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We extend to all orders in perturbation theory a method to calculate supersymmetry-breaking effects by
analytic continuation of the renormalization group into superspace. A central observation is that the renormal-
ized gauge coupling can be extended to a real vector superfield, thereby including soft breaking effects in the
gauge sector. We explain the relation between this vector superfield coupling and the “holomorphic” gauge
coupling, which is a chiral superfield running only at one loop. We consider these issues for a humber of
regulators, including dimensional reduction. With this method, the renormalization group equations for soft-
supersymmetry-breaking terms are directly related to supersymmetric beta functions and anomalous dimen-
sions to all orders in perturbation theory. However, the real power of the formalism lies in computing finite soft
breaking effects corresponding to high-loop component calculations. We prove that the gaugino mass in
gauge-mediated supersymmetry breaking is “screened” from strong interactions in the messenger sector. We
present a complete next-to-leading calculation of gaugino magsesloops and sfermion masseshree
loops in minimal gauge mediation and several other calculations of phenomenological relevance.
[S0556-282198)06319-X

PACS numbes): 11.30.Pb, 11.10.Hi, 12.60.Jv

[. INTRODUCTION the SUSY limit are related tfinite SUSY-breaking effects.
For example, the RG can be used to compute corrections of
Recently there has been a great deal of interest in buildinthe form (InM)/(1672), whereM is a threshold mass. M is

models in which supersymmetry breaking is communicatech superfield, then this contribution has a SUSY-breaking

to the observable particles through renormalizable interaceomponent

tions[1]. A common feature of these models is that super-

symmetry breaking occurs in the masses of “messenger” 1 M0

fields in the form

1672 M|y

In M| g2g2= (1.2

6’772
M=Mgysy*+ M, (1.2
which contains a loop factor, but no logarithm. Effects of
where Mgysy is a supersymmetri€SUSY) mass term and this type therefore correspond to finite loop effects that are
SM breaks supersymmetry. In most models of this kind connot related to a RG calculation in components.
structed to dateM <Mgysy, and so the messenger thresh- A simple power-counting argument can be used to show
old is approximately supersymmetric. Integrating out thethat in gauge-mediated models the leading SUSY-breaking
messenger fields gives rise to supersymmetry breaking in tHerms in the low-energy effective Lagrangian arise from this
low-energy effective Lagrangian below the schleA large  sort of threshold dependence in the dimensionless couplings.
amount of work has already been done on the calculation ofhis allows one to compute one- and two-loop SUSY-
the supersymmetry-breaking effects from various types obreaking effects using the one-loop RG equations and tree-
interactiong 2,3]. In Ref.[3] it was shown how to compute level matching, analytically continued into superspace. In
the leading low-energy supersymmetry-breaking effects in &ef. [3] this technique was used to reproduce known results
large class of models using only one-loop renormalizatiorin a much simpler way and also to derive new phenomeno-
group (RG) equations and tree-level matching, while directlogically interesting results that would be much more diffi-
calculations of the same quantities require the evaluation ofult to compute directly.
one-and two-loop graphs. In this paper, we extend the analysis of R&f to higher
The starting point of Ref.3] is the observation that since orders in perturbation theory. One motivation for this is to
the messenger threshold is approximately supersymmetridlefine an unambiguous procedure to perform the analytic
one can use a formalism where all couplings and masses agentinuation into superfields beyond one loop. We show that
treated as superfields and the SUSY-breaking terms corréhe gauge coupling is naturally extended to a real superfield
spond to nonzerad-dependent spurion components of thethat is not the sum of a chiral and an antichiral superfield.
couplings. In this framework, it is not hard to see thatThe #?6?> component of the real gauge superfield plays a
leading-logarithmic effects that are determined by the RG ircrucial role in reproducing the correct behavior of perturba-
tion theory. Another motivation for this is to obtain new
results of interest for testing models in the literature. In par-
*On leave of absence from INFN, Sez. di Padova, Italy. ticular, we are able to compute gaugino, squark, and slepton
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masses in gauge-mediated models at the next-to-leading or- 0

der in perturbation theory. Our result corresponds to an ex- Ereng d*e Z,d' — @. (2.2
plicit calculation of two- and three-loop Feynman diagrams. A

One of our results is that the gaugino masses in gauge- . . .
mediated models are “screened” from corrections from the!V€ ¢an incorporate soft SUSY breaking by extending the
SUSY-breaking sector up to four loops. This implies that the_bare couplingsh and 2, to be ¢-dependent(but x-

gauge-mediation relations are preserved up to corrections dfdependent superfields. (\ is a superpotential coupling,
order g45,\,|/(16772)2~ 10* even if the SUSY-breakingor and is not renormalized. We have regulated the theory in a

messenger sector is strongly coupled. We also Computesupersymmetnc manner, and so we can treat the bare cou-

other interesting effects, such as the gaugino masses in “mg_llngs as superfields even at the quantum level.

P : : Because the theory is regulated in a way that preserves
diator” models[4] and the gauge-mediated effective poten- ) . : X
tial induced along classically flat directions, both fofflat SUSY (including the spurious SUSY acting on the cou-

directions(two loops as well as for the scalar partner of the pIm_gs), the divergences that appear order by order In pertur-
axion (three 100pk bation theory can be absorbed by supersymmetric counter-

This paper is organized as follows. In Sec. I, we give aterms. That is, we can write

d_ef|n|t|on of reno_rmallzed_coupllng constants that can _be Zo=Z(p)+ 820N, Z(w), A w), 2.3
viewed as superfield spurions to all orders in perturbation

theory. We use as examples specific theories that allowhere 52 is the matter wave function counterterm. Because
simple supersymmetric regulators. In Sec. Ill, we discuss thighe relation between the bare and renormalized couplings
prescription in the case in which the theory is regulated usingreserves SUSY, we see that the renormalized couplings can
dimensional reduction. We also show that extending the coualso be viewed as SUSY spurions.

plings to superfields automatically selects the so-cdll&d More specifically, we can define the counterterms by
scheme for the soft terms which was defined in R&6]. In computing supergraphs with renormalized couplings in the
Sec. IV, we use our technigue to prove the gaugino screeningertices and propagators and choosing the counterterms to
result mentioned above and compute gluino, squark, andancel the divergences. In the SUSY limit where there is no
slepton masses in gauge mediation at the next-to-leading o# dependence i, and \, the counterterms have the form
der(NLO). We also extend our results Bpterm breaking of  [9]
SUSY and derive the gaugino mass in “mediator” models.

In Sec. V, we compute some other interesting SUSY-
breaking effects in gauge-mediated theories. Section VI sum-
marizes our main results and contains our conclusions.

5L=f d*0 ZC(N2 Z23(w),|A|lp)@Td, (2.9

where the form of the functio follows from the fact that
the theory depends trivially on the overall normalization of
Il. RENORMALIZED COUPLING CONSTANTS the fields. _ _
AS SUPERFIELDS In Fhe presence pf soft SUSY breaking, the renormalized
couplingsZ and\ will also depend or¥, and there are new
The main tool of our approach is the use of renormalizaterms in the Feynman rules involving supercovariant deriva-
tion schemes in which the renormalized coupling constantsives acting on the couplingg and\. However, it is easy to
can be treated as superfields. Much of our discussion can ke that such terms can be ignored for purposes of computing
viewed as a restatement of the insights of Shifman and Vainthe counterterm$10]. Because our regulator preserves the
shtein[5(a)] in the framework of renormalized perturbation spurion SUSY even in the presence of soft SUSY breaking,
theory(see also Ref5(b)]. However, we will generalize the we know that the counterterms can still be chosen to be
method to include supersymmetry-breaking effects. Fosuperfield functions ok and Z. But local superspace coun-
gaugino masses amlterms, this was first done in Rd6].  terterms involving supercovariant derivativeshoénd Z are
Here we will simultaneously describe the running of the scaforbidden simply by dimensional analysis. We conclude that
lar masses. For related studies, see also [Ré&f. even in the presence of soft SUSY breaking, the counter-
terms are still given by Eq2.4). Note what has happened
here: the renormalization of the theory with soft SUSY
A. Invitation: - The Wess-Zumino model breaking is completely determined bysapersymmetrical-
In this subsection we consider a simple example that ilculation. This is the advantage of treating the bare and renor-

lustrates many of the main ideas we will use in more com Malized couplings as superfields.

plicated theories. We consider a massless Wess-Zumino 'he fact that the theory depends in a trivial way on the
model with bare Lagrangian scale of the fields can be expressed more formally by noting

that the bare Lagrangian is invariant under

4 t 2, N a3
Lo= | d%0 Z,®'®+ d 0§CI> +H.c.|], (2.1
INote that taking a superfiel§ to be x independent does not
violate SUSY, since it amounts to imposing the supersymmetric
and higher-derivative regulator terrf3] constraint?,,S=0.
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b PP ZOHe—(A+AT)ZO Ase A\, (2.5 spurion superfields even at the quantum level. We then de-
’ ’ ’ fine renormalized coupling&(u) related to the bare cou-
whereA is a 6-dependentbut x-independentchiral super-  plings by a superfield relation
field. The fact that the relation between the bare and renor-
malized parameters preserves this feature can be expressed Ko=G(K(p),Alp). (2.13
by stating that the renormalized parametetransforms the

The renormalization of the couplings in the SUSY limit then
same way asty:

determines the renormalization of the soft-SUSY-breaking
terms as long as the relation does not involve supercovariant
derivatives acting oK (). But in a vast class of theories,
this is guaranteed by simple power-counting and symmetry
arguments. Equatiof2.13 therefore determines the com-

Zse (ATAD z (2.6)

If we view this as a (1) “gauge” transformation, then I£

dInZy) t f field. Thi int of vi ;
\(,aﬂ b en eg'zr eﬁgi(ﬁgne?uﬁoaugﬁ;?eer € 'S point of view plete RG flow of all soft-SUSY-breaking parameters. In the

The relation between the bare and renormalized quantitiersemalnder of this sect'lon, we explain how to_(_:arry out the;e
determined by Eq(2.4), steps for gauge theories, which present additional subtleties.

Zo=Z(w)[ 1+ C(N|% 23(w),| Al )], (2.7 B. Holomorphic coupling in supersymmetric QED

We begin with SUSY QED, a (1) gauge theory with

determines the RG flow of the theory frah®,/dw=0. This i ) _
matter fieldsb and® with chargest+1 and—1, respectively.

ives
g This theory can be regulated in a completely supersymmetric
dinz - 3 3 manner using a combination of Pauli-Villars fields to regu-
L P Ly CUN* 2% |AlTw)= (N[ 25). late matter loops and a higher-derivative regulator for the

(2.9 gauge fields. The bare Lagrangian can be writtengs
. + Lo, Where
The #=6=0 component ofy is just the supersymmetric
anomalous dimension. The renormalized soft scalar mméss ‘CO:J d4e Zo(q)*revd)Jrq_)Te—Vq_))
is defined by writing

Z=27[1-6?6°m?], (2.9 + f d?63SoW*W,,+H.c. (2.19

whereZ is the renormalized wave function factor. The RG

equation for the soft mass is determined by #26> compo-
nent of Eq.(2.9):

contains the “physical” couplings and

Lreg= f d*0 z,(QTeVa+ Qe V)

dn? 3|\ [2m?
g =~ YN 2 ze= = ' (N1 ZP) | |3 _
H z +f d?6 ApQQ+H.c.
(2.10
This formula is valid to all orders in perturbation theory. At . d
the one-loop level, +f d?o W 4A2 W, tH.c. (2.15
G
y=— 1 w (2.11) contains the regulator terms. Heleand () are Pauli-Villars
16m2 23 ' fields (odd-statistics chiral superfieldand A4 and Ag are
cutoffs for the matter and gauge fields, respectively. We will
and we recover the familiar result take the cutoffs to infinity withA 4~ A5 ; so there is effec-
tively a single cutoff. Note that the bare wave function factor
dm? 3 =, Z, appears both in front of the matter fields and the Pauli-
M ﬁ: 16572 Ame, (2.12 Villars fields. This is necessary to regulariZg-dependent

subdivergences that occur at two loops and beyond. For ref-

whereA=|\|Z~32 is the running coupling constant. Equa- €"€nce, the components & are given by

tion (2.8) also gives the RG equation férterms if we add a .
nonvanishingd? component taZ(u). Sozi_ 100 —
In the following, we will generalize the procedure fol- 295 1612

lowed in this section to general renormalizable SUSY theo-

ries with soft SUSY breaking. The idea is to include softwhere®, is the (barg vacuum angle andh, , is the bare
SUSY breaking by extending the bare couplifgg to -  gaugino mass.

dependent superfields. As long as the theory is regulated in a We incorporate explicit soft SUSY breaking by allowing
supersymmetric manner, the bare couplings can be viewed &se bare coupling, and Z, to be superfields with nonze®

m
g2 —0 2.16

93
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components. Just as in the Wess-Zumino model, the fact that

the regulator preserves SUSY means that the bare couplings VW“QVW V“’V“QM'

can be viewed as superfields at the quantum level, and we %y Q8

can renormalize the theory by adding counterterms that are ) o ]
local (in superspadeand gauge invariant. We therefore de- FIG. 1. One-loop diagrams contributing to the vector field

fine renormalized superfield couplin§sand Z by propagator.

