

2 ~kG!klmn Tr~GklGmn!

2 1
2 ~kW!klmn Tr~WklWmn!

2 1
4 ~kB!klmnBklBmn. ~16!

In this equation, the dimensionless coefficientskG,W,B are
real. They must have the symmetries of the Riemann tensor
and a vanishing double trace. The point is that any totally
antisymmetric part involves only a total derivative in the
Lagrangian density, while a nonzero double trace can be ab-
sorbed into a redefinition of the normalization of the corre-
sponding kinetic term~8!.

The CPT-odd gauge terms are given by the following
expression@19#:

L gauge
CPT-odd5~k3!keklmn Tr~GlGmn1 2

3 ig3GlGmGn!
1~k2!keklmn Tr~WlWmn1 2

3 igWlWmWn!
1~k1!keklmnBlBmn1~k0!kBk. ~17!

The coefficientsk1,2,3 are real and have dimensions of mass,
while k0 is also real and has dimensions of mass cubed. It
turns out that, if any of theseCPT-odd terms do indeed
appear, they would generate instabilities in the minimal
theory. They are all associated with negative contributions to
the energy, and in addition the term withk0 would directly
generate a linear instability in the potential. It might there-
fore seem desirable that all the coefficientsk0,1,2,3 vanish.
While this could be imposed at the classical level, radiative
quantum corrections from, say, the fermion sector mighta
priori be expected to generate nonzero values. Remarkably,
the structure of the standard-model extension appears to be
such that no corrections arise, at least to one loop. These
issues are discussed further in what follows, in particular in
Secs. IV A and V.

It is known that some apparentlyCPT- and Lorentz-
violating terms can be eliminated from the action via field
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redefinitions@2#. Several types of redefinition can be consid-
ered. In the context of the present standard-model extension,
we have investigated a variety of possibilities for each field.
As a general rule, the more complex the theoretical structure
becomes, the less likely it is that a useful field redefinition
exists. For instance, the presence of Lorentz-violating
CPT-even derivative couplings in the standard-model exten-
sion complicates the analysis forCPT-odd terms provided in
Ref. @2#, although it turns out that the conclusions still hold.
Here, we summarize a few methodological results and de-
scribe some special cases of particular interest.

To eliminate a Lorentz-breaking term, a field redefinition
must involve the associated coupling coefficient. When de-
rivative couplings play a role, the field redefinition may also
involve spacetime-position variables. The assumption that
the coupling coefficients are small can be helpful, in some
cases directly assisting in derivations and in others leading to
a set of approximate field redefinitions. Under the latter, a
theory with first-order Lorentz-breaking effects may be rede-
fined into one with effects appearing only at second or higher
orders. Alternatively, some first-order Lorentz-breaking
terms may be absorbed into others. A partial constraint on
allowable redefinitions is provided by the transformation
properties of the various Lorentz-violating terms under the
discrete symmetriesC, P, T. Only terms with identical
discrete-symmetry properties can be absorbed into one an-
other by first-order redefinitions.

Two types of redefinition that we have found of particular
value are linear phase redefinitions and linear normalization
redefinitions. For example, some terms involving the coeffi-
cients aL,R,Q,U,D can be eliminated by position-dependent
field-phase redefinitions, as described in Ref.@2#. Another
example is provided by terms involving the coefficients
HL,U,D , some of which can absorb through field-
normalization redefinitions certain other terms involving the
coefficientscL,R,Q,U,D . These examples have specific inter-
esting implications for the quantum-electrodynamics limit of
the standard-model extension, and their explicit forms for
that case are given in Sec. III below. Useful nonlinear field
redefinitions might also exist in principle, but these are typi-
cally more difficult to implement meaningfully because they
may represent~noncanonical! transformations between dif-
ferent physical systems rather than reinterpretations of the
same physics.

We next consider the issue of electroweak SU~2!3U~1!
symmetry breaking. The static potential for the gauge and
Higgs fields can be extracted from the Lagrangian terms
given above for the standard-model extension. It is possible
to work in the unitary gauge as usual, since the Lorentz-
breaking terms do not affect the gauge structure of the
theory. The analysis is somewhat more complicated than the
conventional case, as it involves additional terms depending
on the coupling coefficientskff , kfW , kf , kW , k2 , andk0 .
In principle, there are also contributions from the SU~3! sec-
tor, but these decouple from the Higgs field and so the gluon
expectation values can be taken to be zero as usual. As men-
tioned above, the termsk2 andk0 are expected to vanish for
consistency of the minimal theory, and so we assume this in
what follows. In fact, a nonzerok2 would have no effect on

the vacuum values of the fields, but the linear instability that
would be introduced by a nonzerok0 would exclude a stable
vacuum in the absence of other~nonlinear! effects.

Extremizing the static potential produces five simulta-
neous equations. Three of these are satisfied if the expecta-
tion values ofWm

6 and the photonAm vanish. The other two
equations can be solved algebraically for the expectation val-
ues of the Higgs andZm

0 fields. In the general case, both of
these are nonzero and are given by

^Zm
0 &5

1

q
sin 2uW~Re k̂ff!mn

21kf
n , ~18!

^r f&5aS 12
1

m2 ~Re k̂ff!mn
21kf

mkf
n D 1/2

, ~19!

wherek̂ff
mn [hmn1kff

mn anda[A6m2/l. Note that the quan-

tity (Re k̂ff)mn
21 always exists when the Lorentz violation is

small, u(kff)mnu!1. Note also that̂ r f& is a scalar under
both particle and observer Lorentz transformations, so quan-
tities such as the fermion mass parameters remain scalars
despite the presence of Lorentz breaking.

As might be anticipated, the above pattern of expectation
values leaves unbroken the electromagnetic U~1! symmetry,
and it can be shown that fluctuations about the extremum are
stable. When substituted into the Lagrangian for the
standard-model extension, the unconventional nonzero ex-
pectation value for the fieldZm

0 generates some additional
CPT- and Lorentz-violating contributions. However, these
are all of the same form as otherCPT- and Lorentz-violating
terms already present in the theory, so they can be absorbed
into existing coupling coefficients.

Some analyses of experimental tests of the standard-
model extension involving flavor-changing oscillations in
neutral mesons have been performed in Refs.@3,5,6#. Tests at
the level of quantum electrodynamics are mentioned below.
Note that some bounds on both the fermion and the gauge
sectors might be obtained from available experimental infor-
mation about theZm

0 and perhaps theWm
6 . Such limits would

be of interest in their own right, although it seems likely that
they would be much weaker than required to detect sup-
pressed Lorentz violation at the levels estimated in this work.

III. EXTENDED QUANTUM ELECTRODYNAMICS

In much the same way that conventional quantum electro-
dynamics~QED! can be obtained from the usual standard
model, a generalized quantum electrodynamics incorporating
Lorentz-breaking terms can be extracted from the standard-
model extension given in Sec. II. This is of particular interest
because QED has been tested to high precision in a variety of
experiments, some of which may tightly constrain the cou-
pling coefficients of the possible Lorentz-violating terms.

A straightforward way to obtain the extended QED is as
follows. After the SU~2!3U~1! symmetry breaking, set to
zero the fieldsGm for the gluons,Wm

6 ,Zm
0 for the weak

bosons, and the physical Higgs field~but not the expectation
value of the Higgs doublet, which generates fermion
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masses!. The only remaining boson is the photon, mediating
the electromagnetic interactions. The neutrinos are charge
neutral, so they decouple and can be discarded. The resulting
theory is an extended QED describing the electromagnetic
interactions of quarks and~charged! leptons. It is expected to
inherit from the standard-model extension various attractive
features mentioned in the introduction, including U~1! gauge
invariance, energy-momentum conservation, observer Lor-
entz invariance, hermiticity, microcausality, positivity of the
energy, and power-counting renormalizability.

Denote the standard four-component lepton fields byl A
and their masses bymA , where A51,2,3 corresponds to
electron, muon, tau, respectively. Then, the Lagrangian for
the conventional QED of leptons and photons is

L lepton-photon
QED 5 1

2 i l̄ AgmDJ ml A2mAl̄ Al A2 1
4 FmnFmn. ~20!

In this equation and throughout what follows,Dm[]m
1 iqAm and the field strengthFab is defined by

Fab[]aAb2]bAa , ~21!

as usual.
The standard-model extension generates additional terms

that violate Lorentz symmetry. TheCPT-even terms involv-
ing the lepton fields are

L lepton
CPT-even52 1

2 ~Hl !mnABl̄ Asmnl B1 1
2 i ~cl !mnABl̄ AgmDJ nl B

1 1
2 i ~dl !mnABl̄ Ag5gmDJ nl B . ~22!

In this equation, the coupling coefficients (Hl)mnAB are anti-
symmetric in spacetime indices and have dimensions of
mass. They arise from the coefficients in Eq.~13! following
gauge-symmetry breaking, and they are Hermitian in genera-
tion space. The Hermitian dimensionless couplings (cl)mnAB
and (dl)mnAB could in principle have both symmetric and
antisymmetric spacetime components but can be taken as
traceless. They arise from the expressions~9!.

The CPT-odd terms involving the lepton fields are

L lepton
CPT-odd52~al !mABl̄ Agml B2~bl !mABl̄ Ag5gml B . ~23!

The couplings (al)mAB and (bl)mAB are Hermitian and have
dimensions of mass. They arise from Eq.~10!. Note that
imposing individual lepton-number conservation in both the
above equations would make all the coupling coefficients
diagonal in flavor space.

In the pure-photon sector, there is oneCPT-even
Lorentz-violating term:

L photon
CPT-even52 1

4 ~kF!klmnFklFmn. ~24!

The coupling (kF)klmn arises from Eq.~16! and is real and
dimensionless. Without loss of generality it can be taken as
double traceless, since any trace component would serve
merely to redefine the kinetic term and hence is just a field
renormalization. We disregard a conceivableu-type term
proportional toFkleklmnFmn , which might arise from a to-
tally antisymmetric component ofkF , on the grounds that it

is a total derivative. The couplingkF therefore can be taken
to have the symmetries of the Riemann tensor.

There is also aCPT-odd pure-photon term:

L photon
CPT-odd51 1

2 ~kAF!keklmnAlFmn, ~25!

where the coupling coefficient (kAF)k is real and has dimen-
sions of mass. This term arises from theCPT-odd gauge
sector~17! of the standard-model extension. As mentioned in
the previous section, it has some theoretical difficulties asso-
ciated with negative contributions to the energy and it there-
fore seems likely to be absent in practice. It is included in
what follows so that we can discuss explicitly its difficulties
and some related issues involving radiative corrections. Note
also that the excluded destabilizing linear term inBm in the
standard-model extension would, if present, generate a cor-
responding linear term2(kA)kAk in Eq. ~25!, where (kA)k is
a real coupling with dimensions of mass cubed. Certain is-
sues involving this term are addressed in Secs. IV A and V.

The QED limit obtained from the standard-model exten-
sion also has a quark sector. This has the same general form
as the lepton sector given by Eqs.~20!, ~22!, and~23!, except
that six quark fields replace the three leptons and so twice as
many Lorentz-violating couplings occur. Note that the lepton
and quark sectors are coupled only through the photon: the
gauge invariance of the standard-model extension excludes
couplings mixing leptons and quarks.

