PHYSICAL REVIEW D, VOLUME 58, 116002

Lorentz-violating extension of the standard model

D. Colladay and V. Alan Kostelecky
Physics Department, Indiana University, Bloomington, Indiana 47405
(Received 24 June 1998; published 26 October 1998

In the context of conventional quantum field theory, we present a general Lorentz-violating extension of the
minimal SU3)XSU(2)xU(1) standard model includin@ P T-even andCPT-odd terms. It can be viewed as
the low-energy limit of a physically relevant fundamental theory with Lorentz-covariant dynamics in which
spontaneous Lorentz violation occurs. The extension has gauge invariance, energy-momentum conservation,
and covariance under observer rotations and boosts, while covariance under particle rotations and boosts is
broken. The quantized theory is Hermitian and power-counting renormalizable, and other desirable features
such as microcausality, positivity of the energy, and the usual anomaly cancellation are expected. Spontaneous
symmetry breaking to the electromagneti¢lVis maintained, although the Higgs expectation is shifted by a
small amount relative to its usual value and #&field acquires a small expectation. A general Lorentz-
breaking extension of quantum electrodynamics is extracted from the theory, and some experimental tests are
considered. In particular, we study modifications to photon behavior. One possible effect is vacuum birefrin-
gence, which could be bounded from cosmological observations by experiments using existing techniques.
Radiative corrections to the photon propagator are examined. They are compatible with spontaneous Lorentz
and CPT violation in the fermion sector at levels suggested by Planck-scale physics and accessible to other
terrestrial laboratory experimen{s50556-282(199)01601-X]

PACS numbe(s): 11.30.Er, 12.606-i, 12.20.Fv, 41.20.Jb

[. INTRODUCTION ries typically involve interactions that could destabilize the
naive vacuum and trigger the generation of nonzero expec-
The minimal SW3)XSU(2)xU(1) standard model, al- tation values for Lorentz tensors. Note that some kind of
though phenomenologically successful, leaves unresolved spontaneous breaking of the higher-dimensional Lorentz
variety of issues. It is believed to be the low-energy limit of symmetry is expected in any realistic Lorentz-covariant fun-
a fundamental theory that also provides a quantum descrilamental theory involving more than four spacetime dimen-
tion of gravitation. An interesting question is whether anysions. If the breaking extends into the four macroscopic
aspects of this underlying theory could be revealed througBpacetime dimensions, apparent Lorentz violation could oc-
definite experimental signals accessible with present tecleur at the level of the standard model. This would represent
nigues. a possible observable effect from the fundamental theory,
The natural scale for a fundamental theory including grav-originating outside the structure of conventional renormaliz-
ity is governed by the Planck maséy, which is about 17 able gauge models.
orders of magnitude greater than the electroweak sogle A framework has been developed for treating the effects
associated with the standard model. This suggests that olbf spontaneous Lorentz breaking in the context of a low-
servable experimental signals from a fundamental theorgnergy effective theory2], where certain terms can be in-
might be expected to be suppressed by some power of thduced that appear to violate Lorentz invariance explicitly. It
ratio r~m,,/Mp=10"1’. Detection of these minuscule ef- turns out that, from a theoretical perspective, the resulting
fects at present energy scales would be likely to require exeffects are comparatively minimal.
periments of exceptional sensitivity, preferably ones seeking An important point is that Lorentz symmetry remains a
to observe a signal forbidden in conventional renormalizablgroperty of the underlying fundamental theory because the
gauge theories. breaking is spontaneous. This implies that various attractive
To identify signals of this type, one approach is to exam-features of conventional theories, including microcausality
ine proposed fundamental theories for effects that are qualiand positivity of the energy, are expected to hold in the low-
tatively different from standard-model physics. For examplegnergy effective theory. Also, energy and momentum are
at present the most promising framework for a fundamentatonserved as usual, provided the tensor expectation values in
theory is string M) theory. The qualitative difference be- the fundamental theory are spacetime-position independent.
tween particles and strings means that qualitatively newMoreover, standard quantization methods are unaffected, so
physics is expected at the Planck scale. An interesting chak relativistic Dirac equation and a nonrelativistic Sctinger
lenge would be to determine whether this could lead to obequation emerge in the appropriate limits.
servable low-energy effects. Another important aspect of the spontaneous breaking is
In the present work, we consider the possibility that thethat both the fundamental theory and the effective low-
new physics involves a violation of Lorentz symmetry. It hasenergy theory remain invariant undalsserverLorentz trans-
been shown that spontaneous Lorentz breaking may occur fiormations, i.e., rotations or boosts of an observer’s inertial
the context of string theories with Lorentz-covariant dynam-frame[2]. The presence of nonzero tensor expectation values
ics[1]. Unlike the conventional standard model, string theo-in the vacuum affects only invariance properties urpsr-
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ticle Lorentz transformations, i.e., rotations or boosts of aprecision ones might have observable signals within this
localized particle or field that leave unchanged the backframework. In particular, the results in the present paper
ground expectation values. have been used to examine possible bound<C&i and
This framework for treating spontaneous Lorentz viola-Lorentz violations from measurements of neutral-meson os-
tion has been used to obtain a general extension of the mingillations [3—6], from tests of QED in Penning trap3,8],
mal SU3)XSU(2)xU(1) standard model that violates both and from baryogenesi®]. Several other investigations are
Lorentz invariance an@PT [2]. In addition to the desirable underway, including a studj10] of possible Lorentz and
features of energy-momentum conservation, observer LorePT effects on hydrogen and antihydrogen spectroscopy
entz invariance, conventional quantization, hermiticity, and11] and another[12] of limits attainable in clock-
the expected microcausality and positivity of the energy, thisomparison experimen{d 3].
standard-model extension maintains gauge invariance and The analyses of the standard-model and QED extensions
power-counting renormalizability. It would emerge from any performed in the present work leave unaddressed a number
fundamental theorynot necessarily string theorghat gen-  of significant theoretical issues arising at scales between the
erates the standard model and contains spontaneous Loremflectroweak mass and the Planck mass. These include the
and CPT violation. “dimension problem” of establishing whether spontaneous
The present work continues our previous theoretical in{orentz breaking in the fundamental theory near the Planck
vestigations of spontaneous Lorentz a@dPT breaking. scale indeed extends to the four physical spacetime dimen-
Working first at the level of the standard model, we providesions and, if so, the mechanism for its suppression or, if not,
explicitly in Sec. Il the full Lorentz-violating extension, in- why exactly four spacetime dimensions are spared. Other
cluding theC P T-even Lorentz-breaking terms described im-issues include the effects of mode fluctuations around the
plicitly in Ref. [2]. We also give some details of the modifi- tensor expectation values and possible constraints and effects

cations to the usual electroweak symmetry breaking. arising from a nonminimal standard model(supejunifica-
Since many sensitive measures of Lorentz @RIT sym-  tion below the Planck scale.
metry involve tests of quantum electrodynami@ED), it is Another potentially important topic is the implication of

useful to extract from the standard-model extension a genespontaneous Lorentz violation for gravity at observable en-
alized QED that allows for possible Lorentz a@dPT vio-  ergies. Like the usual standard model, the standard-model
lations. This extended QED, given in Sec. lll, involves modi- extension considered here disregards gravitational effects.
fications of the usual QED in both the fermion and theThe particle Lorentz symmetry that is broken in this theory is
photon sectors. Some comments are also given in Sec. Itherefore effectively a global symmetry, and so one might
about the implications of this theory for experimental testsexpect Nambu-Goldstone modes. Since gravity is associated
with electrons and positrons. with local Lorentz invariance, it is natural to ask about the
In the remainder of this paper, we focus primarily on therole of these modes in a version of the standard-model ex-
photon sector of the extended QED, presenting a study of thiension that includes gravity. In a gauge theory, when a suit-
theoretical and experimental implications of the modifica-able scalar acquires a nonzero expectation value, the Higgs
tions to photon properties arising from the possible Lorentanechanism occurs: the propagator for the gauge boson is
and CPT violations. Section IV discusses changes in themodified, and a mass is generated. Similarly, in a theory with
basic theory, including the modified Maxwell equations andgravitational couplings, when a Lorentz tensor acquires a
properties of their solutions. One possible effect is vacuunmonzero expectation value, the graviton propagator can be
photon birefringence, and some associated features are deodified. However, no mass for the graviton is induced be-
scribed. We show that feasible measurements limiting bireeause the gravitational connection is related to the derivative
fringence on cosmological scales could tightly constrain theof the metric rather than to the metric itsglf]. In this sense,
Lorentz-violating terms. In Sec. V, some important consis-there is no gravitational Higgs effect.
tency checks on the theory at the level of radiative correc- The theory described here appears at present to be the sole
tions are presented, largely at the one-loop level. The typesandidate for a consistent extension of the standard model
of Lorentz violation that can be affected by radiative correc-providing a microscopic theory of Lorentz violation. A com-
tions are identified, and explicit calculations are given. Weplete review of alternative approaches to possible Lorentz
show that the effects are compatible with spontaneous Lorand CPT violation lies beyond the scope of this paper.
entz andCPT violation in the fermion sector at levels acces- Works known to us of relevance in the present context are
sible to other QED experiments. referenced in the body of the text below. Among other ideas
Since the standard-model extension provides a quantitan the literature are several distinctive ones developed from
tive microscopic theory of Lorentz ardPT violation, itis  perspectives very different from ours. Following early work
feasible to identify potentially observable signals and to esby Dirac and Heisenberg, several authors have considered an
tablish bounds from various experiments other than ones innphysical spontaneous Lorentz breaking in an effort to in-
the photon sector. Numerous tests of Lorentz invariance antérpret the photon as a Nambu-Goldstone bogaA].
CPT exist. The present theory provides a single coherenNielsen and his colleagues have suggested the converse of
framework at the level of the standard model and QED thathe philosophy in the present work: that the observed Lorentz
can be used as a basis for the analysis and comparison sfymmetry in nature might be a low-energy manifestation of a
these tests. Although many experiments are insensitive to tfendamental theoryithoutLorentz invariance. A discussion
suppressed effects motivating our investigation, certain highef this idea and a brief review of the literature on Lorentz
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breaking prior to the establishment of the usual minimalcoupling coefficient with mass dimension-4, and the rel-
standard model may be found in RéfL5]. Hawking has evant scale for these effects is roughly the Planck mass. The
suggested16] the possibility that conventional quantum me- hypothesis would therefore suggest that in the low-energy
chanics is invalidated by gravitational effects and that thisheory a term with the field part of mass dimensio# 1
might lead toCPT violation, among other effects. The im- would have a coupling coefficient suppressed by an addi-
plications for experiments in the kaon systfhd] are known  tional power ofr relative to the coefficient of a field term of
to be entirely different from those arising in the presentmass dimensiom. This scheme would be compatible with
standard-model extension, which is based on conventionahterpreting the standard model as an effective field theory,
quantum theory. There is also a body of literature pertainingn which each additional derivative coupling would involve
to unconventional theories of gravitgwithout standard- an additional suppression factor in the coupling coefficient. It
model physics among which are some models containingwould imply a distinct hierarchy among the coupling coeffi-
various possible sources of local Lorentz violat{ds]. cients introduced below, and would suggest that certain de-
rivative couplings could be neglected relative to comparable
nonderivative ones. However, since this hypothesis presently
Il. STANDARD-MODEL EXTENSION has no basis in a detailed theory, in what follows we have

In this section, we extend the minimal standard model by:hosen to retain on an equal footing all renormalizable terms
adding all possible Lorentz-violating terms that could arisecompatible with the gauge symmetries of the standard model
from spontaneous symmetry breaking at a fundamental levéind with an origin in spontaneous Lorentz breaking.
but that preserve SB8)xSU(2)xU(1) gauge invariance and In what follows, we denote the left- and right-handed lep-
power-counting renormalizability. Terms that are odd undefon and quark multiplets by
CPT are explicitly given in Ref[2] but are also included
here for completeness. La=

The general form of a Lorentz-violating term involves a
part that acts as a coupling coefficient and a part constructed
from the basic fields in the standard model. The requirements Q :(UA) Un=(Uy) Da=(dy) (1)
of the derivation impose various limitations on the possible ATlda) 0 TATTAR S EATREAIRY
structures of both parts. Taken together, these requirements
place significant constraints on the form of terms in thewhere
standard-model extension. N N

The part acting as a coupling coefficient carries spacetime p=3(1=y)¢, Yr=3(1+ys5)¢, 2
indices reflecting the properties under observer Lorentzas usual. and whereA=12.3
transformations of the relevant nonzero expectation values ' o
from the fundamental theory. The coupling coefficient may,,,
be complex, but it is constrained by the requirement that thge
Lagrangian be Hermitian. For a coupling coefficient with an

TA) , Ra=(a)r,
AlL

labels the flavor:l,
(eu,7), va=(ve,v,,v,), Ua=(u,cit), da=(d,s,b).

e denote the Higgs doublet kg and in unitary gauge we
present it as

even number of spacetime indices, the pure trace component 170
is irrelevant for present purposes because it maintains Lor- P=— (r . 3
entz invariance. A coupling coefficient of this type can there- v2 1\

fore be taken traceless. ) .

