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We extend to all orders in perturbation theory a method to calculate supersymmetry-breaking effects by
analytic continuation of the renormalization group into superspace. A central observation is that the renormal-
ized gauge coupling can be extended to a real vector superfield, thereby including soft breaking effects in the
gauge sector. We explain the relation between this vector superfield coupling and the ‘‘holomorphic’’ gauge
coupling, which is a chiral superfield running only at one loop. We consider these issues for a number of
regulators, including dimensional reduction. With this method, the renormalization group equations for soft-
supersymmetry-breaking terms are directly related to supersymmetric beta functions and anomalous dimen-
sions to all orders in perturbation theory. However, the real power of the formalism lies in computing finite soft
breaking effects corresponding to high-loop component calculations. We prove that the gaugino mass in
gauge-mediated supersymmetry breaking is ‘‘screened’’ from strong interactions in the messenger sector. We
present a complete next-to-leading calculation of gaugino masses~two loops! and sfermion masses~three
loops! in minimal gauge mediation and several other calculations of phenomenological relevance.
@S0556-2821~98!06319-X#

PACS number~s!: 11.30.Pb, 11.10.Hi, 12.60.Jv

I. INTRODUCTION

Recently there has been a great deal of interest in building
models in which supersymmetry breaking is communicated
to the observable particles through renormalizable interac-
tions @1#. A common feature of these models is that super-
symmetry breaking occurs in the masses of ‘‘messenger’’
fields in the form

M5MSUSY1dM , ~1.1!

where MSUSY is a supersymmetric~SUSY! mass term and
dM breaks supersymmetry. In most models of this kind con-
structed to date,dM!MSUSY, and so the messenger thresh-
old is approximately supersymmetric. Integrating out the
messenger fields gives rise to supersymmetry breaking in the
low-energy effective Lagrangian below the scaleM. A large
amount of work has already been done on the calculation of
the supersymmetry-breaking effects from various types of
interactions@2,3#. In Ref. @3# it was shown how to compute
the leading low-energy supersymmetry-breaking effects in a
large class of models using only one-loop renormalization
group ~RG! equations and tree-level matching, while direct
calculations of the same quantities require the evaluation of
one-and two-loop graphs.

The starting point of Ref.@3# is the observation that since
the messenger threshold is approximately supersymmetric,
one can use a formalism where all couplings and masses are
treated as superfields and the SUSY-breaking terms corre-
spond to nonzerou-dependent spurion components of the
couplings. In this framework, it is not hard to see that
leading-logarithmic effects that are determined by the RG in

the SUSY limit are related tofinite SUSY-breaking effects.
For example, the RG can be used to compute corrections of
the form (lnM)/(16p2), whereM is a threshold mass. IfM is
a superfield, then this contribution has a SUSY-breaking
component

1

16p2
ln M uu2ū25

1

16p2

M uu2ū2

M u0

, ~1.2!

which contains a loop factor, but no logarithm. Effects of
this type therefore correspond to finite loop effects that are
not related to a RG calculation in components.

A simple power-counting argument can be used to show
that in gauge-mediated models the leading SUSY-breaking
terms in the low-energy effective Lagrangian arise from this
sort of threshold dependence in the dimensionless couplings.
This allows one to compute one- and two-loop SUSY-
breaking effects using the one-loop RG equations and tree-
level matching, analytically continued into superspace. In
Ref. @3# this technique was used to reproduce known results
in a much simpler way and also to derive new phenomeno-
logically interesting results that would be much more diffi-
cult to compute directly.

In this paper, we extend the analysis of Ref.@3# to higher
orders in perturbation theory. One motivation for this is to
define an unambiguous procedure to perform the analytic
continuation into superfields beyond one loop. We show that
the gauge coupling is naturally extended to a real superfield
that is not the sum of a chiral and an antichiral superfield.
The u2ū2 component of the real gauge superfield plays a
crucial role in reproducing the correct behavior of perturba-
tion theory. Another motivation for this is to obtain new
results of interest for testing models in the literature. In par-
ticular, we are able to compute gaugino, squark, and slepton*On leave of absence from INFN, Sez. di Padova, Italy.
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masses in gauge-mediated models at the next-to-leading or-
der in perturbation theory. Our result corresponds to an ex-
plicit calculation of two- and three-loop Feynman diagrams.
One of our results is that the gaugino masses in gauge-
mediated models are ‘‘screened’’ from corrections from the
SUSY-breaking sector up to four loops. This implies that the
gauge-mediation relations are preserved up to corrections of
order gSM

4 /(16p2)2;1024 even if the SUSY-breaking~or
messenger! sector is strongly coupled. We also compute
other interesting effects, such as the gaugino masses in ‘‘me-
diator’’ models@4# and the gauge-mediated effective poten-
tial induced along classically flat directions, both forD-flat
directions~two loops! as well as for the scalar partner of the
axion ~three loops!.

This paper is organized as follows. In Sec. II, we give a
definition of renormalized coupling constants that can be
viewed as superfield spurions to all orders in perturbation
theory. We use as examples specific theories that allow
simple supersymmetric regulators. In Sec. III, we discuss this
prescription in the case in which the theory is regulated using
dimensional reduction. We also show that extending the cou-
plings to superfields automatically selects the so-calledDR8
scheme for the soft terms which was defined in Ref.@16#. In
Sec. IV, we use our technique to prove the gaugino screening
result mentioned above and compute gluino, squark, and
slepton masses in gauge mediation at the next-to-leading or-
der ~NLO!. We also extend our results toD-term breaking of
SUSY and derive the gaugino mass in ‘‘mediator’’ models.
In Sec. V, we compute some other interesting SUSY-
breaking effects in gauge-mediated theories. Section VI sum-
marizes our main results and contains our conclusions.

II. RENORMALIZED COUPLING CONSTANTS
AS SUPERFIELDS

The main tool of our approach is the use of renormaliza-
tion schemes in which the renormalized coupling constants
can be treated as superfields. Much of our discussion can be
viewed as a restatement of the insights of Shifman and Vain-
shtein@5~a!# in the framework of renormalized perturbation
theory~see also Ref.@5~b!#. However, we will generalize the
method to include supersymmetry-breaking effects. For
gaugino masses andA terms, this was first done in Ref.@6#.
Here we will simultaneously describe the running of the sca-
lar masses. For related studies, see also Ref.@7#.

A. Invitation: The Wess-Zumino model

In this subsection we consider a simple example that il-
lustrates many of the main ideas we will use in more com-
plicated theories. We consider a massless Wess-Zumino
model with bare Lagrangian

L05E d4u Z0F†F1S E d2u
l

3!
F31H.c.D , ~2.1!

and higher-derivative regulator terms@8#

Lreg5E d4u Z0F†
h

L2
F. ~2.2!

We can incorporate soft SUSY breaking by extending the
bare couplingsl and Z0 to be u-dependent ~but x-
independent! superfields.1 ~l is a superpotential coupling,
and is not renormalized.! We have regulated the theory in a
supersymmetric manner, and so we can treat the bare cou-
plings as superfields even at the quantum level.

Because the theory is regulated in a way that preserves
SUSY ~including the spurious SUSY acting on the cou-
plings!, the divergences that appear order by order in pertur-
bation theory can be absorbed by supersymmetric counter-
terms. That is, we can write

Z05Z~m!1dZ„l,Z~m!,L/m…, ~2.3!

wheredZ is the matter wave function counterterm. Because
the relation between the bare and renormalized couplings
preserves SUSY, we see that the renormalized couplings can
also be viewed as SUSY spurions.

More specifically, we can define the counterterms by
computing supergraphs with renormalized couplings in the
vertices and propagators and choosing the counterterms to
cancel the divergences. In the SUSY limit where there is no
u dependence inZ0 and l, the counterterms have the form
@9#

dL5E d4u ZC„ulu2/Z3~m!,uLu/m…F†F, ~2.4!

where the form of the functionC follows from the fact that
the theory depends trivially on the overall normalization of
the fields.

In the presence of soft SUSY breaking, the renormalized
couplingsZ andl will also depend onu, and there are new
terms in the Feynman rules involving supercovariant deriva-
tives acting on the couplingsZ andl. However, it is easy to
see that such terms can be ignored for purposes of computing
the counterterms@10#. Because our regulator preserves the
spurion SUSY even in the presence of soft SUSY breaking,
we know that the counterterms can still be chosen to be
superfield functions ofl andZ. But local superspace coun-
terterms involving supercovariant derivatives ofl andZ are
forbidden simply by dimensional analysis. We conclude that
even in the presence of soft SUSY breaking, the counter-
terms are still given by Eq.~2.4!. Note what has happened
here: the renormalization of the theory with soft SUSY
breaking is completely determined by asupersymmetriccal-
culation. This is the advantage of treating the bare and renor-
malized couplings as superfields.

The fact that the theory depends in a trivial way on the
scale of the fields can be expressed more formally by noting
that the bare Lagrangian is invariant under

1Note that taking a superfieldS to be x independent does not
violate SUSY, since it amounts to imposing the supersymmetric
constraint]mS50.
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F°eAF, Z0°e2~A1A†!Z0 , l°e23Al, ~2.5!

whereA is a u-dependent~but x-independent! chiral super-
field. The fact that the relation between the bare and renor-
malized parameters preserves this feature can be expressed
by stating that the renormalized parameterZ transforms the
same way asZ0 :

Z°e2~A1A†!Z. ~2.6!

If we view this as a U~1! ‘‘gauge’’ transformation, then lnZ
~and lnZ0) transforms as a gauge field. This point of view
will be extremely useful to us later.

The relation between the bare and renormalized quantities
determined by Eq.~2.4!,

Z05Z~m!@11C„ulu2/Z3~m!,uLu/m…#, ~2.7!

determines the RG flow of the theory fromdZ0 /dm50. This
gives

m
d ln Z

dm
52m

d

dm
C~ ulu2/Z3,uLu/m![g~ ulu3/Z3!.

~2.8!

The u5 ū50 component ofg is just the supersymmetric
anomalous dimension. The renormalized soft scalar massm2

is defined by writing

Z5Z@12u2ū 2m2#, ~2.9!

whereZ is the renormalized wave function factor. The RG
equation for the soft mass is determined by theu2ū2 compo-
nent of Eq.~2.8!:

m
dm2

dm
52g~ ulu2/Z3!uu2ū252g8~ ulu2/Z3!

3ulu2m2

Z3
.

~2.10!

This formula is valid to all orders in perturbation theory. At
the one-loop level,

g52
1

16p2

ulu2

Z3
, ~2.11!

and we recover the familiar result

m
dm2

dm
5

3

16p2
l̄2m2, ~2.12!

where l̄5uluZ23/2 is the running coupling constant. Equa-
tion ~2.8! also gives the RG equation forA terms if we add a
nonvanishingu2 component toZ~m!.

In the following, we will generalize the procedure fol-
lowed in this section to general renormalizable SUSY theo-
ries with soft SUSY breaking. The idea is to include soft
SUSY breaking by extending the bare couplingsK0 to u-
dependent superfields. As long as the theory is regulated in a
supersymmetric manner, the bare couplings can be viewed as

spurion superfields even at the quantum level. We then de-
fine renormalized couplingsK(m) related to the bare cou-
plings by a superfield relation

K05G„K~m!,L/m…. ~2.13!

The renormalization of the couplings in the SUSY limit then
determines the renormalization of the soft-SUSY-breaking
terms as long as the relation does not involve supercovariant
derivatives acting onK(m). But in a vast class of theories,
this is guaranteed by simple power-counting and symmetry
arguments. Equation~2.13! therefore determines the com-
plete RG flow of all soft-SUSY-breaking parameters. In the
remainder of this section, we explain how to carry out these
steps for gauge theories, which present additional subtleties.

B. Holomorphic coupling in supersymmetric QED

We begin with SUSY QED, a U~1! gauge theory with
matter fieldsF andF̄ with charges11 and21, respectively.
This theory can be regulated in a completely supersymmetric
manner using a combination of Pauli-Villars fields to regu-
late matter loops and a higher-derivative regulator for the
gauge fields. The bare Lagrangian can be written asL0
1Lreg, where

L05E d4u Z0~F†eVF1F̄†e2VF̄!

1E d2u 1
2 S0WaWa1H.c. ~2.14!

contains the ‘‘physical’’ couplings and

Lreg5E d4u Z0~V†eVV1V̄†e2VV̄!

1E d2u LFVV̄1H.c.

