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We describe the results of a systematic high-statistics Monte Carlo study of finite-size effects at the phase
transition of compact (1) lattice gauge theory with a Wilson action on a hypercubic lattice with periodic
boundary conditions. We find unambiguously that the critical exponésiattice-size dependent for volumes
ranging from 4 to 12*. Asymptotic scaling formulas yield values decreasing froth =4)~0.33 to »(L
=9)~0.29. Our statistics are sufficient to allow the study of different phenomenological scenarios for the
corrections to asymptotic scaling. We find evidence that corrections to a first-order transition=nt25
provide the most accurate description of the data. However the corrections do not always follow the expected
first-order pattern of a series expansion in the inverse lattice volirdleReaching the asymptotic regime will
require lattice sizes greater tharm=12. Our conclusions are supported by the study of many cumulants which
all yield consistent results after proper interpretati®0556-282198)02617-4

PACS numbegps): 11.15.Ha, 05.70.Jk, 12.20m

[. INTRODUCTION order transition, but again with a critical exponent not con-
sistent with the first-order prediction. These discrepancies
The U(1) lattice gauge model has been studied from thded the subject into an expectant state.
early days of numerical simulations of gauge theofigsl|ts The interest about the nature of the phase transition has
apparent simplicity makes it a natural choice for testing conbeen revived more recently by two kinds of results. The role
cepts and techniques used in simulations of non-Abelian latlayed by topological excitations, the monopoles, had been
tice gauge theories. However it turned out that the Abeliarthe object of inquiries since the very beginning of numerical
character of the (1) model brings specific difficulties. It can studies of the (1) lattice gauge theory13]. The influence of
be proven rigorously under rather general assumpti@hs topology on the critical properties can be probed in several
that Abelian lattice gauge theories have a phase transition atays. One approadii4—17is to add to the standard Wilson
finite coupling though the order is not known. The determi-action a couplingh controlling the density of monopoles.
nation by numerical simulations of the properties of the criti-There is some evidendd 8] in favor of the existence of a
cal point in compact (1) lattice gauge theory with a Wilson non-Gaussian second-order critical point in tigX) plane
action and periodic boundary conditions has been stronglywhen monopoles are suppressed. There is also preliminary
dependent on the computing power available at the time. evidencd 19] against universality with respect ko Another
The early simulation§3] made runs with a few hundred approach 20,21 is to study the compact @) gauge theory
iterations at each coupling constant on rather smatitg4  on lattices with a spherelike topology with a Wilson action
6%) lattices. They reported a second-order phase transitioextended by a coupling of charge 2:
but observed some signs of metastability with longer runs at
isolated points. Subsequent simulatipAsmade runs with a _
few thousand iterations on larger{@p to 16) lattices. It S_’BE.:: COS@PJFVEPD cos Bp. @
became possible to histogram the runs and to observe a gap
in the plagquette energy. They concluded to the existence of Ho signs of metastability are found on these lattices +for
first-order critical point but did notice a decrease of the gap<0. A finite-size scaling analysis of the data on spherelike
with the lattice size which was later confirms on 9* and  lattices[22] has concluded to the existence, fg=0, of a
(3V/3)* lattices. second-order transition with a non-Gaussian continuum
But the situation became still more confusing in the fol- limit. However we must notice that the critical exponents of
lowing years. Indeed the results, always for lattices with pethese two approaches are still different.
riodic boundary conditions and with runs 6f(10% length, The latter result has spawned further investigations. There
have usually depended on which method was used for studyras been a studj23] of the scaling behavior of gauge-ball
ing the phase transition. Most studies using the Monte Carlonasses and of the static potential, which claims to confirm
renormalization-group transformatig6—9] have claimed a the second-order nature of the transition also on lattices with
second-order phase transition, but sometimes with very difperiodic boundary conditions at=— 0.2 andy= —0.5 with
ferent critical exponents, whereas most works based oa critical exponentv~0.36 consistent with universality and
finite-size scaling theory10—12 have concluded to a first- the finite-size scaling analysis of spherelike lattices. The re-
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sults on lattices with spherical topology could also lend supthe measurements. In the following sections we shall discuss,

port to the suspicion that the first-order signal observed offor various cumulants, the finite-size scaling analysis of their

toroidal lattices might be a finite-size effect due to the topol-pseudocritical couplings and of their extrema. The conclu-

ogy of the lattice. This suspicion had been raised by thesion will be devoted to putting all these results into a coher-

observation of the decrease of the gap mentioned abov€nt perspective.

However the measurements of gaps were not accurate

enough and systematic enough to make a statement about the Il. FRAMEWORK OF THE FINITE-SIZE

infinite volume limit. The particular case of the Wilson ac- SCALING ANALYSIS

tion was therefore reinvestigatéa4,25 with increased sta-

tistics[O(10°) for each coupling constahand an emphasis

on the study of gaps. There was definite evidence that the Most of the numerical finite-size scaling analyses of the

latent heat extrapolates to a nonzero value in the infinitgphase transition in the (@) lattice gauge theory have been

volume limit of toroidal lattices. Moreover the measurementrestricted to the specific-heat and the Binder cumulant. When

of the critical exponenty~0.33, though clearly different scaling violations are important, as it turns out fof1))

from the first-order prediction, was not statistically consis-introducing higher-order cumulants brings some improve-

tent with the claim of universality with respect to the cou- ment as we shall explain below. Most reviews on finite-size