The field part may involve covariant derivatives and, if 1€ conjugate doublet ig®. The SU3), SU2), and U1)
fermions are involvedy matrices. Gauge invariance requires 92Uge fields are denoted B, , W,,, andB,,, respectively.
that the field part be a singlet under @UxSU(2)xU(1),  1he corresponding field strengths &8¢, , W,,, andB,,,
while power-counting renormalizability implies that it must With the first two understood to be Hermitian adjoint matri-
have mass dimension no greater than four. The requiremef€S WhileB,,, is a Hermitian singlet. The corresponding cou-
that the standard-model extension originates from spontan®/ings aregs, g, andg’. The electromagnetic (1) chargeq
ous Lorentz breaking in a covariant fundamental theory im@nd the angle 6, are defined throughq=g sin 6
plies the whole Lorentz-violating term must be a singlet un-=9' COS@y, as usual. The covariant derivative is denoted by
der observer Lorentz transformations, so the field part musd,, andAd,B=AJ,B—(J,A)B. The Yukawa couplings
have indices matching those of the coupling coefficient. are G_, Gy, Gp. Throughout most of this work we use

Following the discussion in the introduction, all coupling natural units, which could be obtained from the Sl system by
coefficients are assumed to be heavily suppressed by somedefiningsi =c=ey=1, and we adopt the Minkowski metric
power of the ratia of the light scale to the Planck scale. In 7, with 7=+ 1.
the absence of a satisfactory explanation of the suppression The complete Lagrangian for the Lorentz-breaking
mechanism, it would seem premature to attempt specific destandard-model extension can be separated into a sum of
tailed predictions about the relative sizes of different couterms. For completeness, we first provide the Lagrangian
pling coefficients. As a possible working hypothesis, oneterms in the usual S(3)xSU(2)xU(1) minimal standard
might attribute comparable suppression factors to all terms ahodel:
the level of the standard-model extension. Note that a term . _
with the field part having mass dimensienmust have a £|epton=%iLAy"DMLAwL%iRAy“DHRA, (4)
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Louar= %iaAY”SMQA+ %iUAY“SMUA+ %iEAy“ISMDA, The _coefficientsHW are d_imensionless and antisymmetric,
(5) but like the Yukawa coupling&, , p they arenot necessar-
ily Hermitian in generation space.
The possible contributions in the Higgs sector can be

Lyukana= ~[(GL)agLadRs +(Gu) asQad“Us CPTeven orCPT odd:
+(Gp)agQadDs] +H.c., (6) LEpteven(k,,)*(D,¢)'D,¢+H.c.
1 vt 1 vt
A —3(kgp)* ' éB,,— 3 (Kgw) "' d'W,,, b,
Lriggs=(Du$) D G+ p?pT =2 (8'9)% (7) " T
Loge — 3 TH(G,,G4) —  THW, W)~ 3B, B2, (®) Lliggs ™ =i(ky)* Db+ Hoc. 1s

The usuald terms have been omitted, and possible analogoug1 Ec_]. (14), the dlm_en5|onles_s (_:oefﬂ_mek\g,(z, can have sym-
metric real and antisymmetric imaginary parts. The other co-

total-derivative terms that break Lorentz symmetry are dis-__ . . . ;
regarded in this work. efficients in Eq.(14) have dimensions of mass and must be

In the fermion sector of the standard-model extension, th eal antisymmetric. The coefficieky, for the CPT-odd term

contribution to the Lagrangian can be divided into four parts 15) also has dimensions of mass and can be an arbitrary

: B complex number.
according to whether the term 8PT even or odd and
whether?t involves leptons or quarks: The gauge sector has bofhP T-even andC P T-odd con-

tributions. TheCP T-even ones are

Lighon®=3i(c)) soaplar*D'Leg LT 1(Ke) 4 THGGHY)
+3i(cr) .uasRaY*D"Rs, (9) — 3(Kw) on o THOWSR W)
- iL_1(kB)1!<)\,u.1/BK}\B'MV' (16)

L epion™®= = (1) uasLa¥7*Le— (aR) .asRaY*Rs., (10)
In this equation, the dimensionless coefficiektsyy g are
real. They must have the symmetries of the Riemann tensor
and a vanishing double trace. The point is that any totally
antisymmetric part involves only a total derivative in the
Lagrangian density, while a nonzero double trace can be ab-
+%i(CD),u,yABSA7'MDHVDBa (11 sorbe(_i intq a r_edefinition of the normalization of the corre-
sponding kinetic ternt8).

CPT-even_ 1; ~ S
L quark = 21(CqQ) uraQay*D"Qp

+%i(CU),uVABUA'y'u6VUB

The CPT-odd gauge terms are given by the following

chfaTrkOdd: —(2q) 1ABQAY" Qs expressiof19]:
- Uy Ug— D py* a KA v :
(ay) uasYUay*Us—(ap) ,asDa¥*Ds. LETIL (kj) e M Tr(G\G,,+5i93G,G,G,)
(12 + (ko) €™M TH(WA\W,,, + 5 igWAW,W,)
In these equations, the various coupling coefficientsand +(ky) (€**"B\B,,,+ (Ko) [B*. 17

a, are understood to be Hermitian in generation space. The
coefficientsa,, have dimensions of mass. The dimensionlessThe coefficientk, , ; are real and have dimensions of mass,
coefficientsc,,, can have both symmetric and antisymmetricwhile k, is also real and has dimensions of mass cubed. It
parts but can be assumed traceless. A nonzero trace wouldrns out that, if any of thes€ PT-odd terms do indeed
not contribute to Lorentz violation and in any case can beappear, they would generate instabilities in the minimal
absorbed by a conventional field normalization ensuring theheory. They are all associated with negative contributions to
usual kinetic operator for the matter fields. the energy, and in addition the term wiky would directly
The standard-model extension also contains Lorentzgenerate a linear instability in the potential. It might there-
violating couplings between the fermions and the Higgsfore seem desirable that all the coefficiekts, , 3 vanish.
field, having the gauge structure of the usual Yukawa couwhile this could be imposed at the classical level, radiative
plings but involving nontrivialy matrices. These terms are quantum corrections from, say, the fermion sector might

all CPT even: priori be expected to generate nonzero values. Remarkably,
the structure of the standard-model extension appears to be
»CSEJA\%ED:—%[(HL)MVABLA¢U”VRB such that no corrections arise, at least to one loop. These
- issues are discussed further in what follows, in particular in
+(Hy) uuasQad o Ug Secs. IVA and V.

. It is known that some apparentl PT- and Lorentz-
+(Hp) 4aeQadc”'Dg]+H.c.  (13)  violating terms can be eliminated from the action via field
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redefinitiong 2]. Several types of redefinition can be consid-the vacuum values of the fields, but the linear instability that
ered. In the context of the present standard-model extensiomould be introduced by a nonzekg would exclude a stable

we have investigated a variety of possibilities for each fieldvacuum in the absence of oth@ronlineay effects.

As a general rule, the more complex the theoretical structure Extremizing the static potential produces five simulta-
becomes, the less likely it is that a useful field redefinitionneous equations. Three of these are satisfied if the expecta-
exists. For instance, the presence of Lorentz-violatingion values ofw, and the photor,, vanish. The other two
CPT-even derivative couplings in the standard-model extenequations can be solved algebraically for the expectation val-
sion complicates the analysis f6P T-odd terms provided in  ues of the Higgs ané[ﬁ fields. In the general case, both of
Ref.[2], although it turns out that the conclusions still hold. these are nonzero and are given by

Here, we summarize a few methodological results and de-

scribe some special cases of particular interest. o L . f g,
To eliminate a Lorentz-breaking term, a field redefinition (Zu)= q sin 20w(Rekgg) 1Ky, (18)
must involve the associated coupling coefficient. When de-
rivative couplings play a role, the field redefinition may also 1 . 12
involve spacetime-position variables. The assumption that (ry)=2a l—F(Re Kpg) urkisky| 19

the coupling coefficients are small can be helpful, in some
cases directly assisting in derivations and in others leading to A
a set of approximate field redefinitions. Under the Iatter? avhereky,= 7"+ kg4 anda= 6. /\. Note that the quan-
theory with first-order Lorentz-breaking effects may be redetity (Reky,),, always exists when the Lorentz violation is
fined into one with effects appearing only at second or highesmall, | (k,4)*"|<1. Note also thafr,) is a scalar under
orders. Alternatively, some first-order Lorentz-breakingboth particle and observer Lorentz transformations, so quan-
terms may be absorbed into others. A partial constraint oiities such as the fermion mass parameters remain scalars
allowable redefinitions is provided by the transformationdespite the presence of Lorentz breaking.
properties of the various Lorentz-violating terms under the As might be anticipated, the above pattern of expectation
discrete symmetrie€, P, T. Only terms with identical Vvalues leaves unbroken the electromagneit) dymmetry,
discrete-symmetry properties can be absorbed into one a@nd it can be shown that fluctuations about the extremum are
other by first-order redefinitions. stable. When substituted into the Lagrangian for the

Two types of redefinition that we have found of particular standard-model extension, the unconventional nonzero ex-
value are linear phase redefinitions and linear normalizatiopectation value for the fieI(Z?L generates some additional
redefinitions. For example, some terms involving the coeffi-CPT- and Lorentz-violating contributions. However, these
cientsa, rou,p Can be eliminated by position-dependentare all of the same form as oth€P T- and Lorentz-violating
field-phase redefinitions, as described in R&f. Another terms already present in the theory, so they can be absorbed
example is provided by terms involving the coefficientsinto existing coupling coefficients.
H up, some of which can absorb through field- Some analyses of experimental tests of the standard-
normalization redefinitions certain other terms involving themodel extension involving flavor-changing oscillations in
coefficientsc| r o.u.p- These examples have specific inter- neutral mesons have been performed in R&%,6]. Tests at
esting implications for the quantum-electrodynamics limit ofthe level of quantum electrodynamics are mentioned below.
the standard-model extension, and their explicit forms foiNote that some bounds on both the fermion and the gauge
that case are given in Sec. Ill below. Useful nonlinear fieldsectors might be obtained from available experimental infor-
redefinitions might also exist in principle, but these are typi-mation about théﬁ and perhaps thwi . Such limits would
cally more difficult to implement meaningfully because theybe of interest in their own right, although it seems likely that
may represen{noncanonical transformations between dif- they would be much weaker than required to detect sup-
ferent physical systems rather than reinterpretations of thpressed Lorentz violation at the levels estimated in this work.
same physics.

We next con;ider the issu_e of elec_troweak(}SlzKU(l) IIl. EXTENDED QUANTUM ELECTRODYNAMICS
symmetry breaking. The static potential for the gauge and
Higgs fields can be extracted from the Lagrangian terms In much the same way that conventional quantum electro-
given above for the standard-model extension. It is possibldynamics(QED) can be obtained from the usual standard
to work in the unitary gauge as usual, since the Lorentzimodel, a generalized quantum electrodynamics incorporating
breaking terms do not affect the gauge structure of thd.orentz-breaking terms can be extracted from the standard-
theory. The analysis is somewhat more complicated than theodel extension given in Sec. Il. This is of particular interest
conventional case, as it involves additional terms dependinfecause QED has been tested to high precision in a variety of
on the coupling coefficients,, , K. K4, Kw, K2, andk,. experiments, some of which may tightly constrain the cou-
In principle, there are also contributions from the(S)Jbec-  pling coefficients of the possible Lorentz-violating terms.
tor, but these decouple from the Higgs field and so the gluon A straightforward way to obtain the extended QED is as
expectation values can be taken to be zero as usual. As mefollows. After the SW2)xXU(1) symmetry breaking, set to
tioned above, the terns, andk, are expected to vanish for zero the fieldsG, for the gluons,Wi ,Z?L for the weak
consistency of the minimal theory, and so we assume this ibosons, and the physical Higgs figllit not the expectation
what follows. In fact, a nonzerk, would have no effect on value of the Higgs doublet, which generates fermion
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massels The only remaining boson is the photon, mediatingis a total derivative. The couplink: therefore can be taken
the electromagnetic interactions. The neutrinos are charg® have the symmetries of the Riemann tensor.

neutral, so they decouple and can be discarded. The resulting There is also &£ PT-odd pure-photon term:

theory is an extended QED describing the electromagnetic

interactions of quarks an@harged leptons. It is expected to

inherit from theqstandard-modgel extpension VariOLIJDS attractive L 5o + 5 (Kap) “€ o0 ANFAY, (25)
features mentioned in the introduction, includingligauge

invariance, energy-momentum conservation, observer LorWhere the coupling coefficienkg.) is real and has dimen-
entz invariance, hermiticity, microcausality, positivity of the piing F

energy, and power-counting renormalizability. 2fcr:§r(olf7)mc>?stﬁé -Is-'[]elxidtaerr(rjn r‘r?(gldsslseirt(;r:siton Zsoglir%i)ungeed in
Denote the standard four-component lepton fieldd by ; o e
. - the previous section, it has some theoretical difficulties asso-
and their masses byn,, where A=1,2,3 corresponds to . . . s ;
; . ciated with negative contributions to the energy and it there-
electron, muon, tau, respectively. Then, the Lagrangian fo

X . fore seems likely to be absent in practice. It is included in
the conventional QED of leptons and photons is what follows so that we can discuss explicitly its difficulties

and some related issues involving radiative corrections. Note
also that the excluded destabilizing linear ternBip in the
standard-model extension would, if present, generate a cor-
responding linear term- (kp) (A in EQ.(25), where k) . iS
a real coupling with dimensions of mass cubed. Certain is-
Fop=0daPp— A, (21)  sues involving this term are addressed in Secs. IVA and V.
The QED limit obtained from the standard-model exten-
as usual. sion also has a quark sector. This has the same general form
The standard-model extension generates additional tern&s the lepton sector given by E40), (22), and(23), except
that violate Lorentz symmetry. THeP T-even terms involv-  that six quark fields replace the three leptons and so twice as

QED LTS | Tl L
ﬁlepton—photon_ 2||A')’MDMIA Mal ala 4F/J,VFILV‘ (20)

In this equation and throughout what follow8,=d,
+igA, and the field strengtk .z is defined by

ing the lepton fields are many Lorentz-violating couplings occur. Note that the lepton
and quark sectors are coupled only through the photon: the
/;I%';gﬁven; _%(HI)MVABl_AO"uVIB"'%i(cl),uvABl_AVMISVIB gauge invaria_nce of the standard-model extension excludes
o couplings mixing leptons and quarks.
+3i1(d) a8l AY5Y*D"g. (22 The extended QED of leptons and photons given in Egs.