So=S+6S, Zy=2Z+6Z, (2.1 wherea and b are independent of. We see thag is the
one-loop contribution antd is identically zerasince the zero
where the counterterm8S and 62 are superfield functions coupling limit corresponds t&— +«). We conclude that
of Sand Z determined order by order in perturbation theorythere is no divergence in the vacuum polarization beyond
to cancel the ultraviolet divergences. one loop? If this argument is to be believed, the coupliBg
For Z we can proceed exactly as in the Wess-Zuminosatisfies the exadito all orders in perturbation thedrnRG
model discussed above, but we immediately encounter diffiequation
culties when we try to renormalize the gauge coupling as a

superfield. One way to see the problem is that the only mani- ds 1
festly gauge-invariant operator that can act as a gauge coun- M ﬁ =- p (2.23
terterm is &

This appears paradoxical, since it is known that gheinc-
£=f d?63 6SW*W,,+ H.c. (2.18 tion has a(scheme-independentontribution at two loops.
To understand what is going on, we compute the counter-

However, the result of a supergraph calculation is necessaril{'™ explicitly at one loop, keeping the couplings as super-
ad*g integral. At one loop, this is not a problem because th |e|ds.. The diagrams are _shovyn In '.:'g' 1. We thaln the
one-loop gauge diagrams are independent of all Coup"nggontnbutmn to the one-particle irreducibl&Pl) effective ac-
(since the gauge coupling is in front of the kinetic t¢rand
the counterterm can be proportional to

1
f Tip=—5 f d4af d*p V[ ¥(p®) + 8S+ 5S"p?PrV
d*9(D*VW,+ H.c.)=f d?0 Wew,,+H.c.

(2.19

However, beyond one loop, the coefficient of the counter
term depends on the superfield couplings, and the counter- )
term cannot be written ag*¢ integral. y(p?) = ! j

This argument can be sharpened by using the fact that the 2
countertermé$S is a chiral superfield. Because of thigS

+finite, (2.249
whereP+ is a transverse superspace projector and

d*k —|AglY2?
(2m)* KA(K2—| A |2 22)

must be a holomorphic function & A, Ag, andu, inde- " —|Ag|? 22
t
pendent ofS" as well asZ. We therefore have (k+p)2[ (k+p)2—|Ag|Z 2]
_ele # Ac 1 |Ael¥22
5= f( S Ay Ag)’ (220 =—1n % +finite. (2.29
8w -p

wheref is a holomorphic function. Now the divergence in the
gauge coupling is independent of the vacuum angieto
all orders in perturbation theory, sinde“’F,, is a total
derivative and therefore irrelevant in perturbation theory. 1 Ao

Therefore, 6S=———1In—, (2.26
872 M

The 1PI effective action can therefore be made finite by add-
ing the counterterm

Jd Re(f) of
:W(S):_ m 7S (2.2 where p is a renormalization scale. Note that we cannot
choosesS to depend on the “kinematic” cutoffA o|/ Z, the
Sincef is a holomorphic function, the only possibility is that scale at which the Pauli-Villars regulator cuts off the ultra-
9f19S is independent 0§, which implies violet modes, simply because this quantity is not a chiral
superfield. On the other hand, it is clear that physical quan-
f(Sy=a+bs (2.22

3Note that this argument does not assume thata power series
2We do not address the subtle question of renormalization beyonih S This is important for non-Abelian gauge theories, where we
perturbation theory. will see that the perturbation series is nonanalytiSin
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tities depend on\, only through the combinatiom |/ Z, Because the correlation functions depend $nonly

together with the bare parameters. This is the key to undefhrough Eq(2.30, the relation between the coupliiand a
standing the meaning of the renormalized couplihg gauge coupling defined directly in terms of 1Pl Green's
More formally, we note that the bare Lagrangian is invari- function is nonanalytic in the couplings. As already observed
ant under in Ref. [5(a)], this can resolve the apparent contradiction
between a holomorphic coupling that runs at one loop and
DD, Dseld, O—-el), Qsel, the conventional definition of the gauge coupling that runs at

all loops.

ZOHe’(A*AUZO, Ap—e Ay, Sy=S,, (227 We now note that the quantity

whereA is a 6-dependentbut x-independentchiral super- ~ ‘ 1

field. BecauseZ, measures the scale of the fields in the R=S+5 e In 2 (2.32
regulated theory, we can choose the subtractions that defined ™

the renormalized so that that appears in Eq(2.30 is a good candidate for eeal

Z= Zof(so+sg,|Aq)|/Zo,|AG|,M), (2.28 renormalized superfield couplin is a finite quantity that
parametrizes the couplings of the theory, and it does not have
which shows that we can assign the same transformation runy unphysical dependence on the scale of the fields. Also,

to Z as Z,.* From Eq.(2.26) we find that the renormalized the #=0 and#? components oR give the correct RG equa-
S(w) transforms as tions for the gauge coupling and gaugino mass to two loops.

[In fact, Eg.(2.32 is identical in form to the famous equa-

tion of Ref.[5(a)], but note that our equation involves only

S—>5-—. (2.29  renormalized quantities. In the next subsection, we will
41 . . ~ .

explain the relation betweeR and a renormalized gauge

Just as in the case of the Wess-Zumino model, we havECUPling defined from the 1PI action and address the mean-

found a symmetry under whicl can be interpreted as a ing of the 626 component oR.

background 1) gauge field. Equatiot2.29 is just a reflec- We close our discussion of SUSY QED by remarking that
tion of the Konishi anomaly11]; therefore, we will refer to there is a completely analogously symmetry with a well-
this symmetry as thgrenormalizedl “anomalous W1)” defined action on théare couplings. The “gauge transfor-
symmetry. As a consequence of this symmetry, physicamation” ®—e"® has an anomaly, and so the bare gauge
quantities can depend dhonly in the combination coupling must also transform to compensate for the transfor-
mation. In our regulator, this can be seen from the fact that

|A |2 22 the Pauli-Villars fields transform under the symmetry, and so
. the anomaly can be obtained as the matrix element of the

Pauli-Villars mass term in a background gauge field. More
(2.30 generally, it is clear that any holomorphic regulator yields
oWe anomaly, and the result is that the theory is invariant
émder the transformation

1 1
S+S'———In Z=5+S}+—1In
412 8m? 2

(The right-hand side shows that this combination depends
the kinematic cutoff when expressed in terms of the bar
parameter$.Notice thatS—S', which is proportional to the
vacuum angle, cannot appear in any invariant, consister&,HeAq) z Hef(AJrAT)Z SoHSO—L (2.33
with the fact that the vacuum angle is not physical in a ' 0 o A2’ '
theory with massless fermions. Because of the symmetry de-

fined by Eqs(2.27) and(2.29), the relation between the bare with the regulator Lagrangiafmvariant This “bare” or

and renormalized wave function factors has the form “Wilsonian” anomalous U1) is also a very useful symme-
try [12].
1 |Agl/Z |Ag]
Zo=2Z(u)f| S+S'—=—=1In Z, , — . (2.31) ! o .
A2 M M C. Real superfield coupling in supersymmetric QED

. . _ We now give another definition of the renormalized gauge
The RG flow of the theory is determined Z,/du=0. . pjing, obtained directly from the 1P effective action by
Because of the loop factor multiplying Ifi in the above g iraction at a Euclidean momentum point. This corre-

expression, i+ 1)-loop effects are often related teloop sponds more closely to the “physical” coupling that de-

effects. There are many examples of this in the literature, and.ijnes the momentum dependence of the effective charge.

we also obtain new results of this type in subsequent seGyqre 1o the point, this definition of the gauge coupling can

tions. be directly understood in terms of component calculations,
allowing us to make contact between our formalism and con-
ventional calculations.

“This may become clearer when we give a 1PI definitior£ah In a component calculation, it is natural to define the
the next subsection. renormalized gauge coupling and gaugino mass in terms of
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an appropriate 1Pl correlation function at a Euclidean kine- R(M)Ey(p2)|p2:_ﬂzl (2.40

matic point. We now show that a definition of this type gives

rise to a real superfiel® whose lowest components are the Everything in this definition is manifestly supersymmetric,

gauge coupling and gaugino mass. and so the relation between this renormalized coupling and
Consider the supersymmetric limit first. To define thethe bare couplings is SUSY covariant. The interpretation of

renormalized gauge coupling, we must consider the gaugdhe components oR is given by

invariant bilinears inV,, in the 1Pl action. Since we include

quantum effects, we must focus aif 6 integrals. By a 4 "

simple operator analysis one finds that there exists just one f d*o yW —8p2 We

independent term P

2

D2 2“ d?03(vlo+ 6771 2) W*W,+ H.c.
FlPI:f d4pf d*0 y(p?)W* W,+H.c+-- (2.39 B
—8p? Aot p NP
_ (xﬁp/’-
+ 'y| 6202 ——p2 (2.4)

=f d4pf d?6% y(pP)WAW,,+H.c.+ - -+, (2.39
The lowest components &t are therefore the coefficients of
the gauge kinetic term and gaugino mass term, and we iden-
where the last identity follows simply by integrating over tify
half of superspace. Thereforgcan contain the contribution
from the tree-level and loop contributions to the ordinary 1 m, (@)
gauge kinetic term. We can therefore define the renormalized 2 =R(wlo, - 2
gauge coupling simply by subtracting at a Euclidean momen- g°(w) g°(w)
tum point: Note that this renormalization scheme is mass independent.
The 6%6? component ofR multiplies a nonlocal SUSY-
— (N2 breaking contribution to the 1PI action. It is instructive to ask
s =(P))p2= 2. (2.39 g cont to the ;
g°(u) what distinguishes thi®(m<) effect from the othelO(m?)
. i WW and WW operators induced by the terms involving co-
The role of the operator of Eq2.34) in generating the all-  yariant derivatives acting on the couplings. To do so it is
order 3 function was already emphasized in Rif(a)]. _useful to work in components. Since there are three compo-
We can similarly define a renormalized wave functionpant fieldsA,,, \, andD, there are in general three indepen-

superfield by considering the terms in the 1PI action thajent(m2) corrections to the corresponding self-energies:
contribute to the matter kinetic term