pling y. scaling theory discuss the magnetic cumulants only. Study-
Therefore there is always an apparent contradiction being energy cumulants carries some specific features. Even if

tween the simulations on lattices with spherelike topologythis is standard lore we shall briefly remind some useful for-

and on lattices with periodic boundary conditions since onemulas not always easy to find elsewhere. First, to fix our

observes a gap on the latter even when0. Moreover the notations, we recall that the canonical partition function of a

dispersion of the predicted values for the critical exponent lattice gauge theory on @-dimensional cubic lattice of size

is always as large as before, despite the increase in statistitscan be written as

since the last decade. One can fairly state that the confusion

about the nature of the transition has also increased. But one Z(,B,L)zf QO(E,L)e AVEJE @)

can now strongly suspect that the origin of these paradoxical

results could be explained by the presence of systematic cor-

rections to the asymptotic finite-size scaling formulas. This =e VFBL) ©)

will be our working hypothesis. There are two ways of cir-

cumventing these corrections. The most straightforward apwyhereQ(E,L) is the microcanonical partition functiok, is

proach is to simulate the largest possible lattices for a givethe plaguette energy, and the volume, for a lattice gauge

computing power. However, for a transition with a weak theory, isV=21d(d—1)LC.

first-order signal like W1), one must thoroughly assess Standard argumen{26] lead for continuous phase tran-

whether the number of tunneling events is sufficient to gesitions to the free-energy density decomposition in a singular

statistically reliable results. The other approach is to perfornpart and an analytic contribution:

a finite-size scaling analysis of the four-dimensional compact

U(1) gauge theory on smaller lattices but with the same qual- F(B,L)=L"%%o00) +fog(t,L), (4)

ity standard as the best analyses of three-dimensional spin

models. Such an analysis must meet two criteria. On the ongherex=|t|LY" is the scaling variable ant=g/8.—1 is

hand, the simulation must be done on many lattice Siazed  the reduced coupling. In this parametrization, the hyperscal-

not restricted to 3 or 4 data points as is so often the)dase ing relation a=2—vd is assumed with only one relevant

order to be able to test thgtability of the fits. On the other scaling variablex and no dangerous irrelevant variable.

hand, the statistics must be large enouglligentanglethe  Moreover one assumes that there are no marginal variables

systematic errors from the statistical errors. Only then can wand no logarithmic bulk singularities, even if we work in

interpret correctly the observed deviations in a critical expo-dimensiond=4, which could be the upper critical dimension

nent extracted from different observables. We can learn fronef the continuum limit if there were a second-order phase

the two- and three-dimensional numerical studies of spirtransition.

models how large the statistics must be: one needs at least The functionf,g represents the nonsingular contribution

O(10°) configurations at each coupling constant. None ofof the background to the free-energy densfty(t,L) is an

the presently published studies of théllphase transition analytic function int. Its dependence updnis not so clear.

satisfy both constraints and we contend that this is the sourcEhere is a conjecturf27] that for periodic systems one can

of the contradictory results. take f,q(t,L)~f(t,2). We shall assume that this conjecture
The purpose of this work is to present a study at eightholds true and that the dependence is exponentially sup-

lattice sizes with statistics up ©(10°) at each pseudocriti- pressed:

cal coupling after reweighting and to clarify the nature of the

U(1) phase transition. In the next section we shall review the fo(t,L)=Tfoot fort + fout?+ - - - +O(e~ %), (5)

part of finite-size scaling theory that we shall need in the

sequel to interpret the data. Then we shall describe the dédowever, one must be aware that for systems with free

tails of our Monte Carlo simulation and present the results oboundary conditions one expects in general thgs,L) can

A. Scaling Ansatz
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have geometrical terms present, which are proportional tand the Binder cumulant
inverse integral powers of 11/

There are further analytic corrections introduced by non- (E%
linearities in the scaling variables away from criticality either Uys(B.L)= 3 1- (E2)2 ' (1D
when solving the renormalization group beyond the linear
approximation,t’=t+O(t?), or for instance, when using We shall also introduce the second cumulant:
t'=pB./B—1 instead oft. Expressing the nonlinear scaling
variablex’ =t’L" in terms ofx yields corrections in powers (E?)
of L™Y. We will neglect these corrections. Ua(B,L)=1~ @ (12

In the renormalization-group description of second-order
phase transitions, one expects corrections to the asymptotithese low-order cumulants are sensitive to the analytic con-
scaling functionfy(x) induced by the irrelevant variables. tribution to the free-energy density in E€5). For instance
We shall keep the leading contribution in these correctiong\nsatz(6) implies the following for the scaling behavior of
and parametrize it by an exponent-0. Therefore we write the specific heat:

F(B,L)=L"%fo()+L “f00)) +fogt).  (6) 2 82

Cy(B.L)=— L 42 (f5(x)+ L “f1(x)—2fo0—.