(20)—(25) should suffice for certain applications where the
In this equation, the coupling coefficients|) ,, g are anti-  asymptotic states are leptons or photons and the strong and
symmetric in spacetime indices and have dimensions ofveak interactions play a negligible role, including a variety
mass. They arise from the coefficients in E§3) following  of existing or proposed high-precision experiments involving
gauge-symmetry breaking, and they are Hermitian in generdeptons. Interesting options for such experiments are to es-
tion space. The Hermitian dimensionless coupling$,(,,g  tablish the possible signals of Lorentz violation suggested by
and (d),,ag could in principle have both symmetric and the extended QED and to place bounds on the associated
antisymmetric spacetime components but can be taken asupling coefficients. For example, promising possibilities

traceless. They arise from the expressi®)s involving the muon include accurate measurementg-ef
The CPT-odd terms involving the lepton fields are such as those underway at the Brookhaven muon [r204
. . and sensitive tests for the decay—ey. There are also a
Lot — (@) ,asl a7"18— (D)) uagl a¥57*15. (29 variety of other comparisons involving heavy leptons that are

potentially of interesf21]. These issues lie beyond the scope
The couplings &) ,ag and () ,ag are Hermitian and have of the present work and will be addressed elsewhere.
dimensions of mass. They arise from E40). Note that For certain experiments, it suffices to consider another
imposing individual lepton-number conservation in both thelimiting case of the theory: the extended QED including only
above equations would make all the coupling coefficientss|ectrons, positrons and photons. This limit can be extracted

diagonal in flavor space. from the Lagrangian terms for the extended QED of leptons
In the pure-photon sector, there is or@PT-even and photons by setting to zero the muon and thigelds.
Lorentz-violating term: Denoting the four-component electron field lyand the
electron mass byn., the usual QED Lagrangian for elec-
CPT- K v e’
L shoton - =~ 3 (Kg) o P FA. (24 trons and photons is

The coupling Ke) .\ ., arises from Eq(16) and is real and

dimensionless. Wlth'out loss of generality it can be taken as LD =1 (/,yuf)’#(/,_ Meh— 5F ,, FH7. (26)
double traceless, since any trace component would serve

merely to redefine the kinetic term and hence is just a field

renormalization. We disregard a conceivalsidype term In the Lorentz-violating sector, the pure-photon terms are
proportional toFKAe""“VFM,,, which might arise from a to- still given by Egs.(24) and (25). However, theCP T-even
tally antisymmetric component &=, on the grounds that it terms in the fermion sector become
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CPT-even_ _ 1 T ouvg lin ouSv This set of redefinitions can be used to obtain several useful
£etecron =~ 2Hunp o™yt 21¢,, 47" DY approximate results, valid to first order in tkgmal) cou-
+%idM$757uD‘*v¢, (270 pling coefficients. One ?s _that the combina_ti@ﬁ”“BHaB
+m(d#”—d"*) can be eliminated and hence is unobservable
while the CPT-odd ones become at leading order in any QED experiment. Only the orthogo-
o _ nal linear combination is physical at this level. Another is
L Gocvon= =, y" b, Yysy" . (28)  that the antisymmetric component ©f, can be eliminated

] o to first order. Similarly, even if the extra terms with coeffi-
The real coupling coefficienta, b, ¢, d, andH are the  ¢jentse, andf, in Eq. (29) should appear, they could be
(1,)-flavor components of the corresponding coefficients ingliminated to first order by a combination of field redefini-
the extended QED of leptons and photons and inherit thgons, The same is true of the trace components of the extra
corresponding dimensions and Lorentz-transformation propgerm with coefficientg, ,,, while the totally antisymmetric
erties. . o component of this term can be absorbed imjcto first order.

In addition to the expressions given in E@4)—(28) for  combining all these resuilts, it follows that at leading order in
the extended QED of electrons, positrons, and photons, othgha extended QED of electrons, positrons, and photons the
Lorentz-violating terms can be envisaged that are compatibl@my observable coupling coefficients can be taken as
with U(1) charge symmetry, renormalizability, and an origin b, H the symmetric components of,, andd,,, and

in spontaneous Lorentz breaking but tbatnotbe _obtained possibly the traceless mixed-symmetry components of the
as a reduction from the standard-model extension. All suclyy o coefficieng,
pv

terms would beCPT odd. They would have the form

HY

So far in this section we have considered various forms of
extra _ 1i. TSy, lr T Sy 1 — Sy extended QED that emerge as limits of the standard-model
L electror 21€,¥D Y= 21,ysD Yt 319, h0™ D", extension. For some purposes, it can be useful to work
(29 within an effective extended QED valid for a free fermion
where the couplinge, , f,, andg,,, are real and dimen- that is a composite of leptons and quarks, such as a nucleon,

sionless. The reason such terms are absent from the expréd®m, Or ion. For a single fermion field of this type, the
sions obtained above is that all putative renormalizable termgffective Lagrangian would then have the same form as that
in the standard-model extension that could generatgZ=y. ~ ©f the extended QED for electrons, positrons, and photons. A
are directly incompatible with the electroweak structure.description of this type is useful for investigations of the
However, it is possible that nonrenormalizable higher-mPlications of high-precision experiments on composite fer-
dimensional operators in the effective Lagrangian obeyingnions, such as comparative tests of proton properties or
SU(2)xU(1) symmetry and involving the Higgs field might searches for a neutron electric-dipole moment. In principle,
generate the expressiof9) when the Higgs field acquires €X{ra terms of the forni29) could appear as a result of the
its vacuum expectation value. According to standard lore anifltéractions among the fermion constituents, but in the effec-
the discussion in Sec. II, such operators would be expectel’® theory the coupling coefficients of such terms would
to be highly suppressed relative to those we have listed fof1volve combinations of the constituent coupling coefficients
the standard-model extension. This suppression should rdith the interaction coupling constants and might therefore
main in force at the level of the extended QED, which meand® €xpected to be absent at leading order in many cases.
any terms of the fornf29) would be expected to have cou- S°Me possible experimental signals from extended QED
pling coefficients much smaller than the other terms we con@r€ investigated in Ref8]. Certain high-precision tests that
sider. Similar considerations apply to possible extra term&ould be performed with present technology are considered,
that might appear in the heavy-lepton and quark sectors d"l‘”_d .the attamabl_e bounds on Loreptz-breaklng couplmg co-
the extended QED. efficients are estimated. The tests involve comparative mea-
Next, we address the issue of field redefinitions within theSU'éments of anomalous magnetic moments and charge-to-
context of the extended QED of electrons, positrons, and@SS ratios for particles and antiparticles confined in a

photons. We have found several cases to be especially use€Mning tra7]. They typically have the potential to bound
ful. One is a linear phase redefinition of the forg the coupling coefficients of Lorentz- an@ P T-violating

— exp(—ia-X)y, which eliminates the term-a, gy from terms at a level close to that expected from Planck-scale
Eq. (28). This is equivalent to shifiing the zeros of energy suppression. For example, the spacelike components of the

4 coefficientb , control the appropriate figure of merit for ex-
mom m M
and momentum for electrons and positréak We therefore periments comparing the anomalous magnetic moments of
expect no observable effects from a nonzafan any QED

. the electron and positron. This figure of merit can be
experiment.

Another useful class of redefinitions involves field renor- bounded to about one part in #pwhich is comparable to
the ratio ofm.,/M of the electron mass to the Planck scale.

malizations depending on coupling coefficients. For a fer-
mion field ¢, consider the redefinition
y=(1+v-T)y (30) IV. THE PURE-PHOTON SECTOR

wherel is one ofy*, ysy*, o#” andv is a combination of In this section, we focus on the pure-photon sector of the
coupling coefficients with appropriate spacetime indicesextended QED. We examine some theoretical implications of
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the existence of Lorentz- andP T-violating terms and ad- OHMr= —F’”F”ﬁ711n““FaﬁFaﬁ—(kp)“ﬁ”yF”VFaﬁ
dress some experimental issues. ~
+ 777 (KE) apysF “PF70+ (Kap) "AF 4. (39

A. Lagrangian and energy-momentum tensor Here, we define

The Lagrangian of interest, which is(l) gauge invariant
by construction, is a combination of the photon term in Eq.

(26) with the expression§4) and(25). It is to be the dual field strength.

Egﬁgion: _ %FWF,W_ %(kF)KwyFmFMV . The energy-momentum tensor obeys the usual conserva-
tion relation,

Frr=e™F 12 (39)

+ 1 (Kap) e, AVFAY. (31)
ZLTART T 3,0m=0, (35)

Some properties of the coupling coefficiekisandk,r are  In addition to the gauge-invariant and symmetric contribu-
described following Eqs(24) and (25). For certain calcula- tions to®*”, which include the conventional pieces among
tions, it is useful to decompose the coefficigptinto its two  others, there are additional terms involving the coefficignt
Lorentz-irreducible pieces, one with 10 independent compothat are gauge invariant but asymmetric. The term \Wjih
nents analogous to the Weyl tensor in general relativity ands neither gauge invariant nor symmetric. Under a gauge
one with nine components analogous to the trace-free Ricdransformation, an additional total-derivative term appears.
tensor. Only one of the 19 total independent components ofhe presence of an antisymmetric componer®t implies
ke (the 00 component of the trace-free Ricci-tensor analogthat care is required in physical interpretations of the energy-
and one of the four independent components of the coeffinomentum behavior. Althoug®!® can be regarded as the
cientkpe (the timelike componerkly) are associated with components of a generalized Poynting vector, its volume in-
terms invariant undeparticle rotations. tegral is no longer conserved and cannot be identified with
Some insight into the structure of the Lagrangian can béhe conserved volume integral of the componedis of the

obtained by expressing it in terms of the potentiaJsh and momentum density. These features are a direct consequence
the fieldsE. B. We find of the presence of the background expectation values of ten-

sor fields, represented in the low-energy theory by the cou-
pling coefficientskg andkar .
The energy density is given by the compon@f. In-

total _1/22_R2 1 =2, B2 1 pikpjiek
L 2(E°=B)+3a(E°+B)+ 3 Be E'E spection shows it can be written in the form

photon
. B,
+3B5BIB + 3 BERE/ B + KapA B O 1 (E24 B2)— (ko) IKEIEK

Kap-B+Kap- (AXE). (32)

<

+ L(kg)KImeikplmagPRa— (k,-)°A-B.  (36)

If kar vanishes andtr is small,®% is nonnegative. This can
be seen as follows. The combination of the usual energy

dices. The real coefficients and B, B, B, are various et ; .
L . B L density with the terms proportional ¢ can be viewed as a
combinations of the couplingskf) ., appearing in Eq, bilinear formx"™Mx generated from a matri¥ in the six-

(31). Disregarding as before any total-derivative effects, the’ ) T e ) . )
ik gik ik are traceless. Note that all possible quadraticlimensional space =(E,B). The matrixM is symmetric
combinations of the electric and magnetic fields appear. Onlgnd 3x 3-block diagonal, since no cross termsknand B
two terms, involvinga and ng, preserve(particle rota- appear in@°. Observer rotation invariance can be used to
tional invariance. Note also that a rescaling without physicafiagonalize the upper83 block associated with the electric

consequences can be performed to obtain a standard normfgld. Sincek is small, the three diagonal entries are of the

S 1_ - 00 _
ization of the electric field&. This produces a Lagrangian of fqrm_z Q(kF)>0’ SO _the _contrlbutlon 1o f_ror_n the elec
the same general form as E@2) except that the Lorentz- tric field is non-negative in any frame. A similar argument

breaking t tional t&2+ B2) i laced with shows that the contribution from the loweix3 block, as-
reaking term proportional toe{ ) is replaced with one sociated with the magnetic field, is also non-negative. The

proportional toB* alone. conserved energ§ of a field configuration, obtained by in-

The canonical energy-momentum tensor can be CONwgrating®® over all space, is therefore also non-negative.
structed following the standard procedure. This tensor can be ¢ insteadke vanishes ané, g is small, the contribution to

partially symmetrized, but complete symmetrization is im-¢ «an pe written in the form
possible because there is an antisymmetric component that

cannot be written as a total derivative. A relatively elegant 300
expression can be obtained by adding judiciously chosen &= | d°x0
total-derivative terms, which leave unchanged the physics.