=R(u)|gp. (242

2
— — Vim2) 2 v__ v Ka
FlPI:j d4pf d46 g(pZ)[q)Tqu)+(DTe—Vq)]+... (2_37) H,’K (p )_(p g'u PMD )(1"'? ,
and defining Ki
I (p?)=p| 1+ —
Z={(p?)]po= 2. (2:39 ?
In the presence of soft-SUSY-breaking sourcesSiand 2
Z, the gauge kinetic terms in the 1PI effective action are Hp(p?) =1+ —2 , (2.43
p
D? 5 _ :
Flp,=f d4pj d*g y(p?)W* > W, where ka )y p=0(m?). A simple operator analysis shows
—-8p that the terms involving supercovariant derivatives acting on
+H.c4+O(D,SD. 2 ) (2.39 couplings generaté®(m?) corrections that always satisfy the

supertrace sum rulesd — 4«2+ k3 =0. On the other hand,

where y(p?) is now avectorsuperfield function of the cou- the 626° component oR is associated with a nonzero super-
plings S+S' and 2, andO(D,S, . . .) represents terms in- trace 2R|gz;z=3kf\—4x)2\+ K%. If one computes the effect
volving at least one supercovariant derivative acting on thef the dressed self-energies in Eg.43 on the matter self-
sources. By studying all possibl#WandWWterms involv-  energy, one finds that the only divergent contribution is pro-
ing supercovariant derivatives, it can be shown that they alportional to the supertrace. This simple exercise clarifies why
ways lead to terms of second order in the soft masses; i.ethe #26> component oR, although associated with a nonlo-
they areO(m?/p?). These terms therefore do not contribute cal operator, nonetheless enters into the RG flow equations
to the gauge kinetic term and gaugino mass term in the 1R¥f the softly broken theory.

action. It therefore makes sense to define a renormalized su- We now discuss the relation between the real superfield
perfield coupling by gauge coupling discussed here and the holomorphic gauge
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coupling described in the previous subsection. Since both areutoffs for SUSY Yang-Mills theory, with the field®, 7,
perfectly valid parametrizations of the renormalized gaugeand Q; playing the role of regulator fields. We will eventu-
coupling, we can expresgin terms of the holomorphic cou- ally take the limitA g ,Ag— with Ag~Ag, So that there
pling Sand Z. The couplingR is clearly invariant under the s effectively a single cutoff.
field rescaling, Eq(2.27), and so We now show that the finiteness of this theory persists
when S, is a chiral superfield with nonzer® components.
Any divergences in the 1P| effective action must be Idaal
N=1 superspageexpressions involving the superfield cou-
plings of the theory. Because this theory is renormalizable,
Demanding that the holomorphic and real couplings coincidehe divergences must have the same form as terms in the
at the tree level gives Lagrangian. There are no divergences wigns a number,
and so any divergences must be proportional to SUSY-
covariant derivatives acting 08,. But such terms have

1
R(u)=f S(M)+ST(M)—E|H Z(p)|. (2.49

- +
R(p)=S(u)+S'(n)— 42 In Z(p)+ 82 positive mass dimension, and so there can be no divergences
proportional to dimension-4 operators. The only remaining
+0(s+sh 1, (2.45  possibility is that there are divergences proportional to

where ¢ is a one-loop scheme-dependent constant. Notice

that this expression automatically gives the correct two-loop | 429 p2sf0’Q,+H.c. or f d2¢ D2Sftr(d2) + H.c.

B function. Equation(2.49 is identical to the famous for-

mula of Ref.[5(a)] that relates the 1Pl and “Wilsonian” (247
gauge couplings. However, it is important to remember that

the couplingSin our Eg.(2.49 is a renormalized coupling Such divergences can be excluded by considering the
constant. (anomaly-freg transformation

D. Holomorphic coupIingt;r;;t;persymmetric Yang-Mills Qjﬁeiaﬂj, 5y—>ei“(_lj, CI)He_Zi“CI),

We now consider some additional features that arise in
non-Abelian gauge theories, using the example of a pure
SUSY Yang-Mills theory with gauge group SNJ. We
regulate this theory in a supersymmetric way by embeddingnger whichazsg is invariant.
it into a finite theory with softly brokenV=2 SUSY. The This establishes that the theory above is finite and, there-
additional fields in the regulated theory consist of a chirakgre provides a regulator for the SUSY Yang-Mills theory
field ® in the adjoint representatiofthe /=2 superpartner e want to study. We still need to renormalize the theory in
of the V=1 gauge multiplétand 2N hypermultiplets con-  order to take the limitA, ,Ag—c. The renormalized La-
sisting of chiral fields)’ andQ; (J=1, ..., 2N) in the fun- grangian i8
damental and antifundamental representations, respectively.

The bare Lagrangian of the theowyritten in N=1 su-

perspacgis £=J d?6 S tr(W*W,)+H.c., (2.49

Ag—se 29N, Ag—e¥eAg, (2.48

cozf d26 St W*W,,— :D%(e Vb TeV)d]+H.c.
whereS is defined by

dor0taVodr 0dta—VT0.
+J d*6[Q;e"Q + Qe (] Sy=S+6S. (2.50

+< f d?6v2QPQ;+H.c. The countertermdS is fixed order by order in perturbation
theory to cancel the divergences &g ,Ag—0°.
- At one loop, the vacuum polarization in the background
2 J 2
+f d“0[A Q' Q3+ Ag tr(d4)]+H.c. (2.49 gauge is proportional to

The coefficient of the?® () interaction is fixed byV=2

SUSY. TheA’=2 SUSY is broken EXp“CItIyJ down_tcN The renormalized Lagrangian can be thought of as the “effective
=1 by the® mass term(the mass term fof)” andQ; is | agrangian” below the scales, , A . However, we must choose
N=2 invarian}. N=2 theories are finite beyond one 100p the couplings in the “fundamental Lagrangiat}, as a function of
[13]. With our choice of matter, the one-loop beta function A, andA so that the couplings in the “effective Lagrangian” are
vanishes and therefore, in the background gauge, there are Reld fixed as the cutoff is removed. This can be thought of as
divergences. The parametefs, and A therefore act as “fixing the parameters from low-energy experiment.”
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N |AG|2/(S+ ST)Z E. General gauge theories
1672 In —p? We have so far treated only simple theories where we
know how to construct a manifestly supersymmetric regula-
2N |Ag|? tor. However, we now argue that our results ap_ply to any
- > In > +finite+ S+ 85T, (2.5 SUSY gauge theory as long as a supersymmetric regulator
16w —p exists. The general arguments above tell us that the only

divergence in the gauge coupling occurs at one loop and has
where the “physical” cutoff for the® contribution is the form
|Ag|/(S+S") due to the non-canonical kinetic term for the

gauge multiplet. At this order, the theory can be renormal- 55 3Ts | Ag T, | Ay (2.56
i i - i = n—-— n—, .
ized in a holomorphic way by choosing 1602 &~ 162 4
s N | Ag 2N | Agq ) whereT, is the Dynkin index of the representation. Here
65= 1672 n 7+ 1672 n T (2.52 A is a cutoff parameter for gauge loops atdis a cutoff

parameter for matter fields in the representatioNote that
in order for this formula to make sens&g and A, must be
rﬁ:_hiral superfield spurions, as they are in the examples con-

ner, the same argument used in Sec. Il B shows that there ar dered previously. On the other ha_nd, the "kinematic™ cut-
f (the momentum scale at which loop momenta are

no counterterms beyond one loop to all orders in perturbatio b hiral field. for the simol
theory® We can therefore choose the counterterm to be give&amped cannot be a chiral superfield, for t € Simplé reason
by Eq.(2.52 to all orders in perturbation theory. The renor- that it must be real. As we have seen, E2/56 is consistent
malized gauge coupling defined in this way satisfiesake with the two-loop RG equatlons provided that the_klnematlc
act RG equation cutoff for matter loops i\ kin= A |/1Z, . The relation be-
tween the kinematic gauge cutoff amd; is more compli-
cated, as seen in the example of SUSY Yang-Mills theory. In
d_S: 3N (2.53 any case, in order to reproduce the correct two-loop beta
# du 1672 ' function, physical quantities must depend on the combina-
tion
As in SUSY QED, the fact that the holomorphic gauge - T
coupling has a one-loop beta function is closely connected to _ t, 'G Ty r
the fact that the subtraction depends/og andS+ S' sepa- R=S+S+ o5 In(S+S) 2 812 In Z,
rately. Logarithmic divergent loops always involve the “ki-
nematic” cutoff |Ag|/(S+S'), and therefore the renormal- +two-loop corrections, (2.57
ized expansion coefficient is

where u is a renormalization scale.
Because the theory is regulated in a supersymmetric ma

which is the real gauge coupling superfield. In the following
we will give further evidence for the generality of our con-

S+Sh+ i In(S+S" qlusions by showing how they grise in dimensional reduc-
2 tion, a regulator that can in principle be used for any SUSY
theory.
e N | |Agl/(S+ST) 2N | |Aq)] .
=St S 82 : m 82 : i 259 IIl. DIMENSIONAL REDUCTION

. i ) So far we have been dealing with regulators that apply
We can also define a real superfield coupling from the 1Py 1o special theories. However, in order to be able to
effective action similarly to what was done for SUSY QED. cqjculate higher-order effects in any theory, including the
In this scheme, there is a real gauge coupling superfeld sy hersymmetric extension of the standard model, the only
defined to be the coefficient of the propagator term in the  practical regulator is dimensional reductiddRED) [14,15).
1P effective actionR must depend on the combination, EQ. | this section we show how the holomorphic and real gauge
(2.54, and we find couplings arise in DRED. We also show that the procedure
of analytically continuing the renormalized couplings into
B + N . " superspace picks out the so-cal2R’ schemd16] in which
R=S+S'+ a2 IN(S+S")+0O(S+S") ™" (259  the e-scalar mass does not appear in physical quantities.

A. Real and holomorphic gauge coupling in dimensional

6 . . . reduction
Note that the perturbation series is nonanalyticSiras can be

seen from Eq(2.51). However, the arguments of Sec. 1B do not ~ The renormalization of SUSY gauge theories in the
require the perturbation series to be a power serieS and are  framework of DRED was clarified more than a decade ago
therefore valid in this case as well. by Grisaru, Milewski, and ZanofGMZ) [17]. They pointed
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out that ind=4—2¢ dimensions, there is an additional su- Reference[17] shows that at one loop, the divergences

persymmetric and gauge-invariant local operator can be absorbed i®S, but at two loops and higher, all
., divergences must be absorbeddm. This sheds consider-
Oemz=9:"tr(I,I,), (3.1 able light on the origin of the two-loop running of the gauge

coupling, as follows. At two loopgand highey, a 1/ pole

in 8T will appear as a result of subdivergences. By B83),

this corresponds to a d/pole in the counterterm for the
gauge coupling, which affects the beta function. The fact that
a 1/€? pole arises only from subdivergences explains why the
higher-loop contributions to the gauge coupling beta function

This operator is arO(e) (or “evanescent] operator, with 5 getermined by the anomalous dimensions of the matter
the property that fields

where g#” is the metric in 2 “compactified” dimensions
andI’, is the superfield gauge connection defined by

[r= %UZ,-BBB(e‘VD“eV). 3.2

New features arise if we include soft SUSY breaking by
f d*0 Oguz= ef d?0 tr(W*w,)+H.c. (3.3  extending the couplings to superfields. At one loop, we find
an ultraviolet-divergent contribution to thescalar mass:

(Note that g¢”T",I', is real) Therefore, the quantity 5
fd*8 Ogyz is a dimension-4 term that can appear as a coun- Sm? _9 -
N A 2
terterm for the gauge kinetic term. A< €
Taking this into account, the bare Lagrangian is

—TG|ma|2+2r T,m?|. (3.7

Although this is a finite effect, it is known that renormaliza-
) n tion of the e-scalar interactions is required to preserve uni-
/50:( f d?6 Sotr(W*W,)+H.c. tarity [18,19. (Indeed, an explicit calculation of Poppitz and
Trivedi [20] shows thatinfrared divergences arise at two
loops if thee-scalar mass is not renormalized.
To subtract the divergence in tlescalar mass in a way

. ) that preserves SUSY acting on the couplings, we must add
We can incorporate soft SUSY breaking by extendig@nd  the one-loop counterterm

Ty to 6-dependent superfield spurions. Because DRED pre-

serves SUSY, we can tre§ and T, as superfields even at 1

the quantum level. The meaning of the higher components of 6T=—— < | Te In(S+ sh-X Tnz| (39
T, is given by Bar '

+f d*0 Tog'tr(I',,I",)+matter terms. (3.4)

The logarithms ensure that the counterterm for ¢rsealar
f d4e Tog“"tr(I,T,) mass has the correct dependence on the gauge coupling and
is independent of the wave function of the matter fields. Note
that the scalar and?> components o8T give rise tofinite

=€ j d26(To|+ 62To| p2) tr(W*W,) + H.c. contributions to the gauge coupling and gaugino mass. This
restores the dependence of the renormalized gauge coupling
+Tol 2292 A A, . (3.5 onlinzand InG+S").