We stress that thig\nsatzfor the free-energy density is a Bc B
natural, but completely phenomenological generalization of (13

the asymptotic scaling formula. Moreover thgsatzstill

depends at least upon four parameters. It is not yet possibfUt We know that d<»<1/2 and we can expect that

to extract that many parameters from a numerical finite-sizé~2/» —d- Such an approximate equality would imply that
analysis. We will have to resort to further approximationsthe next-to-leading contribution comes both from the correc-

and limit ourselves to considering three-parameter fiting ~ UONS to scaling and from the analytic background. Then we
size can anticipate difficulties in describing the scaling behavior

Ansatz(6) can also describe the finite-size behavior atOf the specific heat with three-paramesersaze ,
first-order transitions. Even if there is not so much known N the same way the predicted finite-size scaling behavior

about this behavior from a theoretical standpoint, one usuallf the second cumulant and the Binder cumulant is

expectg 28] that v~ 1= w=d. Heuristic arguments based on L)=[ —2d+2 n | —d+im

the double-Gaussian approximatif20—31] predict that the U2(B.L) [U2(X) + U21(X)

corrections should be expressible as a power serias ih + QLY L 2dt2l | mey], (14)

These arguments can be put onto a rigorous §a88is34 in

the special case af-states Potts models for large Ua(B,L) =L 27y, (X) + ugg(x)L @717
+O(L_z(d_llv),Ld_Z/V,L_w)]. (15)

B. Standard cumulants

In principle we would better like to determine directly the The corrections to scaling are now governed by the exponent
finite-size scaling properties dR(E,L) or equivalently of d—1/v. We can expect to run into problems describing these
the probability distributiorP(E,L) of the plaquette energy. corrections wherv~1/d. In the limit v=1/d, for first-order
In practice it is more convenient to extract the different mo-transitions, Eqs(13)—(15) yield the correct leading behavior

ments of the plaquette distribution: but the corrections become of order¢.
One can noticg35] that deriving Egs.(13)—(15) with
(=" 1 "z respect to3 introduces an additional factar’” through the
(EM= . 7 . : : N ;
v Z(B,L) ap" scaling variablex. Therefore studying the finite-size scaling
behavior of the derivatives of the standard cumulants should
(EM make it easier to determine the critical exponentWe have
B =V({(EXEM—(E""1)). (8)  also introduced these cumulants into our analysis:
. i . . aC,
Then, withAnsatz(6) it is easy to derive the scaling proper- =V[2B((E?)—(E)?)
ties of any cumulant from these moments. The choice of 9B
cumulants to include in the analysis is, in a large respect, — BAV((E3) —3(E2)(E)+2(E)3)], (16)
rather arbitrary. Of course, for the sake of comparison with
previous works, we have to study standard cumulants such as
the specific heat: ] =L((E3>(E>+ (E2)(E)2—2(E?)?) (17)
B (E)® ’
az
C,(B.L)=—B*—F(B.L) ©) U, V
% 3B~ 3 (ENE) T (ENED(E) - 2(ENEY).
=BV(EH)—(E)?) (10 (18)
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FIG. 1. The cumulantsC,xXV~*,U, and their derivatives FIG. 2. The cumulants,xV~""! on a 12 lattice as a function
aC, 198XV 10U, 198X V1 on a 12 lattice as a function of. of .

In order to make a comparison between different lattice _ 1)n+1, (g | )
sizes one still needs a prescription to define a common value
of the scaling variabla. One usually uses the location of an
extremum of a cumulant(8,L) to define a universal value
X% , independent of.. When there are several extrema it is
natural to choose the extremum closest to the infinite volume
critical point. Figure 1 displays the plots of the cumulants ~ =—L~9""*(f{"(x) + L~ “f{"(x))+ iU (B).
C,XV~1U, and their derivativesdC,/dBxXV~1,dU,/ Be
dBx V™1 as a function of8 and which extremum we have L )
studied in each case. They have been produced by reweightn® analytic piecefrJ(8) can be neglected as soon s
ing a run with 16 iterations on a 1% lattice at B =3. The first three cumulants coincide with the central mo-
—1.010 24. We recall that the critical coupling of 1y lat- ~ Ments:
tice gauge with a Wilson action and periodic boundary con-

_F(BL)
-

(20

=(E), 21
ditions is B(=) ~1.011. x1=(E) (22)
k=V((E?)—(E)*)=u,=C, /3, (22)

C. Derivatives of the free-energy density
k3=VX(E—(E))®) = us. (23)

We have just seen that it is not always easy to interpret

the scaling corrections to the standard cumulants or thek,q higher-order cumulants can be expressed as nonlinear
derivatives. The interpretation would be more tractable if we

. : _ YScombinations of the central momentg:,=V" Y (E
could study cumulants which are directly expressible IN_(E))"). We shall introduce in our analysis the cumulants
terms of the free energy. In particular we can introduce the

to sixth order:
energy cumulantsc,(8,L) [36], which are defined through " P © 5

the Taylor expansion of the free-energy densify3,L): K4:ILL4—3VM3, (24)
o<} _ n _ B

FB L=F(B.L~ 3, ok BLIB B K5~ s 10Vhza, =

(19 Ke= g 15V uopa— 1OV UZ+30V2 3. (26)

The finite-size scaling behavior of these energy cumulants iFigure 2 displays the plots of the cumularis< V""" on a
much simpler since they are simply the derivatives of thel2* lattice as a function o8 and which extremum we have
free-energy density: studied in each case.
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TABLE I. Number of configurations generated on different lattice sizes. MC indicates multicanonical
data. Simulations were performed in steps of 10

L B Iterations L B Iterations
4 0.9785 5 0.9940
| 5x10° | 12x10°
0.9795 0.9952
6 1.0014 7 1.0052
| 7x10° | 4x10°
1.0020 1.0055
8 1.0072 9 1.0084
| 5.5x 1¢° | 4.5x10°
1.0076 1.0088
10 1.0092 x1cP 12 1.0101 x1cP
1.0093 x 1P 1.0102 x 1P
1.0094 1.510° 1.0103 x10P
1.0095 x 1P MC 1.01024 4.x10°
MC 1.0102 1.410°