The extended QED of leptons and photons given in Eqs.
~20!–~25! should suffice for certain applications where the
asymptotic states are leptons or photons and the strong and
weak interactions play a negligible role, including a variety
of existing or proposed high-precision experiments involving
leptons. Interesting options for such experiments are to es-
tablish the possible signals of Lorentz violation suggested by
the extended QED and to place bounds on the associated
coupling coefficients. For example, promising possibilities
involving the muon include accurate measurements ofg22
such as those underway at the Brookhaven muon ring@20#
and sensitive tests for the decaym→eg. There are also a
variety of other comparisons involving heavy leptons that are
potentially of interest@21#. These issues lie beyond the scope
of the present work and will be addressed elsewhere.

For certain experiments, it suffices to consider another
limiting case of the theory: the extended QED including only
electrons, positrons and photons. This limit can be extracted
from the Lagrangian terms for the extended QED of leptons
and photons by setting to zero the muon and thet fields.
Denoting the four-component electron field byc and the
electron mass byme , the usual QED Lagrangian for elec-
trons and photons is

L electron
QED 5 1

2 i c̄gmDJ mc2mec̄c2 1
4 FmnFmn. ~26!

In the Lorentz-violating sector, the pure-photon terms are
still given by Eqs.~24! and ~25!. However, theCPT-even
terms in the fermion sector become
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L electron
CPT-even52 1

2 Hmnc̄smnc1 1
2 icmnc̄gmDJ nc

1 1
2 idmnc̄g5gmDJ nc, ~27!

while theCPT-odd ones become

L electron
CPT-odd52amc̄gmc2bmc̄g5gmc. ~28!

The real coupling coefficientsa, b, c, d, and H are the
~1,1!-flavor components of the corresponding coefficients in
the extended QED of leptons and photons and inherit the
corresponding dimensions and Lorentz-transformation prop-
erties.

In addition to the expressions given in Eqs.~24!–~28! for
the extended QED of electrons, positrons, and photons, other
Lorentz-violating terms can be envisaged that are compatible
with U~1! charge symmetry, renormalizability, and an origin
in spontaneous Lorentz breaking but thatcannotbe obtained
as a reduction from the standard-model extension. All such
terms would beCPT odd. They would have the form

L electron
extra 5 1

2 ienc̄DJ nc2 1
2 f nc̄g5DJ nc1 1

4 iglmnc̄slmDJ nc,
~29!

where the couplingsem , f m , andglmn are real and dimen-
sionless. The reason such terms are absent from the expres-
sions obtained above is that all putative renormalizable terms
in the standard-model extension that could generate Eq.~29!
are directly incompatible with the electroweak structure.
However, it is possible that nonrenormalizable higher-
dimensional operators in the effective Lagrangian obeying
SU~2!3U~1! symmetry and involving the Higgs field might
generate the expressions~29! when the Higgs field acquires
its vacuum expectation value. According to standard lore and
the discussion in Sec. II, such operators would be expected
to be highly suppressed relative to those we have listed for
the standard-model extension. This suppression should re-
main in force at the level of the extended QED, which means
any terms of the form~29! would be expected to have cou-
pling coefficients much smaller than the other terms we con-
sider. Similar considerations apply to possible extra terms
that might appear in the heavy-lepton and quark sectors of
the extended QED.

Next, we address the issue of field redefinitions within the
context of the extended QED of electrons, positrons, and
photons. We have found several cases to be especially use-
ful. One is a linear phase redefinition of the formc
5exp(2ia•x)x, which eliminates the term2amc̄gmc from
Eq. ~28!. This is equivalent to shifting the zeros of energy
and momentum for electrons and positrons@2#. We therefore
expect no observable effects from a nonzeroam in any QED
experiment.

Another useful class of redefinitions involves field renor-
malizations depending on coupling coefficients. For a fer-
mion field c, consider the redefinition

c5~11v•G!x, ~30!

whereG is one ofgm, g5gm, smn andv is a combination of
coupling coefficients with appropriate spacetime indices.

This set of redefinitions can be used to obtain several useful
approximate results, valid to first order in the~small! cou-
pling coefficients. One is that the combinationemnabHab
1m(dmn2dnm) can be eliminated and hence is unobservable
at leading order in any QED experiment. Only the orthogo-
nal linear combination is physical at this level. Another is
that the antisymmetric component ofcmn can be eliminated
to first order. Similarly, even if the extra terms with coeffi-
cientsem and f m in Eq. ~29! should appear, they could be
eliminated to first order by a combination of field redefini-
tions. The same is true of the trace components of the extra
term with coefficientglmn , while the totally antisymmetric
component of this term can be absorbed intobm to first order.
Combining all these results, it follows that at leading order in
the extended QED of electrons, positrons, and photons the
only observable coupling coefficients can be taken as
bm ,Hmn , the symmetric components ofcmn and dmn , and
possibly the traceless mixed-symmetry components of the
extra coefficientglmn .

So far in this section we have considered various forms of
extended QED that emerge as limits of the standard-model
extension. For some purposes, it can be useful to work
within an effective extended QED valid for a free fermion
that is a composite of leptons and quarks, such as a nucleon,
atom, or ion. For a single fermion fieldc of this type, the
effective Lagrangian would then have the same form as that
of the extended QED for electrons, positrons, and photons. A
description of this type is useful for investigations of the
implications of high-precision experiments on composite fer-
mions, such as comparative tests of proton properties or
searches for a neutron electric-dipole moment. In principle,
extra terms of the form~29! could appear as a result of the
interactions among the fermion constituents, but in the effec-
tive theory the coupling coefficients of such terms would
involve combinations of the constituent coupling coefficients
with the interaction coupling constants and might therefore
be expected to be absent at leading order in many cases.

Some possible experimental signals from extended QED
are investigated in Ref.@8#. Certain high-precision tests that
could be performed with present technology are considered,
and the attainable bounds on Lorentz-breaking coupling co-
efficients are estimated. The tests involve comparative mea-
surements of anomalous magnetic moments and charge-to-
mass ratios for particles and antiparticles confined in a
Penning trap@7#. They typically have the potential to bound
the coupling coefficients of Lorentz- andCPT-violating
terms at a level close to that expected from Planck-scale
suppression. For example, the spacelike components of the
coefficientbm control the appropriate figure of merit for ex-
periments comparing the anomalous magnetic moments of
the electron and positron. This figure of merit can be
bounded to about one part in 1020, which is comparable to
the ratio ofme /M of the electron mass to the Planck scale.

IV. THE PURE-PHOTON SECTOR

In this section, we focus on the pure-photon sector of the
extended QED. We examine some theoretical implications of
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the existence of Lorentz- andCPT-violating terms and ad-
dress some experimental issues.

A. Lagrangian and energy-momentum tensor

The Lagrangian of interest, which is U~1! gauge invariant
by construction, is a combination of the photon term in Eq.
~26! with the expressions~24! and ~25!. It is

L photon
total 52 1

4 FmnFmn2 1
4 ~kF!klmnFklFmn

1 1
2 ~kAF!keklmnAlFmn. ~31!

Some properties of the coupling coefficientskF andkAF are
described following Eqs.~24! and ~25!. For certain calcula-
tions, it is useful to decompose the coefficientkF into its two
Lorentz-irreducible pieces, one with 10 independent compo-
nents analogous to the Weyl tensor in general relativity and
one with nine components analogous to the trace-free Ricci
tensor. Only one of the 19 total independent components of
kF ~the 00 component of the trace-free Ricci-tensor analog!
and one of the four independent components of the coeffi-
cient kAF ~the timelike componentkAF

0 ! are associated with
terms invariant under~particle! rotations.

Some insight into the structure of the Lagrangian can be
obtained by expressing it in terms of the potentialsf, AW and
the fieldsEW , BW . We find

L photon
total 5 1

2 ~EW 22BW 2!1 1
2 a~EW 21BW 2!1 1

2 bE
jkEjEk

1 1
2 bB

jkBjBk1 1
2 bEB

jk EjBk1kAF
0 AW •BW

2fkWAF•BW 1kWAF•~AW 3EW !. ~32!

Here and throughout this work,j ,k,...51,2,3 are spatial in-
dices. The real coefficientsa and bE

jk ,bB
jk ,bEB

jk are various
combinations of the couplings (kF)klmn appearing in Eq.
~31!. Disregarding as before any total-derivative effects, the
bE

jk ,bB
jk ,bEB

jk are traceless. Note that all possible quadratic
combinations of the electric and magnetic fields appear. Only
two terms, involvinga and kAF

0 , preserve~particle! rota-
tional invariance. Note also that a rescaling without physical
consequences can be performed to obtain a standard normal-
ization of the electric fieldEW . This produces a Lagrangian of
the same general form as Eq.~32! except that the Lorentz-
breaking term proportional to (EW 21BW 2) is replaced with one
proportional toBW 2 alone.

The canonical energy-momentum tensor can be con-
structed following the standard procedure. This tensor can be
partially symmetrized, but complete symmetrization is im-
possible because there is an antisymmetric component that
cannot be written as a total derivative. A relatively elegant
expression can be obtained by adding judiciously chosen
total-derivative terms, which leave unchanged the physics.
Denoting the resulting energy-momentum tensor byQmn, we
find

Qmn52FmgFn
g1 1

4 hmnFabFab2~kF!abmgFn
gFab

1 1
4 hmn~kF!abgdFabFgd1~kAF!nAaF̃am. ~33!

Here, we define

F̃mn5eklmnFkl/2 ~34!

to be the dual field strength.
The energy-momentum tensor obeys the usual conserva-

tion relation,

]mQmn50. ~35!

In addition to the gauge-invariant and symmetric contribu-
tions toQmn, which include the conventional pieces among
others, there are additional terms involving the coefficientkF
that are gauge invariant but asymmetric. The term withkAF
is neither gauge invariant nor symmetric. Under a gauge
transformation, an additional total-derivative term appears.
The presence of an antisymmetric component inQmn implies
that care is required in physical interpretations of the energy-
momentum behavior. AlthoughQ j 0 can be regarded as the
components of a generalized Poynting vector, its volume in-
tegral is no longer conserved and cannot be identified with
the conserved volume integral of the componentsQ0 j of the
momentum density. These features are a direct consequence
of the presence of the background expectation values of ten-
sor fields, represented in the low-energy theory by the cou-
pling coefficientskF andkAF .

The energy density is given by the componentQ00. In-
spection shows it can be written in the form

Q005 1
2 ~EW 21BW 2!2~kF!0 j 0kEjEk

1 1
4 ~kF! jklme jkpe lmqBpBq2~kAF!0AW •BW . ~36!

If kAF vanishes andkF is small,Q00 is nonnegative. This can
be seen as follows. The combination of the usual energy
density with the terms proportional tokF can be viewed as a
bilinear form xTMx generated from a matrixM in the six-
dimensional spacexT[(EW ,BW ). The matrixM is symmetric
and 333-block diagonal, since no cross terms inEW and BW
appear inQ00. Observer rotation invariance can be used to
diagonalize the upper 333 block associated with the electric
field. SincekF is small, the three diagonal entries are of the
form 1

2 2O(kF).0, so the contribution toQ00 from the elec-
tric field is non-negative in any frame. A similar argument
shows that the contribution from the lower 333 block, as-
sociated with the magnetic field, is also non-negative. The
conserved energyE of a field configuration, obtained by in-
tegratingQ00 over all space, is therefore also non-negative.