We now have all the ingredients we need to define the
That is, the lowest components B are contributions to the renormalized holomorphic and real gauge coupling super-
gauge coupling and gaugino mass, and #hé” component fields in DRED. The holomorphic gauge coupling is defined
is the e-scalar mass. simply by S. Becausa&’S contains only one-loop divergences
We now renormalize the theory by writing (and Sy is w independent Sruns only at one loop. On the
other hand, because of the subtraction in Bcg), the com-
So=u"?(S+8S), To=w ?(T+6T), (3.6 ponents ofS do not give the renormalized gauge coupling

. and gaugino mass. Rather, these are given by the lowest
where §S and 8T are counterterms that are determined Ordercomponents of a superfieR! defined by

by order in perturbation theory to absorb the diergences.

Note that we include a finite renormalized value TorThis R=S+SM+ eT+ 6TV, (3.9
corresponds to including evanescent effects: the scalar and

62 components of areO(e) contributions to the gauge cou- where sT®) is the coefficient of 1 in 6T. From Eq.(3.8),
pling and gaugino mass, and ti#6?> component ofT is a  We see that the quantitiédand S satisfy precisely the rela-
renormalizede-scalar mass parameter. We will return to thetion derived in the previous section for other regulators and
significance of these parameters below. If we compute usingenormalization schemes:

supergraphs, all divergences appear in the 1PI effective ac-

tion in the form fd*6 O/€", where O is a local(in super- B i To + Ty

spacé gauge-invariant supersymmetric operator; so the R=S+S'+ ﬁ In(S+3 )_Z 2 In 2,
counterterms can be defined to preserve the SUSY acting on

the coupling constants. +0O(S+SH ™. (3.10
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The definition, Eq(3.9), also shows that physical quantities cient to prove that the scheme we have defined is identical
must depend o throughR, since it is the components &  with DR’. Our procedure extends the definition PR’,
that multiply the kinetic terms and gaugino mass terms in thejiven in Ref.[16] at the two-loop level, to all orders in
Lagrangian. perturbation theory.

We need to understand what scheme in component calcu- Note that the inclusion of the evanesceiit term in Eq.
lations is picked out by the procedure above. It is useful tq3.9) is essential foR to satisfy thed-dimensional RG equa-

define a bare gauge coupling superfield tion
Ro=Sy+ Sg-l— €Ty (3.11) drR
. . . . p ——=2eR+B(R). (3.16
in terms of which the bare gauge coupling and gaugino mass du
are

This is easy to check at lowest order by considering the RG
equation forT. Therefore, in our schem@3 plays a role

1 My 0
;ZRo|o, —— =(Sot+ €To)|2=Rolg2, (3.12  similar to that of theO(e) term in thed-dimensional RG
0 Y% equation forg?: it ensuresu independence of the bare cou-
while the renormalized couplings afsee Eq(3.9)] pling g5, but is irrelevant in calculations. _
To see more explicitly the connection to nai®, con-
1 m, sider the relation between the bare and renormalized wave
e =R[p, - 7 =R 2. (3.13  functions for the matter fields:
i i inas i “ 82" (R)
The relation between the bare and renormalized couplings is z —z|14 z o2 ) (3.17
therefore determined by the components of ro— < =1 €e" ' '
(1) * (n) . — . .
Ro=p 2 R+ oS S 5:_1 , (3.14  Taking the?6? components of both sides gives
n=2
. .. . 2 2 d (1) ~2
wheresT™ is the coefficient of 1" in 5T. We assume that My o=m; — g [0Z (R)Jmy+ /e poles. (3.18

6S and ST consist of pure ¥ poles. This corresponds to

modified minimal subtraction\S) if we rescalex appro- | gyr scheme, the renormalized scalar mass mig
priately, writing = y€”/47r and writing all expressions in - _ _j z| ,—, while the finite term on the right-hand side is
terms ofu. Equations(3.12) and(3.13 then show thag and the scalar mass ilDR (not DR’), since it corresponds to

m, are precisely the renormalized couplingsOR. minimal subtraction. Comparing Eq&.18 and (3.15, we

When we consider the inclusion of matter with soft scalarSee tha’mf is identical tomf’m, to two loops.(But note that

masses, the scheme picked out by the procedure above 1S : ) . .
. . -—, . . our scheme is defined to all orders in perturbation theory.
identical to DR” [16]. To understand the ISSues involved, Let us summarize the main results. In the supersymmetric
_note that there appears to be an extra renorma_llzed paramefgnic \vhere the explicit soft breaking is turned off, we can
in DRED, cpr_respondmg to aascalar mass. This parameter renormalize the theory bymodified minimal subtraction,
has a nontrivial RG evolution, and so cannot be set to zero ac}efinin renormalized counlings in teR scheme. Our re-
all scales. However, thescalar mass is an evanescent effect g pling '

and does not give rise to an additional parameter at the qualigl :It Isct:r?[tirﬂlxe 'Bgltl;]dfh;er;ggfruﬁgesdozéi”ﬂﬁ bsy aar?ghg:é
tum level. The way this works is that if we renormalize the y 9 ping

theory with an arbitrary-scalar mass parameter, it only ap- CE:]Jn;)eri:]ei(r)mssﬁde;:gegcaesvfi:nctlons of the renormalized cou-
pears in physical quantities in the combinatd] ping Persp

95x(w)C 1
I ~
mf,—R(m—DRB? ms 5r() +O(g"). (319 —gz—’R' &2, (3.19

One can then define the schemB’ by declaring the com- this defines a valid subtraction scheme for the softly broken

bination above to be the renormalized soft scalar magg.  theory. This picks out a unique scheme for the soft terms to

is therefore the scheme in which tleescalar mass does not all orders in perturbation theory, which we c&DR for

appear in any renormalized expressfon arbitrary values  supersymmetric dimensional reductidAt two loops, SDR

of w. coincides withDR’: so we can think of it as an all-orders
In terms of the superfield couplings, the renormalized definition of DR’.) In SDR, the RG equations for all soft

scalar mass corresponds to the teréd6? in R. But because parameters is determined by the RG equations in the SUSY

we subtract all the ¥ poles inR, the 1PI action is a finite limit, to all orders in perturbation theory. For instance, in

function of R. Therefore, there is nexplicit dependence on gauge-mediated modelsee the next sectipnthe analytic

m3 in physical quantities, for any value @f. This is suffi-  continuation of Eq(3.19 is simply performed by substitut-
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ing M—M+ 6°F in the effective couplings of the low- close to exposing the anomaly in DRED, and we plan on

energy supersymmetric standard mog&W). exploring this point more completely elsewhere.
We close with two comments on the superfield coupkhg
defined above. Note that thiinite #26> component ofR B. Two-loop renormalization group equations in DR’

defined in DRED corresponds to amfinite contribution to

the e-scalar mass. In our definition & from the 1P| effec- . = ;
> equivalent toDR’ at NLO by computing the two-loop RG

tive action, thed?#?> component oR was related to a non- : . . .
o X . equations for the gluino and sfermion masses. Consider the
local effect. It is interesting to see the connection between

these effects explicitly by considering softly broken SUSY feal gauge coupling, given by

QED (SQED as in Sec. Il B, but dimensionally reduced to T

4_—26 dimensions. After subtracting th&-independent ¥ R(u)=S(u)+S"(u)+ _Gz IN[S(w)+S"(w)]
divergence, the gauge self-energy has the form 8w

We can check explicitly that the scheme defined above is

r

1
, — " in Z( ), 3.2
— g4I, +He) g2 M 2w (3.23

I fd“al Z
= —_— n
P g2

2
W* —— W, +H.c.

+(Z independent- O(D Z, .. .). (3.20

where S is the holomorphic gauge coupling. The gaugino
mass is given byn, = —In R4, and so its NLOB function is
easily derived from Eq(3.23:

+1tr

g2

el 2y _ _ _

If we write this out in terms of components & we see that *au (m\/g%) = (872)2 (TGb 22 chf> M
the terms involvingZ| and Z| ,2 are local and exactly cancel (3.24)
between the two terms in brackets. What is left, from

In 2| 4242, is just a divergent-scalar maspsee Eq(3.7)]and  where b=3T¢—=,T,. This equation agrees with the ex-
a nonlocal correction to the gaugino self-enefgge Eq. pjicit component calculations iDR. A similar derivation,
(2.43]. Anyway, we must subtract the divergeatscalar pased on the Konishi anomaly, was given by Hisano and
with a superfield counterterm as E(B.8), so that in the  shifman[6]. A new feature of the present treatment is tRat

subtracted 1PI, the dependence orgliis all coming from 3150 governs the evolution of the dimension-2 soft terms. To
the nonlocal operator. This shows that the “chiral” compo- see this, consider

nents ofR defined in DRED and by 1PI subtraction differ
only by finite analytic(Z-independentterms, that is, by a 1
change in scheme. In this sense, the two definitions are Rl g22= — —TemZ+ >, T,m?|. (3.2
equivalent. 8 r

A closely related issue involves the relation between the
origin of the InZ term in R in DRED and in the general According to our discussion abovR|yzy corresponds to a
discussion of SQED given earlier, where it was inferred froml/€ counterterm for the-scalar mass. Equatid8.25 agrees
the anomalous (1) symmetry. It is conventionally said that With what is found in explicit component calculatiofi20].
there is no rescaling or chiral anomaly in DRED, and it may(Notice that the quantity on the right-hand side is propor-
appear that there is no direct connection between these argtional to the supertrace weighted by the Dynkin indiges.
ments. However, an intriguing clue can be seen by considefNOW consider the two-loop RG equation for matter fields in
ing the bare Lagrangian with couplingg, Ty, andZ,. This DR [21,22:
Lagrangian has the symmetry

dinz, 1 ,. ¢
To—TotA+AT,  Sy=>Sy+eA, Zy—2,, (3.20) L =Q[2Crg +ch[3Te—T—2Cr].

which ensures that physical quantities depend on the combi- (3.26
nationSy+ Sg+ €Ty. However, arbitrary values df, lead to
inconsistenciesgloss of unitarity and IR divergencedJp to
two loops the choice

where T=Z2,T,. Its continuation into superspace simply
amounts to the substitutiog?— 1/R, Z— Z. The RG equa-

tion for the scalar masses is then obtained by takingtsé
11 component of Eq(3.26. This gives
To=———=—-In Z 3.2
0 4 € 0 (.22 dmr2 C,
L

gt
__ 2,12
872 [49 my+ 82

2Tgm2—2, Tym?
eliminates the problems. But with this choice, physical quan- s
tities depend on the combinati@+ S)— In Z/472, which

is just what is required to obtain the anomalougllU We +6(3TG—T—2C,)me, (3.27
believe that these are very suggestive connections that come
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which agrees with the result DR’ [22,10,19,1% The same Wwhere

check can be done for the evolutionAfandB terms and in

the presence of Yukawa interactions. b'=b—N, b=3Tg—> T, (4.5
r

IV. GAUGE-MEDIATED SUPERSYMMETRY BREAKING ) o . )
are the beta function coefficients in the full and effective

We now show how to apply the formalism of the previoustheories, respectivelN=3,T, is the “messenger index.”
section to perform calculations in gauge-mediated SUSYHere u, is an ultraviolet scale where the theory is defined;
breaking(GMSB) models. We begin by briefly reviewing the this means that we must evaluate derivatives holding the
calculation of the leading gaugino and scalar masses ifunning couplings at the scaje, fixed.