Denoting the resulting energy-momentum tenso , we = > > >
nd e w — 3 [ (BB (ke AT~ (k) TR (37)

Here and throughout this work,k,...=1,2,3 are spatial in-
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The last term is nonpositive and so can, in principle, intro-tions in moving media, for which the boost causes the elec-
duce an instability in the theorf22]. Note that a similar tric and magnetic fields to mix. Note that the coefficients
situation would hold for the linear term-(k,) A“ in the  determining this mixing are directly dependent on the veloc-
Lagrangian that was discarded in Sec. lll, for which the enity of the medium and so change with the inertial frame.

ergy density kA)O(;/)_EA.,& could also be negative. The ap- Similarly, for the Lorentz-violating case of in_terest he_rg, a
pearance of negative contributions to the energy is unsatighange of observer frame changes the coupling coefficients.
factory from a theoretical viewpoint. Some other useful analogies between E§8) and those of
It might seem tempting to resolve this issue by requiringconvent[onal electrodynamics in macroscopic media are de-
that only the spacelike components lof- are nonzero, so Scribed in Sec. IVC.
that the terms involvingK,r)© are absent from Eq$36) and The equations of motioii38) and (39) depend only on
(37). However, this condition depends on the observer frame’™ .» @nd s0, as expected, they are gauge invariant under the
so even an infinitesimal boost to another observer framétandard Wl) gauge transformations
would reintroduce the instability. A somewhat more interest-
ing qption might be to combine the vanishing éd,¢)° Wit_h_ A A — E& A. (40)
the introduction of a(small photon mass, perhaps arising ook ”“
from a hitherto unobserved spontaneous breaking of the elec- ) )
tromagnetic 1) gauge symmetry. This would eliminate the As in conventional el_ectrodynar_nlcs, the presence of gauge
linear instability and in principle might also produce a con-Symmetry affects the interpretation and solution of the equa-
tribution canceling the negative term appearing in &j),  tons of motion. We first consider a treatment mﬁte»rms of the
although perhaps only for a physically reasonable range afotentialsA, and then one for the field strengtisB.
observer boosts determined by the size of the photon mass Taking the potential#\, as basic, the four equatiori39)
and the magnitude of the components lof-. Although  are directly satisfied. This appears to leave four equations
some form of this idea might be made physically acceptable(38) for four unknownsA, . However, just as in conven-
we are restricting ourselves here to minimal modifications ofional Maxwell electrodynamics, the conjugate momentum to
the usual standard model and so we disregard this possibilio vanishes becaus&A°® is missing from the Lagrangian
in the present work. 3D, so_the theory h_as a Dirac primary constraint_. In _the
In the absence of a complete demonstration of a consisconventional case it then follows from the identity
tent alternative interpretation, one option might be to discard’»?,F*”=0, which is associated with current conservation
the term(25) depending ork, . This is possible at the clas- When sources are present, that the equation of motion asso-
sical level, but at the quantum level one might expect radiaciated with A, plays the role of an initial condition. The
tive corrections to induce it. We return to this question inSame conclusion holds here because when acted oy the

Sec. V, meanwhile keeping the ter(rzs) in the ana|ysis for left-hand side of Eq(38) also vanishes |dentlca”y This
completeness. leaves three equations of motion and a constraint for four

variables. One combination of variables can be fixed by a
gauge choice. The constraint then leaves two independent

B. Solution of equations of motion
degrees of freedom.

The equations of motion arising from the Lagrangia) Despite the parallels with conventional electrodynamics,
are the gauge-fixing process involves some interesting differ-
ences. For example, there is normally an equivalence be-

(?aF#a-l-(kF)#aﬁyﬁaF'BV-i-(kAF)ae#aﬂyF’37=O. (38)

tween the Coulomb gaugé-A=0, the temporal gauga®

These equations are the Lorentz-breaking extensions of the (;:Ma_ng O\?veh of tlr_1e metmbgrls t(')f theﬁfaTlly of .Logegtzdg?huges
usual inhomogeneous Maxwell equations in the absence tﬂ e eﬂ _orenbz-woa INg etiec T, a;e II:nCU € n}qﬂese
sourcesd,F#*=0. By virtue of its conventional definition ""'c€ 9aUge choices become inequivaient. For example,

in Eq. (21), the field strengttF*” satisfies the usual homo- typically is nonzero if the Coulomb gaugé-A=0 is im-

geneous Maxwell equations posed. S
More insight about the wave motion implied by EgS8)
9 F*r=0 (39) can be gained with the ansatz
I(,L L

~ A, (X)=€ exp(—ip X%, 41
whereF~” is given in Eq.(34). w(X) =€, (PIEXR =P aX) “y

An important feature of Eq$38) and(39) is their linear-  where p#=(p° ) can be regarded as the frequency and
ity in F,, and hence inA,. The Lorentz-violating terms wave vector of the mode or as the associated energy and
thereby avoid the complications of nonlinear modificationsmomentumwhich can be distinct from the conserved energy
to the Maxwell equations, which are known to occur in someand momentum obtained from the energy-momentum ten-
physical situations such as nonlinear optics or when vacuunsop. Note that taking the real part is understood, as usual.
polarization effects are included. Another feature is that therhe equations of motiof88) generate the momentum-space
extra Lorentz-violating terms involve both the electric andequation
the magnetic fields, as well as their derivatives. As a result,

Egs.(38) bear some resemblance to the usual Maxwell equa- M*%(p)As=0, (42
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where the matrixV *°(p) is server boost invariance but leaves unaffected the observer
rotation invariance. It reduces the primary constraint to the
M*(p)=n*°p?—p“p°—2(ke) “*’pgp, form
—2i(kA|:),g€aM'spy- (43 MOAI=0, (44)

This 4x4 complex-valued matrix is Hermitian because thewhere M% are components in the temporal gauge of the
first three terms are real and symmetric while the last isnatrix M*? given in Eq.(43).

imaginary and antisymmetric. Its determinant can be shown At this stage an explicit solution could be found. For ex-

to vanish identically for alp”, a feature related to the gauge ample, one could use two of the degrees of freedom of ob-
freedom. The conventional result is recovered when the coserver rotation invariance to select a convenient coordinate
efficientskg andk,g vanish. system, such as one in whighi=(0,0p). Solving for A3

Once a gauge choice is imposed, relat{d8) provides a from the primary constraint44) and substituting into the
set of complex-valued equations fag. The differences be- remaining three equations of motion in E¢2) would then
tween various gauge choices that normally are equivalergroduce an identity and two simultaneous linear equations
can be seen explicitly at this stage. For examM&?2(p)A;  for Al andAZ. A nontrivial solution of this pair of equations
is not proportional téA® in the Lorentz gauges, the Coulomb could be found by requiring the determinant of the system to
gauge leaves a nontrivial equation #?, and the temporal vanish, which in turn would generate a relation betwgén
gauge generates an involved constrainfVor. In practice, andp. Solving this relation must give two independent dis-
Eq. (42) then reduces to ésubset of equations involving an Persion relations, one for each of the two physical degrees of
effective matrixM ¢«(p) with the explicit form dependent on freedom. The full dispersion relations in an arbitrary coordi-
the gauge choice. The requirement for the existence of norlate system could then in principle be recovered by using
zero solutions can be obtained from a condition of the typetrguments based on rotational covariance.
detMqx(p)=0. With fixed coefficientkg andk,g, this con- Rather than pursuing this approach, we return to the eight
dition then determinep® as a function ofs. SinceM#¢(p)  equations of motiori38) and(39) and reconsider their treat-
is a 4X 4 matrix with entries quadratic ip#, a determinant Ment taking as independent variables the six electric and
of this type can produce an eighth-order polynomiapfh magnetic fields. Here, we are interested in the properties of

In the conventional case in the Lorentz gauge, the poly€lectromagnetic radiation, so we work with the standard an-
nomial reduces to one with two quadruply degenerate root$atz
p®= +|p|. The apparent doubling of the roots relative to the .
number of variables can be understood by the observation Fu(X)=F ., (p)exp(—ipXx®), (45)
that in this caseM ““(p) is symmetric undep”— — p#, so
for each solution p°(p) there is another solution
—p°(—p). These two solutions can be shown to be physi-
cally equivalent by examining the real partAf in Eq. (41).

In contrast, in the general extended electrodynamics th
polynomial determiningp® may have eight distinct roots.
Each of these could in principle produce a nontrivial solution
for Az, double the expected number. In this cadde,*(p) is
symmetric under the simultaneous operatiptis-> — p* and

wherep#=(p°,p).

Equations(39), which include the usual Faraday law and
the condition ensuring the absence of magnetic monopoles,
are unaffected by the Lorentz breaking and for radiation re-
duce as usual to

p°B=pxE, p-B=0. (46)

. . The first of these can be regarded as defining the magnetic
Kar— —Kar (leavingke unchangey Thus, for each solution field once the electric field is known. The second of these

p°(P.ke ,kap) there is another solution—p°(—p ke, ons follows f he fi h hat th -
" k), The sign change for the coefficiek. might appear ?quatlons ollows from the first, and shows that the magnetic

; . ! ) #eld remains transverse o despite the Lorentz violation.
0 preclude. the demonstration OT .th.e physical ngyale_nce 0 Equations(38) generate modified Coulomb and Anmpe
these solutions. However, hermiticity df#“(p) implies its

determinant is equivalent to the determinant of its complex@Ws that are to be solved fiér. A relatively straightforward
conjugate. Sincé,r appears only in the imaginary part of Procedure is to substitute fd from Eq. (46). Using the
M#%(p), it follows that for each solution—p°(—p,kg, Ampere law, we thereby obtain the vector equation
—Kkap) there is also a solution p°(— p,ke , +kag). This is
physically equivalent to the solutiop®(p,ke,kar), as be-
fore. Thus, the number of independent roots is the same a{1 the %3 matrix MK is identical to the

)-co

the number of variables as expected, despite the appareﬁ mponent submatrix of the matrd®® in Eq. (43).
complexity of the polynomial.
In the general extended electrodynamics, neither the COL¥- 23 rR?nd;;felreed I(a:u(/)vu'gyt;;syxgciﬂebesgsr;‘rmgfogﬁg t\?v?tmedl-

lomb gauge nor the Lorentz gauges significantly simplify the DI MIKEK=
primary constraint. In contrast, the temporal gaukfe=0 M'*E*=0. Note that this derivation provides some insight

0_
immediately removes one degree of freedom fram This about the temporal gauge™=0 in a treatment usm@%
gauge can be imposed by choosing the functidn Eq. (40) Thus,ﬁthere is a close parallel between the two bec#ise
asqA (t,X)=['A%t’,X)dt’. Note that this choice breaks ob- =ip°A in this gauge.

Mikgk=0, (47)
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To obtain an explicit solution, it is helpful to take advan-  In the remainder of this subsection, we present a sample
tage of the observer rotation invariance to select a coordinat@nalytical solution to the equations of motion for a special
system in which key expressions are simplified. For ex-case that provides further insight. We consider the Lagrang-
ample, a useful frame is the one wigi=(0,0p). In it, the  ian (31) with (kap)*=0 and with the only nonzero compo-
modified Coulomb equation can be solved EoYin terms of  nents ofke chosen to bekg)ojok=— %B,ﬂk, where theg!

E! and E?. Substitution of this solution into the three com- are three(smal) real dimensionless quantities, and compo-
ponent equation§47) produces one identity and two simul- nents related to these by the symmetriekf In terms of
taneous linear equations f&' and E%. The matrix of this the Lagrangiar(32) only the term involvingg is nonzero,
system of equations is Hermitian, and the condition for aand it has a direct-product Structu,ﬁiEE+ﬁi,3k_ The La-
nontrivial solution is that its determinant vanishes. The degrangian(32) therefore becomes

terminant turns out to be a fourth-order polynomial fdras

a function ofp. For reasons sm_ular to 'Fh(_)se glven_for the _ E;ﬁgﬁ'ﬂ: L(E2-B2)+ 1(B-E)2 (50)
case, there are only two physically distinct solutions of this

polynomial, one for each of the two independent degrees
freedom.

An explicit solution of the determinant condition in the
general case is involved because the fourth-order polynomi
is homogeneous in the small coupling coefficients. Sikece >

O\('his example involves onlZ PT-even Lorentz violation.
The Lagrangian50) generates modified inhomogeneous
E;\{Iaxwell equations in the absence of sources:

is dimensionless whil&,e has dimensions of mass, to first V-E==B-V(B-B),
order in the coupling coefficients and fpP~p>|k,g| and L ..
1>|kg| the solution forp® as a function ofp must take the VXB—doE=Bdy(B-E). (51
form of the sum ofp with a function of the quantitiekgp
andkag . Indeed, we find In terms of the potential#\, of Eq. (41), appropriate for
describing radiation in momentum space, these are equiva-
p=(1+p)p= \/(a'zpz—l— ), (48 lent to the vector equation
2 i 2 . s = .
yvherep anda are functions of the componentslqac andr pO[p+(p- B) BIA°— (pO)[ A+ (A- B)B]
is a function of the components &g, given by
+[B?A—(p-A)p]=0 (52
p:%[(kp)0101+(k|:)0202+(k|:)1313
+ (Ke) 8234 2Kk ) 01134 2 (k) 0223, and its scgalgr product witf. '
(ke) (ke) (ke)™* For definiteness we proceed in Lorentz gauge, wiiére
—R.AnO ; ; ; ;
o2= L[ (kg) 0101 (Kp)02024 (k) 1313 =p-Alp°. Accord_mg to the_ discussions abovg, in the pres-
2323 o113 02232 ence of Lorentz violation this gauge may require nonz&to
— (kp) 2%+ 2(ke) *11- 2(ke) 227 andp-A. For a nontrivial solution to Eq552), we find two
+(Ke) 0202 (k) 01234 (k) 02134 (k) 132312 possible dispersion relations:
2_
= [(Kng)*~ (Kae) . (49) (Pa)"=0,
The solution(48) entangles the componentslgf andk,g in ) (,éx Be)?
a way that cannot be separated without additional informa- (Pe)=——"—. (53
tion about their relative sizes. Note that it reduces correctly 1+8

to the result of Ref[22] in the casekg=0.