If insteadkF vanishes andkAF is small, the contribution to
E can be written in the form

E[E d3xQ00

5 1
2 E d3x~EW 21@BW 2~kAF!0AW #22@~kAF!0#2AW 2!. ~37!
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The last term is nonpositive and so can, in principle, intro-
duce an instability in the theory@22#. Note that a similar
situation would hold for the linear term2(kA)kAk in the
Lagrangian that was discarded in Sec. III, for which the en-
ergy density (kA)0f2kWA•AW could also be negative. The ap-
pearance of negative contributions to the energy is unsatis-
factory from a theoretical viewpoint.

It might seem tempting to resolve this issue by requiring
that only the spacelike components ofkAF are nonzero, so
that the terms involving (kAF)0 are absent from Eqs.~36! and
~37!. However, this condition depends on the observer frame,
so even an infinitesimal boost to another observer frame
would reintroduce the instability. A somewhat more interest-
ing option might be to combine the vanishing of (kAF)0 with
the introduction of a~small! photon mass, perhaps arising
from a hitherto unobserved spontaneous breaking of the elec-
tromagnetic U~1! gauge symmetry. This would eliminate the
linear instability and in principle might also produce a con-
tribution canceling the negative term appearing in Eq.~37!,
although perhaps only for a physically reasonable range of
observer boosts determined by the size of the photon mass
and the magnitude of the components ofkWAF . Although
some form of this idea might be made physically acceptable,
we are restricting ourselves here to minimal modifications of
the usual standard model and so we disregard this possibility
in the present work.

In the absence of a complete demonstration of a consis-
tent alternative interpretation, one option might be to discard
the term~25! depending onkAF . This is possible at the clas-
sical level, but at the quantum level one might expect radia-
tive corrections to induce it. We return to this question in
Sec. V, meanwhile keeping the term~25! in the analysis for
completeness.

B. Solution of equations of motion

The equations of motion arising from the Lagrangian~31!
are

]aFm
a1~kF!mabg]aFbg1~kAF!aemabgFbg50. ~38!

These equations are the Lorentz-breaking extensions of the
usual inhomogeneous Maxwell equations in the absence of
sources,]mFmn50. By virtue of its conventional definition
in Eq. ~21!, the field strengthFmn satisfies the usual homo-
geneous Maxwell equations

]mF̃mn50, ~39!

whereF̃mn is given in Eq.~34!.
An important feature of Eqs.~38! and~39! is their linear-

ity in Fmn and hence inAm . The Lorentz-violating terms
thereby avoid the complications of nonlinear modifications
to the Maxwell equations, which are known to occur in some
physical situations such as nonlinear optics or when vacuum-
polarization effects are included. Another feature is that the
extra Lorentz-violating terms involve both the electric and
the magnetic fields, as well as their derivatives. As a result,
Eqs.~38! bear some resemblance to the usual Maxwell equa-

tions in moving media, for which the boost causes the elec-
tric and magnetic fields to mix. Note that the coefficients
determining this mixing are directly dependent on the veloc-
ity of the medium and so change with the inertial frame.
Similarly, for the Lorentz-violating case of interest here, a
change of observer frame changes the coupling coefficients.
Some other useful analogies between Eqs.~38! and those of
conventional electrodynamics in macroscopic media are de-
scribed in Sec. IV C.

The equations of motion~38! and ~39! depend only on
Fmn and so, as expected, they are gauge invariant under the
standard U~1! gauge transformations

Am→Am2
1

q
]mL. ~40!

As in conventional electrodynamics, the presence of gauge
symmetry affects the interpretation and solution of the equa-
tions of motion. We first consider a treatment in terms of the
potentialsAm and then one for the field strengthsEW ,BW .

Taking the potentialsAm as basic, the four equations~39!
are directly satisfied. This appears to leave four equations
~38! for four unknownsAm . However, just as in conven-
tional Maxwell electrodynamics, the conjugate momentum to
A0 vanishes because]0A0 is missing from the Lagrangian
~31!, so the theory has a Dirac primary constraint. In the
conventional case it then follows from the identity
]n]mFmn[0, which is associated with current conservation
when sources are present, that the equation of motion asso-
ciated with A0 plays the role of an initial condition. The
same conclusion holds here because when acted on by]m the
left-hand side of Eq.~38! also vanishes identically. This
leaves three equations of motion and a constraint for four
variables. One combination of variables can be fixed by a
gauge choice. The constraint then leaves two independent
degrees of freedom.

Despite the parallels with conventional electrodynamics,
the gauge-fixing process involves some interesting differ-
ences. For example, there is normally an equivalence be-
tween the Coulomb gauge¹W •AW 50, the temporal gaugeA0

50, and one of the members of the family of Lorentz gauges
]mAm50. When Lorentz-violating effects are included, these
three gauge choices become inequivalent. For example,A0

typically is nonzero if the Coulomb gauge¹W •AW 50 is im-
posed.

More insight about the wave motion implied by Eq.~38!
can be gained with the ansatz

Am~x![em~p!exp~2 ipaxa!, ~41!

where pm[(p0,pW ) can be regarded as the frequency and
wave vector of the mode or as the associated energy and
momentum~which can be distinct from the conserved energy
and momentum obtained from the energy-momentum ten-
sor!. Note that taking the real part is understood, as usual.
The equations of motion~38! generate the momentum-space
equation

Mad~p!Ad50, ~42!
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where the matrixMad(p) is

Mad~p![hadp22papd22~kF!abgdpbpg

22i ~kAF!beabgdpg . ~43!

This 434 complex-valued matrix is Hermitian because the
first three terms are real and symmetric while the last is
imaginary and antisymmetric. Its determinant can be shown
to vanish identically for allpm, a feature related to the gauge
freedom. The conventional result is recovered when the co-
efficientskF andkAF vanish.

Once a gauge choice is imposed, relation~42! provides a
set of complex-valued equations forAd . The differences be-
tween various gauge choices that normally are equivalent
can be seen explicitly at this stage. For example,Mad(p)Ad
is not proportional toAa in the Lorentz gauges, the Coulomb
gauge leaves a nontrivial equation forA0, and the temporal
gauge generates an involved constraint on¹W •AW . In practice,
Eq. ~42! then reduces to a~sub!set of equations involving an
effective matrixMeff(p) with the explicit form dependent on
the gauge choice. The requirement for the existence of non-
zero solutions can be obtained from a condition of the type
detMeff(p)50. With fixed coefficientskF andkAF , this con-
dition then determinesp0 as a function ofpW . SinceMma(p)
is a 434 matrix with entries quadratic inpm, a determinant
of this type can produce an eighth-order polynomial inp0.

In the conventional case in the Lorentz gauge, the poly-
nomial reduces to one with two quadruply degenerate roots,
p056upW u. The apparent doubling of the roots relative to the
number of variables can be understood by the observation
that in this caseMma(p) is symmetric underpm→2pm, so
for each solution p0(pW ) there is another solution
2p0(2pW ). These two solutions can be shown to be physi-
cally equivalent by examining the real part ofAm in Eq. ~41!.

In contrast, in the general extended electrodynamics the
polynomial determiningp0 may have eight distinct roots.
Each of these could in principle produce a nontrivial solution
for Ad , double the expected number. In this case,Mma(p) is
symmetric under the simultaneous operationspm→2pm and
kAF→2kAF ~leavingkF unchanged!. Thus, for each solution
p0(pW ,kF ,kAF) there is another solution2p0(2pW ,kF ,
2kAF). The sign change for the coefficientkAF might appear
to preclude the demonstration of the physical equivalence of
these solutions. However, hermiticity ofMma(p) implies its
determinant is equivalent to the determinant of its complex
conjugate. SincekAF appears only in the imaginary part of
Mma(p), it follows that for each solution2p0(2pW ,kF ,
2kAF) there is also a solution2p0(2pW ,kF ,1kAF). This is
physically equivalent to the solutionp0(pW ,kF ,kAF), as be-
fore. Thus, the number of independent roots is the same as
the number of variables as expected, despite the apparent
complexity of the polynomial.

In the general extended electrodynamics, neither the Cou-
lomb gauge nor the Lorentz gauges significantly simplify the
primary constraint. In contrast, the temporal gaugeA050
immediately removes one degree of freedom fromAm . This
gauge can be imposed by choosing the functionL in Eq. ~40!
asqL(t,xW )5* tA0(t8,xW )dt8. Note that this choice breaks ob-

server boost invariance but leaves unaffected the observer
rotation invariance. It reduces the primary constraint to the
form

M0 jAj50, ~44!

where M0 j are components in the temporal gauge of the
matrix Mad given in Eq.~43!.

At this stage an explicit solution could be found. For ex-
ample, one could use two of the degrees of freedom of ob-
server rotation invariance to select a convenient coordinate
system, such as one in whichpj[(0,0,p). Solving for A3

from the primary constraint~44! and substituting into the
remaining three equations of motion in Eq.~42! would then
produce an identity and two simultaneous linear equations
for A1 andA2. A nontrivial solution of this pair of equations
could be found by requiring the determinant of the system to
vanish, which in turn would generate a relation betweenp0

andp. Solving this relation must give two independent dis-
persion relations, one for each of the two physical degrees of
freedom. The full dispersion relations in an arbitrary coordi-
nate system could then in principle be recovered by using
arguments based on rotational covariance.

Rather than pursuing this approach, we return to the eight
equations of motion~38! and~39! and reconsider their treat-
ment taking as independent variables the six electric and
magnetic fields. Here, we are interested in the properties of
electromagnetic radiation, so we work with the standard an-
satz

Fmn~x![Fmn~p!exp~2 ipaxa!, ~45!

wherepm[(p0,pW ).
Equations~39!, which include the usual Faraday law and

the condition ensuring the absence of magnetic monopoles,
are unaffected by the Lorentz breaking and for radiation re-
duce as usual to

p0BW 5pW 3EW , pW •BW 50. ~46!

The first of these can be regarded as defining the magnetic
field once the electric field is known. The second of these
equations follows from the first, and shows that the magnetic
field remains transverse topW despite the Lorentz violation.

Equations~38! generate modified Coulomb and Ampe`re
laws that are to be solved forEW . A relatively straightforward
procedure is to substitute forBW from Eq. ~46!. Using the
Ampère law, we thereby obtain the vector equation

M jkEk50, ~47!

where the 333 matrix M jk is identical to the
( jk)-component submatrix of the matrixMad in Eq. ~43!.
The modified Coulomb law can be obtained from the modi-
fied Ampère law by taking the scalar product withpW :
pjM jkEk50. Note that this derivation provides some insight
about the temporal gaugeA050 in a treatment usingAm .
Thus, there is a close parallel between the two becauseEW

5 ip0AW in this gauge.

D. COLLADAY AND V. ALAN KOSTELECKÝ PHYSICAL REVIEW D 58 116002
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To obtain an explicit solution, it is helpful to take advan-
tage of the observer rotation invariance to select a coordinate
system in which key expressions are simplified. For ex-
ample, a useful frame is the one withpW 5(0,0,p). In it, the
modified Coulomb equation can be solved forE3 in terms of
E1 andE2. Substitution of this solution into the three com-
ponent equations~47! produces one identity and two simul-
taneous linear equations forE1 and E2. The matrix of this
system of equations is Hermitian, and the condition for a
nontrivial solution is that its determinant vanishes. The de-
terminant turns out to be a fourth-order polynomial forp0 as
a function ofp. For reasons similar to those given for theAm
case, there are only two physically distinct solutions of this
polynomial, one for each of the two independent degrees of
freedom.