GMSB, as performed in Ref3]. We then turn to new cal-  The dependence of the low-energy effective Lagrangian

culations at higher-loop orders. The main new result in thison the SUSY-breaking effects is given simply by making the
section is that the gaugino masses are insensitive to the cOteplacement

plings in the messenger sector up to four loops. This

“screening theorem” means that it is possible to make pre- M — X (4.9
cise predictions for gaugino masses even when the SUSY-

breaking dynamics is strongly coupled. The scalar masses the dependence of the effective couplirfjand 2, . (No-
are not screened in this way and are therefore sensitive tigce that to simplify the notation we have absorbeth the
strong SUSY-breaking dynamics. We also compute the NL@lefinition of X.) It is this “analytic continuation” that is at
corrections to SUSY-breaking masses in GMSB, which corthe heart of the method of RdB]. We can now read off the
respond to two-loop corrections for gaugino masses angaugino mass from

three-loop corrections to the scalar masses.

IS(p)|

Ng*(u) F
e

|0 :|.67T2 M'

(4.7)

A. Leading results

In this subsection, we briefly review the main results of

Ref. [3] for completeness. Consider the fundamental theorywhere the notation [;” denotes settingd=¢=0 and X
=M. Note that this automatically gives the correct RG im-
L= J d*e

R (o) P SRV (o) VG provement of the gaugino mass. Equatidri’) involves the
Zo(Q'e" Q+Q'e Q)“LZ Z,9,8" O holomorphic gauge coupling, which is equivalent to the real
superfield coupling at one loop. The use of the real gauge
2 coupling is crucial for the higher-order calculations we do
+ [ d°6S tr(W*W,)+H.c. later.
We now consider the contribution to the gaugino mass
+ | d26 AXOO+H. . 4.1 coming from hlgher-dlmensmn operators in the_ effectlv_e La-
f OAXQQ+H.c S grangian 3]. Operators in the effective Lagrangian consist of
_ analytic terms in the light fields and the backgrouxdnd
where Q, Q are the messengerg, are observable sector their derivatives divided by powers oX. The lowest-
fields, andX is a singlet.X is a background chiral superfield dimension operator respecting Uglsymmetry that can

that parametrizes the effect of SUSY breaking via contribute to the gaugino mass is
AX=M + 6°F, (4.2 cq? tp2
. . o . oL=—— | d*0 o r(W*W,)+H.c|. (4.8
with the assumptioff <M?2. Our notation is appropriate to 167 |X]

the case where there is a single gauge group, but our formu- _ o _
las are trivial to generalize to the case of product gaug&duation(4.8) gives a contribution to the gaugino mass of

groups. Below the scalll, the effective Lagrangian is order
4 t V(") |F|2
£=|d e}r) z.qleV"q, smy~m, [ 4.9
+j d26 Str(W*W,)+H.c.+---, (4.3  This is negligible ifF<MZ2. It is easy to see that all other
higher-dimension operators also give contributions to the

. . . . . augino and scalar masses that are suppressed by powers of
where the omitted terms consist of higher-dimension oper 9_12“3'4 PP yp

tors. The low-energy gauge coupling is given by tree-level X

. . We now turn to the calculation of the scalar mass, where
matching and one-loop running to be

the correct continuation into superspaceMs— XX [3].
, We compute the matter field wave function coefficiests
In ﬂ, (4.4  whosed dependence contains SUSY breaking from the de-
M pendence on the threshold Mt

=8 + In—+
S(u)=S5"(uo) 1602 " e 1602
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= 2

M

B 9%In Z,(n)
axTax

1 %n Z,(w)
4 (2 In|x])?

mP(p) = 2

4.1

2 C,Na?(M) | F
2= VM
my(M)= 82 ’M

(4.19 It is remarkable that the finite part of a two-loop graph can be

where we have used the fact that3pis a vector superfield €valuated from a one-loop RG computation. In the present
and, therefore, depends otthrough|X|. The one-loop RG ~aPproach, this arises becausedepends onX| only through
equation for2, is the values of running couplings, and derivatives with respect

to |X| therefore bring in extra loop factors.
dinZ(x) C, 1

= = , B. Gaugino screening
L

We now consider corrections to the gaugino mass. Very
, generally, we will find that contributions from messenger
din 2 (u) _ Cr 1 4.11 interactions to the gaugino mass are suppressed by additional
du 472 S +5 1 ' loop factors beyond the naive expectation, a result we refer
to as ““‘gaugino screening.” We will see in Sec. IV D that the
ComputingZ, using one-loop running and tree-level match- scalar masses are not similarly screened.
ing, we have The main point is that the holomorphic gauge coupling is
given exactlyby

Vi =p

Mdp wdu!
—,vr(M'HJ — w(p'). (4.12 b’—b
M MM

In Zr(:u/):f -
S(u)= In X+ (X independent (4.18
1672

Mo

This gives _ . . .
whereb (b’) is the beta function coefficient in the effective

theory below(above the messenger scal@gf the SM gauge

group has a standard embedding into a larger messenger

I u' a9 In|X| group above the messenger scale, thers the beta function

of the larger group. The physical gaugino mass must be

1 read off from thef-dependent components of the real super-

S(u')+SH(u)) field gauge coupling(As explained above, the holomorphic

gauge coupling has unphysical field rescaling dependence

(413 that is not present in physical quantitiesThe real gauge

coupling is related to the holomorphic gauge coupling by

dIn Zr(M)_J'“‘ du’ dy(u')
ainX|

C, JM du’ 4
Am? )X u' 9 In|X|

Note that the explicitX| dependence from the limits of inte-
gration cancels in the derivative because of the tree-level

T
matching conditions. From E@4.4), we see that R(u)=S(w)+SH( )+ —GZ IN[S(w)+ST ()]
8
+SM(w)=S" (o) +S (o) + il | XX T
S(/'L) (M)_ (/'LO) (/’LO) 167T2 n 7 _E r2 In Zr+O(S+ ST)*l. (419)
0 r 8w
2
+ In '“_, (4.14  The dependence on the wave function factgrgontains the
1672 X'X information about the two-loop RG behavior of the physical

couplings. SinceS is just given exactly by Eq(4.18 and
which depends oiX only through|X|, as required. We then since the sum ovaer runs only over thdight fields, R is not
obtain affected at NLO by the messenger interactions. That is all
there is to the proof.

dln Z(u) C, fﬂ du’ b'—b 1 2 Because the leading dependence on the messenger inter-
B v e — actions comes fronZ, in Eq. (4.19, it is easy to see that
d In[X| 472 Jx u' 8x? S(M/)"'ST(,U«/L:L r g.(4.19 y
(419 %~<i)4 %’3354_"1'\/'_, (4.20
Computing one more derivative yields m, \47/ | 1672 M '
#In Z () C.N The (g/4)* factor arises because the messenger fields inter-
— -——= g4 (™), (4.16  act with matter only at two loops. The first term in square
anXP=| _y  (87) brackets represents a threshold correction due to a messenger

couplinggmess While the term Ini/’/M) represents the sen-
where we used the definition of the messenger indexb sitivity to mass splittings among the messengers. Such mass
—b’. This gives a scalar mass splittings will arise if the various messengers have different
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Yukawa couplings\ to the same sourcé [see Eq(4.1)]. In  our approach, these corrections can be extracted from the
the next subsection, we perform explicit calculations of theexpression of the real superfigRl In DR, the NLO match-
gaugino masses and NLO, and we will see how the screeningg at the messenger scale is simply obtained by requiring

theorem manifests itself in detail. In the remainder of thiscontinuity of R(u) at the threshold of the physical messen-
subsection, we confine ourselves to some qualitative reger masg25]:

marks.

Consider for example the dependence on the messenger ) o d
Yukawa coupling \. At leading order, the low-energy HX= 22 ) (4.2
gaugino masses are independent\pbut one may naively MELHX

expect important quantum correctionsiifis large. This is ) _ '
not an artificial possibility: if the Yukawa coupling arises Here 2, is the wave function factor for the messenger fields.

from composite dynamics, the valuefuill be close to the  Following the notation introduced in Sec. IV A, primed
perturbative limit\~ 4 at the compositeness sc4g]. In  (UnPrimed quantities refer to the theory abovkelow the

this Casegfnesg(16w2)~1 in Eq. (4.20, but ém, /m, is still messenger mass scale. In terms of the valu&k'ofat an
suppressed by two weak loops. Therefore, the gaugea_\rbltrary high-energy scalg,, much larger th_an the mes-
mediation gaugino mass relations are rather insensitive to thee9€r Scalg:x, at the low-energy scale we find

strong dynamics of the messenger fields evenig close to

the perturbative limit. L, b n®  Te ReS(u)
Another interesting example is the case in which different R(u) =R (ux) + 1672 In =5+ 82 In Re S(1x)

messenger fields have different Yukawa couplings to the X X

same supersymmetry-breaking souxcdn other words, the T, Z.(w)

various messengers have different maddedut the same —2 > n ) (4.22

ratio F/M. For example, in a grand unified theof@UT) ro8mt Zi(ux)

model with a messenger scale much lower than the GUT

scale, the running of the messenger Yukawa couplings be- b’ wi Ts  ReS'(uy)

tween the GUT and messenger scales can induce splittings of R'(ux) =R (po) + —— I —+ — In ————

the messenger masses of ordg#/(1672)In(Mgyr/M), 167" puo 87" ReS'(uo)

which can be?(1) even if the messenger Yukawa interac-

tions are unified at the GUT scale. Now Eg.20 shows

that, even forO(1) messenger mass splittings, the minimal T 87 Z(mo) 87 Zu(uo)

GMSB relation between the different gaugino masses is only

violated by O((g/4w)*). Therefore, the gaugino masses do

not depend on the assumption of the universality of the mesy, . .
) ereS(w) is the gauge coupling at one loggee Eq(4.14)],

senger \Tukawa (riouphrllgs at theI messeng?rhscale eveg dR’((ftLL)o)=Reg'(Mgo) giver) agSUSY-pre{g;ving(bouﬁ(]jary

NLO, as long as the Yukawa couplings are of the same orde s . . -

and there is a single soureeof SUSY breaking. Condition on the gauge coupling. The sums in the previous

o : . ; equations extend over the different matter superfields. Sub-
Similar considerations apply to models with vector mes-

sengers. In such models, the vacuum expectation value thg&ltutlng Eq.(4.22 into Eq. (4.23, we obtain

breaks SUSY also breaks a larger gauge group down to the

S T, n Zi(ux) N | Zy(ux)

(4.23

. 2 r_ T
standard-model subgroup. There are therefore massive gauge ) b M b’—b XX
R(u)=R" (o) + In —+ In
bosons charged under the standard-model gauge group that 1672 MS 1672 MSZfA(Mo)
act as SUSY-breaking messengers. Refer¢8teomputed
the leading contribution of vector messengers to the scalar Te Re S(w) T, Z(u)

and gaugino masses, and showed that the contribution to the + 872 n F 8.2 n = .

scalar mass squared is negative. The leading contribution to & eS'(mo) v 87 r (#o)

the gaugino mass from the vector messengers also arises at (4.29

four loops and again has the order of magnitude given in Eq.