The corresponding general solutions for the vectors of thdhe first corresponds to an “ordinary” mode with four-
electric and magnetic fields are involved and provide litlemomentump, obeying the conventional dispersion relation,
insight for present purposes, so we omit them here. Theyhile the second is an “extraordinary” mode with four-
exhibit two physical linear polarization vectors f&; each Mmementump, and a modified dispersion relation.

obeying a different dispersion relation. This produces bire- For a wave vector aligned alor§ both modes reduce to
fringence, among other effects. Note in particular that, conthe conventional case and exhibit normal behavior. However,

trary to widespread assumption in the literature, no circularlyfor other alignments the properties of the two modes differ.
polarized solution to the equations of motion typically exists.For simplicity, we restrict attention here to the situation with
An electromagnetic wave prepared in a state of circular powave vector orthogonal t@, so - 8=0. In this case, the

larization would propagate as two linearly polarized compo-yrginary modeA” can be chosen to satisB2=0 with A,
nents with distinct dispersion relations, so an initial circu- arallel to ﬁx’é while the extraordinary mode must satisfy
larly polarized configuration would gradually become P P2p, y

0_ A : P
elliptical. These and some other interesting results about th8e =0 and has. aligned alongs. These two modes propa-
wave propagation are discussed further in Secs. IV C an@ate with different velocities. For example, their group ve-
IV D below. locities 7=V ,p° are
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1 D] — E] _ 2(kF)Oj0kEk+ (kF)Ojkl lemBm"F 2€jk|(kAF)kAl,
Ugo=Pr Uge=———D. (54)
g. 9. ,/1+BZ Hj=Bj+ %(kF)pqrsqujerskBk_(kF)OmkIEjkIEm
For each mode, the group and phase velocities are equal. —2(kap)°Al+2(kap) | A® (58)

One consequence of the difference between the two . . . .
modes is birefringence. For example, a plane-polarize eproduce the usual Maxwell equations in material media.

monochromatic wave of frequengy that is initially a gen- he analogy can therefore be used to gain insight into those

eral combination of the two modes eventually becomes eIIipprOpe.rti(':'S of_the extende_d electrodynamics that are dir ect.Iy
tically polarized. For the electric field, we find associated with the equations of motion. However, caution is

required in applying other concepts of conventional electro-

E(t. %)= —0%c. A sinp(r— dynamic_s. For example, it turns out thatkif - # 0_ then the
(t.%) P7(Coo SIMP(r=1)] conventional expressions for the energy density and Poyn-
+CeAe S PO(V1+B2r—1)]), (55  ting vector in terms oD andH fail to reproduce completely

the true energy densit® and Poynting vecto®!® in the

wherer =|%|, A, is parallel topx 8 andA, is parallel tog ~ extended theory. Ikx=0, in contrast, the correct expres-
as before, and the weightg andc, are determined by the Sions are indeed reproduced by the analogy. _
initial polarization condition. This shows that the presence of The above analogy is useful for general discussions of the

B causes the wave to become elliptically polarized after jiProperties of the extended electrodynamllcs. Hoyveve(, I b?'
has traveled a distance comes somewhat cumbersome for certain considerations in-

volving radiation. We have developed a second analogy that

is of more direct use when the fields are converted to mo-
_ (56) mentum space through E¢5). It turns out that the equa-
2( /1+'§2_ 1)p° tions of motion can then be correctly reproduced by defining

an effective displacement curreB{(p) through

v

=

The magnetic field exhibits similar behavior. C ek
The explicit expressions for the electric and magnetic D)= €*E", (59
fields can be used to derive the energy den@'&‘? and the

- 0 : , where €/ is a Hermitian effective permittivity given b
Poynting vecto®.’ for the extraordinary mode. We find P Y9 y

2

. 2i .
(p%)2 (kF)Jﬂykp,Bp'y—’_ 002 (kAF)BGJBykp'y-

This shows that in the present case the velocity of energy (60)
transportol=01/0% is identical to the group and phase : . . :
velocities, Eq.(54). Some comments about the various ve-In part'lculzzr, It_ 'S, unneces§ary t,o introduce an effe<-:t|ve mag-
locities in the general case are made in the next subsectioff€tic fieldH distinct fromB. This second analogy is there-
fore different from the first. Note that again the correct en-
ergy density and Poynting vectors cannot be obtained
directly by substitution into the conventional formulas.
In Sec. IV B, an approximate analogy was noted betweemonetheless, the analogy is valuable because it permits in-
the equations of motion for the Lorentz-breaking extensiorsight into the effects of Lorentz violation on radiation. Note
of electrodynamics and those for electrodynamics in movinglso that the effective permittivity60) depends on the fre-
media. In this section, we introduce some useful quantitativguency p° and wave vectod, which implies a nonlocal
analogies between the extended electrodynamics and thennection betwee(x) and E(x).
electrodynamics of macroscopic media. These can be used t0 The extended Maxwell equations for this analogy directly
gain further insight about the nature of the extended electros-,iem
dynamics with Lorentz breaking.
Consider first the situation in position space, where the r B_R R_PF.B_R.Bo
relevant equations are Eq®8) and (39). We have already p-B=p-D=E-B=D-B=0. (62)
noted that Egs(39) take the same form as in conventional the natyral right-handed triad of orthonormal vectors de-
electrodynamics. The idea is to define new quantileand  scribing the vibration of the electromagnetic field is therefore

H such that the forms of Eqé38) become identical to those (p,D,B). Unlike the case of conventional vacuum radiation,
Pf the. Maxwe'll equations in mat(?rlal med|a. It turns out thatyhe electric-field vectoE here is orthogonal only t8 and so
it suffices to introduce an effective displacement curlént .oq off-axis in thep-D plane. In this analogy, the energy

and an effective magnetic field having linear dependence density is typically transported neither in the directipmor
on the electric fielde, the magnetic inductioB, the vector in the directionE X B.

potential,&, and the scalar potentidl®. It is useful to introduce a generalized refractive index
We find that the definitions n(p) by n(p)=|p|/p°. Its inverse is the magnitude of the

0= p2c? sir? p,x*, ©10=p°plcZ sir? p,x“. (57) k= sik+

C. Analogy to macroscopic media
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phase velocity of the mod@t5). Using the extended Max- persion of the axes. The earliest mention of effects of this

well equations, we can then deduce the result type appeared in an 1878 paper of Lord#2], and they are
) R R R now well established in a variety of physical systefd].
D=n’[E—(p-E)p]=nE,, (620  Thus, the momentum dependence of the effective permittiv-

ity corresponds to spatial dispersion of the axes. A nonzero
which determines the effective displacement current directhk,r produces a contribution to the effective permittivity
in terms of the electric field and the momentum. Eliminatinganalogous to the effects of natural optical activity in a gyro-

D via Eq.(59) produces a set of three linear equations of thetropic crystal, while a nonzerk:- produces effects analogous

form (47) for E, with the matrixM now given by to spatial dispersion in an optically ina_c.ti\_/e and anisotro_pic
crystal. Partly on the basis of the hermiticity of the effective

pipk permittivity, we also anticipate that in the presence of Lor-
TRk —€lk, (63 entz violation the vacuum behaves like a transpafeomnab-

sorptive medium, although a complete and elegant demon-
A nontrivial solution exists if det{’¥)=0. We have explic-

stration of this remains an open issue.
itly verified that this condition is equivalent to the condition

The above analyses partially simplify if certain compo-
of the vanishing of the determinant of the matkid* appear- nents ofkg andk,r vanish. Suppose for definiteness tkia
ing in Eq. (43) in Sec. IV B.

indeed vanishes and that the only nonzero componerks of
. : e 0j0k -

In conventional crystal optics, the permittivity is often &'¢ g) ™ and components related to these by the symme
diagonalizede/*= €/ 8 (no sum, where the eigenvalues

tries of ke. This makes the effective permittivity real and
are real. This means that the coordinate axes are identifié

Mik=n2sik—

gdependent of*: €= 51— 2(kg)%%. It is then possible,

with the principle dielectric axes, which typically representsfor example, to solve explicitly for the behaviorkfis speci-

a different coordinate system than the special one gith fied, which provides yet another approach to the physics. In
=(0,0p) used in Sec. IV B. A diagonalization of this type is this caseE, is the component dt perpendicular t in the
also possible in the present analogy because the effectie.p plane. It follows thatE, =(E-D)D, from which one
permittivity is Hermitian. Substitution into Eq63) and ex-  can derive

pansion of the determinant then produces an expression with

the form of the Fresnel equation of crystal optics. The sixth- (D)2E—(E-D)D
order terms in the determinant cancel, ultimately by virtue of p= (65)
the existence of only two independent degrees of freedom in \/[(E)Z(ﬁ)Z_(E. D)2](D)?

E. Solving the determinant condition provides the dispersion
relations for the independent degrees of freedomp lis providedﬁ and E are not parallel. The phase velocity is
given, the condition specifigs’ as a function ofg|. If p®is  given by
given, the condition specifidg| as a function of.

The special choice of coordinate system in Sec. IV B per- vp=1In= (|§. 5)/(5)2_ (66)
mits a direct demonstration with this analogy that for a given
momentump the solutions for the effective displacement por instance, ifE=(E,0,0) then to lowest order ik we

current D are linearly polarized. First, substitute f@&  fing D~|E|[1-2(Ke)% — 2 (k) 920L — 2 (kg) 0309 andu,

= (e 1))*D¥ in Eq. (62). Using observer rotation invariance ~1 + (k)% which in the appropriate limit agrees with the
to select a frame in whicip=(0,0p) then yields the two eyt for the extraordinary mode of the example at the end

simultaneous equations of Sec. IV B. Even in this relatively simple case, EH§5)
b 2 —1iabieb shows that the vectop can have a complicated structure
[6°°—n(e H)*"]D°=0, (64 with components in all three directions.

I . The above analysis uses the notion of the phase velocity
wherea,b=1,2. The vanishing of the determinant of the ,, ~,vever, even in conventional electrodynamics there
EXpression in parenth(_ases generates the analog of the Fresg% numerous possible definitions of the veloaityof an
equation in this special coordinate sy§tem. It can be SeePlectromagnetic wave, including among others the group ve-
directly from Eq.(64) that for fixedp the D vectors for each |ocity, the velocity of energy-momentum transport, and the
of the two values oh must lie along the principal axes of signal velocity[25]. The Lorentz violation adds further com-
symmetry of the two-dimensional matrix (*)2°. These two plications to this situation. In the remainder of this subsec-
D vectors are perpendicular, so an electromagnetic wave cotion, we comment on some aspects of this issue.
responding to either one is necessarily linearly polarized. An important feature is that the fundamental physical con-

Many other concepts of crystal optics can be applied irstantc=1 relating the space and time components of the
the context of this analogy, including the wave-vector andmetric is unaffected by the Lorentz violation. The underlying
ray surfaces and the Fresnel and other ellipsoids. The prespacetime structure of the theory is the usual one because the
ence of a Lorentz violation means that the vacuum as expexpparent Lorentz breaking at the level of the standard model
rienced by an electromagnetic wave behaves like a speciid merely a reflection of the presence of nonzero tensor ex-
kind of crystal. Our results show that the effective medium ispectation values in a fundamental theory with Lorentz-
optically anisotropic and gyrotropic and exhibits spatial dis-covariant dynamics. Indeed,is an invariant under both ob-
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server and particle boosts. However, the physical velocity ofion, we investigate some of the theoretical and experimental
an electromagnetic wavean be affected. The situation is implications of a birefringent vacuum.
analogous to that of a fermion mass parameten the La- For definiteness, consider a monochromatic electromag-

grangian for the standard-model extension: althooghe-  netic wave of frequencp®. The electric fieldE(t,X) of this
mains unchanged, the physical rest mass of a particle can Rgave is formed in general from two independent polarization

affected[2]. components:
As in conventional electrodynamics, the various defini-
tions of physical velocity are inequivalent in general. Any E(t,z):[ﬁl(ﬁl)exmﬁl.)z)
choice for the physical velocity typically differs fromc, R
althoughv~c since kg and kpg are small. The analyses +E,(P)expip,-X) lexp(—ip). (67

above indicate that, for any given definition, the magnitude

and direction of the velocity of an electromagnetic wave canfhe wave vectorgd; and p, must satisfy the appropriate
vary with the wave-vector orientation and the polarization.dispersion relations for the specified frequepfy Note that
Incidentally, conventional crystal-optics experiments suggesthe direction of wave propagation must also be specified to
that there is no general condition requiring the velocity offix completely the solution. One possible determining
one type of polarization to exceed the other. For examplemethod could be to require that both component waves
the indices of refractiom, and n, for the ordinary and ex- propagate their energy density in a given direction.