These energy cumulants have not been studied very often For safety reasons all results on our data sets were cross
in finite-size scaling analyses of phase transitions. In lowechecked with two independently developed evaluation pro-
dimensions and for spin models the emphasis is of course agrams. As a test of consistency we reweighted the multica-
magnetic cumulants and the standard set of cumulants isonical histogram to a coupling where we had heatbath data
natural in this context. The energy cumulamts are more (see Fig. 4 Though we did not apply any smoothing algo-
suitable to the analysis of four-dimensional field theories. rithms to the histograms no relevant deviation can be ob-

served. To calculate the errors of our observables we pro-
I. SIMULATION DETAILS ceeded as follows: We first divided our runs into five bins
. i . ) and calculated the error in each run by binning. The error for

Previous studie$24,29 provide us already with & good each lattice size was then calculated by?fit to a constant
knowledge of the locations of pseudocritical couplings alof 4| runs’ binning results. In other words we did not recom-
eight lattice sizes. We have therefore decided to increase th§ne the histograms at the pseudocritical points and used
statistics at several couplings inside the error bars of thesgach run as an independent sample. Secondly we performed
pseudocritical points. For each coupling we did at least twgy jacknife error analysis in the same manner but with ten
runs with hot and cold starts, different random generatorgins, The larger error was taken into account. The jacknife
with large periods, and statistics 0b&L0° configurations.  error appeared to be usually larger, especially for the cumu-
For a complete overview of our statistics we refer to Table | |ants’ derivatives, in heatbath data at all lattice sizes except
The simulated3 values are quite close to each other and we_ =12 ForL =12 the binning error was very large in heat-
can use the spectral density metf{&d] to study the pseu- path data while no significant difference could be seen be-
docritical points without noticeable extrapolation errors.  tween the two methods in MC data. We interpret this phe-

We have of course simulated the full(l) group in " nomenon as a consequence of the lack of tunneling events
double precision. We used two different programs to genefyjithin a bin on a 12 lattice with a local heatbath algorithm.
ate our configurations. One is an improved heatbath algoye opserve just a few phase flips in®li€erations. It is our
rithm, the other one is capable of multicanonical Update%xperience that one needs at least a totaD@E0?) flips in

(MC) combined with overrelaxatiof88,24. Both programs  der to control the statistical errors on the observables.
were tuned to yield acceptance rates of about 60%. The mul-

tican(_)nical algorithr_n was used in additior_\ to the heatbath V. MEASUREMENTS
algorithm on 12 lattices. To produce the histogram needed
for the multicanonical simulation we generated X B’ The measurements of the standard cumulants and their

configurations using an overrelaxed Metropolis algorithm.derivatives are displayed in Table Il for all the lattice sizes

For 3=1.010 20 the multicanonically reweighted histogramsthat we have studied and the results for the cumulap(8

of the runs a{8=1.010 24 were used as the input. In rat <n=6) are gathered in Table Ill.

runs we used eight Metropolis updates followed by one over- It can be read from the tables that the statistical accuracy
relaxation step per link. A drastic reduction of the tunnelingof the measurements of the pseudocritical couplings and of
time is evident in Fig. 3. On smaller lattice sizes the heatbatlthe cumulants extrema has been improved by roughly one
algorithm is sufficient to generate statistics that allow a pre-order of magnitude with respect to previous studies. In par-
cise determination of all observables. ticular the relative accuracy of our results for the pseudocriti-
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5x10% 3.0x10° 3.5x107 4.0x10° 4.5x10% 5.0x10°

0.67 0.67
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FIG. 3. The histories in multicanonical and heatbath simulations orf'datt&e and the corresponding histograms normalized to unit
area.

cal couplings on the T2attice is now below 10°, which is Bo(L)=B(o)+aL . (27
nearly comparable to the best results of numerical studies of
lower-dimensional spin models. With data at eight lattice sizes it is possible to fit the three

In the following sections we shall present a finite-sizeunknown parameters for each cumulant independently. With
scaling analysis of these results. But our analysis of correcaur statistics it is even possible to test the stability of the fits
tions to scaling will be conventional and far from exhaustive.with respect to the lattice size. Table 1V displays the results
With our measurements given in raw form, without any in- of such fits for the standard cumulants and their derivatives.
terpretation, the reader has the possibility of doing alterna- The fits are clearly not stable. The statistical errors are
tive analyses. small enough to show the systematic decrease of the critical

exponenty with the lattice sizeL. There is also a slight

systematic decrease of the infinite-volume limit of the criti-

V. PSEUDOCRITICAL COUPLINGS cal couplingB.(«). Moreover the fits are pretty consistent

. . for all cumulants. Therefore we can try a combined fit to the
The pseudocritical couplings are expected to follow the ., . i
asymptotic finite-size scaling formula: pse'udo'crltlcal' couplings of all standard cumulants and'thelr

derivatives, with a common value ofand8.(>). Such a fit
is meaningful since these cumulants are defined in terms of
algebraically independent combinations of the moments of
the plaquette energy distribution. We can also test the stabil-
ity of this combined fit with respect to the lattice size. The
parameters of these fits are given in Table V. Figure 5 dis-
plays the result of the combined fit to the=6 data points.
Errors on the data points are much smaller than the marker
sizes.