1E d2u Wa
h

4LG
2

Wa1H.c. ~2.15!

contains the regulator terms. HereV andV̄ are Pauli-Villars
fields ~odd-statistics chiral superfields! and LF and LG are
cutoffs for the matter and gauge fields, respectively. We will
take the cutoffs to infinity withLF;LG ; so there is effec-
tively a single cutoff. Note that the bare wave function factor
Z0 appears both in front of the matter fields and the Pauli-
Villars fields. This is necessary to regularizeZ0-dependent
subdivergences that occur at two loops and beyond. For ref-
erence, the components ofS0 are given by

S05
1

2g0
2
2

iQ0

16p2
2u2

ml,0

g0
2

, ~2.16!

whereQ0 is the ~bare! vacuum angle andml,0 is the bare
gaugino mass.

We incorporate explicit soft SUSY breaking by allowing
the bare couplingS0 andZ0 to be superfields with nonzerou
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components. Just as in the Wess-Zumino model, the fact that
the regulator preserves SUSY means that the bare couplings
can be viewed as superfields at the quantum level, and we
can renormalize the theory by adding counterterms that are
local ~in superspace! and gauge invariant. We therefore de-
fine renormalized superfield couplingsS andZ by

S05S1dS, Z05Z1dZ, ~2.17!

where the countertermsdS and dZ are superfield functions
of S andZ determined order by order in perturbation theory
to cancel the ultraviolet divergences.

For Z we can proceed exactly as in the Wess-Zumino
model discussed above, but we immediately encounter diffi-
culties when we try to renormalize the gauge coupling as a
superfield. One way to see the problem is that the only mani-
festly gauge-invariant operator that can act as a gauge coun-
terterm is

L5E d2u 1
2 dSWaWa1H.c. ~2.18!

However, the result of a supergraph calculation is necessarily
a d4u integral. At one loop, this is not a problem because the
one-loop gauge diagrams are independent of all couplings
~since the gauge coupling is in front of the kinetic term!, and
the counterterm can be proportional to

E d4u~DaVWa1H.c.!5E d2u WaWa1H.c.

~2.19!

However, beyond one loop, the coefficient of the counter-
term depends on the superfield couplings, and the counter-
term cannot be written asd4u integral.

This argument can be sharpened by using the fact that the
countertermdS is a chiral superfield. Because of this,dS
must be a holomorphic function ofS, LF , LG , andm, inde-
pendent ofS† as well asZ. We therefore have

dS5 f S S,
m

LF
,

LG

LF
D , ~2.20!

wheref is a holomorphic function. Now the divergence in the
gauge couplingg is independent of the vacuum angleQ to
all orders in perturbation theory, sinceFmnF̃mn is a total
derivative and therefore irrelevant in perturbation theory.2

Therefore,

05
] Re~ f !

] Im~S!
52Im

] f

]S
. ~2.21!

Sincef is a holomorphic function, the only possibility is that
] f /]S is independent ofS, which implies

f ~S!5a1bS, ~2.22!

where a and b are independent ofS. We see thata is the
one-loop contribution andb is identically zero~since the zero
coupling limit corresponds toS→1`). We conclude that
there is no divergence in the vacuum polarization beyond
one loop.3 If this argument is to be believed, the couplingS
satisfies the exact~to all orders in perturbation theory! RG
equation

m
dS

dm
52

1

8p2
. ~2.23!

This appears paradoxical, since it is known that theb func-
tion has a~scheme-independent! contribution at two loops.

To understand what is going on, we compute the counter-
term explicitly at one loop, keeping the couplings as super-
fields. The diagrams are shown in Fig. 1. We obtain the
contribution to the one-particle irreducible~1PI! effective ac-
tion

G1PI52
1

2 E d4uE d4p V@g~p2!1dS1dS†#p2PTV

1finite, ~2.24!

wherePT is a transverse superspace projector and

g~p2!5
i

2 E d4k

~2p!4

2uLFu2/Z2

k2~k22uLFu2/Z2!

3
2uLFu2/Z2

~k1p!2@~k1p!22uLFu2/Z2#

5
1

8p2
ln

uLFu2/Z2

2p2
1finite. ~2.25!

The 1PI effective action can therefore be made finite by add-
ing the counterterm

dS52
1

8p2
ln

LF

m
, ~2.26!

where m is a renormalization scale. Note that we cannot
choosedS to depend on the ‘‘kinematic’’ cutoffuLFu/Z, the
scale at which the Pauli-Villars regulator cuts off the ultra-
violet modes, simply because this quantity is not a chiral
superfield. On the other hand, it is clear that physical quan-

2We do not address the subtle question of renormalization beyond
perturbation theory.

3Note that this argument does not assume thatf is a power series
in S. This is important for non-Abelian gauge theories, where we
will see that the perturbation series is nonanalytic inS.

FIG. 1. One-loop diagrams contributing to the vector field
propagator.
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tities depend onLF only through the combinationuLFu/Z,
together with the bare parameters. This is the key to under-
standing the meaning of the renormalized couplingS.

More formally, we note that the bare Lagrangian is invari-
ant under

F°eAF, F̄°eAF̄, V°eAV, V̄°eAV̄,

Z0°e2~A1A†!Z0 , LF°e22ALF , S0°S0 , ~2.27!

whereA is a u-dependent~but x-independent! chiral super-
field. BecauseZ0 measures the scale of the fields in the
regulated theory, we can choose the subtractions that defined
the renormalizedZ so that

Z5Z0f ~S01S0
† ,uLFu/Z0 ,uLGu,m!, ~2.28!

which shows that we can assign the same transformation rule
to Z asZ0 .4 From Eq.~2.26! we find that the renormalized
S(m) transforms as

S°S2
A

4p2
. ~2.29!

Just as in the case of the Wess-Zumino model, we have
found a symmetry under whichZ can be interpreted as a
background U~1! gauge field. Equation~2.29! is just a reflec-
tion of the Konishi anomaly@11#; therefore, we will refer to
this symmetry as the~renormalized! ‘‘anomalous U~1!’’
symmetry. As a consequence of this symmetry, physical
quantities can depend onS only in the combination

S1S†2
1

4p2
ln Z5S01S0

†1
1

8p2
ln

uLFu2/Z2

m2
.

~2.30!

~The right-hand side shows that this combination depends on
the kinematic cutoff when expressed in terms of the bare
parameters.! Notice thatS2S†, which is proportional to the
vacuum angle, cannot appear in any invariant, consistent
with the fact that the vacuum angle is not physical in a
theory with massless fermions. Because of the symmetry de-
fined by Eqs.~2.27! and~2.29!, the relation between the bare
and renormalized wave function factors has the form

Z05Z~m! f S S1S†2
1

4p2
ln Z,

uLFu/Z
m

,
uLGu

m D . ~2.31!

The RG flow of the theory is determined bydZ0 /dm50.
Because of the loop factor multiplying lnZ in the above
expression, (n11)-loop effects are often related ton-loop
effects. There are many examples of this in the literature, and
we also obtain new results of this type in subsequent sec-
tions.

Because the correlation functions depend onS only
through Eq.~2.30!, the relation between the couplingSand a
gauge coupling defined directly in terms of 1PI Green’s
function is nonanalytic in the couplings. As already observed
in Ref. @5~a!#, this can resolve the apparent contradiction
between a holomorphic coupling that runs at one loop and
the conventional definition of the gauge coupling that runs at
all loops.

We now note that the quantity

R̃[S1S†2
1

4p2
ln Z ~2.32!

that appears in Eq.~2.30! is a good candidate for areal
renormalized superfield coupling.R̃ is a finite quantity that
parametrizes the couplings of the theory, and it does not have
any unphysical dependence on the scale of the fields. Also,
theu50 andu2 components ofR give the correct RG equa-
tions for the gauge coupling and gaugino mass to two loops.
@In fact, Eq.~2.32! is identical in form to the famous equa-
tion of Ref. @5~a!#, but note that our equation involves only
renormalized quantities.# In the next subsection, we will
explain the relation betweenR̃ and a renormalized gauge
coupling defined from the 1PI action and address the mean-
ing of theu2ū2 component ofR̃.

We close our discussion of SUSY QED by remarking that
there is a completely analogous U~1! symmetry with a well-
defined action on thebare couplings. The ‘‘gauge transfor-
mation’’ F°eAF has an anomaly, and so the bare gauge
coupling must also transform to compensate for the transfor-
mation. In our regulator, this can be seen from the fact that
the Pauli-Villars fields transform under the symmetry, and so
the anomaly can be obtained as the matrix element of the
Pauli-Villars mass term in a background gauge field. More
generally, it is clear that any holomorphic regulator yields
the anomaly, and the result is that the theory is invariant
under the transformation

F°eAF, Z0°e2~A1A†!Z0 , S0°S02
A

4p2
, ~2.33!

with the regulator Lagrangianinvariant. This ‘‘bare’’ or
‘‘Wilsonian’’ anomalous U~1! is also a very useful symme-
try @12#.

C. Real superfield coupling in supersymmetric QED

We now give another definition of the renormalized gauge
coupling, obtained directly from the 1PI effective action by
subtraction at a Euclidean momentum point. This corre-
sponds more closely to the ‘‘physical’’ coupling that de-
scribes the momentum dependence of the effective charge.
More to the point, this definition of the gauge coupling can
be directly understood in terms of component calculations,
allowing us to make contact between our formalism and con-
ventional calculations.

In a component calculation, it is natural to define the
renormalized gauge coupling and gaugino mass in terms of

4This may become clearer when we give a 1PI definition ofZ in
the next subsection.
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an appropriate 1PI correlation function at a Euclidean kine-
matic point. We now show that a definition of this type gives
rise to a real superfieldR whose lowest components are the
gauge coupling and gaugino mass.

Consider the supersymmetric limit first. To define the
renormalized gauge coupling, we must consider the gauge-
invariant bilinears inWa in the 1PI action. Since we include
quantum effects, we must focus ond4u integrals. By a
simple operator analysis one finds that there exists just one
independent term

G1PI5E d4pE d4u g~p2!Wa
D2

28p2
Wa1H.c.1••• ~2.34!

5E d4pE d2u 1
2 g~p2!WaWa1H.c.1•••, ~2.35!

where the last identity follows simply by integrating over
half of superspace. Therefore,g can contain the contribution
from the tree-level and loop contributions to the ordinary
gauge kinetic term. We can therefore define the renormalized
gauge coupling simply by subtracting at a Euclidean momen-
tum point:

1

g2~m!
[g~p2!up252m2. ~2.36!

The role of the operator of Eq.~2.34! in generating the all-
orderb function was already emphasized in Ref.@5~a!#.

We can similarly define a renormalized wave function
superfield by considering the terms in the 1PI action that
contribute to the matter kinetic term

G1PI5E d4pE d4u z~p2!@F†eVF1F̄†e2VF̄#1••• ~2.37!

and defining

Z5z~p2!up252m2. ~2.38!

In the presence of soft-SUSY-breaking sources inS and
Z, the gauge kinetic terms in the 1PI effective action are

G1PI5E d4pE d4u g~p2!Wa
D2

28p2
Wa

1H.c.1O~DaS,DaZ, . . . !, ~2.39!

whereg(p2) is now avectorsuperfield function of the cou-
plings S1S† andZ, andO(DaS, . . . ) represents terms in-
volving at least one supercovariant derivative acting on the
sources. By studying all possibleWWandWW̄ terms involv-
ing supercovariant derivatives, it can be shown that they al-
ways lead to terms of second order in the soft masses; i.e.,
they areO(m2/p2). These terms therefore do not contribute
to the gauge kinetic term and gaugino mass term in the 1PI
action. It therefore makes sense to define a renormalized su-
perfield coupling by

R~m![g~p2!up252m2. ~2.40!

Everything in this definition is manifestly supersymmetric,
and so the relation between this renormalized coupling and
the bare couplings is SUSY covariant. The interpretation of
the components ofR is given by

E d4u gWa
D2

28p2
Wa

5F E d2u 1
2 ~gu01u2guu2!WaWa1H.c.G

1guu2ū2

las
aḃ

m
pml̄ḃ

2p2
. ~2.41!

The lowest components ofR are therefore the coefficients of
the gauge kinetic term and gaugino mass term, and we iden-
tify

1

g2~m!
[R~m!u0 , 2

ml~m!

g2~m!
[R~m!uu2. ~2.42!