traordinary rays, respectively, of the sodilbnline are mea- Since the Lorentz violation is small, we expgii=p;
sured to ben,=1.658>n,=1.486 in calcspar but arg, +.5ﬁ, where 8p is small relative top;~p,. Substitution
=1.544<n,=1.553 in quart{26]. gives

For the special case involving E(66), v, may exceed . R R
if the sign of kg is appropriate. In conventional electrody- E(t,X)~[E;(P;)+ Ex(p,)expi sp-X)Jexp(—ip°t+if;-X).
namics, a phase velocity exceediaogs known to occur in (68)
numerous physical situations, for example, for transverse
electric (TE) and transverse magnetitM) modes in wave This equation shows that the birefringence length scale is
guides. Indeed, both the phase and group velocities can €idf| ", which is large wher{5p| is small. Sincesp has
multaneously exceedin certain refractive materials. For the dimensions of mass and since it vanishes in the absence of
present theory, it is an open issue to demonstrate that a phakerentz violation, its dominant terms are expected to be con-
velocity exceeding is compatible with microcausality. It is trolled bykag, by a product of components gfandk, or
possible in principle that only certain sign choices for theby some combination of the two. This is in agreement with
components OkF lead to physically acceptable microcausal the discussion of the dispersion relations in previous subsec-
theories. If this occurs, it would be analogous to the usuafions. Note that the associated phase shifi= 6§3- X cannot
requirement of a particular sign for the mass-squared term iorrectly be regarded as a phase difference between two
a (stablé scalar field theory. In any event, a satisfactory Circular-polarization modes because typically no such modes
proof of microcausality would involve a complete treatment€Xist as solutions of the dispersion relations.
at the level of quantum field theory and lies beyond the scope In the remainder of this subsection, we consider possible
of the present work. bounds onkg andk,e from some terrestrial, solar system,

Another issue involving the physical velocity of an  astrophysical, and cosmological experiments.
electromagnetic wave is its behavior under Lorentz transfor- First, we summarize the case of nonzkgg but zerok .
mations. Sincec is invariant under an observer Lorentz A term of the form(25) appears to have been introduced
transformation whereds,r andky changeyp is expected to  independently on several occasions, including among others
transform along with the frequency and wavelength. This ign Ref.[27] and the review15] mentioned earlier, although
unlike the conventional case and is a consequence of tH&e observation that it i€ PT violating appears to have been
presence of the background expectation values. In contrast,@/€rlooked prior to our earlier work?]. Given the theoreti-
partic|e Lorentz transformation, which for a fixed po|ariza- cal difficulties arising from negative contributions to the en-
tion mode involves remaining in the specified observer framergy as described in Sec. IV B, it seems possible that this
but changingd, has no effect ore, kar, or ke . Note thatif ~ term would need to be absent in nature even if Lorentz sym-
p is changed while the polarization is fixed, the above analymetry is violated. However, this too is a suggestion that
ses show that the frequenp§ also changes in this case. One could be the subject of tests. _ o
might instead countenance another kind of boost in wisich ~ In @ pioneering work22], Carroll, Field, and Jackiw in-

is changed bup® is unaffected, in which case the polariza- Vestigated some properties of the te(@5) and used geo-
tion must also change. magnetic constraints and limits on cosmological birefrin-

gence of radio waves to bound certain forms of the coupling
_ o coefficientkag. Their treatment of geomagnetic constraints
D. Constraints from birefringence is based on known bounds on the photon ni@&8, and it

The existence of distinct dispersion relations for the inde-constrains a term of the forr25) with (kAF)“:(k,ﬁ) to
pendent polarizations means that birefringence is a majdk|<6x10 2® GeV. In contrast, the constraints they obtain
feature of the behavior of an electromagnetic wave infrom cosmological birefringence are considerably sharper,
vacuum in the presence of Lorentz violation. In this subsecprimarily because the distance scales are greater. Their in-
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vestigation seeks a redshift dependence in the establishatiggests that an upper bound of approximately?1@ould
correlation[29] between the intrinsic position angles and thebe placed on at least some of taémensionlesscoefficients
polarization angles of a set of radio galaxies and quasars &t . The tightness of this constraint and the apparent feasi-
distances comparable to the Hubble length. It constrains Rility of the analysis suggests this investigation would be
particular combination of the coefficients for a timelike worthwhile to pursue. Ideally, a complete study would obtain
(kap)* to =2x10 % GeV. A more recent analysig30] combined bounds on both of the coupling coefficidgtand

claims a nonzero observed effect with a spacelikg-J* at KaF -

a scale of approximately I8! GeV. This has been disputed An interesting implication of thénverse wavelength de-
by other author$31]. pendence of the birefringence is that shorter wavelengths are

more sensitive to the effects. Although it may be infeasible

We next consider the case wikk#0 butk,z=0. Inits | i ¢ of logical birefri
general form, this possibility appears to have been Iargel)'f] practice, a measurement of cosmological birelringence

disregarded in the literature. However, the rotationally in_comparable to the above but obta[r!ed with, Say, optical
) a0 o sources would be much more sensitive to possible effects
variant term of the forng a(B*+E?) in the extended-QED  from k.. Optical wavelengths are a factor of about $f
Lagrangian(32) has been considered by several authors, ustradio wavelengths, which would correspond to a millionfold
ally in the rescaled form involving only2. In particular, improvement in sensitivity tdg .
this term has a counterpart in the €kdformalism[32]. This Other bounds on Lorentz violation could be deduced. In
formalism is a phenomenological parametrization for thethe next section, we show that one-loop radiative corrections
motion and electromagnetic interactions of charged pointlikénduce a dependence kg on the coefficients,, in Eq.(22)
test particles in an external spherically symmetric and statifor the extended QED. This suggests that if a tight bound
gravitational field. It has been extensively used for quantitawere obtained orkg as above, an indirect constraint might
tive tests of the foundations of gravity, including local Lor- also be inferred orc,,. The latter constraint would be
entz invariance. In this context, clock-comparison experi-weaker by a factor of the fine-structure constant, but the
ments have constrained the analog of the parametés  limits deduced would nonetheless probably be comparable to
better than about one part in2Q18]. An improvement over the best ones attainable in other tests of Lorentz symmetry.
this bound of about an order of magnitude may be possible If a nonzero effect is detected in the future, it might be of
based on the existence and properties of high-energy cosm$ome theoretical interest to investigate the possibility of a
rays[33]. correlation between the particular coupling coefficients in-
In the general case with nonzek@ and violation of ro- volved and the motion of the Earth relative to the cosmic
tational invariance, the sharpest bounds are likely to emergaicrowave background radiation. The point is that the appar-
once again from observational constraints on cosmologicant Lorentz violation induces boo&nd orientationh depen-
birefringence. However, the discussion following EG8) dence in experiment$]. Although the standard-model ex-
shows there is a significant difference in tke case: the tension strictly has no preferred frame, the coupling
phase shiftA¢ here depends on a product of components ofcoefficients must take a canonical form in some observer
ke andp, whereas in thé, caseA¢ depends only ok,.  frame[2]. If the latter is at rest with respect to the cosmic
This behavior can be seen explicitly, for example, in themicrowave background radiation, a small deviation from the
special analytical solution presented at the end of Sec. IV B¢anonical form might arise from the Earth’s motion. Al-
The linear dependence df¢ on momentum or wave though the Earth’s speed in this frame is about ) the
number implies an inverse dependence on wavelength. Thgensitivity of the birefringence measurements might nonethe-
rotation measures and intrinsic position angles of radidess be sufficient to detect its effects.
sourceg29] are obtained by a fitting procedure that assumes
a quadratic dependence on wavelengitoportional to the
rotation measure and attributed to Faraday rotatieith a
wavelength-independent zero offsghe intrinsic position We next examine some radiative corrections to the pure-
angle. This procedure is suitable for obtaining constraints onphoton sector. In Sec. V ACPT-odd terms are investigated.
kae, which would generate an extra wavelength-independendf particular interest is whether the tree-level vanishing of
effect, but may be inadequate to place a reliable bounkion the coefficienk,g in Eq. (25) for the QED extension, which
or to detect the associated wavelength-dependent effects. Wtould eliminate negative contributions to the energy, is rea-
therefore appears somewhat involved to obtain an accurasonable in the light of quantum effects. The point is that the
estimate of the constraints ¢@ from cosmological birefrin-  latter might in principle induce a nonzero coefficient through
gence. radiative corrections from another sector of the theory. Other
Although a complete treatment lies outside our presenguantum corrections that might generate an instability
scope, a crude estimate of an attainable boundkgoman  through the linear term- (k) ,A* are considered at the end
readily be found. It is plausible to suppose that the results obf this subsection. In Sec. V B, we study quantum correc-
a careful analysis would provide a limit on a product of tions in theCP T-even sector, involving the coefficieht .
certain components & andp comparable to that of order The analysis in this section is based on the quantization
10" %2 GeV obtained fokr in Ref.[22]. The radio sources discussed in Ref.2]. It is largely at the one-loop level and
typically involve wavelengths of order 10 cm, which corre- for leading-order Lorentz-violating effects, and it is prima-
sponds to an inverse wavelength of about f0GeV. This rily limited to issues involving radiative corrections to the

V. RADIATIVE CORRECTIONS
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pure-photon sector. A few results are also presented fdiormation properties under these discrete symmetries. In par-
higher loops and effects in other parts of the standard-modeicular, it must beC even andP T (andCPT) odd, although
extension. either of the two possible combinations Bf and T could

An interesting issue indirectly related to some calcula-occur. At the level of the QED extension with electrons and
tions in Sec. V A is whether the anomaly cancellations oc-positrons, the only term of this type is the one with coupling
curring in the conventional standard model still hold for its coefficientb,, in Eq. (28). This is true even if the discarded
extension presented in Sec. Il. Three known types of chiralinear term— (k,) ,A* in the Lagrangian were present, which
gauge anomaly are releva@4]. It lies beyond our present is C and CPT odd. At any loop order, contributions must
scope to provide a complete analysis of all these in the presherefore involve an odd number of line insertions arising
ence of the Lorentz-violating terms, and it is certainly con-from the term with coefficienb,, . At the one-loop level in
ceivable that the latter would modify the standard derivathe full standard-model extension, similar terms involving
tions. We do expect, however, that the usual cancellations ahe other lepton and quark fields would also contribute to
the (Abelian, singlet, and non-Abeliantriangular gauge appropriate internal lines. However, only one additional dis-
anomalies and the nonperturbative global3lanomaly in-  tinct type of one-loop contribution appears, involving a ver-
deed remain valid. The point is that the standard-model extex correction proportional to the coefficieri,],, in Eq.
tension has the same multiplets and the same gauge structynez) in a diagram with aN*"-W~ loop. The demonstration
as the conventional case, so the group-theoretic underpithat no net contributions tl,r arise at one loop therefore
nings of the usual analyses are unaffected. The situation fQpyolves consideration of only terms involving the,-type
the third type of anomaly, which is the mixed gauge-gnd the ko), coefficients.
gravitational chiral anomaly associated in part with local Excluding the external photon legs, any contributions to
Lorentz transformations, is less clear. The presence of Lorthe vacuum polarization must have dimensions of mass
entz violations might appear to suggest a potentially nonzergquared. The leading-order contributionkig: must involve
contribution to this anomaly. However, a careful analysis ishoth a momentum factor from the necessary derivative on an
needed because observer Lorentz invariance is in fact maigyternal leg and one power of eithb, or (k,),. Since
tained in the standard-model extension. these factors already give the correct dimensionality, any
others must appear in dimensionless combinations of the
photon momentunp# and the mass of the particle in the
loop. This is confirmed by the explicit calculation below.