We can repeat the same kind of analysis for the energy

A cumulantsk,,. The independent fits are shown in Table VI
0 L ! L L L ! 1 and the combined fits in Table VII. The result of the com-

059 06 061 062 063 064 065 066 067 bined fit to theL=6 data points is also displayed in Fig. 6.
E The critical values ofy and B.(«) extracted from the

FIG. 4. The histograms in M@solid) and heatbath simulations cumulantsk, are very similar to those extracted from the

(dashedlon a 12 lattice. standard cumulants or their derivatives. Studying the pseu-

50 T
45 -
40 |
35 1
30+
P(E) 5 |
20 |
15
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TABLE II. Pseudocritical couplings and extrema®©f ,U,,U, and their derivatives as a function of the

lattice sizel.
L BC(CU) CV,maxxvil BC((?CU/aB) (&Cvlﬁﬁ)maxXV71
4 0.97912) 0.22085)E-02 0.99012) 0.08038)
5 0.994665) 0.139G3)E-02 1.0003%) 0.1011)
6 1.001724) 0.9553)E-03 1.0049¢4) 0.1243)
7 1.005325) 0.7033)E-03 1.0073%b) 0.15Q7)
8 1.007444) 0.5514)E-03 1.0087%) 0.18610)
9 1.008623) 0.4533)E-03 1.009513) 0.230q14)
10 1.0093%5) 0.3824)E-03 1.0100%6) 0.26511)
12 1.01023%7) 0.3022)E-03 1.01056[) 0.4295)
L ,BC(UZ) U2,min ,Bc(&UZ/a:B) (0U2/(9‘B)min><V71
4 0.97642) —0.6702)E-02 0.98822) —0.157415)E-03
5 0.993715) —0.38579)E-02 0.999616) —0.7538)E-04
6 1.001324) —0.25257)E-02 1.004664) —0.4239)E-04
7 1.005125) —0.18028)E-02 1.00716b) —0.26912)E-04
8 1.007344) —0.13879)E-02 1.008684) —0.19110)E-04
9 1.0085%3) —0.11228)E-02 1.009483) —0.1469)E-04
10 1.0093%5) —0.94410)E-03 1.00998&) —0.1106)E-04
12 1.01021%) —0.7344)E-03 1.01055@) —0.8419)E-05
L ,BC(U4) U4,min Bc(‘au4/‘9ﬂ) (‘9U4/‘93)minxv7l
4 0.97532) —0.8912)E-02 0.987(2) —0.2112)E-03
5 0.993275) —0.515811)E-02 0.99918) —0.100610)E-03
6 1.001114) —0.337210E-02 1.004464) —0.56512)E-04
7 1.005015) —0.240411)E-02 1.0070&) —0.35915)E-04
8 1.007284) —0.185X12)E-02 1.008614) —0.25513)E-04
9 1.008513) —0.151311)E-02 1.0094(3) —0.19512)E-04
10 1.009325) —0.125414)E-02 1.009964) —0.1489)E-04
12 1.0102087) —0.9796)E-03 1.01053®) —0.112212)E-04

docritical couplings of the cumulants, does not give any the solid curves denote the fit to thesatzwhich yields the
significant improvement over the standard cumulants. Théest results.

pseudocritical couplings are not very sensitive to the correc-

tions to asymptotic scaling. Even if the finite-size scaling A. Asymptotic scaling

violations are clearly visible on Figs. 5 and 6 at the small
lattice sized_=4 or 5, it would not be possible to introduce
additional parameters in the fits.

It is certainly not possible to describe the data without
taking into account the corrections to scaling. However it is
instructive to define, for any cumulart an “effective criti-
cal exponentv, (L) by fitting the data at scalds L +1 and
VI. CUMULANTS' EXTREMA L+2 to the asymptotic form of the scalifgnsdze of Sec.

Il
In this section we will present some selected analyses of

the finite size scaling behavior of the cumulants we calcu- FSRa: «(L)=blL". (28
lated. As the main result we can state that the finite-size

scaling behavior of all cumulants is consistent with a first-We shall refer to thisAnsatzasF S Sa. The relation between
order transition. However we observe a difference in the corthe critical exponents and v depends of course upon the
rections to scaling of the specific heat and the Binder cumueumulant. The results are displayed in Table VIII. We ob-
lant, on one hand, and their derivatives and the energgerve again in Table VIII a systematic decrease of the critical
cumulants on the other hand. Up to the lattice sizes we calexponenty with the lattice sizeL. The effective critical ex-
culated, the first do not follow yet the expected pattern in gponentv(L) is pretty consistent at each scdleacross the
first-order phase transition, while the other show a clear firstcumulantsk,, and with the values found in the combined fits
order behavior. To demonstrate this we will present selectedf the pseudocritical couplings. There is however some dis-
fits to our data. In all pictures in the following subsectionspersion among the standard cumulants and their derivatives
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TABLE Ill. Pseudocritical couplings and extrema &f cumulants as a function of the lattice size

L Be(xa) KXV ™2 Be(ka) kyXV73

4 0.99022) —0.5116)E-04 0.998%2) 0.1563)E-05
5 1.0003%6) —0.2643)E-04 1.004516) 0.6599)E-06
6 1.0049%4) —0.1564)E-04 1.0073%) 0.3349)E-06
7 1.0073%5) —0.1025)E-04 1.008815) 0.191(9)E-06
8 1.008774) —0.744)E-05 1.0097&%) 0.1267)E-06
9 1.009513) —0.574)E-05 1.010163) 0.906)E-07
10 1.010026) —0.432)E-05 1.01048&) 0.688)E-07
12 1.0105649) —0.3384)E-05 1.01080{10) 0.46Q7)E-07
L Be(xs) kX V™4 Be(xe) KeXV™°