An explicit solution of the determinant condition in the
general case is involved because the fourth-order polynomial
is homogeneous in the small coupling coefficients. SincekF
is dimensionless whilekAF has dimensions of mass, to first
order in the coupling coefficients and forp0'p@ukAFu and
1@ukFu the solution forp0 as a function ofp must take the
form of the sum ofp with a function of the quantitieskFp
andkAF . Indeed, we find

p05~11r!p6A~s2p21t2!, ~48!

wherer ands2 are functions of the components ofkF andt2

is a function of the components ofkAF , given by

r5 1
2 @~kF!01011~kF!02021~kF!1313

1~kF!232312~kF!011312~kF!0223#,

s25 1
4 @~kF!01012~kF!02021~kF!1313

2~kF!232312~kF!011322~kF!0223#2

1@~kF!01022~kF!01231~kF!02131~kF!1323#2,

t25@~kAF!32~kAF!0#2. ~49!

The solution~48! entangles the components ofkF andkAF in
a way that cannot be separated without additional informa-
tion about their relative sizes. Note that it reduces correctly
to the result of Ref.@22# in the casekF50.

The corresponding general solutions for the vectors of the
electric and magnetic fields are involved and provide little
insight for present purposes, so we omit them here. They
exhibit two physical linear polarization vectors forEW , each
obeying a different dispersion relation. This produces bire-
fringence, among other effects. Note in particular that, con-
trary to widespread assumption in the literature, no circularly
polarized solution to the equations of motion typically exists.
An electromagnetic wave prepared in a state of circular po-
larization would propagate as two linearly polarized compo-
nents with distinct dispersion relations, so an initial circu-
larly polarized configuration would gradually become
elliptical. These and some other interesting results about the
wave propagation are discussed further in Secs. IV C and
IV D below.

In the remainder of this subsection, we present a sample
analytical solution to the equations of motion for a special
case that provides further insight. We consider the Lagrang-
ian ~31! with (kAF)m50 and with the only nonzero compo-
nents ofkF chosen to be (kF)0 j 0k52 1

2 b jbk , where theb j

are three~small! real dimensionless quantities, and compo-
nents related to these by the symmetries ofkF . In terms of
the Lagrangian~32! only the term involvingbE

jk is nonzero,
and it has a direct-product structure:bE

jk[1b jbk. The La-
grangian~32! therefore becomes

L photon
special5 1

2 ~EW 22BW 2!1 1
2 ~bW •EW !2. ~50!

This example involves onlyCPT-even Lorentz violation.
The Lagrangian~50! generates modified inhomogeneous

Maxwell equations in the absence of sources:

¹W •EW 52bW •¹W ~bW •EW !,

¹W 3BW 2]0EW 5bW ]0~bW •EW !. ~51!

In terms of the potentialsAm of Eq. ~41!, appropriate for
describing radiation in momentum space, these are equiva-
lent to the vector equation

p0@pW 1~pW •bW !bW #A02~p0!2@AW 1~AW •bW !bW #

1@pW 2AW 2~pW •AW !pW #50 ~52!

and its scalar product withpW .
For definiteness we proceed in Lorentz gauge, whereA0

5pW •AW /p0. According to the discussions above, in the pres-
ence of Lorentz violation this gauge may require nonzeroA0

and pW •AW . For a nontrivial solution to Eq.~52!, we find two
possible dispersion relations:

~po!250,

~pe!
252

~bW 3pW e!
2

11bW 2
. ~53!

The first corresponds to an ‘‘ordinary’’ mode with four-
momentumpo obeying the conventional dispersion relation,
while the second is an ‘‘extraordinary’’ mode with four-
momentumpe and a modified dispersion relation.

For a wave vector aligned alongbW , both modes reduce to
the conventional case and exhibit normal behavior. However,
for other alignments the properties of the two modes differ.
For simplicity, we restrict attention here to the situation with
wave vector orthogonal tobW , so pW •bW 50. In this case, the
ordinary modeAo

m can be chosen to satisfyAo
050 with AW o

parallel topW 3bW , while the extraordinary mode must satisfy
Ae

050 and hasAW e aligned alongbW . These two modes propa-
gate with different velocities. For example, their group ve-
locities vW g[¹W pp0 are
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vW g,o5 p̂, vW g,e5
1

A11bW 2
p̂. ~54!

For each mode, the group and phase velocities are equal.
One consequence of the difference between the two

modes is birefringence. For example, a plane-polarized
monochromatic wave of frequencyp0 that is initially a gen-
eral combination of the two modes eventually becomes ellip-
tically polarized. For the electric field, we find

EW ~ t,xW !52p0~coÂo sin@p0~r 2t !#

1ceÂe sin@p0~A11bW 2r 2t !# !, ~55!

wherer 5uxW u, Âo is parallel topW 3bW and Âe is parallel tobW
as before, and the weightsco andce are determined by the
initial polarization condition. This shows that the presence of
bW causes the wave to become elliptically polarized after it
has traveled a distance

r .
p

2~A11bW 221!p0
. ~56!

The magnetic field exhibits similar behavior.
The explicit expressions for the electric and magnetic

fields can be used to derive the energy densityQe
00 and the

Poynting vectorQe
j 0 for the extraordinary mode. We find

Qe
005pW 2ce

2 sin2 pmxm, Qe
j 05p0pjce

2 sin2 pmxm. ~57!

This shows that in the present case the velocity of energy
transportve

j [Qe
j 0/Qe

00 is identical to the group and phase
velocities, Eq.~54!. Some comments about the various ve-
locities in the general case are made in the next subsection.

C. Analogy to macroscopic media

In Sec. IV B, an approximate analogy was noted between
the equations of motion for the Lorentz-breaking extension
of electrodynamics and those for electrodynamics in moving
media. In this section, we introduce some useful quantitative
analogies between the extended electrodynamics and the
electrodynamics of macroscopic media. These can be used to
gain further insight about the nature of the extended electro-
dynamics with Lorentz breaking.

Consider first the situation in position space, where the
relevant equations are Eqs.~38! and ~39!. We have already
noted that Eqs.~39! take the same form as in conventional
electrodynamics. The idea is to define new quantitiesDW and
HW such that the forms of Eqs.~38! become identical to those
of the Maxwell equations in material media. It turns out that
it suffices to introduce an effective displacement currentDW

and an effective magnetic fieldHW having linear dependence
on the electric fieldEW , the magnetic inductionBW , the vector
potentialAW , and the scalar potentialA0.

We find that the definitions

D j5Ej22~kF!0 j 0kEk1~kF!0 jkleklmBm12e jkl~kAF!kAl ,

H j5Bj1 1
2 ~kF!pqrsepq je rskBk2~kF!0mkle jklEm

22~kAF!0Aj12~kAF! jA0 ~58!

reproduce the usual Maxwell equations in material media.
The analogy can therefore be used to gain insight into those
properties of the extended electrodynamics that are directly
associated with the equations of motion. However, caution is
required in applying other concepts of conventional electro-
dynamics. For example, it turns out that ifkAFÞ0 then the
conventional expressions for the energy density and Poyn-
ting vector in terms ofDW andHW fail to reproduce completely
the true energy densityQ00 and Poynting vectorQ j 0 in the
extended theory. IfkAF50, in contrast, the correct expres-
sions are indeed reproduced by the analogy.

The above analogy is useful for general discussions of the
properties of the extended electrodynamics. However, it be-
comes somewhat cumbersome for certain considerations in-
volving radiation. We have developed a second analogy that
is of more direct use when the fields are converted to mo-
mentum space through Eq.~45!. It turns out that the equa-
tions of motion can then be correctly reproduced by defining
an effective displacement currentDW (p) through

D j5e jkEk, ~59!

wheree jk is a Hermitian effective permittivity given by

e jk[d jk1
2

~p0!2 ~kF! j bgkpbpg1
2i

~p0!2 ~kAF!be j bgkpg .

~60!

In particular, it is unnecessary to introduce an effective mag-
netic fieldHW distinct fromBW . This second analogy is there-
fore different from the first. Note that again the correct en-
ergy density and Poynting vectors cannot be obtained
directly by substitution into the conventional formulas.
Nonetheless, the analogy is valuable because it permits in-
sight into the effects of Lorentz violation on radiation. Note
also that the effective permittivity~60! depends on the fre-
quency p0 and wave vectorpW , which implies a nonlocal
connection betweenDW (x) andEW (x).

The extended Maxwell equations for this analogy directly
yield

pW •BW 5pW •DW 5EW •BW 5DW •BW 50. ~61!

The natural right-handed triad of orthonormal vectors de-
scribing the vibration of the electromagnetic field is therefore
( p̂,D̂,B̂). Unlike the case of conventional vacuum radiation,
the electric-field vectorEW here is orthogonal only toB̂ and so
lies off-axis in thep̂-D̂ plane. In this analogy, the energy
density is typically transported neither in the directionp̂ nor
in the directionÊ3B̂.

It is useful to introduce a generalized refractive index
n(p) by n(p)[upW u/p0. Its inverse is the magnitude of the
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phase velocity of the mode~45!. Using the extended Max-
well equations, we can then deduce the result

DW 5n2@EW 2~ p̂•EW ! p̂#[n2EW' , ~62!

which determines the effective displacement current directly
in terms of the electric field and the momentum. Eliminating
DW via Eq.~59! produces a set of three linear equations of the
form ~47! for EW , with the matrixM now given by

M jk[n2d jk2
pj pk

~p0!2 2e jk. ~63!

A nontrivial solution exists if det(Mjk)50. We have explic-
itly verified that this condition is equivalent to the condition
of the vanishing of the determinant of the matrixM jk appear-
ing in Eq. ~43! in Sec. IV B.

In conventional crystal optics, the permittivity is often
diagonalized:e jk[e jd jk ~no sum!, where the eigenvaluese j

are real. This means that the coordinate axes are identified
with the principle dielectric axes, which typically represents
a different coordinate system than the special one withpW
5(0,0,p) used in Sec. IV B. A diagonalization of this type is
also possible in the present analogy because the effective
permittivity is Hermitian. Substitution into Eq.~63! and ex-
pansion of the determinant then produces an expression with
the form of the Fresnel equation of crystal optics. The sixth-
order terms in the determinant cancel, ultimately by virtue of
the existence of only two independent degrees of freedom in
EW . Solving the determinant condition provides the dispersion
relations for the independent degrees of freedom. Ifp̂ is
given, the condition specifiesp0 as a function ofupW u. If p0 is
given, the condition specifiesupW u as a function ofp̂.

The special choice of coordinate system in Sec. IV B per-
mits a direct demonstration with this analogy that for a given
momentumpW the solutions for the effective displacement
current DW are linearly polarized. First, substitute forEj

5(e21) jkDk in Eq. ~62!. Using observer rotation invariance
to select a frame in whichpW [(0,0,p) then yields the two
simultaneous equations

@dab2n2~e21!ab#Db50, ~64!

where a,b51,2. The vanishing of the determinant of the
expression in parentheses generates the analog of the Fresnel
equation in this special coordinate system. It can be seen
directly from Eq.~64! that for fixedpW theDW vectors for each
of the two values ofn must lie along the principal axes of
symmetry of the two-dimensional matrix (e21)ab. These two
DW vectors are perpendicular, so an electromagnetic wave cor-
responding to either one is necessarily linearly polarized.