Note that this renormalization scheme is mass independent.
The u2ū2 component ofR multiplies a nonlocal SUSY-

breaking contribution to the 1PI action. It is instructive to ask
what distinguishes thisO(m2) effect from the otherO(m2)
WWandWW̄ operators induced by the terms involving co-
variant derivatives acting on the couplings. To do so it is
useful to work in components. Since there are three compo-
nent fieldsAm , l, andD, there are in general three indepen-
dentO(m2) corrections to the corresponding self-energies:

PA
mn~p2!5~p2gmn2pmpn!S 11

kA
2

p2 D ,

Pl~p2!5p” S 11
kl

2

p2D
PD~p2!5S 11

kD
2

p2 D , ~2.43!

where kA,l,D5O(m2). A simple operator analysis shows
that the terms involving supercovariant derivatives acting on
couplings generateO(m2) corrections that always satisfy the
supertrace sum rule 3kA

224kl
21kD

2 50. On the other hand,
theu2ū2 component ofR is associated with a nonzero super-
trace 2Ruu2ū253kA

224kl
21kD

2 . If one computes the effect
of the dressed self-energies in Eq.~2.43! on the matter self-
energy, one finds that the only divergent contribution is pro-
portional to the supertrace. This simple exercise clarifies why
the u2ū2 component ofR, although associated with a nonlo-
cal operator, nonetheless enters into the RG flow equations
of the softly broken theory.

We now discuss the relation between the real superfield
gauge coupling discussed here and the holomorphic gauge
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coupling described in the previous subsection. Since both are
perfectly valid parametrizations of the renormalized gauge
coupling, we can expressR in terms of the holomorphic cou-
pling S andZ. The couplingR is clearly invariant under the
field rescaling, Eq.~2.27!, and so

R~m!5 f S S~m!1S†~m!2
1

4p2
ln Z~m!D . ~2.44!

Demanding that the holomorphic and real couplings coincide
at the tree level gives

R~m!5S~m!1S†~m!2
1

4p2
ln Z~m!1

c

8p2

1O~S1S†!21, ~2.45!

where c is a one-loop scheme-dependent constant. Notice
that this expression automatically gives the correct two-loop
b function. Equation~2.45! is identical to the famous for-
mula of Ref. @5~a!# that relates the 1PI and ‘‘Wilsonian’’
gauge couplings. However, it is important to remember that
the couplingS in our Eq. ~2.45! is a renormalized coupling
constant.

D. Holomorphic coupling in supersymmetric Yang-Mills
theory

We now consider some additional features that arise in
non-Abelian gauge theories, using the example of a pure
SUSY Yang-Mills theory with gauge group SU(N). We
regulate this theory in a supersymmetric way by embedding
it into a finite theory with softly brokenN52 SUSY. The
additional fields in the regulated theory consist of a chiral
field F in the adjoint representation~theN52 superpartner
of theN51 gauge multiplet! and 2N hypermultiplets con-
sisting of chiral fieldsVJ andV̄J (J51, . . . ,2N) in the fun-
damental and antifundamental representations, respectively.

The bare Lagrangian of the theory~written in N51 su-
perspace! is

L05E d2u S0tr@WaWa2 1
4 D̄2~e2VF†eV!F#1H.c.

1E d4u@VJ
†eVVJ1V̄J†e2VT

V̄J#

1S E d2u&VJFV̄J1H.c.D
1E d2u@LVVJV̄J1LG tr~F2!#1H.c. ~2.46!

The coefficient of theVJFV̄J interaction is fixed byN52
SUSY. TheN52 SUSY is broken explicitly down toN
51 by theF mass term~the mass term forVJ and V̄J is
N52 invariant!. N52 theories are finite beyond one loop
@13#. With our choice of matter, the one-loop beta function
vanishes and therefore, in the background gauge, there are no
divergences. The parametersLV and LG therefore act as

cutoffs for SUSY Yang-Mills theory, with the fieldsF, VJ,
and V̄J playing the role of regulator fields. We will eventu-
ally take the limitLV ,LG→` with LV;LG , so that there
is effectively a single cutoff.

We now show that the finiteness of this theory persists
when S0 is a chiral superfield with nonzerou components.
Any divergences in the 1PI effective action must be local~in
N51 superspace! expressions involving the superfield cou-
plings of the theory. Because this theory is renormalizable,
the divergences must have the same form as terms in the
Lagrangian. There are no divergences whenS0 is a number,
and so any divergences must be proportional to SUSY-
covariant derivatives acting onS0 . But such terms have
positive mass dimension, and so there can be no divergences
proportional to dimension-4 operators. The only remaining
possibility is that there are divergences proportional to

E d2u D̄2S0
†VJV̄J1H.c. or E d2u D̄2S0

†tr~F2!1H.c.

~2.47!

Such divergences can be excluded by considering the
~anomaly-free! transformation

VJ°eiaVJ, V̄J°eiaV̄J , F°e22iaF,

LV°e22iaLV , LG°e4iaLG , ~2.48!

under whichD̄2S0
† is invariant.

This establishes that the theory above is finite and, there-
fore, provides a regulator for the SUSY Yang-Mills theory
we want to study. We still need to renormalize the theory in
order to take the limitLV ,LG→`. The renormalized La-
grangian is5

L5E d2u S tr~WaWa!1H.c., ~2.49!

whereS is defined by

S05S1dS. ~2.50!

The countertermdS is fixed order by order in perturbation
theory to cancel the divergences asLV ,LG→`.

At one loop, the vacuum polarization in the background
gauge is proportional to

5The renormalized Lagrangian can be thought of as the ‘‘effective
Lagrangian’’ below the scalesLV ,LG . However, we must choose
the couplings in the ‘‘fundamental Lagrangian’’L0 as a function of
LV andLG so that the couplings in the ‘‘effective Lagrangian’’ are
held fixed as the cutoff is removed. This can be thought of as
‘‘fixing the parameters from low-energy experiment.’’
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2
N

16p2
ln

uLGu2/~S1S†!2

2p2

2
2N

16p2
ln

uLVu2

2p2
1finite1dS1dS†, ~2.51!

where the ‘‘physical’’ cutoff for theF contribution is
uLGu/(S1S†) due to the non-canonical kinetic term for the
gauge multiplet. At this order, the theory can be renormal-
ized in a holomorphic way by choosing

dS5
N

16p2
ln

LG

m
1

2N

16p2
ln

LV

m
, ~2.52!

wherem is a renormalization scale.
Because the theory is regulated in a supersymmetric man-

ner, the same argument used in Sec. II B shows that there are
no counterterms beyond one loop to all orders in perturbation
theory.6 We can therefore choose the counterterm to be given
by Eq. ~2.52! to all orders in perturbation theory. The renor-
malized gauge coupling defined in this way satisfies theex-
act RG equation

m
dS

dm
5

3N

16p2
. ~2.53!

As in SUSY QED, the fact that the holomorphic gauge
coupling has a one-loop beta function is closely connected to
the fact that the subtraction depends onLV andS1S† sepa-
rately. Logarithmic divergent loops always involve the ‘‘ki-
nematic’’ cutoff uLGu/(S1S†), and therefore the renormal-
ized expansion coefficient is

S1S†1
N

8p2
ln~S1S†!

5S01S0
†2

N

8p2
ln

uLGu/~S1S†!

m
2

2N

8p2
ln

uLVu
m

~2.54!

We can also define a real superfield coupling from the 1PI
effective action similarly to what was done for SUSY QED.
In this scheme, there is a real gauge coupling superfieldR
defined to be the coefficient of theV propagator term in the
1PI effective action.R must depend on the combination, Eq.
~2.54!, and we find

R5S1S†1
N

8p2
ln~S1S†!1O~S1S†!21. ~2.55!

E. General gauge theories

We have so far treated only simple theories where we
know how to construct a manifestly supersymmetric regula-
tor. However, we now argue that our results apply to any
SUSY gauge theory as long as a supersymmetric regulator
exists. The general arguments above tell us that the only
divergence in the gauge coupling occurs at one loop and has
the form

dS5
3TG

16p2
ln

LG

m
2(

r

Tr

16p2
ln

L r

m
, ~2.56!

whereTr is the Dynkin index of ther representation. Here
LG is a cutoff parameter for gauge loops andL r is a cutoff
parameter for matter fields in the representationr. Note that
in order for this formula to make sense,LG andL r must be
chiral superfield spurions, as they are in the examples con-
sidered previously. On the other hand, the ‘‘kinematic’’ cut-
off ~the momentum scale at which loop momenta are
damped! cannot be a chiral superfield, for the simple reason
that it must be real. As we have seen, Eq.~2.56! is consistent
with the two-loop RG equations provided that the kinematic
cutoff for matter loops isL r ,kin5uL r u/Zr . The relation be-
tween the kinematic gauge cutoff andLG is more compli-
cated, as seen in the example of SUSY Yang-Mills theory. In
any case, in order to reproduce the correct two-loop beta
function, physical quantities must depend on the combina-
tion

R5S1S†1
TG

8p2
ln~S1S†!2(

r

Tr

8p2
ln Zr

1two-loop corrections, ~2.57!

which is the real gauge coupling superfield. In the following
we will give further evidence for the generality of our con-
clusions by showing how they arise in dimensional reduc-
tion, a regulator that can in principle be used for any SUSY
theory.

III. DIMENSIONAL REDUCTION

So far we have been dealing with regulators that apply
only to special theories. However, in order to be able to
calculate higher-order effects in any theory, including the
supersymmetric extension of the standard model, the only
practical regulator is dimensional reduction~DRED! @14,15#.
In this section we show how the holomorphic and real gauge
couplings arise in DRED. We also show that the procedure
of analytically continuing the renormalized couplings into
superspace picks out the so-calledDR8 scheme@16# in which
the e-scalar mass does not appear in physical quantities.

A. Real and holomorphic gauge coupling in dimensional
reduction

The renormalization of SUSY gauge theories in the
framework of DRED was clarified more than a decade ago
by Grisaru, Milewski, and Zanon~GMZ! @17#. They pointed

6Note that the perturbation series is nonanalytic inS, as can be
seen from Eq.~2.51!. However, the arguments of Sec. II B do not
require the perturbation series to be a power series inS and are
therefore valid in this case as well.
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out that ind5422e dimensions, there is an additional su-
persymmetric and gauge-invariant local operator

OGMZ5ge
mntr~GmGn!, ~3.1!

where ge
mn is the metric in 2e ‘‘compactified’’ dimensions

andGm is the superfield gauge connection defined by

Gm5 1
2 s

aḃ

m
D̄ ḃ~e2VDaeV!. ~3.2!

This operator is anO~e! ~or ‘‘evanescent’’! operator, with
the property that

E d4u OGMZ5eE d2u tr~WaWa!1H.c. ~3.3!

~Note that ge
mnGmGn is real.! Therefore, the quantity

*d4u OGMZ is a dimension-4 term that can appear as a coun-
terterm for the gauge kinetic term.

Taking this into account, the bare Lagrangian is

L05S E d2u S0tr~WaWa!1H.c.D
1E d4u T0ge

mntr~GmGn!1matter terms. ~3.4!

We can incorporate soft SUSY breaking by extendingS0 and
T0 to u-dependent superfield spurions. Because DRED pre-
serves SUSY, we can treatS0 andT0 as superfields even at
the quantum level. The meaning of the higher components of
T0 is given by

E d4u T0ge
mntr~GmGn!

5e F E d2u~T0u1u2T0uu2!tr~WaWa!1H.c.G
1T0uu2ū2ge

mnAmAn . ~3.5!

That is, the lowest components ofT0 are contributions to the
gauge coupling and gaugino mass, and theu2ū2 component
is thee-scalar mass.

We now renormalize the theory by writing

S05m22e~S1dS!, T05m22e~T1dT!, ~3.6!

wheredS anddT are counterterms that are determined order
by order in perturbation theory to absorb the 1/e divergences.
Note that we include a finite renormalized value forT. This
corresponds to including evanescent effects: the scalar and
u2 components ofT areO~e! contributions to the gauge cou-
pling and gaugino mass, and theu2ū2 component ofT is a
renormalizede-scalar mass parameter. We will return to the
significance of these parameters below. If we compute using
supergraphs, all divergences appear in the 1PI effective ac-
tion in the form*d4u O/en, whereO is a local ~in super-
space! gauge-invariant supersymmetric operator; so the
counterterms can be defined to preserve the SUSY acting on
the coupling constants.

Reference@17# shows that at one loop, the divergences
can be absorbed indS, but at two loops and higher, all
divergences must be absorbed indT. This sheds consider-
able light on the origin of the two-loop running of the gauge
coupling, as follows. At two loops~and higher!, a 1/e2 pole
in dT will appear as a result of subdivergences. By Eq.~3.3!,
this corresponds to a 1/e pole in the counterterm for the
gauge coupling, which affects the beta function. The fact that
a 1/e2 pole arises only from subdivergences explains why the
higher-loop contributions to the gauge coupling beta function
are determined by the anomalous dimensions of the matter
fields.