(4.20, wheregyessiS Nnow the messenger gauge coupling.Notice that in this expression the explicit dependence on

This is important because the messenger gauge coupling ca),(ux) has dropped out. An implicit dependence appears

be strong at the messenger scéf@r example, this occurs in  from higher-order contributions in the matter wave function

the models of Ref{24].) renormalizationZ,(u). However, the NLO expression for

the gaugino mass, which requires only the leading contribu-

tion to Z,(u), is independent ofy(xx). This is a manifes-

tation of the “gaugino screening” theorem discussed in Sec.
We now compute the NLO corrections to the gauginolV B. We see that at this order in perturbation theory, the

masses irDR. In components these corrections correspondjaugino masses are not affected by new messenger interac-

to threshold effects at the messenger mass scale describedtigns. Similarly, theW-ino and B-ino masses have na;

two-loop Feynman graphs, together with the two-loop RGcorrections from messenger thresholds, but only from their

evolution from the messenger scale to the physical scale. IRG evolution below the messenger mass.

C. Gaugino masses at next-to-leading order
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To obtain the expression of the gaugino mass, we take thehere the sum is taken over the colored light fields. This

F component of Eq(4.24):

—gA(w)R(p)| g2

1

m,(w)

2
g E

|

T 1) Te/(879) | 1672 M
2
+> MT,|n z,(u)|gz]. (4.25
r 872

This equation gives the NLO expression of the gaugino mass

in terms of the SUSY-breaking part of the light matter wave
functionsZ,(w) at the leading order. To complete the calcu-
lation, we now compute £, ()| 42 for matter fields includ-

ing both gauge and Yukawa interactions. For simplicity, we

result has been recently confirmed by an explicit component
calculation[26]. Notice that in the above equations the de-
pendence on the physical messenger mass appeafsand

it is of the form given in Eq(4.20.

In order to obtain the pole gaugino mass we have to in-
clude also the finite one-loop corrections at the infrared
threshold. For the gluino, in thBR scheme they are given

~2

22448

F(X)=142x+2x(2—x)In x+2(1—x)2n|1—Xx]|.
(4.33

Bas(u)
4

pole__
m
A3

mxs(M)[ 1+

give the result for a simple gauge group, but the generaliza-

tion to a product group is completely straightforward. The
relevant one-loop RG equations are

4z S O (4.26
M d,LL r 4772 g 8’772 y ’ .
d y? [D
2= [ 2 2
ragY 4W2(2y Cg). (4.27)
d
poa-g = (429
du 812

wherey is the running Yukawa couplin@hysically normal-
ized by appropriate wave function factorélered, is the
number of fields circulating in the Yukawa loop, and

c=>C,, D=2 d,, (4.29

with the sum extended to the field participating in the
Yukawa interaction. Ifg is the QCD coupling ang is the
top-quark Yukawa coupling, we hav€=8/3 and D=6.
Taking theF component of the solution of Eq4.26) for
Z.(u), we obtain the final expression for the gaugino mas

including QCD (v3) and top-quark Yukawa [a;
=y?/(4w)] corrections
F
my (1) = ajf(:) N |1+ T ajz(:)
4
+—a937(7m (=12 Tt aé(:) (O Tod,|,
(4.30

where

_az(X) 169

=y W= m g erg e @3

S

The functionF includes the effect of the gluon-gluino and
quark-squark loops in the approximation in which all squarks
have equal masﬁnq. Since we have neglected weak correc-
tions, the SW2)xU(1) gaugino masses receive no contribu-
tions from infrared thresholds. The final expressions for the
three gaugino masses improved dy and «; corrections are
then given by

poie_ s(w) F [ Basw | [ u?) g
A3 41 M 4 m}z\3 mis
32 ay(p)
+2+§(§—1) + 3. (&)}, (4.39
pole_ @2(p)  F 2ag(p) ay(u)
(4.39
Sai(u) F 220:3( )
pole__ 1 | AU
M 127 NM[lJr 157 (6=1)
13a(p)
+ 0 @], (4.39
wherea,= 2, at the unification scale.
The NLO correction to the gluino mass

(mgz'e)NLO/(m)\s) L0—1 is shown in Fig. 2. We have assumed
(m)\S)LOZGOO GeV and taB=2, but the result is very in-

sensitive to this choice. In particular, the value of fars
unimportant because the top-quark Yukawa contribution in
Eq. (4.39 is negligible. The NLO contribution from messen-
ger loops, which is obtained by settigeg=1 in Eq.(4.34), is
about+4-5%. However, the NLO gauge RG evolution con-
tributes a negative contributiorsee Eq.(4.34) and Fig. J
that almost completely cancels the messenger contribution
for very large running §1=10' GeV). The finite gluon-
gluino loop gives also a large positive contribution of about
+10-12% to the gluino mass. This effect is partially com-
pensated by the quark-squark loops, if the rmﬁtMg is not
large, as in the case of several messenger flaydrs X).
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where y, () is the anomalous dimensions beldabove

the physical messenger scalg [see Eq.(4.21)]. Note that

v, in the low-energy theory depends implicitly qry from

the matching conditions at the messenger threshold. Notice
also that the lowest matching correction for the wave func-
tion at the messenger scalg is at two loops. This corre-
sponds to the addition of a®(a(X)?/1672) term inside
square brackets in E¢4.39. The resulting correction to the
squark mass i€(a?).

For simplicity, we will give the expression of the scalar
masses evaluated at the messenger scale, as the two-loop
r 1 running from uy to the low-energy scale is well known
) S N I R [22,10,19. In this case, the action af?/(d In|X|)? on Eq.

108 lni)g[cew 1012 10! (4,39 gives, at NLO in gauge interactions,

% correction to My

29Inpuy 9

FIG. 2. NLO correction to the gluino pole mass, as a function of 11F
‘ dIn|X|d In wy

the messenger mass scéle for messenger indeXl=1,3,5. We mrz(l/«x): - —
have taken a leading-order value of the gluino mass of 600 GeV and 4
tan 8=2, but the results are rather insensitive to these choices. The

curves are interrupted at values Mfthat requireF = M? to obtain — 3, (R(ux)— ¥ (R(u))]
the required gluino mass.

v [% (R (1)

=y
This explains why the NLO correction to the gluino mass is g*|F|? Ay () =y ()
very important for smalM andN, but significantly decreases =7 vl [T~ rmex)] e
for larger values oM andN (see Fig. 2 9

The QCD corrections to the $B) XU(1) gaugino masses /

. JR Jdy, dR

vanish at the messenger scale, as expected from the “screen- ('LL)— —7; 2 (4.40
ing theorem’ previously discussed. The effects from the RG dinu  gg2 dIn px P

running, shown in Eqs4.395 and(4.36), tend to cancel be-

tween the gauge and Yukawa terms, and give a contribution ) ] ]

to the weak gaugino masses that is at most of few percentHere ym=d In Zy/d In u is the anomalous dimension of
the messenger superfield at leading order, which depends not

only on gauge interactions, but also on any new additional

interactions of the messengers. In particular, including the
We can now also compute the NLO corrections to theyukawa interaction in Eq(4.1), we find

squark and slepton masses DR’, which correspond to
three-loop diagrams. The RG equation for the wave function

renormalization of a matter fieldis Y= Cwmg

D. Scalar masses at next-to-leading order

2 )\2
-—. 4.4
472 872 (44D

d
L m In Z,=v,. (4.37
B This explicitly shows that the “screening theorem,” valid
The gauge contribution to the anomalous dimensjorat ~ OF gaugino masses, does not apply to scalar masses.
NLO is given by[21,27] We can now evaluate the derivatives Rf using the ex-
’ pressions obtained in the previous section:

2 4
g g
=C, — +C,[3Tg—2C,—T . (4.3 , ,
Yr r A2 [3Te r ] 4(277)4 (4.39 IR’ (1) ~ b
T = —, (4.42
. A A d ln Mx 0 8772
The SUSY-breaking scalar mass is obtained from(Ed.0:
~ 13%n Z.(p) | F|? IR, i) N T
M) =—7—— | — = — |1+ — 2. (4.43
(9 In|X]) dlnpx |, 8w 87
1[F|2 & px du’ : . :
il rvi Eerrone: f — v (n") Notice that in Eq(4.42 we have kept only the leading term
(a In[X]) ro M in the perturbative expansion, since in E440 it multiplies
du’ the factord(y, — ,)/dg?, which is a NLO quantity. Putting
+ f“ hnall ye(u') |, (4.39 it all together, we obtain the final expression for the scalar
ux p masses at NLO:
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C,a2(ux)N | F|2 couplings, and they depend on the messenger representations
M2 (uy) = % M (1—vm) @n a way that cannot be described only by the messenger
8 index N.
a(mx) .
x| 1+ (Te—2C,+N)|. (4.49 E. D-type supersymmetry breaking

We now consider leading SUSY-breaking effects in theo-

Assuming that the messengers belong to fundamentals ¢fes where the dominant source of SUSY breaking iB-a
SU(5), the NLO expression for the QCD contribution to type soft mass for the messengers rather tharFdype

squark masses is mass, as considered previously. Some of these results have
already been derived in the language of renormalized cou-
2 plings in Sec. Il B. We discuss them here in a manifestly

2
'rﬁé(ux)=M ‘i “Wilsonian” picture, that is, by simply computing in the
6w M theory with given bare parameters. We do this in part for
variety and in part to show how these results follow from the
“Wilsonian” anomalous U1) symmetry® Consider a gauge

theory with bare Lagrangian

X

1+

3

as(fix) 7\ A3(mx)
2w (N__)+ 82

(4.45 .
£0=f d?6 Sotr(W“Wa)+H.c.+f d*g z, @leV @,

Here A5 is the messenger Yukawa coupling for the color (4.47)
triplet. Notice that the(?(ag) contribution to squark masses

from the messengers tends to cancel the contribution fromegulated in a supersymmetric manner. Assume that the
gauge and matter fields, as longMss not too large. NLO theory contains bare soft masses, parametrized by
corrections to slepton masses from QCD and new messenger _

interactions come only from the factor {lyy) in Eq. 2, 0=Z o[ 1— 626°m? ). (4.48
(4.40. Since, in our case, weak-doublet messengers are color

neutral, the S(2) contribution to left-handed slepton massesAs discussed above, this theory is invariant under the “Wil-
is corrected only by the factdfl + \5(uy)/872]. However, —Sonian” anomalous W) transformation

for a generic choice of messengers, the QCD corrections are :

nonvanishing. Notice also that in genekgl#\ 3, although O ehd, Z e WTAIZ

they may be related in a GUT. Finally, the improved expres-

sion for the right-handed slepton mass is T
;
soHstLZr gz A (4.49
v
f2 (0= DoAUmIN | F 7
er HX 24?2 M with the regulator held fixed.
At one loop, the matter terms in the 1Pl effective action
Bas(px)  3N3(ux)  A3(ux) are
1- + + :
157 4072 2072

(4.46 [ip= f d*p f d*e g(p2)®fev(r)q3r+finite, (4.50

In Eq. (4.46), uy can correspond to the mass scale of eithemwhere
the triplet or doublet messenger mass. The difference be-

tween the two definitions ig)(af), which is negligible in ) 1 C, A

our approximatior.On the other handyy in Eq. (4.45 has {(p7) =20/ 1— a2 St S In | (45D

to be interpreted as the triplet messenger mass, since we

; 3

include termsO(«a3). Here A is the ultraviolet cutoff. Invariance under the trans-