Many other concepts of crystal optics can be applied in
the context of this analogy, including the wave-vector and
ray surfaces and the Fresnel and other ellipsoids. The pres-
ence of a Lorentz violation means that the vacuum as expe-
rienced by an electromagnetic wave behaves like a special
kind of crystal. Our results show that the effective medium is
optically anisotropic and gyrotropic and exhibits spatial dis-

persion of the axes. The earliest mention of effects of this
type appeared in an 1878 paper of Lorentz@23#, and they are
now well established in a variety of physical systems@24#.
Thus, the momentum dependence of the effective permittiv-
ity corresponds to spatial dispersion of the axes. A nonzero
kAF produces a contribution to the effective permittivity
analogous to the effects of natural optical activity in a gyro-
tropic crystal, while a nonzerokF produces effects analogous
to spatial dispersion in an optically inactive and anisotropic
crystal. Partly on the basis of the hermiticity of the effective
permittivity, we also anticipate that in the presence of Lor-
entz violation the vacuum behaves like a transparent~nonab-
sorptive! medium, although a complete and elegant demon-
stration of this remains an open issue.

The above analyses partially simplify if certain compo-
nents ofkF andkAF vanish. Suppose for definiteness thatkAF
indeed vanishes and that the only nonzero components ofkF
are (kF)0 j 0k and components related to these by the symme-
tries of kF . This makes the effective permittivity real and
independent ofpm: e jk5d jk22(kF)0 j 0k. It is then possible,
for example, to solve explicitly for the behavior ifEW is speci-
fied, which provides yet another approach to the physics. In
this case,EW' is the component ofEW perpendicular top̂ in the
Ê- p̂ plane. It follows thatEW'5(EW •D̂)D̂, from which one
can derive

p̂5
~DW !2EW 2~EW •DW !DW

A@~EW !2~DW !22~EW •DW !2#~DW !2
~65!

provided DW and EW are not parallel. The phase velocity is
given by

vp51/n5A~EW •DW !/~DW !2. ~66!

For instance, ifEW 5(E,0,0) then to lowest order inkF we
find DW 'uEW u@122(kF)0101,22(kF)0201,22(kF)0301# and vp
'11(kF)0101, which in the appropriate limit agrees with the
result for the extraordinary mode of the example at the end
of Sec. IV B. Even in this relatively simple case, Eq.~65!
shows that the vectorpW can have a complicated structure
with components in all three directions.

The above analysis uses the notion of the phase velocity
vp . However, even in conventional electrodynamics there
are numerous possible definitions of the velocityv of an
electromagnetic wave, including among others the group ve-
locity, the velocity of energy-momentum transport, and the
signal velocity@25#. The Lorentz violation adds further com-
plications to this situation. In the remainder of this subsec-
tion, we comment on some aspects of this issue.

An important feature is that the fundamental physical con-
stant c51 relating the space and time components of the
metric is unaffected by the Lorentz violation. The underlying
spacetime structure of the theory is the usual one because the
apparent Lorentz breaking at the level of the standard model
is merely a reflection of the presence of nonzero tensor ex-
pectation values in a fundamental theory with Lorentz-
covariant dynamics. Indeed,c is an invariant under both ob-
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server and particle boosts. However, the physical velocity of
an electromagnetic wavecan be affected. The situation is
analogous to that of a fermion mass parameterm in the La-
grangian for the standard-model extension: althoughm re-
mains unchanged, the physical rest mass of a particle can be
affected@2#.

As in conventional electrodynamics, the various defini-
tions of physical velocity are inequivalent in general. Any
choice for the physical velocityv typically differs from c,
although v'c since kF and kAF are small. The analyses
above indicate that, for any given definition, the magnitude
and direction of the velocity of an electromagnetic wave can
vary with the wave-vector orientation and the polarization.
Incidentally, conventional crystal-optics experiments suggest
that there is no general condition requiring the velocity of
one type of polarization to exceed the other. For example,
the indices of refractionno andne for the ordinary and ex-
traordinary rays, respectively, of the sodiumD line are mea-
sured to beno51.658.ne51.486 in calcspar but areno
51.544,ne51.553 in quartz@26#.

For the special case involving Eq.~66!, vp may exceedc
if the sign of kF is appropriate. In conventional electrody-
namics, a phase velocity exceedingc is known to occur in
numerous physical situations, for example, for transverse
electric ~TE! and transverse magnetic~TM! modes in wave
guides. Indeed, both the phase and group velocities can si-
multaneously exceedc in certain refractive materials. For the
present theory, it is an open issue to demonstrate that a phase
velocity exceedingc is compatible with microcausality. It is
possible in principle that only certain sign choices for the
components ofkF lead to physically acceptable microcausal
theories. If this occurs, it would be analogous to the usual
requirement of a particular sign for the mass-squared term in
a ~stable! scalar field theory. In any event, a satisfactory
proof of microcausality would involve a complete treatment
at the level of quantum field theory and lies beyond the scope
of the present work.

Another issue involving the physical velocityv of an
electromagnetic wave is its behavior under Lorentz transfor-
mations. Sincec is invariant under an observer Lorentz
transformation whereaskAF andkF change,v is expected to
transform along with the frequency and wavelength. This is
unlike the conventional case and is a consequence of the
presence of the background expectation values. In contrast, a
particle Lorentz transformation, which for a fixed polariza-
tion mode involves remaining in the specified observer frame
but changingpW , has no effect onc, kAF , or kF . Note that if
pW is changed while the polarization is fixed, the above analy-
ses show that the frequencyp0 also changes in this case. One
might instead countenance another kind of boost in whichpW
is changed butp0 is unaffected, in which case the polariza-
tion must also change.

D. Constraints from birefringence

The existence of distinct dispersion relations for the inde-
pendent polarizations means that birefringence is a major
feature of the behavior of an electromagnetic wave in
vacuum in the presence of Lorentz violation. In this subsec-

tion, we investigate some of the theoretical and experimental
implications of a birefringent vacuum.

For definiteness, consider a monochromatic electromag-
netic wave of frequencyp0. The electric fieldEW (t,xW ) of this
wave is formed in general from two independent polarization
components:

EW ~ t,xW !5@EW 1~pW 1!exp~ ipW 1•xW !

1EW 2~pW 2!exp~ ipW 2•xW !#exp~2 ip0t !. ~67!

The wave vectorspW 1 and pW 2 must satisfy the appropriate
dispersion relations for the specified frequencyp0. Note that
the direction of wave propagation must also be specified to
fix completely the solution. One possible determining
method could be to require that both component waves
propagate their energy density in a given direction.

Since the Lorentz violation is small, we expectpW 25pW 1
1dpW , where dpW is small relative topW 1'pW 2 . Substitution
gives

EW ~ t,xW !'@EW 1~pW 1!1EW 2~pW 2!exp~ idpW •xW !#exp~2 ip0t1 ipW 1•xW !.
~68!

This equation shows that the birefringence length scale is
udpW u21, which is large whenudpW u is small. SincedpW has
dimensions of mass and since it vanishes in the absence of
Lorentz violation, its dominant terms are expected to be con-
trolled bykAF , by a product of components ofpW andkF , or
by some combination of the two. This is in agreement with
the discussion of the dispersion relations in previous subsec-
tions. Note that the associated phase shiftDf[dpW •xW cannot
correctly be regarded as a phase difference between two
circular-polarization modes because typically no such modes
exist as solutions of the dispersion relations.

In the remainder of this subsection, we consider possible
bounds onkF and kAF from some terrestrial, solar system,
astrophysical, and cosmological experiments.

First, we summarize the case of nonzerokAF but zerokF .
A term of the form ~25! appears to have been introduced
independently on several occasions, including among others
in Ref. @27# and the review@15# mentioned earlier, although
the observation that it isCPT violating appears to have been
overlooked prior to our earlier work@2#. Given the theoreti-
cal difficulties arising from negative contributions to the en-
ergy as described in Sec. IV B, it seems possible that this
term would need to be absent in nature even if Lorentz sym-
metry is violated. However, this too is a suggestion that
could be the subject of tests.

In a pioneering work@22#, Carroll, Field, and Jackiw in-
vestigated some properties of the term~25! and used geo-
magnetic constraints and limits on cosmological birefrin-
gence of radio waves to bound certain forms of the coupling
coefficientkAF . Their treatment of geomagnetic constraints
is based on known bounds on the photon mass@28#, and it
constrains a term of the form~25! with (kAF)m5(k,0W ) to
uku&6310226 GeV. In contrast, the constraints they obtain
from cosmological birefringence are considerably sharper,
primarily because the distance scales are greater. Their in-
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vestigation seeks a redshift dependence in the established
correlation@29# between the intrinsic position angles and the
polarization angles of a set of radio galaxies and quasars at
distances comparable to the Hubble length. It constrains a
particular combination of the coefficients for a timelike
(kAF)m to &2310242 GeV. A more recent analysis@30#
claims a nonzero observed effect with a spacelike (kAF)m at
a scale of approximately 10241 GeV. This has been disputed
by other authors@31#.

We next consider the case withkFÞ0 but kAF50. In its
general form, this possibility appears to have been largely
disregarded in the literature. However, the rotationally in-

variant term of the form1
2 a(BW 21EW 2) in the extended-QED

Lagrangian~32! has been considered by several authors, usu-

ally in the rescaled form involving onlyBW 2. In particular,
this term has a counterpart in the THem formalism@32#. This
formalism is a phenomenological parametrization for the
motion and electromagnetic interactions of charged pointlike
test particles in an external spherically symmetric and static
gravitational field. It has been extensively used for quantita-
tive tests of the foundations of gravity, including local Lor-
entz invariance. In this context, clock-comparison experi-
ments have constrained the analog of the parametera to
better than about one part in 1021 @18#. An improvement over
this bound of about an order of magnitude may be possible
based on the existence and properties of high-energy cosmic
rays @33#.

In the general case with nonzerokF and violation of ro-
tational invariance, the sharpest bounds are likely to emerge
once again from observational constraints on cosmological
birefringence. However, the discussion following Eq.~68!
shows there is a significant difference in thekF case: the
phase shiftDf here depends on a product of components of
kF andpW , whereas in thekAF caseDf depends only onkAF .
This behavior can be seen explicitly, for example, in the
special analytical solution presented at the end of Sec. IV B.

The linear dependence ofDf on momentum or wave
number implies an inverse dependence on wavelength. The
rotation measures and intrinsic position angles of radio
sources@29# are obtained by a fitting procedure that assumes
a quadratic dependence on wavelength~proportional to the
rotation measure and attributed to Faraday rotation! with a
wavelength-independent zero offset~the intrinsic position
angle!. This procedure is suitable for obtaining constraints on
kAF , which would generate an extra wavelength-independent
effect, but may be inadequate to place a reliable bound onkF
or to detect the associated wavelength-dependent effects. It
therefore appears somewhat involved to obtain an accurate
estimate of the constraints onkF from cosmological birefrin-
gence.