New features arise if we include soft SUSY breaking by
extending the couplings to superfields. At one loop, we find
an ultraviolet-divergent contribution to thee-scalar mass:

dm̃A
25

g2

4p2

1

e F2TGumḡu21(
r

Trmr
2G . ~3.7!

Although this is a finite effect, it is known that renormaliza-
tion of the e-scalar interactions is required to preserve uni-
tarity @18,19#. ~Indeed, an explicit calculation of Poppitz and
Trivedi @20# shows thatinfrared divergences arise at two
loops if thee-scalar mass is not renormalized.!

To subtract the divergence in thee-scalar mass in a way
that preserves SUSY acting on the couplings, we must add
the one-loop counterterm

dT5
1

8p2

1

e FTG ln~S1S†!2(
r

Tr ln Zr G . ~3.8!

The logarithms ensure that the counterterm for thee-scalar
mass has the correct dependence on the gauge coupling and
is independent of the wave function of the matter fields. Note
that the scalar andu2 components ofdT give rise tofinite
contributions to the gauge coupling and gaugino mass. This
restores the dependence of the renormalized gauge coupling
on lnZ and ln(S1S†).

We now have all the ingredients we need to define the
renormalized holomorphic and real gauge coupling super-
fields in DRED. The holomorphic gauge coupling is defined
simply byS. BecausedS contains only one-loop divergences
~and S0 is m independent!, S runs only at one loop. On the
other hand, because of the subtraction in Eq.~3.8!, the com-
ponents ofS do not give the renormalized gauge coupling
and gaugino mass. Rather, these are given by the lowest
components of a superfieldR, defined by

R[S1S†1eT1dT~1!, ~3.9!

wheredT(1) is the coefficient of 1/e in dT. From Eq.~3.8!,
we see that the quantitiesR andS satisfy precisely the rela-
tion derived in the previous section for other regulators and
renormalization schemes:

R5S1S†1
TG

8p2
ln~S1S†!2(

r

Tr

8p2
ln Zr

1O„~S1S†!21
…. ~3.10!
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The definition, Eq.~3.9!, also shows that physical quantities
must depend onS throughR, since it is the components ofR
that multiply the kinetic terms and gaugino mass terms in the
Lagrangian.

We need to understand what scheme in component calcu-
lations is picked out by the procedure above. It is useful to
define a bare gauge coupling superfield

R0[S01S0
†1eT0 ~3.11!

in terms of which the bare gauge coupling and gaugino mass
are

1

g0
2 5R0u0 , 2

ml,0

g0
2

5~S01eT0!uu25R0uu2, ~3.12!

while the renormalized couplings are@see Eq.~3.9!#

1

g2
5Ru0 , 2

ml

g2
5Ruu2. ~3.13!

The relation between the bare and renormalized couplings is
therefore determined by the components of

R05m22eS R1
dS~1!

e
1 (

n52

`
dT~n!

en21 D , ~3.14!

wheredT(n) is the coefficient of 1/en in dT. We assume that
dS and dT consist of pure 1/e poles. This corresponds to
modified minimal subtraction (MS) if we rescalem appro-
priately, writingm5m̄Aeg/4p and writing all expressions in
terms ofm̄. Equations~3.12! and~3.13! then show thatg and
ml are precisely the renormalized couplings inDR.

When we consider the inclusion of matter with soft scalar
masses, the scheme picked out by the procedure above is
identical to DR8 @16#. To understand the issues involved,
note that there appears to be an extra renormalized parameter
in DRED, corresponding to ane-scalar mass. This parameter
has a nontrivial RG evolution, and so cannot be set to zero at
all scales. However, thee-scalar mass is an evanescent effect
and does not give rise to an additional parameter at the quan-
tum level. The way this works is that if we renormalize the
theory with an arbitrarye-scalar mass parameter, it only ap-
pears in physical quantities in the combination@16#

mr ,DR
2

~m!2
gDR

2
~m!Cr

8p2
m̃A,DR

2
~m!1O~g4!. ~3.15!

One can then define the schemeDR8 by declaring the com-
bination above to be the renormalized soft scalar mass.DR8
is therefore the scheme in which thee-scalar mass does not
appear in any renormalized expressionfor arbitrary values
of m.

In terms of the superfield couplings, the renormalizede-
scalar mass corresponds to the termeu2ū2 in R. But because
we subtract all the 1/e poles inR, the 1PI action is a finite
function of R. Therefore, there is noexplicit dependence on
m̃A

2 in physical quantities, for any value ofm. This is suffi-

cient to prove that the scheme we have defined is identical
with DR8. Our procedure extends the definition ofDR8,
given in Ref. @16# at the two-loop level, to all orders in
perturbation theory.

Note that the inclusion of the evanescenteT term in Eq.
~3.9! is essential forR to satisfy thed-dimensional RG equa-
tion

m
dR

dm
52eR1b~R!. ~3.16!

This is easy to check at lowest order by considering the RG
equation forT. Therefore, in our schemem̃A

2 plays a role
similar to that of theO~e! term in thed-dimensional RG
equation forg2: it ensuresm independence of the bare cou-
pling g0

2, but is irrelevant in calculations.
To see more explicitly the connection to naiveDR, con-

sider the relation between the bare and renormalized wave
functions for the matter fields:

Zr ,05ZrF11 (
n51

` dZr
~n!~R!

en G . ~3.17!

Taking theu2ū2 components of both sides gives

mr ,0
2 5mr

22
d

dR
@dZr

~1!~R!#m̃A
211/e poles. ~3.18!

In our scheme, the renormalized scalar mass ismr
2

52 ln Zuu2ū2, while the finite term on the right-hand side is
the scalar mass inDR ~not DR8), since it corresponds to
minimal subtraction. Comparing Eqs.~3.18! and ~3.15!, we
see thatmr

2 is identical tomr ,DR8
2 to two loops.~But note that

our scheme is defined to all orders in perturbation theory.!
Let us summarize the main results. In the supersymmetric

limit where the explicit soft breaking is turned off, we can
renormalize the theory by~modified! minimal subtraction,
defining renormalized couplings in theDR scheme. Our re-
sult is that if we include renormalized soft terms by analyti-
cally continuing both the renormalized couplings and the
counterterms~defined as functions of the renormalized cou-
plings! into superspace via

1

g2
→R, Zr→Zr , ~3.19!

this defines a valid subtraction scheme for the softly broken
theory. This picks out a unique scheme for the soft terms to
all orders in perturbation theory, which we callSDR for
supersymmetric dimensional reduction.~At two loops,SDR
coincides withDR8: so we can think of it as an all-orders
definition of DR8.) In SDR, the RG equations for all soft
parameters is determined by the RG equations in the SUSY
limit, to all orders in perturbation theory. For instance, in
gauge-mediated models~see the next section!, the analytic
continuation of Eq.~3.19! is simply performed by substitut-
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ing M→M1u2F in the effective couplings of the low-
energy supersymmetric standard model~SM!.

We close with two comments on the superfield couplingR
defined above. Note that thefinite u2ū2 component ofR
defined in DRED corresponds to aninfinite contribution to
the e-scalar mass. In our definition ofR from the 1PI effec-
tive action, theu2ū2 component ofR was related to a non-
local effect. It is interesting to see the connection between
these effects explicitly by considering softly broken SUSY
QED ~SQED! as in Sec. II B, but dimensionally reduced to
422e dimensions. After subtracting theZ-independent 1/e
divergence, the gauge self-energy has the form

G1PI5
1

4p2 E d4u ln ZF1

e
ge

mntr~GmGn1H.c.!

1trS Wa
D2

2p2
Wa1H.c.D G

1~Z independent!1O~DaZ, . . . !. ~3.20!

If we write this out in terms of components ofZ, we see that
the terms involvingZu andZuu2 are local and exactly cancel
between the two terms in brackets. What is left, from
ln Zuu2ū2, is just a divergente-scalar mass@see Eq.~3.7!# and
a nonlocal correction to the gaugino self-energy@see Eq.
~2.43!#. Anyway, we must subtract the divergente scalar
with a superfield counterterm as Eq.~3.8!, so that in the
subtracted 1PI, the dependence on lnZ is all coming from
the nonlocal operator. This shows that the ‘‘chiral’’ compo-
nents ofR defined in DRED and by 1PI subtraction differ
only by finite analytic~Z-independent! terms, that is, by a
change in scheme. In this sense, the two definitions are
equivalent.

A closely related issue involves the relation between the
origin of the lnZ term in R in DRED and in the general
discussion of SQED given earlier, where it was inferred from
the anomalous U~1! symmetry. It is conventionally said that
there is no rescaling or chiral anomaly in DRED, and it may
appear that there is no direct connection between these argu-
ments. However, an intriguing clue can be seen by consider-
ing the bare Lagrangian with couplingsS0 , T0 , andZ0 . This
Lagrangian has the symmetry

T0°T01A1A†, S0°S01eA, Z0°Z0 , ~3.21!

which ensures that physical quantities depend on the combi-
nationS01S0

†1eT0 . However, arbitrary values ofT0 lead to
inconsistencies~loss of unitarity and IR divergences!. Up to
two loops the choice

T052
1

4p2

1

e
ln Z0 ~3.22!

eliminates the problems. But with this choice, physical quan-
tities depend on the combinationS01S0

†2 ln Z0/4p2, which
is just what is required to obtain the anomalous U~1!. We
believe that these are very suggestive connections that come

close to exposing the anomaly in DRED, and we plan on
exploring this point more completely elsewhere.

B. Two-loop renormalization group equations inDR8

We can check explicitly that the scheme defined above is
equivalent toDR8 at NLO by computing the two-loop RG
equations for the gluino and sfermion masses. Consider the
real gauge coupling, given by

R~m!5S~m!1S†~m!1
TG

8p2
ln@S~m!1S†~m!#

2
Tr

8p2
ln Zr~m!, ~3.23!

where S is the holomorphic gauge coupling. The gaugino
mass is given byml52 ln Ruu2, and so its NLOb function is
easily derived from Eq.~3.23!:

m
d

dm
~ml/g2! 52

g2

~8p2!2 S TGb22(
r

TrCr Dml ,

~3.24!

where b53TG2( rTr . This equation agrees with the ex-
plicit component calculations inDR. A similar derivation,
based on the Konishi anomaly, was given by Hisano and
Shifman@6#. A new feature of the present treatment is thatR
also governs the evolution of the dimension-2 soft terms. To
see this, consider

Ruu2ū25
1

8p2 F2TGml
21(

r
Trmr

2G . ~3.25!

According to our discussion above,Ruu2ū2 corresponds to a
1/e counterterm for thee-scalar mass. Equation~3.25! agrees
with what is found in explicit component calculations@20#.
~Notice that the quantity on the right-hand side is propor-
tional to the supertrace weighted by the Dynkin indices.!
Now consider the two-loop RG equation for matter fields in
DR @21,22#:

m
d ln Zr

dm
5

1

8p2 H 2Crg
21

g4

8p2
Cr@3TG2T22Cr #J ,

~3.26!

where T5( rTr . Its continuation into superspace simply
amounts to the substitutiong2→1/R, Z→Z. The RG equa-
tion for the scalar masses is then obtained by taking theu2ū2

component of Eq.~3.26!. This gives

m
dmr

2

dm
52

Cr

8p2 H 4g2ml
21

g4

8p2 F2TGml
222(

s
Tsms

2

16~3TG2T22Cr !ml
2G J , ~3.27!
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which agrees with the result inDR8 @22,10,19,16#. The same
check can be done for the evolution ofA andB terms and in
the presence of Yukawa interactions.

IV. GAUGE-MEDIATED SUPERSYMMETRY BREAKING

We now show how to apply the formalism of the previous
section to perform calculations in gauge-mediated SUSY-
breaking~GMSB! models. We begin by briefly reviewing the
calculation of the leading gaugino and scalar masses in
GMSB, as performed in Ref.@3#. We then turn to new cal-
culations at higher-loop orders. The main new result in this
section is that the gaugino masses are insensitive to the cou-
plings in the messenger sector up to four loops. This
‘‘screening theorem’’ means that it is possible to make pre-
cise predictions for gaugino masses even when the SUSY-
breaking dynamics is strongly coupled. The scalar masses
are not screened in this way and are therefore sensitive to
strong SUSY-breaking dynamics. We also compute the NLO
corrections to SUSY-breaking masses in GMSB, which cor-
respond to two-loop corrections for gaugino masses and
three-loop corrections to the scalar masses.

A. Leading results

In this subsection, we briefly review the main results of
Ref. @3# for completeness. Consider the fundamental theory

L85E d4uFZQ8 ~Q†eV~Q!
Q1Q̄†eV~Q!