In conclusion, because of the absence of a “screeningomation, Eq.(4.49, allows us to conclude that,p, de-

theorem,” the NLO corrections to_ scalar masses are.quit(-g)endS orSOJrSg only in the invariant combination
dependent on the model assumptions. They are sensitive to

new messenger interactions, such as the messenger Yukawa T

StS-2 =5 In 2. (4.52
8w

r

"Higher orders in the electroweak couplings can be computed fol-
lowing the same procedure used to obtain Eg44), with the in-
troduction of separate messenger thresholds. For an application ofThis symmetry is extremely useful in obtaining physically inter-
the method of Ref.3] to the case of multiple messenger thresholds,esting results for nonholomorphic soft terms in strongly coupled
see Ref[28]. SUSY gauge theories with small soft breakifg$).
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This allows us to infer the two-loop dependence of the matwhere the sum od runs over the factors of the gauge group
ter kinetic term inl"1p, from Eq.(4.51). We can then obtain andq, is the U1) charge of the field. From this we can
read off an additional contribution to the RG equation for the

mZ(p)=—In {(p?=— u?)| s2g2 soft mass:
4c 2
90C A dm

=mlom (E T’ o) n—. (453 i - (E qm?+ 3 —chr

(4.59

Recall that in Sec. Il we showed that the RG equations
or the soft masses above correspondi®’. The present
derivation shows that these RG equations follow as long as
the theory is regulated and subtracted in a supersymmetric
fashion. To further amplify this point, we give an illustrative
;2 T (4.54) lon.
application of these methods where we compute a soft mass
as a finite calculable effect.
d Consider a toy model with bare Lagrangian

From this, we can read off the two-loop RG equation for the
soft masses arising from gauge interaction with other sof}
masses:

dm,2 Zg4C
A da

(Note we have not specified a definition for the renormalize
gauge coupling, but the result is invariant under changes of
scheme for the gauge coupling. Lo= | d?6 Sptr(W*W,,)+H.c.
If the gauge group contains a(l) factor, there is an
additional contribution to the RG equation for the scalars e — = @
from an induced Fayet-llliopoulos term. In superspace, a +j d*6[ 2, o(Q/e" Q,+Q/e" Q)+ Z;0q'e "q]
Fayet-llliopoulos term can be viewed as a “kinetic mixing”
between the (1) gauge field and that of the anomalou&ly ’ —
symmetries for the various matter fields. Note that in the + [ d°0 MQQ +H.c, (4.60
presence of bare soft masses, there is no symmetry forbid-
ding such a term: so we have an addition contribution to thevherer=1,2 are two copies of the same gauge representa-

bare Lagrangian tion. Suppose that the messeng®ks, have bare soft masses
given by
SLo= f d20% K, Wy W, o+ H.c., (4.55 Z10= 21— PPM3],  Zp0=Zgd 1+ 626°mZ].
(4.61
whereW, is the U1) gauge field strength and With this choice, the full theory has Su?=0, whereM is
. the full mass matrix of the fields in the theory. However, if
(Wr0)a=—3D?D,In Z, o= eamf’O (456 M;#M,, the effective theory below the scal¢, has non-

vanishing mass supertrace. The value of this supertrace is
is the field strength of the anomaloug1)l Equation(4.55  therefore a calculable effect in this theory.
contains a linear term in the(W) auxiliary gauge fieldD, We could use_the RG equations derived above to compute
forcing (D,)# 0 and giving an additional contribution to the the soft masses in the low energy theory. We present here an

scalar mass. It is the running of this contribution that we now?ltérnative derivation of the supertrace that clarifies the
methods used above. We assuimieg<M; and compute the

compute. )

The Fayet-llliopoulos term is renormalized at one loop,d SOft mass in the low-energy theory below the sdlg.
and we obtain With the choice of parameters made above, we can write

q INE Zl,OZ eUO, 22,0: erO, Uoz - ngzmg (462

_ 2,1 r 0

FlP"j d%02| Kot 16572 In w )Wl ro We can viewl, as a “gauge” field for a single (1) under
o which Q; andQ, have charget1, Q, andQ, have charge

+ H.c.+finite. (457  —1, M, has charge-2, andM, has charger2. Moreover,

this U(1) symmetry isanomaly freeand so we do not have
Combining this result with the one-loop renormalization of to appeal directly to a Wilsonian picture of the anomaly.

the matter wave function given in E¢4.51), we obtain an We now integrate ou@Q and construct the effective La-
induced vacuum expectation value grangian below the scal,. This has the form
2 2 (a)
01 93 A L= Jd“a Zyq'e V9q+gauge terms, (4.63
<D>: - 16572 ( 2 qrmrz,o"_Er ﬁ C}]qrmrz,o) In ;!

(4.58 where the W1) symmetry enforces
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(- -u U — —
Za f(|M1|e 0!|M2|e 0). (4.64 LII:J d40{zlé(QTeV§T?e)Q+QTeVmed(Q)Q)

We can determine the functiohby one-loop running and +2 2rqt Ve,
tree-level matching to a scaje<M,: < < 0r €750

M O =y =
+ Z7(T'eVmeaeVsuT + T1eVmesVsuT)

2C, gs
In Zq(,u)zln Zq’o‘i‘ o In m B
+ f d2O[M T T+ S g tr(W2,o9 + Sty tr(W3,,)]
, 2Cq, (M) B
b’ g?(|My)) +H.c+48L(Q,Q, ...), (4.67)
N 2C, | g?(IM2)) 46 where 8L contains the interactions that break SUSY.
V n wo (4.69 The holomorphic standard-model gauge coupling below

the messenger scalbband the scal® is given exactly by

whereb (b’) [b"] is the beta function coefficient in the full )
theory (effective theory belowM,) [effective theory below — Ssm(#) = Seu( o) +
M]. Using the one-loop expressions for the gauge coupling

g, and making the substitutiodM|—|M,|e~Yo, |M,] , ,
~-|M,|eY, we obtain where bgy,, and bgy are the standard-model beta function

coefficients in the effective theory with and without the field
T, respectively. This is independent df and so the leading

n M b
SM T SM Ini, (4.69
M+

—In
1672 Mo 1672

c.m? (b—b' contribution to the gaugino mass comes from the&|rterm
mg(m: ez = [g?(IM,)—g?(IM D] in the real effective gauge couplifgy; see Eq(4.19. The
42 b” leadingM-dependent contribution t&, arises at four loops,
b 2b b and so the gaugino mass arises at five loops in this model, as
—2b"+Db" opposed to the estimate of Rg#]. Since scalar mass-
[ - (M1 (466 PP | o). Si

b” squared terms arise at four loops, the gaugino mass is sup-

pressed compared to the scalar masses in this model, posing
a fine-tuning problem.

The first term corresponds precisely to the running of the soft T0 make this argument concrete and to illustrate the

mass between the scallls andM,, and the second term to Power of our techniques, we explicitly compute the gaugino

the running betweeM, and u. There is no contribution Mass in the case where SUSY breaking is communicated to

from above the scaldl; because the contributions from the the fieldsq and g by the vacuum expectation value of a

two messengers cancel. singlet fieldX:

F. “Mediator” models 53:] d?0 AXQQ+H.c., (4.69

We now consider GMSB models where SUSY breaking is
communicated less directly to the observable sector. We findith (X), (Fx) #0. The reader uninterested in details can skip
that very generally in such models, the gaugino screeninghe remainder of this subsection.
mechanism described in Sec. IV B implies that the gaugino We will do the calculation for the case where
mass is suppressed compared to the scalar masses by more
loop factors than suggested by a naive analysis. M=A(X)>Mr. (4.70

We consider the “mediator” models introduced in Ref.
[4]. We suppose that a SUSY-breaking sector communicate§e further assume tha,,.4is weakly coupled and unbro-
SUSY breaking to vectorlike fieldQ and Q. The fieldsQ  ken down to the scaldl;. Below the scaleM, the light
and Q are not charged under the standard-model gauggields areT, X, Q,, Vieq: andVgy, and the effective La-
group. Rather, they are in a vectorlike representation of @rangiant’ consists of the terms in E¢4.67) that depend
“mediator” gauge groupGpeq. The connection to the ob- on these fields. Below the scalé;, the only light fields are
servable sector is made through a vectorlike pair of fidlds X, Q,, Vs, andVsgy, and we denote the effective Lagrang-
andT that are charged under both the standard-model gaugen by L.
group andG,,.4. These fields have a supersymmetric mass Both the scalar and gaugino masses can be read off from
term M+ in the Lagrangian, which may be the result of a Z,, the wave function renormalization factor in the low-
dynamical mechanisif¥]. The Lagrangian of this theory is energy theory. We therefore compute
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! !

Mt du
4 M’)+j — ¥ (r)
Moo

M d

!

In Zr(M):f

Ho M

v du'

J
Mt ,u,

— ('), (4.7

wherey, (y,) [y;] denotes the anomalous dimension in the
theoryL (L) [£"], andM (M7) is the matching scale at the
mass ofqg (T), defined similarly to Eq(4.21). For example,

C, -t

4m?

4.72

2T,
-~ inz+
2
r

where we have displayed the dependencegbmequired by
the “anomalous W1)” invariance. This is important, be-
causeZ; depends oM at two loops, giving the leadiniy!
dependence of the anomalous dimensions. We have

a1n Zr(M)_JMTd_M/a'Yr/(/L’) fﬂ du' dy(p')
ginX]Jww dWIX] Sy w9 InIX]
4.73
where
dy,  4C,T 1 aIn 2!
a1 IrXIZ By 24| IXIT' .79
n (87°)° (Ssmt Ssm) n

(T is not a light field in£, and so there is no contribution
from scales belowM 1.) We therefore have

dInZ(n) ACTy JMT du' 1
ainX|  (8#?)2 Jm " [SEu(m")+ S5 12
dln Zx(u')
71X 479

(We see that théM-dependent part of, is independent of
the renormalization scale.) The dependence &; on the

messenger threshold is identical to the calculation in GMSB, L"=

and we obtain

dIn Z(pn)
d In|X|

8C,C;T2

_(877—2)4 SM (m

M d,LL
f 9/4
Mt

)f — gmes m').

(4.76

From this, we can obtain the gaugino mass
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T, dIn Z ()
g2 dIn|X]

QSM(M) (Fx)
2 Xy

_4C,CTHE,T/]
= (872)° 9sm

S [

Notice that the result scales like, = a3,a2 . In°M/M+, in-
dicating that two loops are accounted for by one-loop evolu-
tion.

2

my(u)=

2

(m)

/-L”)-

gmes

4.77

V. EFFECTS FROM OTHER THRESHOLDS

Up to now, we have been focusing on effects that can be
computed from the dependence on the messenger threshold.
However, there are interesting models with other thresholds
that can give rise to important SUSY-breaking effects in the
low-energy theory. In this section we analyze some illustra-
tive examples.

A. Flat direction effective potential

In the limit where SUSY is unbroken, the minimal super-
symmetric standard model has a large space of flat direc-
tions, directions in field space where the classical potential
vanishes identically.(For an exhaustive list, see Ref.
[30].) All of these flat directions will be lifted by SUSY
breaking, and we are interested in computing the effective
potential far out along one of these flat directions. For
GMSB, the effective potential can be evaluated from two-
loop component diagrams such as those evaluated in Ref.
[31], with the motivation of studying the cosmology of these
flat directions. We will show how to compute the effective
potential without evaluating loop diagrams.