4 0.98512) 0.3857)E-06 0.99072) —0.2786)E-07
5 0.998276) 0.1313)E-06 1.0011(%) —0.77q13)E-08
6 1.003814) 0.552)E-07 1.0054%4) —0.2738)E-08
7 1.006635) 0.272)E-07 1.007645) —0.1176)E-08
8 1.008304) 0.16213)E-07 1.0089%4) —0.624)E-09
9 1.009193) 0.11(9)E-07 1.009643) —0.383)E-09
10 1.009796) 0.718)E-08 1.010116) —0.244)E-09
12 1.0104468) 0.4529)E-08 1.010610) —0.1373)E-09

TABLE IV. Independent second-order finite-size scaling fits to the pseudocritical couplings of standard

cumulants and their derivatives.

Cumulant L x° pt a Be()
C, L=4 2.42 2.99017) —2.091(56) 1.0114%3)
L=5 1.42 3.03123 —2.22481) 1.011413)
L=6 0.731 3.11(46) —2.5421) 1.01135%5)
L=>7 0.379 3.2811) —3.1765) 1.011287)
U, L=4 1.29 3.09016) —2.55464) 1.0114Q@2)
L=5 1.04 3.1122) —2.64892) 1.011383)
L=6 0.829 3.16(044) —2.8923) 1.011344)
L=7 0.704 3.2611) —3.4869) 1.011287)
U, L=4 1.24 3.11616) —2.72767) 1.011392)
L=>5 1.08 3.1301) —2.81897) 1.011373)
L=6 0.878 3.18M43) —3.0724) 1.011334)
L=>7 0.816 3.2811) —3.6671) 1.011277)
ac, 19 L=4 1.43 3.0126) —1.39858) 1.011363)
L=5 1.01 3.05137) —1.50991) 1.011333)
L=6 0.715 3.14071) —1.7522) 1.011285)
L=7 0.730 3.2617) —2.2272) 1.011237)
U,1dB L=4 1.12 3.09624) —1.70566) 1.011332)
L=5 0.836 3.1385) —-1.81(11) 1.011313)
L=6 0.704 3.19667) —2.0324) 1.011284)
L=7 0.898 3.2816) —2.37173) 1.011247)
U, 198 L=4 0.724 3.1424) —1.90471) 1.011313)
L=5 0.687 3.16634) —-1.9911) 1.0113@3)
L=6 0.613 3.2166) —2.1826) 1.011274)
L=7 0.732 3.3016) —2.57177) 1.011237)
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TABLE V. Combined asymptotic finite-size scaling fits to the 1.015
pseudocritical couplings of the cumular®, U,, U,, dC, /38, [ o B(C)
U, 1dB, anddU /9. 1.o1 F n A(Uy)
[ 2 BU)
2 o -1 . vy B(dC)
. X Be(=) ’ 1005 £ o BldU)
L=4 5.86 1.0113468) 3.105972) r o 8(du)
L=5 4.09 1.01131@0) 3.14410) L
L=6 1.81 1.011264@4) 3.22219) :
L=7 0.692 1.0112249 3.32935) 0995
L=8 0.799 1.0112329) 3.30462) =
L=9 0.872E-01 1.0112083) 3.424969) 0.99
0985 |
not observed in the analysis of pseudocritical couplings. In .
fact the y? of these asymptotic fits is quite high even with 0.98 |
two parameters and only three data points. We see here a fir: C 8.=1.01127
manifestation of the expected improved scaling behavior of0.975 | v'=3.222 e
the energy cumulants,, . [
097 L

PR T N S ST SN [TV SO Y YT U S (NSNS TR [N SN SR SO ST ST ST S N
0 0002 0004 0.006 0008 001 0012 0014
B. Corrections to scaling LW

The asymptotic scaling fits for the cumulants’ extrema as FIG. 5. Combined fit to th& =6 data points of the pseudocriti-

well as for the pseu_docritical COUP"”QS hint at a first-orderca| couplings of the standard cumulants and their derivatives.
transition. Our working hypothesis will be to describe the

data with scaling corrections to a first-order transition. Theserne volume normalization factor is chosen such that the fit-

corrections are expected to be expressible as a series expafiig Ansatzmakes sense. With the definitions of Sec. Il we
sion in the inverse volum¥~1. Since we limit ourselves to havek=0 for U, andU,, k=1 for C,,dU,/d8,dU4/38
) v ) 1

th_ree—parameter fits, we shall introduce the two fitthig- | — 5 for sC 168 andk=n—1 for «, .
sdze We shall need another, more phenomenological fitting
FSSla: «(L)XV *=a+bL ", (29 Ansauz

FS®b: «k(L)XV k=a+bL™®. (32)
FSSlb:  «(L)XV *=a+bL 9+cL™%.
(30 The volume normalization factov ¥ is by definition the
y