Although a complete treatment lies outside our present
scope, a crude estimate of an attainable bound onkF can
readily be found. It is plausible to suppose that the results of
a careful analysis would provide a limit on a product of
certain components ofkF andpW comparable to that of order
10242 GeV obtained forkAF in Ref. @22#. The radio sources
typically involve wavelengths of order 10 cm, which corre-
sponds to an inverse wavelength of about 10215 GeV. This

suggests that an upper bound of approximately 10227 could
be placed on at least some of the~dimensionless! coefficients
kF . The tightness of this constraint and the apparent feasi-
bility of the analysis suggests this investigation would be
worthwhile to pursue. Ideally, a complete study would obtain
combined bounds on both of the coupling coefficientskF and
kAF .

An interesting implication of the~inverse! wavelength de-
pendence of the birefringence is that shorter wavelengths are
more sensitive to the effects. Although it may be infeasible
in practice, a measurement of cosmological birefringence
comparable to the above but obtained with, say, optical
sources would be much more sensitive to possible effects
from kF . Optical wavelengths are a factor of about 1026 of
radio wavelengths, which would correspond to a millionfold
improvement in sensitivity tokF .

Other bounds on Lorentz violation could be deduced. In
the next section, we show that one-loop radiative corrections
induce a dependence ofkF on the coefficientscmn in Eq. ~22!
for the extended QED. This suggests that if a tight bound
were obtained onkF as above, an indirect constraint might
also be inferred oncmn . The latter constraint would be
weaker by a factor of the fine-structure constant, but the
limits deduced would nonetheless probably be comparable to
the best ones attainable in other tests of Lorentz symmetry.

If a nonzero effect is detected in the future, it might be of
some theoretical interest to investigate the possibility of a
correlation between the particular coupling coefficients in-
volved and the motion of the Earth relative to the cosmic
microwave background radiation. The point is that the appar-
ent Lorentz violation induces boost~and orientation! depen-
dence in experiments@6#. Although the standard-model ex-
tension strictly has no preferred frame, the coupling
coefficients must take a canonical form in some observer
frame @2#. If the latter is at rest with respect to the cosmic
microwave background radiation, a small deviation from the
canonical form might arise from the Earth’s motion. Al-
though the Earth’s speed in this frame is about 1023c, the
sensitivity of the birefringence measurements might nonethe-
less be sufficient to detect its effects.

V. RADIATIVE CORRECTIONS

We next examine some radiative corrections to the pure-
photon sector. In Sec. V A,CPT-odd terms are investigated.
Of particular interest is whether the tree-level vanishing of
the coefficientkAF in Eq. ~25! for the QED extension, which
would eliminate negative contributions to the energy, is rea-
sonable in the light of quantum effects. The point is that the
latter might in principle induce a nonzero coefficient through
radiative corrections from another sector of the theory. Other
quantum corrections that might generate an instability
through the linear term2(kA)mAm are considered at the end
of this subsection. In Sec. V B, we study quantum correc-
tions in theCPT-even sector, involving the coefficientkF .

The analysis in this section is based on the quantization
discussed in Ref.@2#. It is largely at the one-loop level and
for leading-order Lorentz-violating effects, and it is prima-
rily limited to issues involving radiative corrections to the
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pure-photon sector. A few results are also presented for
higher loops and effects in other parts of the standard-model
extension.

An interesting issue indirectly related to some calcula-
tions in Sec. V A is whether the anomaly cancellations oc-
curring in the conventional standard model still hold for its
extension presented in Sec. II. Three known types of chiral
gauge anomaly are relevant@34#. It lies beyond our present
scope to provide a complete analysis of all these in the pres-
ence of the Lorentz-violating terms, and it is certainly con-
ceivable that the latter would modify the standard deriva-
tions. We do expect, however, that the usual cancellations of
the ~Abelian, singlet, and non-Abelian! triangular gauge
anomalies and the nonperturbative global SU~2! anomaly in-
deed remain valid. The point is that the standard-model ex-
tension has the same multiplets and the same gauge structure
as the conventional case, so the group-theoretic underpin-
nings of the usual analyses are unaffected. The situation for
the third type of anomaly, which is the mixed gauge-
gravitational chiral anomaly associated in part with local
Lorentz transformations, is less clear. The presence of Lor-
entz violations might appear to suggest a potentially nonzero
contribution to this anomaly. However, a careful analysis is
needed because observer Lorentz invariance is in fact main-
tained in the standard-model extension.

A. CPT-odd terms

As discussed above, the possible difficulties with negative
contributions to the energy and the tight experimental con-
straints suggest that the coefficientkAF vanishes. If it is set to
zero at tree level, the issue arises as to whether it acquires
radiative corrections from quantum loop corrections. If so,
there could be both theoretical and experimental arguments
suggesting associated constraints on certain other coeffi-
cients in the standard-model extension. The issue of the van-
ishing of radiative corrections tokAF therefore has the poten-
tial to provide a nontrivial consistency check on the theory.
In the present subsection we investigate this, assuming that
kAF is zero at the tree level and beginning with one-loop
effects at leading order in the Lorentz-breaking terms. Re-
markably, as we show next, the structure of the standard-
model extension is such as to preserve a vanishing coeffi-
cient kAF at this level.

A radiative contribution tokAF would represent a correc-
tion to the photon propagator. In the standard-model exten-
sion, the Feynman rules for leading-order effects from
Lorentz-violating terms take the form of insertions on propa-
gators or at vertices already existing in the conventional
theory @2#. Also, the photon interacts with charged particles
as usual, so the only possible diagrams modifying the photon
propagator at the one-loop level are those of the standard
one-loop vacuum polarization but with an insertion either on
an internal charged-particle line or at one of the vertices.

The apparently daunting task of examining every possible
insertion implied by the extra terms in the standard-model
extension can be simplified by taking advantage of the dis-
crete operationsC, P, andT. A radiative term purporting to
contribute to the coefficientkAF must have appropriate trans-

formation properties under these discrete symmetries. In par-
ticular, it must beC even andPT ~andCPT! odd, although
either of the two possible combinations ofP and T could
occur. At the level of the QED extension with electrons and
positrons, the only term of this type is the one with coupling
coefficientbm in Eq. ~28!. This is true even if the discarded
linear term2(kA)kAk in the Lagrangian were present, which
is C and CPT odd. At any loop order, contributions must
therefore involve an odd number of line insertions arising
from the term with coefficientbm . At the one-loop level in
the full standard-model extension, similar terms involving
the other lepton and quark fields would also contribute to
appropriate internal lines. However, only one additional dis-
tinct type of one-loop contribution appears, involving a ver-
tex correction proportional to the coefficient (k2)m in Eq.
~17! in a diagram with aW1-W2 loop. The demonstration
that no net contributions tokAF arise at one loop therefore
involves consideration of only terms involving thebm-type
and the (k2)m coefficients.

Excluding the external photon legs, any contributions to
the vacuum polarization must have dimensions of mass
squared. The leading-order contribution tokAF must involve
both a momentum factor from the necessary derivative on an
external leg and one power of eitherbm or (k2)m . Since
these factors already give the correct dimensionality, any
others must appear in dimensionless combinations of the
photon momentumpm and the massm of the particle in the
loop. This is confirmed by the explicit calculation below.

We first consider corrections to the one-loop vacuum po-
larization involving bm . Each such two-point diagram has
the usual form except for an insertion of the factor
2 ibmg5gm on one internal fermion line. From the perspec-
tive of the fundamental theory, a one-loop two-point diagram
with a fermion-line insertion is closely related to a one-loop
three-point diagram containing the same two photon legs to-
gether with a third leg involving a coupling to an axial vec-
tor. A fermion-line insertion in the two-point diagram can
then be viewed as a limit of this three-point diagram in
which there is zero momentum transfer to the axial-vector
leg and the axial vector is replaced with a vacuum expecta-
tion value.

This line of reasoning is interesting because a one-loop
three-point diagram with an axial-vector and two photon
couplings is directly related to a triangular gauge anomaly. If
the axial vector is a gauge field in the underlying theory,
such anomalies must cancel for the theory to be renormaliz-
able. One might therefore conjecture that the cancellation of
these anomalies could also imply cancellation of the limiting
two-point diagrams in the standard-model extension. If true,
this provides another link relating consistency of the
standard-model extension to the spontaneous nature of the
Lorentz violation in the underlying theory. Next, we develop
a line of reasoning that provides insight into this question.

Independently of the issue of corrections to the photon
propagator, the requirement that the triangular anomalies
cancel in the underlying theory implies a constraint on coef-
ficients of the typebm that is of interest in its own right. It
turns out that this constraint is relevant to the photon propa-
gator, so we begin by deriving it.
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Consider first the origin in the underlying theory of the
axial-vector coupling in the triangle diagram. Prior to spon-
taneous symmetry breaking, the fundamental Lagrangian
may contain several terms of the general form
gc

a(Ta)mn...rc̄(Ga)mn...rc for each fermion speciesc, where
Ta is a tensor field,Ga is a gamma-matrix structure,gc

a is the
associated coupling constant, anda is a label ranging over
the set of tensor fields that couple to the speciesc. Note that
the only acceptable line insertions in the two-point one-loop
diagram are flavor diagonal, so in the present context contri-
butions are possible only from the diagonal components of
Eqs. ~10! and ~12!. We therefore disregard possible cross
couplings between fermion species in this derivation.

Each of these Lagrangian terms can be decomposed in
terms of the usual 16 basisg matrices in four dimensions.
Collecting terms produces for each fermion species a La-
grangian separated into five parts, one for each of the five
types of fermion bilinear: scalar, pseudoscalar, vector, axial-
vector, and tensor. The particular components of the fields
Ta that multiply the axial-vector bilinear can be regarded as
a set of effective axial vectorsA5m

a with associated coupling
constantsgc

a . These axial vectors are the fields relevant for
the one-loop three-point diagrams of interest. When the axial
vectorsA5m

a acquire vacuum expectation values^A5m
a &, their

net contribution generates the coupling coefficientbm
c

[(agc
a^A5m

a & at the level of the standard-model extension
for this species of fermion.

The triangle diagram for one axial vectorA5m
a and two

photonsAm has an anomaly proportional to the product ofgc
a

and qc
2 , where the latter is the charge of the fermionc.

When summed over all fermion species, the anomaly-
cancellation condition is therefore

(
c

qc
2gc

a50 ~69!

for eacha. Multiplying this equation bŷ A5m
a & and summing

over a yields the constraint

(
c

qc
2bm

c50 ~70!

on coupling coefficients of thebm type. Note that, at the level
of the standard-model extension, the sum over all fermion
species would include the leptons and the quarks. Also, in
contrast to the usual anomaly-cancellation mechanism which
produces a single condition, Eq.~70! is a set of four con-
straints. This is a direct consequence of spontaneous Lorentz
breaking, in which for eacha the vacuum expectation value
^A5m

a & involves four numbers.
Next, we present the results of an explicit calculation of

the bm-linear one-loop corrections to the photon propagator
involving a fermion of massm and chargeq. There are two
diagrams to consider, since a factor2 ibmg5gm can be in-
serted on either of the two internal lines. Using an argument
similar to the standard one proving the Furry theorem, the
two diagrams can be shown to give identical contributions to

the amplitude. Omitting the external photon legs, the correc-
tion to the two-point amplitude for a photon of four-
momentumpm then becomes

v̄mn~p,m,b!522iq2blE d4l

~2p!4

3Tr@gmSF~ l 2p!gnSF~ l !g5glSF~ l !#, ~71!

where l m is the momentum of the fermion in the loop and
SF( l )5 i ( l”2m1 i e)21 is the usual fermion propagator.