As discussed above, the possible difficulties with negative We first consider corrections to the one-loop vacuum po-
contributions to the energy and the tight experimental contarization involvingb,,. Each such two-point diagram has
straints suggest that the coefficidnf vanishes. If itis setto the usual form except for an insertion of the factor
zero at tree level, the issue arises as to whether it acquiresib ,ysy* on one internal fermion line. From the perspec-
radiative corrections from quantum loop corrections. If sotive of the fundamental theory, a one-loop two-point diagram
there could be both theoretical and experimental argumentsith a fermion-line insertion is closely related to a one-loop
suggesting associated constraints on certain other coeffihree-point diagram containing the same two photon legs to-
cients in the standard-model extension. The issue of the vamether with a third leg involving a coupling to an axial vec-
ishing of radiative corrections to,r therefore has the poten- tor. A fermion-line insertion in the two-point diagram can
tial to provide a nontrivial consistency check on the theory.then be viewed as a limit of this three-point diagram in
In the present subsection we investigate this, assuming thathich there is zero momentum transfer to the axial-vector
kar is zero at the tree level and beginning with one-loopleg and the axial vector is replaced with a vacuum expecta-
effects at leading order in the Lorentz-breaking terms. Retion value.
markably, as we show next, the structure of the standard- This line of reasoning is interesting because a one-loop
model extension is such as to preserve a vanishing coeffthree-point diagram with an axial-vector and two photon
cientk,g at this level. couplings is directly related to a triangular gauge anomaly. If

A radiative contribution td,r would represent a correc- the axial vector is a gauge field in the underlying theory,
tion to the photon propagator. In the standard-model extensuch anomalies must cancel for the theory to be renormaliz-
sion, the Feynman rules for leading-order effects fromable. One might therefore conjecture that the cancellation of
Lorentz-violating terms take the form of insertions on propa-these anomalies could also imply cancellation of the limiting
gators or at vertices already existing in the conventionatwo-point diagrams in the standard-model extension. If true,
theory[2]. Also, the photon interacts with charged particlesthis provides another link relating consistency of the
as usual, so the only possible diagrams modifying the photostandard-model extension to the spontaneous nature of the
propagator at the one-loop level are those of the standardorentz violation in the underlying theory. Next, we develop
one-loop vacuum polarization but with an insertion either ona line of reasoning that provides insight into this question.
an internal charged-particle line or at one of the vertices. Independently of the issue of corrections to the photon

The apparently daunting task of examining every possiblg@ropagator, the requirement that the triangular anomalies
insertion implied by the extra terms in the standard-modetancel in the underlying theory implies a constraint on coef-
extension can be simplified by taking advantage of the disficients of the typeb,, that is of interest in its own right. It
crete operation€, P, andT. A radiative term purporting to turns out that this constraint is relevant to the photon propa-
contribute to the coefficierk,r must have appropriate trans- gator, so we begin by deriving it.

A. CPT-odd terms
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Consider first the origin in the underlying theory of the the amplitude. Omitting the external photon legs, the correc-
axial-vector coupling in the triangle diagram. Prior to spon-tion to the two-point amplitude for a photon of four-
taneous symmetry breaking, the fundamental Lagrangiamomentump* then becomes
may contain several terms of the general form .
g{ap(Ta)W...plﬂ(Fa)”V”'p‘ﬂ for each fermion specieg, where @"(p.m,b)= — 2ig?b j d”l
T is a tensor fieldl'® is a gamma-matrix structurgy, is the Y M o@emt
associated coupling constant, aads a label ranging over “ _ v N
the set of tensor fields that couple to the spegieNote that XTy*S(=p)y"Se(D sy Se(D], - (71)
the only acceptable _Ilne msernops in the two-point Or'e'loor.\/vherelf‘ is the momentum of the fermion in the loop and
diagram are flavor diagonal, so in the present context Cont”%(l):i(r—mﬂe)*l is the usual fermion propagator
butions are possible only from the diagonal components o As anticipated above, expressi¢nl) is related to one

Egs. (.10) and (12). We Fherefore_ di;regz_ird p(_)ssi_ble CrOSSappearing in the calculation of the triangular gauge anomaly.
couplings between fermion species in this derivation. It can directly be verified that

Each of these Lagrangian terms can be decomposed in
terms of the usual 16 basig matrices in four dimensions. @""(p,m,b)=g2b, T*"(— p,p), (72)
Collecting terms produces for each fermion species a La-
grangian separated into five parts, one for each of the fivghereT#"*(p,,p,) is the standard amplitude for the triangle
typeS of fermion bilinear: Scalal’, pseudoscalal‘, VeCtOI’, aXiaIdiagram with one axial-vector Coup"ng in conventional
vector, and tensor. The particular components of the field®)Ep. The full anomaly amplitud&“**(p,,p,) can be regu-

T that multiply the axial-vector bilinear can be regarded asarized in the Pauli-Villars scheme and reduced to a set of
a set of effective axial vectonsg‘ﬂ with associated coupling integral expressiong35,36. These can be evaluated in
constantgy,. These axial vectors are the fields relevant forclosed form for the present case of interest. péx4m?,

the one-loop three-point diagrams of interest. When the axialve find
vectorsAg, acquire vacuum expectation valugks ), their

net contribution generates the coupling coefficidmﬂ > (p.m,b) = q°by
=3,09(A35,) at the level of the standard-model extension p.m, 27?
for this species of fermion. {

2

pkek)\,u,v

4
1_
V(p?Im?)(4—p?Im?)

The triangle diagram for one axial vecté@M and two
photonsA , has an anomaly proportional to the producg@f
and qzw, where the latter is the charge of the fermign
When summed over all fermion species, the anomaly-

p2/m2
—1
cancellation condition is therefore Xtan o \ 7oz p2/m2) : (73
E qjgjjzo (69 Note that this expression is gauge invariant,
b
p.o*"'=p,0"’=0, (74

for eacha. Multiplying this equation b)(AgM> and summing

over a yields the constraint as expected. _ o .
At this stage, the issue of radiative correctionkt@ can

be addressed. The resiitd) is finite. Since no divergence
> qfllb;’::o (700  cancellation is necessary, a zero valukgf at tree level is
v consistent with a renormalizable theory. Moreovet,” van-
ishes for the on-shell conditigp?=0, as is to be expected in
on coupling coefficients of thie, type. Note that, at the level a renormalizable theory without a radiatively induced phase
of the standard-model extension, the sum over all fermioniransition. Thus, none of the finite radiative corrections have
species would include the leptons and the quarks. Also, ithe form needed to modify the coefficiekits, and they are
contrast to the usual anomaly-cancellation mechanism whictherefore irrelevant to the analysis of cosmic birefringence in
produces a single condition, E¢r0) is a set of four con- Sec. IV D.
straints. This is a direct consequence of spontaneous Lorentz The above results might make it seem tempting to con-
breaking, in which for each the vacuum expectation value clude that there are nb,-linear one-loop radiative correc-
<A§M> involves four numbers. tions affectingk,e. However, such a conclusion would be
Next, we present the results of an explicit calculation ofpremature. The integral***(—p,p) in Eq. (72) is superfi-
the b ,-linear one-loop corrections to the photon propagatorcially linearly divergent. As usual, this introduces an ambi-
involving a fermion of massn and chargey. There are two  guity because a shift in the loop momentufhproduces a
diagrams to consider, since a facteiib,ysy* can be in- shift in the value of the integral: T#"N(—p,p)
serted on either of the two internal lines. Using an argument—T+*"(—p,p) + {p,.***, where{ is a constant. Certain
similar to the standard one proving the Furry theorem, thehoices of regularization scheme could therefore generate an
two diagrams can be shown to give identical contributions taadditional term of the form
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Sw™"(p,b)=,q°b,p e (750  given by Elpgqubfp,(e““”, which vanishes by Eq(70).
This confirms the conjecture made in the first part of this
to the result(73), which would represent a regularization- subsection: the anomaly cancellation implies the absence of
dependent radiative correction k. Note that this does DP-linear one-loop radiative corrections kar .

not occur in the Pauli-Villars scheme because the t&r8) aNote that this argument presupposes that the axial vectors
is mass independent, so in this case the regularization autés, are gauged and that a consistent choice of regularization
matically subtracts it. is used. To demonstrate the absence of negative-energy con-

Ambiguities of the general forrti75) involving combina-  tributions to the theory at this level, it suffices that a natural
tions of the external momenta arise in the standard@rocedure of this kind exists. If an ambiguigydid remain in
triangular-anomaly diagram with a finite momentum transferthe theory, it would seem to suggest that at the quantum level
from the two photons to the axial vector. In this case, thethere would be a spectrum of physically allowed theories.
ambiguity is conventionally fixed by imposing() current ~ The issue of determining the correct one would then become
conservation. However, in the general context the presenc@xperimental, much as the values of the renormalized cou-
of an ambiguity is independent of the issue of anomaliesplings and masses are experimentally determined. However,
Under certain circumstances, anomalies can appear in supé-the present case there are both theoretical and experimen-
ficially convergeninon-Abelian pentagordiagrams that are tal reasons to believe thgtvanishes.
ambiguity-free[37]. Also, ambiguities originating in loop- ~ We next address some issues arising in higher perturba-
momentum shifts for divergent amplitudes other than thoséion orders. Consider first the case of the photon propagator
associated with anomalies are a standard feature of quantui the extended QED. At any loop order but with only one
field theories. For example, the usual vacuum-polarizatior P T-violating insertion ofb,,, all diagrams are superficially
diagram has an ambiguity. Similarly, results such as thelivergent and hence can be expected to have ambiguities. In
Furry theorem rely on a consistent assignment of loop moparallel with the previous case, these diagrams can be related
menta. Typically, these ambiguities either appear as finitéo higher-loop three-point triangle diagrams with one axial-
constant modifications to divergent constants or can b&ector and two photons on the external legs. The Adler-
eliminated by imposing gauge invariance. Bardeen theorerf838] shows that the anomalies arising from

A striking feature of the; ambiguity is that it arises with- the one-loop triangle diagram are unaffected at higher loops.
out an associated divergence and is gauge invariant. It therdhis implies that the constrairt70) holds at arbitrary loop
fore cannot be fixed by the usual methods. Thus, gauge irerder. However, it follows as before that the total ambiguity
variance ensures the Ward identities are satisfied, so vectds proportional to this constraint and so vanishes. If this ar-
current conservation holds for any Also, the ambiguity ~gument holds, then there can belmglinear contributions to
fails to produce an anomaly in the axial-current conservatiorkar at any order in the fine-structure constant.
law because there is zero momentum transfer away from the Diagrams that involve higher-order Lorentz violation may
loop at the axial vertex for any. However, the mass inde- also be of potential theoretical importance. Their transforma-
pendence of the terni75) implies that the fermion mass tion properties under discrete symmetries place strong con-
circulating in the loop could in principle be arbitrarily large straints on their possible contributions kg, as in the
without affecting the value of, which intuitively seems un- lowest-order case. For example, in the extended QED at the
physical and would appear to suggest thatust vanish. quadratic level of Lorentz violation, only a product of the

In the standard triangular-anomaly diagram, fixing thecoefficientsb,, andc,,, can appear. At the one-loop level, all
ambiguity by requiring vector-current conservation placeshigher-order diagrams are related to polygonal diagrams in
the anomaly in the axial Ward identity. If the axial vector is the underlying theory that couple two photons to a variety of
ungauged, chiral-current conservation is then violated anslector, axial-vector, and tensor fields. At least one factor of
the anomaly may have physical consequences. An examplg, is required, so a chiral coupling must be involved and a
of this occurs in the decay— 2. If instead the axial vector cancellation mechanism may still apply. The implication of
is a gauge field, then the anomaly destroys renormalizabilityhe consistency of the underlying theory for corrections to
unless the total anomaly contribution from all fermion spe-kag at all orders in Lorentz violation and including possible
cies vanishes. A cancellation of this type, which is widelyhigher-loop corrections remains an open issue. We remark,
used in model building, implicitly assumes the ambiguity hashowever, that the effects at the cubic levels and above are at
been fixed in a standard way in all contributing diagrams.most of theoretical interest as they would be well below ex-
This could be regarded as (aeasonable choice made to perimental detection for the levels of Lorentz violation con-
obtain a satisfactory theory. sidered in the present work.

If a similar choice is made for the present case, so that the At the level of the standard-model extension, a possible
same regularization scheme is adopted for all the contributowest-order one-loop correction to the photon propagator
ing diagrams and therefore the same constaappears in could in principle also arise from the coefficieky when a
each, then it can be argued that the anomaly cancellation W*—W™ pair circulates in the loop. Indeed, there would be
the underlying theory causes the ambiguity to disappeam contribution from insertions on the gauge-boson lines and
Thus, suppose as above we assume gauged axial vectors imother, related to the first by gauge invariance, involving a
renormalizable underlying theory, so that the anomaly-modified vertex. However, if the term involving, were to
cancellation conditior{70) must hold. Then, the net contri- exist, it would exhibit difficulties with negative contributions
bution to the photon propagator from the ambiguous terms ito the energy, as dods,. One option is therefore thdt,
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vanishes at tree level, which eliminates the possible assocdefinition of the photon propagator as a vacuum expectation
ated radiative corrections to the term involvikge. Anis-  value of a time-ordered produah**(p,m,c) is symmetric
sue then arises concerning possible radiatively induced commder the combination of a sign changé— —p* of the
tributions tok, from the fermion sector. We conjecture that, momentum and an interchange— v of the spacetime indi-

if all the termskg,ky,kz,ks vanish at tree level, then no ces. These conditions imply that the correction to the photon

radiative corrections to any of these coefficients arise fronpropagator at any order in the fine-structure constant but at
the fermion sector. An anomaly-cancellation mechanisMinear order inc,,, must take the form

would again play a role, although non-Abelian fields would

now be involved and so the singlet and non-Abelian anoma-_ _

lies would also be relevant. The situation in the standard®””(P,m,c)=icz Ag**(p?g*’—p*p”)
model extension at higher loops remains open.

Finally, we present a few remarks about the possibility of + B[ (p2g**gP"— g**pPp’—g*"pPpH)
radiative corrections to a hypothetical linear term of the form b
—(ka) /A” in the absence of a photon mass. This terrtis wrnanBi — nanBrin?
andCPT odd. In the extended QED, only terms of the type T(a=p)]+Cgpiptt m2p PEpTRT -
a, have this symmetry. As discussed in Sec. lll, a field re- (76)
definition can be used to eliminate the@kvor-diagonal
terms, and hence they are unobservable in any experiment.