Q̄!1(
r
Zr8qr

†eV~r !
qr G

1E d2uS8tr~WaWa!1H.c.

1E d2u lXQQ̄1H.c., ~4.1!

where Q, Q̄ are the messengers,qr are observable sector
fields, andX is a singlet.X is a background chiral superfield
that parametrizes the effect of SUSY breaking via

lX5M1u2F, ~4.2!

with the assumptionF!M2. Our notation is appropriate to
the case where there is a single gauge group, but our formu-
las are trivial to generalize to the case of product gauge
groups. Below the scaleM, the effective Lagrangian is

L5E d4u(
r
Zrqr

†eV~r !
qr

1E d2u S tr~WaWa!1H.c.1•••, ~4.3!

where the omitted terms consist of higher-dimension opera-
tors. The low-energy gauge coupling is given by tree-level
matching and one-loop running to be

S~m!5S8~m0!1
b8

16p2
ln

M

m0
1

b

16p2
ln

m

M
, ~4.4!

where

b85b2N, b53TG2(
r

Tr ~4.5!

are the beta function coefficients in the full and effective
theories, respectively.N[(QTQ is the ‘‘messenger index.’’
Here m0 is an ultraviolet scale where the theory is defined;
this means that we must evaluate derivatives holding the
running couplings at the scalem0 fixed.

The dependence of the low-energy effective Lagrangian
on the SUSY-breaking effects is given simply by making the
replacement

M→X ~4.6!

in the dependence of the effective couplingsS andZr . ~No-
tice that to simplify the notation we have absorbedl in the
definition ofX.! It is this ‘‘analytic continuation’’ that is at
the heart of the method of Ref.@3#. We can now read off the
gaugino mass from

ml~m!52g2~m!
]S~m!

]X U
0

F5
Ng2~m!

16p2

F

M
, ~4.7!

where the notation ‘‘u0’’ denotes settingu5 ū50 and X
5M . Note that this automatically gives the correct RG im-
provement of the gaugino mass. Equation~4.7! involves the
holomorphic gauge coupling, which is equivalent to the real
superfield coupling at one loop. The use of the real gauge
coupling is crucial for the higher-order calculations we do
later.

We now consider the contribution to the gaugino mass
coming from higher-dimension operators in the effective La-
grangian@3#. Operators in the effective Lagrangian consist of
analytic terms in the light fields and the backgroundX and
their derivatives divided by powers ofX. The lowest-
dimension operator respecting U(1)R symmetry that can
contribute to the gaugino mass is

dL5
cg2

16p2 E d4uFX†D2X

uXu4
tr~WaWa!1H.c.G . ~4.8!

Equation~4.8! gives a contribution to the gaugino mass of
order

dml;ml

uFu2

uM u4
. ~4.9!

This is negligible ifF!M2. It is easy to see that all other
higher-dimension operators also give contributions to the
gaugino and scalar masses that are suppressed by powers of
FX

2/M4.
We now turn to the calculation of the scalar mass, where

the correct continuation into superspace isM→AXX† @3#.
We compute the matter field wave function coefficientsZr ,
whoseu dependence contains SUSY breaking from the de-
pendence on the threshold atM:
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mr
2~m!52

]2ln Zr~m!

]X†]X
U

0

uFu252
1

4

]2ln Zr~m!

~] lnuXu!2 U F

MU2

,

~4.10!

where we have used the fact that lnZr is a vector superfield
and, therefore, depends onX through uXu. The one-loop RG
equation forZr is

g r5m
d ln Zr~m!

dm
5

Cr

4p2

1

S1S†
,

g r85m
d ln Zr8~m!

dm
5

Cr

4p2

1

S81S8†
. ~4.11!

ComputingZr using one-loop running and tree-level match-
ing, we have

ln Zr~m!5E
m0

M dm8

m8
g r8~m8!1E

M

m dm8

m8
g r~m8!. ~4.12!

This gives

] ln Zr~m!

] lnuXu
5E

uXu

m dm8

m8

]g r~m8!

] lnuXu

5
Cr

4p2 EuXu

m dm8

m8

]

] lnuXu
S 1

S~m8!1S†~m8!
D .

~4.13!

Note that the explicituXu dependence from the limits of inte-
gration cancels in the derivative because of the tree-level
matching conditions. From Eq.~4.4!, we see that

S~m!1S†~m!5S8~m0!1S8†~m0!1
b8

16p2
ln

X†X

m0
2

1
b

16p2
ln

m2

X†X
, ~4.14!

which depends onX only throughuXu, as required. We then
obtain

] ln Zr~m!

] lnuXu
52

Cr

4p2 EX

m dm8

m8

b82b

8p2 S 1

S~m8!1S†~m8!
D 2

.

~4.15!

Computing one more derivative yields

]2ln Zr~m!

]~ lnuXu!2 U
m5M

52
2CrN

~8p2!2
g4~M !, ~4.16!

where we used the definition of the messenger indexN[b
2b8. This gives a scalar mass

mr
2~M !5

CrNa2~M !

8p2 U F

MU2

. ~4.17!

It is remarkable that the finite part of a two-loop graph can be
evaluated from a one-loop RG computation. In the present
approach, this arises becauseZr depends onuXu only through
the values of running couplings, and derivatives with respect
to uXu therefore bring in extra loop factors.

B. Gaugino screening

We now consider corrections to the gaugino mass. Very
generally, we will find that contributions from messenger
interactions to the gaugino mass are suppressed by additional
loop factors beyond the naive expectation, a result we refer
to as ‘‘gaugino screening.’’ We will see in Sec. IV D that the
scalar masses are not similarly screened.

The main point is that the holomorphic gauge coupling is
given exactlyby

S~m!5
b82b

16p2
ln X1~X independent!, ~4.18!

whereb (b8) is the beta function coefficient in the effective
theory below~above! the messenger scale.~If the SM gauge
group has a standard embedding into a larger messenger
group above the messenger scale, thenb8 is the beta function
of the larger group.! The physical gaugino mass must be
read off from theu-dependent components of the real super-
field gauge coupling.~As explained above, the holomorphic
gauge coupling has unphysical field rescaling dependence
that is not present in physical quantities.! The real gauge
coupling is related to the holomorphic gauge coupling by

R~m!5S~m!1S†~m!1
TG

8p2
ln@S~m!1S†~m!#

2(
r

Tr

8p2
ln Zr1O~S1S†!21. ~4.19!

The dependence on the wave function factorsZr contains the
information about the two-loop RG behavior of the physical
couplings. SinceS is just given exactly by Eq.~4.18! and
since the sum overr runs only over thelight fields,R is not
affected at NLO by the messenger interactions. That is all
there is to the proof.

Because the leading dependence on the messenger inter-
actions comes fromZr in Eq. ~4.19!, it is easy to see that

dml

ml
;S g

4p D 4F gmess
2

16p2
1 ln

M 8

M G . ~4.20!

The (g/4p)4 factor arises because the messenger fields inter-
act with matter only at two loops. The first term in square
brackets represents a threshold correction due to a messenger
couplinggmess, while the term ln(M8/M) represents the sen-
sitivity to mass splittings among the messengers. Such mass
splittings will arise if the various messengers have different
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Yukawa couplingsl to the same sourceX @see Eq.~4.1!#. In
the next subsection, we perform explicit calculations of the
gaugino masses and NLO, and we will see how the screening
theorem manifests itself in detail. In the remainder of this
subsection, we confine ourselves to some qualitative re-
marks.

Consider for example the dependence on the messenger
Yukawa coupling l. At leading order, the low-energy
gaugino masses are independent ofl, but one may naively
expect important quantum corrections ifl is large. This is
not an artificial possibility: if the Yukawa coupling arises
from composite dynamics, the value ofl will be close to the
perturbative limitl;4p at the compositeness scale@23#. In
this case,gmess

2 /(16p2);1 in Eq.~4.20!, but dml /ml is still
suppressed by two weak loops. Therefore, the gauge-
mediation gaugino mass relations are rather insensitive to the
strong dynamics of the messenger fields even ifl is close to
the perturbative limit.

Another interesting example is the case in which different
messenger fields have different Yukawa couplings to the
same supersymmetry-breaking sourceX. In other words, the
various messengers have different massesM, but the same
ratio F/M . For example, in a grand unified theory~GUT!
model with a messenger scale much lower than the GUT
scale, the running of the messenger Yukawa couplings be-
tween the GUT and messenger scales can induce splittings of
the messenger masses of orderg2/(16p2)ln(MGUT/M ),
which can beO~1! even if the messenger Yukawa interac-
tions are unified at the GUT scale. Now Eq.~4.20! shows
that, even forO~1! messenger mass splittings, the minimal
GMSB relation between the different gaugino masses is only
violated byO„(g/4p)4

…. Therefore, the gaugino masses do
not depend on the assumption of the universality of the mes-
senger Yukawa couplings at the messenger scale even at
NLO, as long as the Yukawa couplings are of the same order
and there is a single sourceX of SUSY breaking.

Similar considerations apply to models with vector mes-
sengers. In such models, the vacuum expectation value that
breaks SUSY also breaks a larger gauge group down to the
standard-model subgroup. There are therefore massive gauge
bosons charged under the standard-model gauge group that
act as SUSY-breaking messengers. Reference@3# computed
the leading contribution of vector messengers to the scalar
and gaugino masses, and showed that the contribution to the
scalar mass squared is negative. The leading contribution to
the gaugino mass from the vector messengers also arises at
four loops and again has the order of magnitude given in Eq.
~4.20!, wheregmess is now the messenger gauge coupling.
This is important because the messenger gauge coupling can
be strong at the messenger scale.~For example, this occurs in
the models of Ref.@24#.!

C. Gaugino masses at next-to-leading order

We now compute the NLO corrections to the gaugino
masses inDR. In components these corrections correspond
to threshold effects at the messenger mass scale described by
two-loop Feynman graphs, together with the two-loop RG
evolution from the messenger scale to the physical scale. In

our approach, these corrections can be extracted from the
expression of the real superfieldR. In DR, the NLO match-
ing at the messenger scale is simply obtained by requiring
continuity of R(m) at the threshold of the physical messen-
ger mass@25#:

mX
25

XX†

ZM
2 ~mX!

. ~4.21!

HereZM is the wave function factor for the messenger fields.
Following the notation introduced in Sec. IV A, primed
~unprimed! quantities refer to the theory above~below! the
messenger mass scale. In terms of the value ofR8 at an
arbitrary high-energy scalem0 , much larger than the mes-
senger scalemX , at the low-energy scalem we find

R~m!5R8~mX!1
b

16p2
ln

m2

mX
2

1
TG

8p2
ln

Re S~m!

Re S~mX!

2(
r

Tr

8p2
ln
Zr~m!

Zr~mX!
, ~4.22!

R8~mX!5R8~m0!1
b8

16p2
ln

mX
2

m0
2

1
TG

8p2
ln

Re S8~mX!

Re S8~m0!

2(
r

Tr

8p2
ln
Zr8~mX!

Zr8~m0!
2

N

8p2
ln
ZM~mX!

ZM~m0!
.

~4.23!

HereS(m) is the gauge coupling at one loop@see Eq.~4.14!#,
andR8(m0)5ReS8(m0) gives a SUSY-preserving boundary
condition on the gauge coupling. The sums in the previous
equations extend over the different matter superfields. Sub-
stituting Eq.~4.22! into Eq. ~4.23!, we obtain

R~m!5R8~m0!1
b

16p2
ln

m2

m0
2

1
b82b

16p2
ln

XX†

m0
2ZM

2 ~m0!

1
TG

8p2
ln

Re S~m!

Re S8~m0!
2(

r

Tr

8p2
ln
Zr~m!

Zr8~m0!
.

~4.24!

Notice that in this expression the explicit dependence on
ZM(mX) has dropped out. An implicit dependence appears
from higher-order contributions in the matter wave function
renormalizationZr(m). However, the NLO expression for
the gaugino mass, which requires only the leading contribu-
tion toZr(m), is independent ofZM(mX). This is a manifes-
tation of the ‘‘gaugino screening’’ theorem discussed in Sec.
IV B. We see that at this order in perturbation theory, the
gaugino masses are not affected by new messenger interac-
tions. Similarly, theW-ino and B-ino masses have noa3
corrections from messenger thresholds, but only from their
RG evolution below the messenger mass.
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To obtain the expression of the gaugino mass, we take the
F component of Eq.~4.24!:

ml~m!52g2~m!R~m!uu2

5
1

12g2~m!TG /~8p2!
H g2~m!

16p2
N

F

M

1(
r

g2~m!