As anticipated above, expression~71! is related to one
appearing in the calculation of the triangular gauge anomaly.
It can directly be verified that

v̄mn~p,m,b![q2blTmnl~2p,p!, ~72!

whereTmnl(p1 ,p2) is the standard amplitude for the triangle
diagram with one axial-vector coupling in conventional
QED. The full anomaly amplitudeTmnl(p1 ,p2) can be regu-
larized in the Pauli-Villars scheme and reduced to a set of
integral expressions@35,36#. These can be evaluated in
closed form for the present case of interest. Forp2,4m2,
we find

v̄mn~p,m,b!5
q2bl

2p2 pkeklmn

3F12
4

A~p2/m2!~42p2/m2!

3tan21SA p2/m2

42p2/m2D G . ~73!

Note that this expression is gauge invariant,

pmv̄mn5pnv̄mn50, ~74!

as expected.
At this stage, the issue of radiative corrections tokAF can

be addressed. The result~73! is finite. Since no divergence
cancellation is necessary, a zero value ofkAF at tree level is
consistent with a renormalizable theory. Moreover,v̄mn van-
ishes for the on-shell conditionp250, as is to be expected in
a renormalizable theory without a radiatively induced phase
transition. Thus, none of the finite radiative corrections have
the form needed to modify the coefficientkAF , and they are
therefore irrelevant to the analysis of cosmic birefringence in
Sec. IV D.

The above results might make it seem tempting to con-
clude that there are nobm-linear one-loop radiative correc-
tions affectingkAF . However, such a conclusion would be
premature. The integralTmnl(2p,p) in Eq. ~72! is superfi-
cially linearly divergent. As usual, this introduces an ambi-
guity because a shift in the loop momentuml m produces a
shift in the value of the integral: Tmnl(2p,p)
→Tmnl(2p,p)1zpkeklmn, wherez is a constant. Certain
choices of regularization scheme could therefore generate an
additional term of the form
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dv̄mn~p,b!5zq2blpkeklmn ~75!

to the result~73!, which would represent a regularization-
dependent radiative correction tokAF . Note that this does
not occur in the Pauli-Villars scheme because the term~75!
is mass independent, so in this case the regularization auto-
matically subtracts it.

Ambiguities of the general form~75! involving combina-
tions of the external momenta arise in the standard
triangular-anomaly diagram with a finite momentum transfer
from the two photons to the axial vector. In this case, the
ambiguity is conventionally fixed by imposing U~1! current
conservation. However, in the general context the presence
of an ambiguity is independent of the issue of anomalies.
Under certain circumstances, anomalies can appear in super-
ficially convergent~non-Abelian pentagon! diagrams that are
ambiguity-free@37#. Also, ambiguities originating in loop-
momentum shifts for divergent amplitudes other than those
associated with anomalies are a standard feature of quantum
field theories. For example, the usual vacuum-polarization
diagram has an ambiguity. Similarly, results such as the
Furry theorem rely on a consistent assignment of loop mo-
menta. Typically, these ambiguities either appear as finite
constant modifications to divergent constants or can be
eliminated by imposing gauge invariance.

A striking feature of thez ambiguity is that it arises with-
out an associated divergence and is gauge invariant. It there-
fore cannot be fixed by the usual methods. Thus, gauge in-
variance ensures the Ward identities are satisfied, so vector-
current conservation holds for anyz. Also, the ambiguity
fails to produce an anomaly in the axial-current conservation
law because there is zero momentum transfer away from the
loop at the axial vertex for anyz. However, the mass inde-
pendence of the term~75! implies that the fermion mass
circulating in the loop could in principle be arbitrarily large
without affecting the value ofz, which intuitively seems un-
physical and would appear to suggest thatz must vanish.

In the standard triangular-anomaly diagram, fixing the
ambiguity by requiring vector-current conservation places
the anomaly in the axial Ward identity. If the axial vector is
ungauged, chiral-current conservation is then violated and
the anomaly may have physical consequences. An example
of this occurs in the decayp→2g. If instead the axial vector
is a gauge field, then the anomaly destroys renormalizability
unless the total anomaly contribution from all fermion spe-
cies vanishes. A cancellation of this type, which is widely
used in model building, implicitly assumes the ambiguity has
been fixed in a standard way in all contributing diagrams.
This could be regarded as a~reasonable! choice made to
obtain a satisfactory theory.

If a similar choice is made for the present case, so that the
same regularization scheme is adopted for all the contribut-
ing diagrams and therefore the same constantz appears in
each, then it can be argued that the anomaly cancellation in
the underlying theory causes the ambiguity to disappear.
Thus, suppose as above we assume gauged axial vectors in a
renormalizable underlying theory, so that the anomaly-
cancellation condition~70! must hold. Then, the net contri-
bution to the photon propagator from the ambiguous terms is

given by (czqc
2bl

cpkeklmn, which vanishes by Eq.~70!.
This confirms the conjecture made in the first part of this
subsection: the anomaly cancellation implies the absence of
bm-linear one-loop radiative corrections tokAF .

Note that this argument presupposes that the axial vectors
A5m

a are gauged and that a consistent choice of regularization
is used. To demonstrate the absence of negative-energy con-
tributions to the theory at this level, it suffices that a natural
procedure of this kind exists. If an ambiguityz did remain in
the theory, it would seem to suggest that at the quantum level
there would be a spectrum of physically allowed theories.
The issue of determining the correct one would then become
experimental, much as the values of the renormalized cou-
plings and masses are experimentally determined. However,
in the present case there are both theoretical and experimen-
tal reasons to believe thatz vanishes.

We next address some issues arising in higher perturba-
tion orders. Consider first the case of the photon propagator
in the extended QED. At any loop order but with only one
CPT-violating insertion ofbm , all diagrams are superficially
divergent and hence can be expected to have ambiguities. In
parallel with the previous case, these diagrams can be related
to higher-loop three-point triangle diagrams with one axial-
vector and two photons on the external legs. The Adler-
Bardeen theorem@38# shows that the anomalies arising from
the one-loop triangle diagram are unaffected at higher loops.
This implies that the constraint~70! holds at arbitrary loop
order. However, it follows as before that the total ambiguity
is proportional to this constraint and so vanishes. If this ar-
gument holds, then there can be nobm-linear contributions to
kAF at any order in the fine-structure constant.

Diagrams that involve higher-order Lorentz violation may
also be of potential theoretical importance. Their transforma-
tion properties under discrete symmetries place strong con-
straints on their possible contributions tokAF , as in the
lowest-order case. For example, in the extended QED at the
quadratic level of Lorentz violation, only a product of the
coefficientsbm andcmn can appear. At the one-loop level, all
higher-order diagrams are related to polygonal diagrams in
the underlying theory that couple two photons to a variety of
vector, axial-vector, and tensor fields. At least one factor of
bm is required, so a chiral coupling must be involved and a
cancellation mechanism may still apply. The implication of
the consistency of the underlying theory for corrections to
kAF at all orders in Lorentz violation and including possible
higher-loop corrections remains an open issue. We remark,
however, that the effects at the cubic levels and above are at
most of theoretical interest as they would be well below ex-
perimental detection for the levels of Lorentz violation con-
sidered in the present work.

At the level of the standard-model extension, a possible
lowest-order one-loop correction to the photon propagator
could in principle also arise from the coefficientk2 when a
W12W2 pair circulates in the loop. Indeed, there would be
a contribution from insertions on the gauge-boson lines and
another, related to the first by gauge invariance, involving a
modified vertex. However, if the term involvingk2 were to
exist, it would exhibit difficulties with negative contributions
to the energy, as doeskAF . One option is therefore thatk2
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vanishes at tree level, which eliminates the possible associ-
ated radiative corrections to the term involvingkAF . An is-
sue then arises concerning possible radiatively induced con-
tributions tok2 from the fermion sector. We conjecture that,
if all the terms k0 ,k1 ,k2 ,k3 vanish at tree level, then no
radiative corrections to any of these coefficients arise from
the fermion sector. An anomaly-cancellation mechanism
would again play a role, although non-Abelian fields would
now be involved and so the singlet and non-Abelian anoma-
lies would also be relevant. The situation in the standard-
model extension at higher loops remains open.

Finally, we present a few remarks about the possibility of
radiative corrections to a hypothetical linear term of the form
2(kA)kAk in the absence of a photon mass. This term isC
andCPT odd. In the extended QED, only terms of the type
am have this symmetry. As discussed in Sec. III, a field re-
definition can be used to eliminate these~flavor-diagonal!
terms, and hence they are unobservable in any experiment.
Since the electromagnetic interactions areC even, at lowest
order in Lorentz-violating coefficients there cannot be any
radiative corrections tokA at any order in QED loops. Any
contributions that might arise at higher orders in Lorentz
violation would again be related to polygonal diagrams in the
underlying theory. It would be of some theoretical interest to
investigate the possible contributions to these terms.

B. CPT-even terms

In contrast to the situation for theCPT-odd terms, a non-
zero tree-level value for theCPT-even term~24! with coef-
ficient kF presents no immediate theoretical difficulty. We
have shown in Sec. IV D that it is experimentally feasible to
place relatively tight bounds onkF from measurements of
cosmological birefringence, although this has not yet been
done and the wavelength dependence may result in con-
straints somewhat weaker than those onkAF . Nonetheless,
the attainable limits onkF are of interest because they might
in principle be sufficiently sharp to be sensitive to effects at
a scale comparable to finite radiative corrections from the
fermion sector. It is therefore of interest to determine
whether the couplingkF must be present for renormalizabil-
ity and, if so, which fermion-sector coupling coefficients are
involved. In this subsection, we investigate this issue in the
context of the extended QED.

At the one-loop level and to leading order in Lorentz vio-
lation, the possible radiative contributions to the coefficient
kF in the term~24! are significantly constrained by the re-
quirements of discrete symmetries. This term is bothC and
CPT even, and an inspection shows that the only other type
of term in the fermion sector with these properties is the term
with coefficientcmn in Eq. ~27!. It contributes both on the
loop through fermion-line insertions with a derivative and at
the vertices through the extra gauge coupling.

The form of thecmn-linear correctionv̄mn(p,m,c) to the
two-point amplitude for a photon of four-momentumpm is
strongly constrained by its discrete-transformation proper-
ties, observer Lorentz covariance, and the requirements~74!
of gauge invariance. Thus, invariance underCPT implies
v̄mn(p,m,c) is an even function ofpm. Also, by virtue of the

definition of the photon propagator as a vacuum expectation
value of a time-ordered product,v̄mn(p,m,c) is symmetric
under the combination of a sign changepl→2pl of the
momentum and an interchangem↔n of the spacetime indi-
ces. These conditions imply that the correction to the photon
propagator at any order in the fine-structure constant but at
linear order incmn must take the form

v̄mn~p,m,c!5 icabS Agab~p2gmn2pmpn!

1B@~p2gamgbn2gampbpn2ganpbpm!

1~a↔b!#1Cgmnpapb1
D

m2 papbpmpnD .

~76!