Since the electromagnetic interactions @reven, at lowest
order in Lorentz-violating coefficients there cannot be an
radiative corrections t&, at any order in QED loops. Any
contributions that might arise at higher orders in Lorentz

Here,A, B, C, andD are (possibly divergentscalar func-
Yions of p2m? obeying the relationship

violation would again be related to polygonal diagrams in the 2
underlying theory. It would be of some theoretical interest to C—2B+ P D=0 (77)
. A . . K 2
investigate the possible contributions to these terms. m

B. CPT-even terms to ensure gauge invariance.

In contrast to the situation for th@P T-odd terms, a non- Some information about photon propagation under speci-
zero tree-level value for th€ P T-even term(24) with coef-  fied circumstances can be deduced from &§) under the
ficient kg presents no immediate theoretical difficulty. We assumption that the scalar functioAsB,C,D have been
have shown in Sec. IV D that it is experimentally feasible toregularized as needed and divergent contributions have been
place relatively tight bounds okg from measurements of removed by the renormalization procedure. For example, in
cosmological birefringence, although this has not yet beemhe case of cosmological birefringence of interest in Sec.
done and the wavelength dependence may result in conV D, the photon momentum can be taken as on shell and the
straints somewhat weaker than thoselkgr. Nonetheless, Lorentz gauge condition can be applied. In E@6), this
the attainable limits ok are of interest because they might corresponds to setting to zero bagth and the momentum
in principle be sufficiently sharp to be sensitive to effects atfactorsp* andp?” with specific indicesu and v. This leaves
a scale comparable to finite radiative corrections from theonly the termcaBC(O)gﬂ”papB. This is precisely of the
fermion sector. It is therefore of interest to determineform needed for radiative corrections to the coefficikpat
whether the couplingg= must be present for renormalizabil- which can thus be seen to be governed in this gauge by the
ity and, if so, which fermion-sector coupling coefficients areon-shell value ofC.
involved. In this subsection, we investigate this issue in the To obtain the explicit result and as a check on the renor-
context of the extended QED. malization procedure when Lorentz violations are involved,

At the one-loop level and to leading order in Lorentz vio- we have directly performed the one-loop calculation. This
lation, the possible radiative contributions to the coefficientalso verifies the structure of E(Z6). The terms in Eq(27)
ke in the term(24) are significantly constrained by the re- associated with the coupling coefficien)s, lead to four new
quirements of discrete symmetries. This term is b@tand ¢, ,-linear one-loop vacuum-polarization diagrams. The pos-
CPT even, and an inspection shows that the only other typsaibility of fermion-line insertions arising from the derivative
of term in the fermion sector with these properties is the terntoupling leads to two diagrams, each with one insertion on
with coefficientc,,, in Eq. (27). It contributes both on the one of the two internal fermion lines. The appearance of
loop through fermion-line insertions with a derivative and atmodified vertices from the extra gauge coupling leads to an-
the vertices through the extra gauge coupling. other two, each with one normal and one modified vertex.

The form of thec,,,-linear correctionw*”(p,m,c) to the ~ These two types of contribution are related by gauge invari-
two-point amplitude for a photon of four-momentupf is  ance. Indeed, we anticipate this gauge invariance leads to
strongly constrained by its discrete-transformation properWard-type identities valid at arbitrary loop order, although
ties, observer Lorentz covariance, and the requirem@d)s an explicit demonstration of this remains an open issue.
of gauge invariance. Thus, invariance undePT implies The sum of the four additional diagrams generates a one-
w™’(p,m,c) is an even function gp*. Also, by virtue of the  loop correction to the photon propagator of
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d*
a‘”(lo.m.C)=iqZCaﬁJ W{IﬂTr['y#SF(I_p)VVSF(I)yaSF(I)]+(I_p)'B Trly#Se(1=p) y*Se(I=p) ¥"Se(D)]

—igP* T y*Se(1=p)y"Se(D]—ig”” T y*Se(1=p) ¥*Se(D1}, (78)

where the first two terms arise from line insertions and the last two from the modified vertices.

The integral in Eq(78) is superficially quadratically divergent. It has the standard ambiguity, arising from the possibility
of shifting the integration variable, that {&rgely) fixed by imposing gauge invariance. The denominators arising from the
fermion propagatorSe can be combined with the usual Feynman parametrization. All the necessary shifts performed in the
resulting integration variables must be the same, so that the contributions from the surface terms remain gauge invariant. To
accomplish this, it is convenient to separa#” into two pieces that can be parametrized so as to maintain the equivalence of
shifts.

We definew™"= w{{)+ w(3), where

=40, [ A G T=P) 1P+ (a1 L9111 p)Jg+ ()]
W)= 4Q°Chp 2m A g p a—p g p g My

—([(g“ 1P =p)"+ (B 1)+ (e )]+ (e B))} (79
and
=807, | (%45{(I“Iﬁ[(l—p)Z—m2]+<l—p>“<l—p)B(IZ—mZD
X (mPgh =1 (1= p)g"”+ (1= p)“I"+1%(1-p)")}. (80)
|
In these expressiona,= (12— m?)[ (I —p)?—m?]. The same %

1/(2
shift is introduced in all the integrals, thereby preserving w(pzlmz)_4_w2 3 (;—7)
gauge invariance, with the substitution in Eg9) of

1 1 1 —Zfldzz(l—z)In[l—z(l—z)(pZ/mZ)] ,
—:J dz=> 722 (82) 0
A o [kK°+tz(1—-2z)p—m~]

(84)

and the substitution in E480) of )
wherey is the Euler constant. Note that the resu8) sat-

isfy the gauge-invariance conditidi7).

izz Jl Z-— 62(1_22) — (82) The above calculation shows that the scalar functibn
A o [k*+z(1-2)p°—m7] contains a momentum-independent divergence. As described
above, the on-shell value & determines the coefficieft:
wherek=I|—pzis the new integration variable. in the Lorentz gauge, so the appearance of this divergence

The divergences in the resulting integrals can be treate@hows that a bare coefficiekg must be present in the origi-
using dimensional regularization iB=4—¢ dimensions. nal theory for renormalizability. The renormalization proce-

Performing various partial integrations, we obtain fof  dure then removes the infinite an@mbiguou$ constant

<4m? a radiative correction of the forrtv6) with pieces, leaving a physical coefficidgt (to be determined by
experimentand a set of finite radiative corrections governed
A= —B=w(pZm?) by the ratiop?/m?.

We have seen in Sec. IV D that a nonzero value of the
coefficient kg induces cosmological birefringence. The
above calculation shows that imposing a zero value of this
coefficient at tree level is incompatible with renormalizabil-
ity. It is therefore reasonable to expect a nonzero physical
value of kg. Although nonrigorous, a heuristic argument
=2 ——— w(p?md). (83 might also be used to provide a relationship between the

d(p*/m°) physical values okg andc,,: for consistency of perturba-

tion theory, it is plausible that the physical value kf
Here, w(p?/m?) is the standard vacuum-polarization result, should be larger than the expected finite quantum corrections
given by of orderac,,, wherea is the fine-structure constant.Kf is

2
C=—2w(p’/m?)— %ZD,

D

v
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eventually bounded to about 1¢/ as estimated in Sec. of Lorentz andCPT invariance that involve electrodynam-
IV D, then this would suggest the componentscgf, might  ics. A summary was provided of some recent studies of pos-
be expected to be smaller than about 40 sible experimental constraints.

As in theCPT-odd case, the momentum-dependent radia- Another major focus of this work is the effect of the Lor-
tively induced corrections in Eq83) are irrelevant in the entz violations on the photon sector. The general pure-
context of cosmological birefringence. However, these radiaphoton Lagrangian can be written in a form containing only
tive corrections do modify the off-shell propagator and mighttwo additional terms, on€ PT odd and on€C P T even. This
therefore be expected to generate small effects under suitablggrangian and the associated energy-momentum tensor were
circumstances. For example, there may be contributions tgiscussed, and it was found that tBd° T-even component
electromagnetic scattering cross sections, governed by theas positive conserved energy but that in the absence of a
ratio ame/Mp~10"2°. Similarly, a small correction to the photon mass th€ P T-odd component can generate negative
Coulomb law might appear. These issues lie beyond theontributions to the energy. Despite this theoretical diffi-
scope of the present work. culty, the two terms were retained for the whole analysis so

In addition to thec,,-linear one-loop contribution ob- that the implications for the full quantum theory could be
tained above, there are alsg -linear higher-loop correc- examined.
tions in the extended QED. The general structure of the con- The equations of motion generalizing the Maxwell equa-
tributions at any loop order is given by E(76). Although tions in the presence of Lorentz violation were obtained, and
the detailed form of the scalar functioAs B, C, andD will  their solution was outlined using both potentials and fields.
differ, the physically relevant corrections should also dependsome technical complications arise relative to the case of
on p?/m?, since any terms independentpfare expected to conventional electrodynamids vacug but they can largely
be absorbed by the renormalization procedure. The abovge overcome. A key feature is that, although there are still
conclusions about cosmological birefringence are thereforevo independent propagating degrees of freedom, in the typi-
likely to remain valid. Effects from higher-order Lorentz vio- cal situation the two modes obey different dispersion rela-
lation should also arise in the extended QED but are probtions. This implies a variety of interesting effects, including
ably of a size that is physically irrelevant. Much of the abovebirefringence in the vacuum. We presented a few quantita-
discussion should also hold for radiative effects in the fulltive analogies with crystal optics and showed that the pres-
standard-model extension. In this context, note that offence of Lorentz violation means that the vacuum as experi-
diagonal terms in generation space cannot contribute at leaénced by an electromagnetic wave behaves like an optically
ing order. anisotropic and gyrotropic transparent crystal exhibiting spa-

tial dispersion of the axes.
V. SUMMARY A variety of terrestrial, astrophysical, and cosmological
' bounds on photon properties are known. Sharp experimental

In this paper, we presented a general Lorentz-violatindimits on the photon sector of the extended QED can be
extension of the minimal S@)xXSU(2)xU(1) standard obtained from the absence of birefringence on cosmological
model including bothCPT-even andCPT-odd terms, and scales. It has been shown in earlier w22] that the prob-
we discussed some of its theoretical and experimental progematic CPT-odd term is experimentally limited to scales
erties. The analysis was performed within the context of a&comparable to the Hubble length.

framework previously describd@], which is based on spon- A significant result of this paper is that most of the com-
taneous Lorentz an@ P T violation occurring in an underly- ponents of theCPT-even term could also be bounded ex-
ing theory of nature. perimentally from cosmological birefringence with existing

Despite the existence of terms causing a certain type dfechniques. This case is particularly interesting as it has no
Lorentz breaking, the resulting theory preserves various desvident theoretical difficulties and appears to have been
sirable features of standard quantum field theories such awerlooked in the previous literature. Also, unlike the
gauge invariance, energy-momentum conservation, observé€rP T-odd term, theC P T-even contribution exhibits a depen-
Lorentz invariance, hermiticity, the validity of conventional dence on wavelength that might provide a useful signature of
guantization methods, and power-counting renormalizabilitythe effect. We have crudely estimated the attainable bounds,
Other important features such as positivity of the energywhich would be sensitive to suppressed Lorentz violation in
microcausality, and the usual anomaly cancellation are alsthe general range considered here.
expected. We have demonstrated that the usual breaking of The paper also contains a series of consistency checks on
SU(2)xU(1) symmetry to the electromagnetiql) is main-  the theory, primarily at the level of one-loop radiative cor-
tained, although the expectation value of the Higgs is slightlyrections. We discussed the cancellation of various conven-
changed and th2° field acquires a small expectation value. tional anomalies in the standard-model extension and consid-
The theory presented here appears at present to be the selked other anomaly cancellations that might occur in the
candidate for a consistent extension of the standard mod&inderlying theory. The latter were used to obtain a constraint
providing a microscopic theory of Lorentz violation. on a set of coupling coefficients for Lorentz violation in the

We have extracted extensions of several of the converstandard-model extension.
tional varieties of QED by considering limiting cases of the We have investigated the feasibility of imposing tree-
standard-model extension. Part of the motivation for investilevel vanishing of the problemati€ P T-odd terms, in light
gating extended QED is the existence of high-precision testef possible radiative corrections that could be induced from
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the nonphoton sectors in the standard-model extension. Wée original theory. An experimental search for the associ-
have shown that the radiative corrections at one loop arated renormalized coupling based, for example, on cosmo-
finite, so it is unnecessary at this level of renormalization tdogical birefringence could be performed. It is remarkable

include aCPT-odd term in the original theory. The finite that physics associated with the Planck scale might produce

corrections are gauge invariant but ambiguous, a situatioBbservable effects in measurements made at the largest
somewhat reminiscent of the usual anomaly calculationsscales in the universe.

However, if the theory underlying the standard-model exten-
sion is anomaly free, th€ PT-odd effects in the photon
sector can be neglected at this level. Generalizations of this
argument may apply at higher loops.

For the CPT-even sector, we have demonstrated by ex- We thank R. Bluhm and P. Kronberg for discussions. This
plicit one-loop calculation that divergent radiative correc-work was supported in part by the United States Department
tions appear. A term of this type therefore must be present inf Energy under Grant No. DE-FG02-91ER40661.
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