8p2
Tr ln Zr~m!uu2J . ~4.25!

This equation gives the NLO expression of the gaugino mass
in terms of the SUSY-breaking part of the light matter wave
functionsZr(m) at the leading order. To complete the calcu-
lation, we now compute lnZr(m)uu2 for matter fields includ-
ing both gauge and Yukawa interactions. For simplicity, we
give the result for a simple gauge group, but the generaliza-
tion to a product group is completely straightforward. The
relevant one-loop RG equations are

m
d

dm
ln Zr5

Cr

4p2 g22
dr

8p2
y2, ~4.26!

m
d

dm
y25

y2

4p2 S D

2
y22Cg2D , ~4.27!

m
d

dm
g225

b

8p2
, ~4.28!

wherey is the running Yukawa coupling~physically normal-
ized by appropriate wave function factors!. Here dr is the
number of fields circulating in the Yukawa loop, and

C[(
r

Cr , D[(
r

dr , ~4.29!

with the sum extended to the field participating in the
Yukawa interaction. Ifg is the QCD coupling andy is the
top-quark Yukawa coupling, we haveC58/3 and D56.
Taking theF component of the solution of Eq.~4.26! for
Zr(m), we obtain the final expression for the gaugino mass
including QCD (a3) and top-quark Yukawa @a t

5yt
2/(4p)# corrections

mlJ
~m!5

aJ~m!

4p
N

F

M F11TJ

aJ~m!

2p

1
4a3~m!

9p
~j21!(

r
Tr1

a t~m!

6p
I ~j!(

r
Trdr G ,
~4.30!

where

j5
a3~X!

a3~m!
, I ~j!512

16

7
j1

9

7
j16/9, ~4.31!

where the sum is taken over the colored light fields. This
result has been recently confirmed by an explicit component
calculation@26#. Notice that in the above equations the de-
pendence on the physical messenger mass appears viaj, and
it is of the form given in Eq.~4.20!.

In order to obtain the pole gaugino mass we have to in-
clude also the finite one-loop corrections at the infrared
threshold. For the gluino, in theDR scheme they are given
by @27#

ml3

pole5ml3
~m!H 11

3a3~m!

4p F lnS m2

ml3

2 D 1FS m̃g
2

ml3

2 D G J ,

~4.32!

F~x!5112x12x~22x!ln x12~12x!2lnu12xu.
~4.33!

The functionF includes the effect of the gluon-gluino and
quark-squark loops in the approximation in which all squarks
have equal massm̃q . Since we have neglected weak correc-
tions, the SU~2!3U~1! gaugino masses receive no contribu-
tions from infrared thresholds. The final expressions for the
three gaugino masses improved bya3 anda t corrections are
then given by

ml3

pole5
a3~m!

4p
N

F

M H 11
3a3~m!

4p F lnS m2

ml3

2 D 1FS m̃q
2

ml3

2 D
121

32

9
~j21!G1

a t~m!

3p
I ~j!J , ~4.34!

ml2

pole5
a2~m!

4p
N

F

M F11
2a3~m!

p
~j21!1

a t~m!

2p
I ~j!G ,

~4.35!

ml1

pole5
5a1~m!

12p
N

F

M F11
22a3~m!

15p
~j21!

1
13a t~m!

30p
I ~j!G , ~4.36!

wherea25 5
3 a1 at the unification scale.

The NLO correction to the gluino mass
(ml3

pole)NLO/(ml3
)LO21 is shown in Fig. 2. We have assumed

(ml3
)LO5600 GeV and tanb52, but the result is very in-

sensitive to this choice. In particular, the value of tanb is
unimportant because the top-quark Yukawa contribution in
Eq. ~4.34! is negligible. The NLO contribution from messen-
ger loops, which is obtained by settingj51 in Eq.~4.34!, is
about14–5%. However, the NLO gauge RG evolution con-
tributes a negative contribution@see Eq.~4.34! and Fig. 2#
that almost completely cancels the messenger contribution
for very large running (M.1015 GeV). The finite gluon-
gluino loop gives also a large positive contribution of about
110–12% to the gluino mass. This effect is partially com-
pensated by the quark-squark loops, if the ratiomq̃

2/M3
2 is not

large, as in the case of several messenger flavors (N.1).
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This explains why the NLO correction to the gluino mass is
very important for smallM andN, but significantly decreases
for larger values ofM andN ~see Fig. 2!.

The QCD corrections to the SU~2!3U~1! gaugino masses
vanish at the messenger scale, as expected from the ‘‘screen-
ing theorem’’ previously discussed. The effects from the RG
running, shown in Eqs.~4.35! and~4.36!, tend to cancel be-
tween the gauge and Yukawa terms, and give a contribution
to the weak gaugino masses that is at most of few percent.

D. Scalar masses at next-to-leading order

We can now also compute the NLO corrections to the
squark and slepton masses inDR8, which correspond to
three-loop diagrams. The RG equation for the wave function
renormalization of a matter fieldr is

m
d

dm
ln Zr5g r . ~4.37!

The gauge contribution to the anomalous dimensiong r at
NLO is given by@21,22#

g r5Cr

g2

4p2
1Cr@3TG22Cr2T#

g4

4~2p!4
. ~4.38!

The SUSY-breaking scalar mass is obtained from Eq.~4.10!:

m̃r
2~m!52

1

4

]2ln Zr~m!

~] lnuXu!2 U F

MU2

52
1

4 U F

MU2 ]2

~] lnuXu!2 F E
m0

mX dm8

m8
g r8~m8!

1E
mX

m dm8

m8
g r~m8!G , ~4.39!

whereg r (g r8) is the anomalous dimensions below~above!
the physical messenger scalemX @see Eq.~4.21!#. Note that
g r in the low-energy theory depends implicitly onmX from
the matching conditions at the messenger threshold. Notice
also that the lowest matching correction for the wave func-
tion at the messenger scalemX is at two loops. This corre-
sponds to the addition of anO„a(X)2/16p2

… term inside
square brackets in Eq.~4.39!. The resulting correction to the
squark mass isO(a4).

For simplicity, we will give the expression of the scalar
masses evaluated at the messenger scale, as the two-loop
running frommX to the low-energy scalem is well known
@22,10,19#. In this case, the action of]2/(] lnuXu)2 on Eq.
~4.39! gives, at NLO in gauge interactions,

mr
2~mX!52

1

4 U F

MU2 ] ln mX

] lnuXu
]

] ln mX
@g r8„R8~mX!…

2g r„R~mX!…2g r„R~m!…#U
m5mX

5
g4

4 U F

MU2

@12gM~mX!#F ]„g r8~m!2g r~m!…

]g2

3
]R8~m!

] ln m
2

]g r

]g2

]R~m!

] ln mX
G

m5mX

. ~4.40!

Here gM5d ln ZM /d ln m is the anomalous dimension of
the messenger superfield at leading order, which depends not
only on gauge interactions, but also on any new additional
interactions of the messengers. In particular, including the
Yukawa interaction in Eq.~4.1!, we find

gM5
CMg2

4p2
2

l2

8p2
. ~4.41!

This explicitly shows that the ‘‘screening theorem,’’ valid
for gaugino masses, does not apply to scalar masses.

We can now evaluate the derivatives ofR, using the ex-
pressions obtained in the previous section:

]R8~mX!

] ln mX
U

0

5
b8

8p2
, ~4.42!

]R~m,mX!

] ln mX
U

0

52
N

8p2 S 11
TG

8p2
g2D . ~4.43!

Notice that in Eq.~4.42! we have kept only the leading term
in the perturbative expansion, since in Eq.~4.40! it multiplies
the factor](g r82g r)/]g2, which is a NLO quantity. Putting
it all together, we obtain the final expression for the scalar
masses at NLO:

FIG. 2. NLO correction to the gluino pole mass, as a function of
the messenger mass scaleM, for messenger indexN51,3,5. We
have taken a leading-order value of the gluino mass of 600 GeV and
tanb52, but the results are rather insensitive to these choices. The
curves are interrupted at values ofM that requireF5M2 to obtain
the required gluino mass.
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m̃r
2~mX!5

Cra
2~mX!N

8p2 U F

MU2

~12gM !

3F11
a~mX!

2p
~TG22Cr1N!G . ~4.44!

Assuming that the messengers belong to fundamentals of
SU~5!, the NLO expression for the QCD contribution to
squark masses is

m̃q
2~mX!5

a3
2~mX!N

6p2 U F

MU2

3F11
a3~mX!

2p S N2
7

3D1
l3

2~mX!

8p2 G .

~4.45!

Here l3 is the messenger Yukawa coupling for the color
triplet. Notice that theO(a3

3) contribution to squark masses
from the messengers tends to cancel the contribution from
gauge and matter fields, as long asN is not too large. NLO
corrections to slepton masses from QCD and new messenger
interactions come only from the factor (12gM) in Eq.
~4.40!. Since, in our case, weak-doublet messengers are color
neutral, the SU~2! contribution to left-handed slepton masses
is corrected only by the factor@11l2

2(mX)/8p2#. However,
for a generic choice of messengers, the QCD corrections are
nonvanishing. Notice also that in generall2Þl3 , although
they may be related in a GUT. Finally, the improved expres-
sion for the right-handed slepton mass is

m̃eR

2 ~mX!5
5a1

2~mX!N

24p2 U F

MU2

3F12
8a3~mX!

15p
1

3l2
2~mX!

40p2
1

l3
2~mX!

20p2 G .

~4.46!

In Eq. ~4.46!, mX can correspond to the mass scale of either
the triplet or doublet messenger mass. The difference be-
tween the two definitions isO(a1

3), which is negligible in
our approximation.7 On the other hand,mX in Eq. ~4.45! has
to be interpreted as the triplet messenger mass, since we
include termsO(a3

3).
In conclusion, because of the absence of a ‘‘screening

theorem,’’ the NLO corrections to scalar masses are quite
dependent on the model assumptions. They are sensitive to
new messenger interactions, such as the messenger Yukawa

couplings, and they depend on the messenger representations
in a way that cannot be described only by the messenger
index N.

E. D-type supersymmetry breaking

We now consider leading SUSY-breaking effects in theo-
ries where the dominant source of SUSY breaking is aD-
type soft mass for the messengers rather than anF-type
mass, as considered previously. Some of these results have
already been derived in the language of renormalized cou-
plings in Sec. III B. We discuss them here in a manifestly
‘‘Wilsonian’’ picture, that is, by simply computing in the
theory with given bare parameters. We do this in part for
variety and in part to show how these results follow from the
‘‘Wilsonian’’ anomalous U~1! symmetry.8 Consider a gauge
theory with bare Lagrangian

L05E d2u S0tr~WaWa!1H.c.1E d4u Zr ,0F r
†eV~r !

F r ,

~4.47!

regulated in a supersymmetric manner. Assume that the
theory contains bare soft masses, parametrized by

Zr ,05Zr ,0@12u2ū2mr ,0
2 #. ~4.48!

As discussed above, this theory is invariant under the ‘‘Wil-
sonian’’ anomalous U~1! transformation

F r°eArF r , Zr ,0°e2~Ar1Ar
†
!Zr ,0 ,

S0°S01(
r

Tr

8p2
Ar , ~4.49!

with the regulator held fixed.
At one loop, the matter terms in the 1PI effective action

are

G1PI5E d4pE d4u z~p2!F r
†eV̇~r !

F r1finite, ~4.50!

where

z~p2!5Zr ,0F12
1

4p2

Cr

S01S0
†

ln
L

m G . ~4.51!

Here L is the ultraviolet cutoff. Invariance under the trans-
formation, Eq.~4.49!, allows us to conclude thatG1PI de-
pends onS01S0

† only in the invariant combination

S01S0
†2(

r

Tr

8p2
ln Zr ,0 . ~4.52!

7Higher orders in the electroweak couplings can be computed fol-
lowing the same procedure used to obtain Eq.~4.44!, with the in-
troduction of separate messenger thresholds. For an application of
the method of Ref.@3# to the case of multiple messenger thresholds,
see Ref.@28#.

8This symmetry is extremely useful in obtaining physically inter-
esting results for nonholomorphic soft terms in strongly coupled
SUSY gauge theories with small soft breakings@29#.
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This allows us to infer the two-loop dependence of the mat-
ter kinetic term inG1PI from Eq. ~4.51!. We can then obtain

mr
2~m!52 ln z~p252m2!uu2ū2

5mr ,0
2 2

g0
4Cr

32p4 S (
r

Trmr ,0
2 D ln

L

m
. ~4.53!

From this, we can read off the two-loop RG equation for the
soft masses arising from gauge interaction with other soft
masses:

m
dmr

2

dm
5

2g4Cr

~8p2!2 (
r

Trmr
2. ~4.54!