Here,A, B, C, andD are ~possibly divergent! scalar func-
tions of p2/m2 obeying the relationship

C22B1
p2

m2 D50 ~77!

to ensure gauge invariance.
Some information about photon propagation under speci-

fied circumstances can be deduced from Eq.~76! under the
assumption that the scalar functionsA,B,C,D have been
regularized as needed and divergent contributions have been
removed by the renormalization procedure. For example, in
the case of cosmological birefringence of interest in Sec.
IV D, the photon momentum can be taken as on shell and the
Lorentz gauge condition can be applied. In Eq.~76!, this
corresponds to setting to zero bothp2 and the momentum
factorspm andpn with specific indicesm andn. This leaves
only the termcabC(0)gmnpapb. This is precisely of the
form needed for radiative corrections to the coefficientkF ,
which can thus be seen to be governed in this gauge by the
on-shell value ofC.

To obtain the explicit result and as a check on the renor-
malization procedure when Lorentz violations are involved,
we have directly performed the one-loop calculation. This
also verifies the structure of Eq.~76!. The terms in Eq.~27!
associated with the coupling coefficientcmn lead to four new
cmn-linear one-loop vacuum-polarization diagrams. The pos-
sibility of fermion-line insertions arising from the derivative
coupling leads to two diagrams, each with one insertion on
one of the two internal fermion lines. The appearance of
modified vertices from the extra gauge coupling leads to an-
other two, each with one normal and one modified vertex.
These two types of contribution are related by gauge invari-
ance. Indeed, we anticipate this gauge invariance leads to
Ward-type identities valid at arbitrary loop order, although
an explicit demonstration of this remains an open issue.

The sum of the four additional diagrams generates a one-
loop correction to the photon propagator of
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v̄mn~p,m,c!5 iq2cabE d4l

~2p!4 $ l b Tr@gmSF~ l 2p!gnSF~ l !gaSF~ l !#1~ l 2p!b Tr@gmSF~ l 2p!gaSF~ l 2p!gnSF~ l !#

2 igbm Tr@gaSF~ l 2p!gnSF~ l !#2 igbn Tr@gmSF~ l 2p!gaSF~ l !#%, ~78!

where the first two terms arise from line insertions and the last two from the modified vertices.
The integral in Eq.~78! is superficially quadratically divergent. It has the standard ambiguity, arising from the possibility

of shifting the integration variable, that is~largely! fixed by imposing gauge invariance. The denominators arising from the
fermion propagatorsSF can be combined with the usual Feynman parametrization. All the necessary shifts performed in the
resulting integration variables must be the same, so that the contributions from the surface terms remain gauge invariant. To
accomplish this, it is convenient to separatev̄mn into two pieces that can be parametrized so as to maintain the equivalence of
shifts.

We definev̄mn5v̄ (1)
mn1v̄ (2)

mn , where

v̄~1!
mn54q2cabE d4l

~2p!4

1

D
$gmn@~ l 2p!al b1~a↔b!#1@gmb@ l •~ l 2p!2m2#gna1~m↔n!#

2„@gma@ l b~ l 2p!n1~b↔n!#1~m↔n!#1~a↔b!…% ~79!

and

v̄~2!
mn58q2cabE d4l

~2p!4

1

D2 $„l al b@~ l 2p!22m2#1~ l 2p!a~ l 2p!b~ l 22m2!…

3„m2gmn2 l •~ l 2p!gmn1~ l 2p!ml n1 l m~ l 2p!n
…%. ~80!

In these expressions,D5( l 22m2)@( l 2p)22m2#. The same
shift is introduced in all the integrals, thereby preserving
gauge invariance, with the substitution in Eq.~79! of

1

D
5E

0

1

dz
1

@k21z~12z!p22m2#2 ~81!

and the substitution in Eq.~80! of

1

D2 5E
0

1

dz
6z~12z!

@k21z~12z!p22m2#4 , ~82!

wherek5 l 2pz is the new integration variable.
The divergences in the resulting integrals can be treated

using dimensional regularization inD542e dimensions.
Performing various partial integrations, we obtain forp2

,4m2 a radiative correction of the form~76! with

A52B5v~p2/m2!,

C522v~p2/m2!2
p2

m2 D,

D52
]

]~p2/m2!
v~p2/m2!. ~83!

Here,v(p2/m2) is the standard vacuum-polarization result,
given by

v~p2/m2!5
q2

4p2 F1

3 S 2

e
2g D

22E
0

1

dzz~12z!ln@12z~12z!~p2/m2!#G ,
~84!

whereg is the Euler constant. Note that the results~83! sat-
isfy the gauge-invariance condition~77!.

The above calculation shows that the scalar functionC
contains a momentum-independent divergence. As described
above, the on-shell value ofC determines the coefficientkF
in the Lorentz gauge, so the appearance of this divergence
shows that a bare coefficientkF must be present in the origi-
nal theory for renormalizability. The renormalization proce-
dure then removes the infinite and~ambiguous! constant
pieces, leaving a physical coefficientkF ~to be determined by
experiment! and a set of finite radiative corrections governed
by the ratiop2/m2.

We have seen in Sec. IV D that a nonzero value of the
coefficient kF induces cosmological birefringence. The
above calculation shows that imposing a zero value of this
coefficient at tree level is incompatible with renormalizabil-
ity. It is therefore reasonable to expect a nonzero physical
value of kF . Although nonrigorous, a heuristic argument
might also be used to provide a relationship between the
physical values ofkF andcmn : for consistency of perturba-
tion theory, it is plausible that the physical value ofkF
should be larger than the expected finite quantum corrections
of orderacmn , wherea is the fine-structure constant. IfkF is
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eventually bounded to about 10227 as estimated in Sec.
IV D, then this would suggest the components ofcmn might
be expected to be smaller than about 10225.

As in theCPT-odd case, the momentum-dependent radia-
tively induced corrections in Eq.~83! are irrelevant in the
context of cosmological birefringence. However, these radia-
tive corrections do modify the off-shell propagator and might
therefore be expected to generate small effects under suitable
circumstances. For example, there may be contributions to
electromagnetic scattering cross sections, governed by the
ratio ame /M P'10225. Similarly, a small correction to the
Coulomb law might appear. These issues lie beyond the
scope of the present work.

In addition to thecmn-linear one-loop contribution ob-
tained above, there are alsocmn-linear higher-loop correc-
tions in the extended QED. The general structure of the con-
tributions at any loop order is given by Eq.~76!. Although
the detailed form of the scalar functionsA, B, C, andD will
differ, the physically relevant corrections should also depend
on p2/m2, since any terms independent ofp are expected to
be absorbed by the renormalization procedure. The above
conclusions about cosmological birefringence are therefore
likely to remain valid. Effects from higher-order Lorentz vio-
lation should also arise in the extended QED but are prob-
ably of a size that is physically irrelevant. Much of the above
discussion should also hold for radiative effects in the full
standard-model extension. In this context, note that off-
diagonal terms in generation space cannot contribute at lead-
ing order.

VI. SUMMARY

In this paper, we presented a general Lorentz-violating
extension of the minimal SU~3!3SU~2!3U~1! standard
model including bothCPT-even andCPT-odd terms, and
we discussed some of its theoretical and experimental prop-
erties. The analysis was performed within the context of a
framework previously described@2#, which is based on spon-
taneous Lorentz andCPT violation occurring in an underly-
ing theory of nature.

Despite the existence of terms causing a certain type of
Lorentz breaking, the resulting theory preserves various de-
sirable features of standard quantum field theories such as
gauge invariance, energy-momentum conservation, observer
Lorentz invariance, hermiticity, the validity of conventional
quantization methods, and power-counting renormalizability.
Other important features such as positivity of the energy,
microcausality, and the usual anomaly cancellation are also
expected. We have demonstrated that the usual breaking of
SU~2!3U~1! symmetry to the electromagnetic U~1! is main-
tained, although the expectation value of the Higgs is slightly
changed and theZ0 field acquires a small expectation value.
The theory presented here appears at present to be the sole
candidate for a consistent extension of the standard model
providing a microscopic theory of Lorentz violation.

We have extracted extensions of several of the conven-
tional varieties of QED by considering limiting cases of the
standard-model extension. Part of the motivation for investi-
gating extended QED is the existence of high-precision tests

of Lorentz andCPT invariance that involve electrodynam-
ics. A summary was provided of some recent studies of pos-
sible experimental constraints.

Another major focus of this work is the effect of the Lor-
entz violations on the photon sector. The general pure-
photon Lagrangian can be written in a form containing only
two additional terms, oneCPT odd and oneCPT even. This
lagrangian and the associated energy-momentum tensor were
discussed, and it was found that theCPT-even component
has positive conserved energy but that in the absence of a
photon mass theCPT-odd component can generate negative
contributions to the energy. Despite this theoretical diffi-
culty, the two terms were retained for the whole analysis so
that the implications for the full quantum theory could be
examined.

The equations of motion generalizing the Maxwell equa-
tions in the presence of Lorentz violation were obtained, and
their solution was outlined using both potentials and fields.
Some technical complications arise relative to the case of
conventional electrodynamicsin vacuo, but they can largely
be overcome. A key feature is that, although there are still
two independent propagating degrees of freedom, in the typi-
cal situation the two modes obey different dispersion rela-
tions. This implies a variety of interesting effects, including
birefringence in the vacuum. We presented a few quantita-
tive analogies with crystal optics and showed that the pres-
ence of Lorentz violation means that the vacuum as experi-
enced by an electromagnetic wave behaves like an optically
anisotropic and gyrotropic transparent crystal exhibiting spa-
tial dispersion of the axes.

A variety of terrestrial, astrophysical, and cosmological
bounds on photon properties are known. Sharp experimental
limits on the photon sector of the extended QED can be
obtained from the absence of birefringence on cosmological
scales. It has been shown in earlier work@22# that the prob-
lematic CPT-odd term is experimentally limited to scales
comparable to the Hubble length.

A significant result of this paper is that most of the com-
ponents of theCPT-even term could also be bounded ex-
perimentally from cosmological birefringence with existing
techniques. This case is particularly interesting as it has no
evident theoretical difficulties and appears to have been
overlooked in the previous literature. Also, unlike the
CPT-odd term, theCPT-even contribution exhibits a depen-
dence on wavelength that might provide a useful signature of
the effect. We have crudely estimated the attainable bounds,
which would be sensitive to suppressed Lorentz violation in
the general range considered here.

The paper also contains a series of consistency checks on
the theory, primarily at the level of one-loop radiative cor-
rections. We discussed the cancellation of various conven-
tional anomalies in the standard-model extension and consid-
ered other anomaly cancellations that might occur in the
underlying theory. The latter were used to obtain a constraint
on a set of coupling coefficients for Lorentz violation in the
standard-model extension.

We have investigated the feasibility of imposing tree-
level vanishing of the problematicCPT-odd terms, in light
of possible radiative corrections that could be induced from
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the nonphoton sectors in the standard-model extension. We
have shown that the radiative corrections at one loop are
finite, so it is unnecessary at this level of renormalization to
include aCPT-odd term in the original theory. The finite
corrections are gauge invariant but ambiguous, a situation
somewhat reminiscent of the usual anomaly calculations.
However, if the theory underlying the standard-model exten-
sion is anomaly free, theCPT-odd effects in the photon
sector can be neglected at this level. Generalizations of this
argument may apply at higher loops.

For theCPT-even sector, we have demonstrated by ex-
plicit one-loop calculation that divergent radiative correc-
tions appear. A term of this type therefore must be present in

the original theory. An experimental search for the associ-
ated renormalized coupling based, for example, on cosmo-
logical birefringence could be performed. It is remarkable
that physics associated with the Planck scale might produce
observable effects in measurements made at the largest
scales in the universe.
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