TABLE VI. Independent second-order finite-size scaling fits to the pseudocritical couplings af, the

cumulants.
Cumulant L X2 vt a Be(*)
K3 L=4 1.72 3.00827) —1.38158) 1.011363)
L=5 1.05 3.06(88) —1.51592) 1.011323)
L=6 0.720 3.14672) —1.7723 1.011285)
L=7 0.711 3.2817) —2.26(74) 1.011227)
Ky L=4 1.18 3.01144) —0.85860) 1.011293)
L=5 0.872 3.076862) —0.95997) 1.011273)
L=6 0.724 3.2013) —1.1927) 1.011235)
L=7 0.812 3.388) —1.6993) 1.011197)
Ks L=4 1.02 3.0882 —1.87665) 1.011333)
L=5 1.08 3.06831) —1.81592) 1.011343)
L=6 0.684 3.13660) —2.0822) 1.0113@5)
L=7 0.721 3.2415) —2.51(68) 1.01125%8)
Ke L=4 0.843 3.10@8) —1.51467) 1.011293)
L=5 0.887 3.07¢40) —1.45495) 1.0113@3)
L=6 0.485 3.1747) —1.7224) 1.011265)
L=7 0.489 3.2019) —2.137164) 1.011227)
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TABLE VII. Combined asymptotic finite-size scaling fits to the 1.015

pseudocritical couplings of the cumulantg, 4, x5, and k. Blis)

Lol 2 Blx.)

L X2 BC(OO) yt ! B(xs)

[ B(xs)
L=4 2.41 1.011294.2) 3.08414) 1005
L=5 1.59 1.01128@3) 3.105198) -
L=6 0.718 1.0112447) 3.20231) Ly
L=7 0.442 1.01120@5) 3.31963 -
L=>8 0.564 1.01122@7) 3.2711) 0.995 ¢
L=9 0.856E-02 1.01119%3) 3.42914) ":)99 -

same as for the first-order fittingnsaze Therefore the ex- 0985

ponentw parametrizes the corrections to an asymptotic first- .
order behavior. Introducing such an effective exponent al- 0.93 |
lows a more flexible description of the corrections. One [ 8.=1.01124
should find thatw— d when we reach the asymptotic regime. 0975 | v'=3.202

The best-SSlb fit to the specific heat is represented by [
the dashed line in Fig. 7. Obviously it cannot describe the 097 L
smallest lattice sizes. On the other hand, the fitigsatz
FS b describes our data on the specific heat perfectly. Our
data ondC, /33 have the largest errors of all the results we  FiG. 6. Combined fit to thé =6 data points of the pseudocriti-
produced. Thus the quality of the best fits Wit SLb (solid cal couplings of the cumulants, .
line) or FSSla (dashed lingis not good.

The Ansatz FS2b is also able to reproduce the data onlant k, is a noticeable exception. The asymptotic first-order
the Binder cumulant quite accuratefgolid line in Fig. 8.  Ansatz FS$a is already able to describe all data points and
We observe again tha#nsatz FS$b (dashed lingfails to  is nearly indistinguishable frominsatz FS$b. We have
reproduce the smallest lattice sizes. The description of thanother, and more vivid manifestation of the improved scal-
derivativedU,/dB by FSSLb (solid line) is much better and ing behavior of the energy cumulants .

FSSla gives already a good fit for all but the smallest lattice  Table IX gives a quantitative content to the previous
sizes(dashed ling The results folJ, and its derivative are qualitative observations. This table contains the paramaters
quite similar toU, and its derivative and will not be repro- andb of the best fits displayed in the figures. We always

e b by e b e e b )
0 0.002 0.004 0.006 0.008 001 0012 0.014
L-l/v

duced here. choose the smallest lattice size withy& per degree of free-
In the same way we find that the first-ordemsazecan fit  dom less than 2.
the data on the energy cumularis. In Fig. 9 all solid lines The main feature is the smallness of the ratids. In the

represent the best fits withnsatz FS $b whereas all dashed first-order fits, the leading contributianis generally smaller
lines represent the best fits witinsatz FS$a. The cumu-  than the correction termaL ™9 up to the lattice sizé& =12. It

TABLE VIII. Critical exponenty~? extracted from lattice sizels, L+1, andL+2 for each cumulant
extremum with the ansafzS Sa.

L C, Uy dC, 1B dUyuldpB
9 3.29917) 3.25Q17) 3.46156) 3.40263)
8 3.17728) 3.13227) 3.1911) 3.1912
7 3.12116) 3.07Q17) 3.231) 3.18397)
6 3.03@12) 2.94212) 3.12364) 3.06459)
5 2.9837) 2.85Q7) 3.05036) 2.96232)
4 2.9685) 2.7885) 3.01618) 2.90616)
L K3 Ka Ksg Kg

9 3.47963) 3.42257) 3.40555) 3.41647)
8 3.1911) 3.3013 3.2712) 3.3011)
7 3.2312) 3.24780) 3.28290) 3.24662)
6 3.12566) 3.13951 3.13559) 3.12639)
5 3.04838) 3.07530) 3.05536) 3.06122)
4 3.01920) 3.04620) 3.03818) 3.04515)
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4.0x1073 5.0x107! 2.0x1073 0

3.5%103 4.5%107! . -5.0x107°

3.0%10-3 4.0x107! -1.0x104

2.5510-> 3.5x107! -2.0x1073 -1.5x104
. 3.0x107! soy. -2.0x10~4 8l
& 9.0x10- % Ui _40x10-2 %

2.5%10-1 -2.5x1074

-3
1.5%10 2.0x107! -6.0x10"3 -3.0x10-4
1.0x10-3 1.5x1071 -3.5x10~4
5 -8.0x103
5.0%10~% 1.0x10 -4.0x104
501072 -1.0x10-2 -4.5x10~4

FIG. 7. Fits to the specific heat and its derivative.