~Note we have not specified a definition for the renormalized
gauge coupling, but the result is invariant under changes of
scheme for the gauge coupling.!

If the gauge group contains a U~1! factor, there is an
additional contribution to the RG equation for the scalars
from an induced Fayet-Illiopoulos term. In superspace, a
Fayet-Illiopoulos term can be viewed as a ‘‘kinetic mixing’’
between the U~1! gauge field and that of the anomalous U~1!
symmetries for the various matter fields. Note that in the
presence of bare soft masses, there is no symmetry forbid-
ding such a term: so we have an addition contribution to the
bare Lagrangian

dL05E d2u 1
2 k r ,0W1Wr ,01H.c., ~4.55!

whereW1 is the U~1! gauge field strength and

~Wr ,0!a[2 1
4 D̄2Daln Zr ,05uamr ,0

2 ~4.56!

is the field strength of the anomalous U~1!. Equation~4.55!
contains a linear term in the U~1! auxiliary gauge fieldD1 ,
forcing ^D1&Þ0 and giving an additional contribution to the
scalar mass. It is the running of this contribution that we now
compute.

The Fayet-Illiopoulos term is renormalized at one loop,
and we obtain

G1PI5E d2u 1
2 S k r ,01

qr

16p2
ln

L/Z0

m D W1Wr ,0

1 H.c.1finite. ~4.57!

Combining this result with the one-loop renormalization of
the matter wave function given in Eq.~4.51!, we obtain an
induced vacuum expectation value

^D&52
g1

2

16p2 S (
r

qrmr ,0
2 1(

J,r

gJ
2

4p2
Cr

Jqrmr ,0
2 D ln

L

m
,

~4.58!

where the sum onJ runs over the factors of the gauge group
and qr is the U~1! charge of the fieldr. From this we can
read off an additional contribution to the RG equation for the
soft mass:

m
dmr

2

dm
U

D

5
g1

2

16p2 S (
r

qrmr
21(

J,r

gJ
2

4p2
Cr

Jqrmr
2D .

~4.59!

Recall that in Sec. III we showed that the RG equations
for the soft masses above correspond toDR8. The present
derivation shows that these RG equations follow as long as
the theory is regulated and subtracted in a supersymmetric
fashion. To further amplify this point, we give an illustrative
application of these methods where we compute a soft mass
as a finite calculable effect.

Consider a toy model with bare Lagrangian

L05E d2u S0tr~WaWa!1H.c.

1E d4u@Zr ,0~Qr
†eV~r !

Qr1Q̄r
†eV~r !

Q̄r !1Zq,0q
†eV~q!

q#

1E d2u MrQrQ̄r1H.c., ~4.60!

wherer 51,2 are two copies of the same gauge representa-
tion. Suppose that the messengersQ1,2 have bare soft masses
given by

Z1,05ZQ,0@12u2ū2m0
2#, Z2,05Zq̄,0@11u2ū2m0

2#.
~4.61!

With this choice, the full theory has StrM250, whereM is
the full mass matrix of the fields in the theory. However, if
M1ÞM2 , the effective theory below the scaleM1 has non-
vanishing mass supertrace. The value of this supertrace is
therefore a calculable effect in this theory.

We could use the RG equations derived above to compute
the soft masses in the low energy theory. We present here an
alternative derivation of the supertrace that clarifies the
methods used above. We assumeM2!M1 and compute the
q soft mass in the low-energy theory below the scaleM2 .
With the choice of parameters made above, we can write

Z1,05eU0, Z2,05e2U0, U052u2ū2m0
2. ~4.62!

We can viewU0 as a ‘‘gauge’’ field for a single U~1! under
which Q1 andQ̄1 have charge11, Q2 andQ̄2 have charge
21, M1 has charge22, andM2 has charge12. Moreover,
this U~1! symmetry isanomaly free, and so we do not have
to appeal directly to a Wilsonian picture of the anomaly.

We now integrate outQ and construct the effective La-
grangian below the scaleM2 . This has the form

L95E d4u Zq9q
†eV~q!

q1gauge terms, ~4.63!

where the U~1! symmetry enforces
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Zq95 f ~ uM1ue2U0,uM2ueU0!. ~4.64!

We can determine the functionf by one-loop running and
tree-level matching to a scalem!M2 :

ln Zq~m!5 ln Zq,01
2Cq

b
ln

g0
2

g2~ uM1u!

1
2Cq

b8
ln

g2~ uM1u!

g2~ uM2u!

1
2Cq

b9
ln

g2~ uM2u!
m

, ~4.65!

whereb (b8) @b9# is the beta function coefficient in the full
theory ~effective theory belowM1) @effective theory below
M2]. Using the one-loop expressions for the gauge coupling
g, and making the substitutionuM1u→uM1ue2U0, uM2u
→uM2ueU0, we obtain

mq
2~m!52

Cqm0
2

4p2 H b2b8

b9
@g2~ uM2u!2g2~ uM1u!#

1
b22b81b9

b9
@g2~m!2g2~ uM2u!#J . ~4.66!

The first term corresponds precisely to the running of the soft
mass between the scalesM1 andM2 , and the second term to
the running betweenM2 and m. There is no contribution
from above the scaleM1 because the contributions from the
two messengers cancel.

F. ‘‘Mediator’’ models

We now consider GMSB models where SUSY breaking is
communicated less directly to the observable sector. We find
that very generally in such models, the gaugino screening
mechanism described in Sec. IV B implies that the gaugino
mass is suppressed compared to the scalar masses by more
loop factors than suggested by a naive analysis.

We consider the ‘‘mediator’’ models introduced in Ref.
@4#. We suppose that a SUSY-breaking sector communicates
SUSY breaking to vectorlike fieldsQ and Q̄. The fieldsQ
and Q̄ are not charged under the standard-model gauge
group. Rather, they are in a vectorlike representation of a
‘‘mediator’’ gauge groupGmed. The connection to the ob-
servable sector is made through a vectorlike pair of fieldsT
andT̄ that are charged under both the standard-model gauge
group andGmed. These fields have a supersymmetric mass
term MT in the Lagrangian, which may be the result of a
dynamical mechanism@4#. The Lagrangian of this theory is

L95E d4uFZQ9 ~Q†eVmed
~Q!

Q1Q̄†eV
med

~Q!Q̄!

1(
r
Zr9qr

†eVSM
~r !

qr

1ZT9~T†eVmed
~T!

eVSM
~T!

T1T̄†eVmed
~T!

eVSM
~T!

T̄!G
1E d2u@MTTT̄1Smed9 tr~Wmed

2 !1SSM9 tr~WSM
2 !#

1H.c.1dL~Q,Q̄, . . . !, ~4.67!

wheredL contains the interactions that break SUSY.
The holomorphic standard-model gauge coupling below

the messenger scalesM and the scaleMT is given exactly by

SSM~m!5SSM9 ~m0!1
bSM9

16p2
ln

MT

m0
1

bSM

16p2
ln

m

MT
, ~4.68!

where bSM9 and bSM are the standard-model beta function
coefficients in the effective theory with and without the field
T, respectively. This is independent ofM, and so the leading
contribution to the gaugino mass comes from the lnZr term
in the real effective gauge couplingRSM; see Eq.~4.19!. The
leadingM-dependent contribution toZr arises at four loops,
and so the gaugino mass arises at five loops in this model, as
opposed to the estimate of Ref.@4#. Since scalar mass-
squared terms arise at four loops, the gaugino mass is sup-
pressed compared to the scalar masses in this model, posing
a fine-tuning problem.

To make this argument concrete and to illustrate the
power of our techniques, we explicitly compute the gaugino
mass in the case where SUSY breaking is communicated to
the fields q and q̄ by the vacuum expectation value of a
singlet fieldX:

dL5E d2u lXQQ̄1H.c., ~4.69!

with ^X&, ^FX&Þ0. The reader uninterested in details can skip
the remainder of this subsection.

We will do the calculation for the case where

M5l^X&@MT . ~4.70!

We further assume thatGmed is weakly coupled and unbro-
ken down to the scaleMT . Below the scaleM, the light
fields areT, X, Qr , Vmed, and VSM, and the effective La-
grangianL8 consists of the terms in Eq.~4.67! that depend
on these fields. Below the scaleMT , the only light fields are
X, Qr , Vmed, andVSM, and we denote the effective Lagrang-
ian byL.

Both the scalar and gaugino masses can be read off from
Zr , the wave function renormalization factor in the low-
energy theory. We therefore compute
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ln Zr~m!5E
m0

M dm8

m8
g r9~m8!1E

M

MT dm8

m8
g r8~m8!

1E
MT

m dm8

m8
g r~m8!, ~4.71!

whereg r (g r8) @g r9# denotes the anomalous dimension in the
theoryL (L8) @L9#, andM (MT) is the matching scale at the
mass ofq ~T!, defined similarly to Eq.~4.21!. For example,

g r85m
d ln Zr8

dm
5

Cr

4p2 FSSM8 1SSM8† 2
2TT

8p2
ln ZT81•••G21

,

~4.72!

where we have displayed the dependence onZT8 required by
the ‘‘anomalous U~1!’’ invariance. This is important, be-
causeZT8 depends onM at two loops, giving the leadingM
dependence of the anomalous dimensions. We have

] ln Zr~m!

] lnuXu
5E

M

MT dm8

m8

]g r8~m8!

] lnuXu
1E

MT

m dm8

m8

]g r~m8!

] lnuXu
,

~4.73!

where

]g r8

] lnuXu
5

4CrTT

~8p2!2

1

~SSM8 1SSM8† !2

] ln ZT8

] lnuXu
. ~4.74!

~T is not a light field inL, and so there is no contribution
from scales belowMT .) We therefore have

] ln Zr~m!

] lnuXu
5

4CrTT

~8p2!2 EM

MT dm8

m8

1

@SSM8 ~m8!1SSM8† ~m8!#2

3
] ln ZT8~m8!

] lnuXu
. ~4.75!

~We see that theM-dependent part ofZr is independent of
the renormalization scalem.! The dependence ofZT8 on the
messenger threshold is identical to the calculation in GMSB,
and we obtain

] ln Zr~m!

] lnuXu

5
8CrCTTT

2

~8p2!4 E
MT

M dm

m
gSM84 ~m!E

m

M dm8

m8
gmess84 ~m8!.

~4.76!

From this, we can obtain the gaugino mass

ml~m!5
gSM

2 ~m!

2

^FX&

^X& (
r

Tr

8p2

] ln Zr~m!

] lnuXu

5
4CrCTTT

2@( rTr #

~8p2!5
gSM

2 ~m!

3E
MT

M dm8

m8
gSM84 ~m8!E

m

M dm9

m9
gmess84 ~m9!.

~4.77!

Notice that the result scales likeml5aSM
3 amess

2 ln2M/MT , in-
dicating that two loops are accounted for by one-loop evolu-
tion.

V. EFFECTS FROM OTHER THRESHOLDS

Up to now, we have been focusing on effects that can be
computed from the dependence on the messenger threshold.
However, there are interesting models with other thresholds
that can give rise to important SUSY-breaking effects in the
low-energy theory. In this section we analyze some illustra-
tive examples.

A. Flat direction effective potential

In the limit where SUSY is unbroken, the minimal super-
symmetric standard model has a large space of flat direc-
tions, directions in field space where the classical potential
vanishes identically.~For an exhaustive list, see Ref.
@30#.! All of these flat directions will be lifted by SUSY
breaking, and we are interested in computing the effective
potential far out along one of these flat directions. For
GMSB, the effective potential can be evaluated from two-
loop component diagrams such as those evaluated in Ref.
@31#, with the motivation of studying the cosmology of these
flat directions. We will show how to compute the effective
potential without evaluating loop diagrams.

We will explain our technique using a toy theory with an
‘‘observable sector’’ consisting of a U~1! gauge theory with
Nq pairs of chiral fieldsq and q̄ with charges11 and21,
respectively. These are coupled to a ‘‘messenger sector’’
consisting ofNQ pairs of chiral fieldsQ andQ̄ and a singlet
field X that parametrizes SUSY breaking. The Lagrangian is

L95E d4u @Zq9~q†eVq1q̄†e2Vq̄!

1ZQ9 ~Q†eVQ1Q̄†e2VQ̄!1ZX9X†X#

1E d2u 1
2 S9WaWa1H.c.1E d2ulXqq̄1H.c.

~5.1!