We will explain our technique using a toy theory with an
“observable sector” consisting of a(ll) gauge theory with
Ng pairs of chiral fieldsg andq with charges+1 and—1,
respectively. These are coupled to a “messenger sector”
consisting ofNg pairs of chiral field<Q andQ and a singlet
field X that parametrizes SUSY breaking. The Lagrangian is

fd“e[z" (q'eVg+q'e Vq)

+25(Q"eYQ+Q'e Q) + ZX'X]

+f d?0 3 S'WW,,+ H.c.+f d?6xXqg+H.c.
(5.1

Even thoughX is a background field, we must include a
“kinetic” term for X to account for the anomalous dimen-
sion of operators that depend #n(This operator is just the
contribution to the cosmological constant.
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This theory has a single classical flat direction wty) where uq is a fixed renormalization scale used to define the
=<a>. We want to compute the effective potential far) theory. Note thatZy is independent of the renormalization
=(q)>(X). In this case, the largest threshold in the theoryscale. Since we are interested in thelependence, we com-
is at the scale pute

Mi=g(Mp)(a)l, (5.2 92 NQVJM du 1 dInZ5w) 59

whereg is the U1) gauge coupling. At this scale, the(1) amY[ " 4z2 Ju, w ZZ(w) 9 InlY|
gauge group is completely broken. The fields that are light _ .
below this scale ar®, Q, and the flat directom=gq, pa- Zq does not run in the effective theo/, and so we have

rametrized by a fiel? defined as Zo(p)=25(My), which gives
a=(q)+Y, g=(@+Y. (53 7In Zp(w) _ g3 My) 510
The background fieldX is also present in the low-energy d InY]| 87’
theory. The effective Lagrangian below the scélg is ) )
therefore In this way, we obtain
~ = Ner _ NoM(F)I? g% (M) M,
£’=fd40[z’(QTeVQ+QTe VQ)+ ZIXTX+ Z2LYTY] Y| = In—. (5.1
Q X v M7 (4722 ZZ(Mp M
+ f d?6 XQ6+ Hct+--, (5.9 Note thatM; depends ofY|, and so this result automatically
gives the RG-improved form of the effective potential.
where the ellipsis denotes higher-dimension operators. . .
The next threshold of interest is the messenger threshold B. (S)axion potential
atM=\(X). Below this scale, the effective Lagrangian con-  There are a number of models for physics beyond the
tains only the fields< andY, and it is given by standard model that involve the spontaneous breaking of a
global symmetry at large energy scales. For example, “in-
E:j d40[ Z XX+ Z Y TY]+- - (5.5  Visible” axion models invoke the breaking of a global

U(1)pq symmetry at scales 1®-10' GeV in order to solve
the strongCP problem. Other global symmetries that may be

We are interested in the effective potential foin this ef- spontaneously broken include lepton number and flavor sym-
fective Lagrangian. When we continue the couplings intompetries y P y

superspace, there will be contributions to the effective poten- The breaking of a global symmetry will give rise to a

tial for Y from the Y dependence oy as well as theX i
dependence ofy . The fieldY does not have renormalizable massless Nambu-Goldstone bos®fGB) for every broken

interactions below the scaM - and soZ. does not depend generator. If the global symmetry is broken at a scale where
. 1 Y  hot dep SUSY is(approximately unbroken in the visible sector, then
on X at the renormalizable level. The contribution to the

effective potential we are interested in is therefore the light bosons must form complete chiral supermultiplets.
P There are therefore extra scalars whose mass is protected by

Ver(|Y]) = — |<FX)|ZZX(|Y|). (5.6) SUSY? We call these fields SNGB's. The SNGB fields pa-
€ rametrize noncompact directions in the vacuum manifold in
We computeZy using tree-level matching and one-loop the limit where SUSY is exact, and different points along the

running. Using the RG equations flat direction correspond to different values for the scale at
which the global symmetry is broken. The SNGB fields will
dIn Z% No A2 acquire a potential after SUSY breaking, which determines
2 du == ﬁ ek the vacuum expectation values along the flat direction.
X<Q As an example, we consider an axion model with colored

fields R and R whose mass is determined by the vacuum

__ expectation value of a field. If we write
Fodu —  an2 222 57
X=Q O=(D)+A, (5.12
we obtain
the imaginary part oA is the axion, while the real part is the
) NoA? (Midu 1 SNGB. The Lagrangian is
Zx=Zx(po) — ) R
4w Juy M Z5(n)
NQ)\2 Mdu 1 °If a non-Abelian symmetry is broken, some of the Nambu-
— > f — =3 , (5.9 Goldstone bosons can belong to the same chiral supermultiplet, but
4 My M ZQ (@) it can be shown that there are always some “extra” scalars.
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‘C”:J d%e ZR(RTGV(R)R-}—ETGV(R)E) |CI)| ﬂveﬁ:_ TTCQNQ|)\|2 |<F >|2
3| | (4m2)®
+f d20 k®RR+H.C.H -, (5.13 XIMRdM 1 fMR du' 4
— — — ).
Mo M ZQZ(,U«) L
where we have omitted the messenger sector and standard- (5.18
model fields; see Eq4.1). The fieldsR, R therefore have a
mass As before, this gives the RG-improved form for the effective
potential. Note that the slope of the potential is negative,
k(D) indicating that the saxion vacuum expectation value is driven
R= S 77 - (5.149  away from the origin.
Zr(Mg)

In the opposite limitMg<<M, it is easy to see that the
potential also decreases as a functiotigf. In the effective

Below this scale, the effective Lagrangidh is simply that theory at the scaléV, R and R get a positive soft mass

of ordinary GMSB'’s together with a kinetic term for the field -
® [see Eq(4.1)]. Below the messenger threshdWithe ef- squared from GMSB, whil& has zero soft mass. However,

fective LagrangianC is that of the standard model together the YUkaWZ_i coupling«®RR drives thed soft masS nega-
with kinetic terms for the singlet® andX. The wave func-  tiVe in running betweem and the scalélr whereR andR

tion parameterZy in this effective Lagrangian depends on &€ mtegrated_ ou_t(Thls contr_lbutlon is analogous to the
the R mass, and this contains the leading contribution to thd1€gative contribution to the Higgs boson mass squared from

effective potential for the saxion field. the top quark Yukawa coupling.
We can computeZy using one-loop running and tree- Thus, in all regions, the potential prefers to push the sax-
level matching: ion vacuum expectation value, and hence the axion decay

constant, to larger values. Therefore new interactions are
needed between the axion and GMSB sectors in order to

Mg du - . . .
Zy=Zl (1 )+f = Z0(w) () stabilize the axion decay constant in the cosmological and
Xo Ao mo M X X astrophysically desirable window between *40and
10'2 GeV.
Modp :
== 2 v, (5.19
Mg M VI. CONCLUSIONS

In this paper, we have shown that the renormalization of
soft-SUSY-breaking terms is completely determined by the
éenormalization of SUSY-preserving terms if the regulator is
supersymmetric. This allows us to calculate certain SUSY-

whereyy is the anomalous dimension ¥fas defined in Eq.
(5.7). The parametegy does not run in this effective theory,
and so we need not specify a renormalization scale for it. W

compute breaking effects in gauge-mediated theories by performing a
92 M d P supersymmetric calculation and “analytically continuing”
X :f M [ZL( ) vi(w)] the result into superspace. The method is very powerful and
d In|d| Mg A 9 In|®] X X allows the calculation of interesting effects at three-loop or-
der and higher by purely algebraic manipulations.
_ Ng[A[? f"" du 1 dInZ5(p) The formal results that justify these calculations are easy
T oan? Jug m 22(n) 9 Inj®| - to state in superspace if the soft-SUSY-breaking terms are
parametrized byp-dependent terms in the supersymmetric
(5.16 couplings. If the theory is regulated in a supersymmetric
manner, then SUSY is formally preserved if we regard the
The right-hand side is evaluated using bare couplings as superfield spurions. Our result is that there
is a definition of therenormalizedcouplings that can be
Jln 2 wodp’ dvb(u') similarly grouped into supermultiplets. Specifically, the
Q =f el A A renormalized couplingKy are related to the bare couplings
JIn[®] Jug p' 9 In|P| K, via a superfield relation of the form
_Co (m w49 1 Kr(w)=f(Ko, A, ). 6.0
el N R ey wr Yl Brya
& R M 9" (n") The functionf determines the renormalization of the super-
CoT, (# du’ symmetric _couplings_ as well as th_e soft-_SUS_Y-breaking
= ) f — g'4u), (5.17  terms and is the basis for the analytic continuation into su-
(479)° IMg perspace. An analogous relation holds between(teror-
malized couplings of an effective theory and the couplings
which gives in a more fundamental theory.
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This leads naturally to a definition of the renormalizeding the lowest component as a function of the supersymmet-

gauge coupling chiral superfield ric bare couplinggor couplings in an underlying renormal-
ized theory. This is a supersymmetric calculation, but taking
S(w) 1 0 > My h(4) 6.2 #-dependent components of the result determines the low-
o) = - .

Zgﬁ(,u)_ 162 gﬁ(,u) energy SUSY-breaking parameters. For instance, we have
shown that the two-loop RG equations for soft term®R’

as a holomorphic object that is renormalized only at one loogre directly derived from the supersymmetgicfunctions

(to all orders in perturbation thearyHowever, the subtrac- and anomalous dimensions.

tion that definesS(u) is not invariant under constant rescal- More remarkably, this approach can be used to relate

ing of the fields, and so the components S(fx) do not leading-logarithmic effects computed using the renormaliza-

correspond directly the usual renormalized couplings. Théion group to finite effects, since the result of taking higher
real superfield components of a logarithm gives effects that are not logarith-

mically enhanced:

T T
_ + G r
R=S+S'— —In(s+s"h-> ~In 2, 1 1 M|ep
16w 16w InM| = (6.9
. 1672 — 1672 M|
+0((s+sh™b (6.3 oo

is invariant under the field rescaling-erer runs over the N this way, we can obtain finite SUSY-breaking effects at
matter representations of the gauge gr&@@nd T, is the h|_gh loop order from simple algebraic _calculatllons. Models
index ofr; 2, is the wave function factor for the fields in the With low-energy supersymmetry breaking mediated by per-
representatiom.) We show that the lowest components of turbative interactions are the natural arena to apply our

R, method. Indeed, it is precisely in these theories that it makes
more sense to worry also about subleading RG evolution:
m, (x) this is because the boundary conditions for soft terms are in
=R(w)|,— > =R(u)| 2, (6.4  principle calculable with comparable accuracy.
(w) 9°(w) Our technique was used to compute a variety of effects at

wo-loop order and beyond. We computed for the first time
e complete subleading corrections to the gaugino masses
(two loop) and scalar massétree loop in gauge-mediated
odels; we showed how to compute the effective potential
or SUSY flat directions lifted by gauge mediati¢vo and
three loops We also proved that gaugino masses are
creened from higher-loop corrections involving couplings in
he messenger sector. Therefore, in the standard gauge-
mediated scenario, gaugino masses are rather insensitive to
details of the model. Moreover, this result also shows that if
the gaugino masses are not generated at one (®jn the
(6.5 standard cagethey will be generated only from the light
matter fields and will generally be too light. This shows that
gauge mediation is a unique way to generate scalar and

and governs the RG evolution of dimension-2 soft terms. Irgaugino masses of the same order through |00p effects.
dimensional reductiofR| 422 corresponds to a &/counter-

term for the e-scalar massR| 2,2 can also be given a 1Pl
interpretation: it corresponds to a nonlocgbtorrection to
the propagator of the gauge supermultiplet. In the context of We acknowledge fruitful conversations with G. Degrassi,
dimensional reduction antmodified minimal subtraction, F. Feruglio, H. Murayama, L. Randall, and A. Zaffaroni. M.
our results imply that the simple e><t_ensiorgﬁ(/ﬂ)—>R(,u) A. L. thanks the theory groups at LBNL and CERN for hos-
automatically picks out the so-calld@@R’ scheme. pitality during the initial stages of this work. N.A.H. is sup-
In practice, this result allows one to simply compute theported by the DOE under contract DE-AC03-76SF00515.
SUSY-breaking components & (for example by comput- M.A.L. is supported by the Alfred P. Sloan Foundation.

are precisely the 1Pl gauge coupling and gaugino mass d
fined by Euclidean subtraction or by minimal subtraction in
dimensional reduction. Thé)((SJrST)‘l) corrections ac-
count for the possible scheme dependence in the definition
R. Equation(6.3) and much of the story leading up to it are
very similar to the results of Ref5(a)], but we emphasize
that all quantities are finite renormalized quantities, and n
reference is made to the Wilsonian renormalization group.
The #%6% componenR is given at lowest order by

1
Rlgzge= — | —Temi+2> T,m?
872 r
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