FIG. 8. Fits to the Binder cumulant and its derivative.

is no surprise that the first-order nature of the transition is s@orrection terms of ordev ! andV 2. The cumulantk, is

difficult to observe.

even completely described by the asymptotic first-order for-

We can get order-of-magnitude estimates of the parammula.

eters of a first-order transition by comparing the valuea of
with the predictions of thévery crude double-Gaussian ap-
proximation[29]. The height of the maximum of the specific
heat should increase linearly witt as

2
Cc

3
Cv,maxzv_

5 (€= €9)2+O(1),

(32
where 8. is the infinite-volume critical coupling aneé,
— ey Is the latent heat. We find

e,— €4~0.029. (33

The minimum of the Binder cumulant is predicted to be
(30,31

There seems to be a correlation between the amount of
scaling violations in each cumulant extremum and the loca-
tion of its pseudocritical coupling. The closer the pseu-
docritical coupling is, at fixed lattice size, from the infinite-
volume critical point, the better the description of the extre-
mum by a first-order transition. All the cumulants we have
studied follow this rule. Then we can make two observations.

On the one hand, if we had chosen to study the extremum
in each cumulant which is farthest frof.(e) we would
certainly have found a behavior inconsistent with a first-
order transition and concluded to a second-order transition
with a critical exponeni greaterthan 0.33. We suggest that
this is the origin of many claims for a large critical exponent
v. Most of them are not based on finite-size scaling analyses
of the standard cumulants, which all should give0.33,

2 272
(e5—eg)
Amin=— R o(VY). (34) 1.0x10-5 r T T T T T T 3.0x107
’ 2
12(eoed) 0
- 25x107°
. . -1.0x1075 =
We get another estimate of the latent heat which agrees ,, .| S Jda0x1076
pretty well with Eq.(33): s0x10-5 L TR .
ko S ha Sl 15x1076 4
-4.0x1073 |- S
e,—e4~0.026. 35 sl
o ™~ (35 5.0x10-5 |- < 10107
6.0x10-5 - N S
VIl. CONCLUSION L ox10-5 L e L
.. . . . . . - 1 1 | 1 1 | 1
Our study shows that finite-size scaling violations are in- -#0x107 = e -
deed present in each observable for lattice sized 412. @) vt
The observed scaling violations are consistent for all observ-
4.0x107 5.0x1079

ables: the critical exponent systematicallydecreasewith

the lattice sizd.. Asymptotic finite-size scaling of all cumu-
lants and of their pseudocritical couplings yields consistently
v~0.29 forL=9 which points towards a first-order transi-
tion.

The scaling violations in the pseudocritical couplings and
the cumulant values decrease slowly with the lattice size.
This slow variation, which is hard to unravel, can explain the
claims for a second-order transition with=0.33. However
the scaling violations seem to decrease more rapidly for the
derivatives of the standard cumulants and for the cumulants
K,. The finite-size size behavior of all these cumulants can
be completely described in the ranges=<12 by volume

3.5%1077
3.0x1077
2.5x1077
. 2.0x10-7
1.5x1077
1.0x10-7
5.0x10-8
0

-5.0x10-8
[}

(b)
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TABLE IX. Best fits to the cumulants’ extrema.

Cumulant Fit L X2 a b

C, FS2b L=5 0.524 0.147664)E-03 0.58023)E-01
aC,1dB FSSlb L=5 0.580 0.149@7)E-04 0.120651)

Uy FS2b L=4 0.853 —0.54511)E-03 —0.351864)
dU,loB FSSlb L=4 1.79 —0.82314)E-05 —0.63211)E-01
K3 FSSlb L=5 0.498 —0.244462)E-05 —0.196G88)E-01
Ky FSSla L=4 0.938E-01 —0.270475E-07 —0.394943)E-03
Ksg FSSlb L=4 1.26 0.14815)E-08 0.63122)E-04
Kg FSSlb L=5 0.427 —0.33471)E-10 —0.20613)E-05

but come from various analyses done at coupligamaller  phases stay finite in the infinite volume limit whereas there
than,BcU(L), the pseudocritical coupling of the specific heat exist massless photons in the ordered phase(af. (Clearly
in the corresponding lattices. the U1) lattice gauge theory deserves as much numerical

On the other hand, we could think of studying still higher- study as the lower-dimensional spin models and theoretical
order k, cumulants to get closer t@.(«). However we understanding of the scaling violations will be required be-
would face two difficulties. First the statistical noise in- fore a definitive conclusion on the nature of its phase transi-
creases withn. Secondly the extrapolation from the cou- tion.
plings where we generated our configurations gets large. The
solution might be to generate the configurations for all lattice
sizes at the infinite-volume critical point and use the method
developed 32,33 for the study of first-order transitions in )
Potts models. C.R. is grateful to the Freie UniversitBerlin for its hos-

However it is not clear how the proofs can be extended tgitality during a visit when this manuscript was completed
the case of the (1) phase transition. Potts models have aand acknowledges a financial support by the Graduiertenkol-
discrete symmetry and a local order parameter whereas theg “Strukturuntersuchungen, Brigionstests und Erweiter-
U(1) lattice gauge theory has a continuous local symmetrjungen des Standardmodells der Elementarteilchenphysik.”
and a nonlocal order parameter since the proof of the exid3. K. wants to thank P. E. L. Rakow from DESY-IfH
tence of the phase transition uses the Wilson critef&j. Zeuthen for his support during the preparation of the diploma
In Potts models the physical correlation lengths in both purdghesis. He initialized the investigation of the latent heat.
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