Even thoughX is a background field, we must include a
‘‘kinetic’’ term for X to account for the anomalous dimen-
sion of operators that depend onX. ~This operator is just the
contribution to the cosmological constant.!
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This theory has a single classical flat direction with^q&
5^q̄&. We want to compute the effective potential for^q&
5^q̄&@^X&. In this case, the largest threshold in the theory
is at the scale

M15g~M1!u^q&u, ~5.2!

whereg is the U~1! gauge coupling. At this scale, the U~1!
gauge group is completely broken. The fields that are light
below this scale areQ, Q̄, and the flat directionq5q̄, pa-
rametrized by a fieldY defined as

q5^q&1Y, q̄5^q̄&1Y. ~5.3!

The background fieldX is also present in the low-energy
theory. The effective Lagrangian below the scaleM1 is
therefore

L85E d4u@ZQ8 ~Q†eVQ1Q̄†e2VQ̄!1ZX8X†X1ZY8Y†Y#

1E d2u XQQ̄1H.c.1•••, ~5.4!

where the ellipsis denotes higher-dimension operators.
The next threshold of interest is the messenger threshold

at M5l^X&. Below this scale, the effective Lagrangian con-
tains only the fieldsX andY, and it is given by

L5E d4u @ZXX†X1ZYY†Y#1••• . ~5.5!

We are interested in the effective potential forY in this ef-
fective Lagrangian. When we continue the couplings into
superspace, there will be contributions to the effective poten-
tial for Y from the Y dependence ofZX as well as theX
dependence ofZY . The fieldY does not have renormalizable
interactions below the scaleM1 , and soZY does not depend
on X at the renormalizable level. The contribution to the
effective potential we are interested in is therefore

Veff~ uYu!52u^FX&u2ZX~ uYu!. ~5.6!

We computeZX using tree-level matching and one-loop
running. Using the RG equations

m
d ln ZX9

dm
52

NQ

4p2

l2

ZX9ZQ9
2

,

m
d ln ZX8

dm
52

NQ

4p2

l2

ZX8ZQ8
2

, ~5.7!

we obtain

ZX5ZX9 ~m0!2
NQl2

4p2 E
m0

M1 dm

m

1

ZQ9
2~m!

2
NQl2

4p2 E
M1

M dm

m

1

ZQ8
2~m!

, ~5.8!

wherem0 is a fixed renormalization scale used to define the
theory. Note thatZX is independent of the renormalization
scale. Since we are interested in theY dependence, we com-
pute

]ZX

] lnuYu
5

NQl2

4p2 E
M1

M dm

m

1

ZQ8
2~m!

] ln ZQ8 ~m!

] lnuYu
. ~5.9!

ZQ8 does not run in the effective theoryL8, and so we have
ZQ8 (m)5ZQ9 (M1), which gives

] ln ZQ8 ~m!

] lnuYu
5

g2~M1!

8p2
. ~5.10!

In this way, we obtain

uYu
]Veff

]uYu
5

NQl2u^FX&u2

~4p2!2

g2~M1!

ZQ
2 ~M1!

ln
M1

M
. ~5.11!

Note thatM1 depends onuYu, and so this result automatically
gives the RG-improved form of the effective potential.

B. „S…axion potential

There are a number of models for physics beyond the
standard model that involve the spontaneous breaking of a
global symmetry at large energy scales. For example, ‘‘in-
visible’’ axion models invoke the breaking of a global
U(1)PQ symmetry at scales 1010– 1012 GeV in order to solve
the strongCP problem. Other global symmetries that may be
spontaneously broken include lepton number and flavor sym-
metries.

The breaking of a global symmetry will give rise to a
massless Nambu-Goldstone boson~NGB! for every broken
generator. If the global symmetry is broken at a scale where
SUSY is~approximately! unbroken in the visible sector, then
the light bosons must form complete chiral supermultiplets.
There are therefore extra scalars whose mass is protected by
SUSY.9 We call these fields SNGB’s. The SNGB fields pa-
rametrize noncompact directions in the vacuum manifold in
the limit where SUSY is exact, and different points along the
flat direction correspond to different values for the scale at
which the global symmetry is broken. The SNGB fields will
acquire a potential after SUSY breaking, which determines
the vacuum expectation values along the flat direction.

As an example, we consider an axion model with colored
fields R and R̄ whose mass is determined by the vacuum
expectation value of a fieldF. If we write

F5^F&1A, ~5.12!

the imaginary part ofA is the axion, while the real part is the
SNGB. The Lagrangian is

9If a non-Abelian symmetry is broken, some of the Nambu-
Goldstone bosons can belong to the same chiral supermultiplet, but
it can be shown that there are always some ‘‘extra’’ scalars.
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L95E d4u ZR~R†eV~R!
R1R̄†eV~R!

R̄!

1E d2u kFRR̄1H.c.1••• , ~5.13!

where we have omitted the messenger sector and standard-
model fields; see Eq.~4.1!. The fieldsR, R̄ therefore have a
mass

MR5
k^F&
ZR~MR!

. ~5.14!

Below this scale, the effective LagrangianL8 is simply that
of ordinary GMSB’s together with a kinetic term for the field
F @see Eq.~4.1!#. Below the messenger thresholdM the ef-
fective LagrangianL is that of the standard model together
with kinetic terms for the singletsF andX. The wave func-
tion parameterZX in this effective Lagrangian depends on
the R mass, and this contains the leading contribution to the
effective potential for the saxion field.

We can computeZX using one-loop running and tree-
level matching:

ZX5ZX9 ~m0!1E
m0

MR dm

m
ZX9 ~m!gX9 ~m!

1E
MR

M dm

m
ZX8 ~m!gX8 ~m!, ~5.15!

wheregX is the anomalous dimension ofX as defined in Eq.
~5.7!. The parameterZX does not run in this effective theory,
and so we need not specify a renormalization scale for it. We
compute

]ZX

] lnuFu
5E

MR

M dm

m

]

] lnuFu @ZX8 ~m!gX8 ~m!#

5
NQulu2

4p2 E
MR

M dm

m

1

ZQ8
2~m!

] ln ZQ8 ~m!

] lnuFu
.

~5.16!

The right-hand side is evaluated using

] ln ZQ8

] lnuFu
5E

MR

m dm8

m8

]gQ8 ~m8!

] lnuFu

52
CQ

4p2 EMR

m dm8

m8
g84~m8!

]

] lnuFu S 1

g82~m8!
D

5
CQTr

~4p2!2 EMR

m dm8

m8
g84~m8!, ~5.17!

which gives

uFu
]Veff

]uFu
52

TrCQNQulu2

~4p2!3
u^FX&u2

3E
M

MR dm

m

1

ZQ8
2~m!

E
m

MR dm8

m8
g84~m8!.

~5.18!

As before, this gives the RG-improved form for the effective
potential. Note that the slope of the potential is negative,
indicating that the saxion vacuum expectation value is driven
away from the origin.

In the opposite limitMR!M , it is easy to see that the
potential also decreases as a function ofMR . In the effective
theory at the scaleM, R and R̄ get a positive soft mass
squared from GMSB, whileF has zero soft mass. However,
the Yukawa couplingkFRR̄ drives theF soft mass2 nega-
tive in running betweenM and the scaleMR whereR andR̄
are integrated out.~This contribution is analogous to the
negative contribution to the Higgs boson mass squared from
the top quark Yukawa coupling.!

Thus, in all regions, the potential prefers to push the sax-
ion vacuum expectation value, and hence the axion decay
constant, to larger values. Therefore new interactions are
needed between the axion and GMSB sectors in order to
stabilize the axion decay constant in the cosmological and
astrophysically desirable window between 1010 and
1012 GeV.

VI. CONCLUSIONS

In this paper, we have shown that the renormalization of
soft-SUSY-breaking terms is completely determined by the
renormalization of SUSY-preserving terms if the regulator is
supersymmetric. This allows us to calculate certain SUSY-
breaking effects in gauge-mediated theories by performing a
supersymmetric calculation and ‘‘analytically continuing’’
the result into superspace. The method is very powerful and
allows the calculation of interesting effects at three-loop or-
der and higher by purely algebraic manipulations.

The formal results that justify these calculations are easy
to state in superspace if the soft-SUSY-breaking terms are
parametrized byu-dependent terms in the supersymmetric
couplings. If the theory is regulated in a supersymmetric
manner, then SUSY is formally preserved if we regard the
bare couplings as superfield spurions. Our result is that there
is a definition of therenormalizedcouplings that can be
similarly grouped into supermultiplets. Specifically, the
renormalized couplingsKR are related to the bare couplings
K0 via a superfield relation of the form

KR~m!5 f ~K0 ,L,m!. ~6.1!

The functionf determines the renormalization of the super-
symmetric couplings as well as the soft-SUSY-breaking
terms and is the basis for the analytic continuation into su-
perspace. An analogous relation holds between the~renor-
malized! couplings of an effective theory and the couplings
in a more fundamental theory.
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This leads naturally to a definition of the renormalized
gauge coupling chiral superfield

S~m!5
1

2gh
2~m!

2
iQ

16p2
2u2

ml,h~m!

gh
2~m!

~6.2!

as a holomorphic object that is renormalized only at one loop
~to all orders in perturbation theory!. However, the subtrac-
tion that definesS(m) is not invariant under constant rescal-
ing of the fields, and so the components ofS(m) do not
correspond directly the usual renormalized couplings. The
real superfield

R5S1S†2
TG

16p2
ln~S1S†!2(

r

Tr

16p2
ln Zr

1O„~S1S†!21
… ~6.3!

is invariant under the field rescaling.~Here r runs over the
matter representations of the gauge groupG and Tr is the
index of r; Zr is the wave function factor for the fields in the
representationr.! We show that the lowest components of
R,

1

g2~m!
5R~m!u,2

ml~m!

g2~m!
5R~m!uu2, ~6.4!

are precisely the 1PI gauge coupling and gaugino mass de-
fined by Euclidean subtraction or by minimal subtraction in
dimensional reduction. TheO„(S1S†)21

… corrections ac-
count for the possible scheme dependence in the definition of
R. Equation~6.3! and much of the story leading up to it are
very similar to the results of Ref.@5~a!#, but we emphasize
that all quantities are finite renormalized quantities, and no
reference is made to the Wilsonian renormalization group.

The u2ū2 componentR is given at lowest order by

Ruu2ū25
1

8p2 F2TGml
21(

r
Trmr

2G ~6.5!

and governs the RG evolution of dimension-2 soft terms. In
dimensional reductionRuu2ū2 corresponds to a 1/e counter-
term for thee-scalar mass.Ruu2ū2 can also be given a 1PI
interpretation: it corresponds to a nonlocal 1/p2 correction to
the propagator of the gauge supermultiplet. In the context of
dimensional reduction and~modified! minimal subtraction,
our results imply that the simple extension 1/g2(m)→R(m)
automatically picks out the so-calledDR8 scheme.

In practice, this result allows one to simply compute the
SUSY-breaking components ofR ~for example! by comput-

ing the lowest component as a function of the supersymmet-
ric bare couplings~or couplings in an underlying renormal-
ized theory!. This is a supersymmetric calculation, but taking
u-dependent components of the result determines the low-
energy SUSY-breaking parameters. For instance, we have
shown that the two-loop RG equations for soft terms inDR8
are directly derived from the supersymmetricb functions
and anomalous dimensions.

More remarkably, this approach can be used to relate
leading-logarithmic effects computed using the renormaliza-
tion group to finite effects, since the result of taking higheru
components of a logarithm gives effects that are not logarith-
mically enhanced:

1

16p2
ln MU

u2ū2

5
1

16p2

M uu2ū2

M u
. ~6.6!

In this way, we can obtain finite SUSY-breaking effects at
high loop order from simple algebraic calculations. Models
with low-energy supersymmetry breaking mediated by per-
turbative interactions are the natural arena to apply our
method. Indeed, it is precisely in these theories that it makes
more sense to worry also about subleading RG evolution:
this is because the boundary conditions for soft terms are in
principle calculable with comparable accuracy.

Our technique was used to compute a variety of effects at
two-loop order and beyond. We computed for the first time
the complete subleading corrections to the gaugino masses
~two loop! and scalar masses~three loop! in gauge-mediated
models; we showed how to compute the effective potential
for SUSY flat directions lifted by gauge mediation~two and
three loops!. We also proved that gaugino masses are
screened from higher-loop corrections involving couplings in
the messenger sector. Therefore, in the standard gauge-
mediated scenario, gaugino masses are rather insensitive to
details of the model. Moreover, this result also shows that if
the gaugino masses are not generated at one loop~as in the
standard case!, they will be generated only from the light
matter fields and will generally be too light. This shows that
gauge mediation is a unique way to generate scalar and
gaugino masses of the same order through loop effects.
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