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We describe the results of a systematic high-statistics Monte Carlo study of finite-size effects at the phase
transition of compact U~1! lattice gauge theory with a Wilson action on a hypercubic lattice with periodic
boundary conditions. We find unambiguously that the critical exponentn is lattice-size dependent for volumes
ranging from 44 to 124. Asymptotic scaling formulas yield values decreasing fromn(L>4)'0.33 to n(L
>9)'0.29. Our statistics are sufficient to allow the study of different phenomenological scenarios for the
corrections to asymptotic scaling. We find evidence that corrections to a first-order transition withn50.25
provide the most accurate description of the data. However the corrections do not always follow the expected
first-order pattern of a series expansion in the inverse lattice volumeV21. Reaching the asymptotic regime will
require lattice sizes greater thanL512. Our conclusions are supported by the study of many cumulants which
all yield consistent results after proper interpretation.@S0556-2821~98!02617-4#

PACS number~s!: 11.15.Ha, 05.70.Jk, 12.20.2m

I. INTRODUCTION

The U~1! lattice gauge model has been studied from the
early days of numerical simulations of gauge theories@1#. Its
apparent simplicity makes it a natural choice for testing con-
cepts and techniques used in simulations of non-Abelian lat-
tice gauge theories. However it turned out that the Abelian
character of the U~1! model brings specific difficulties. It can
be proven rigorously under rather general assumptions@2#
that Abelian lattice gauge theories have a phase transition at
finite coupling though the order is not known. The determi-
nation by numerical simulations of the properties of the criti-
cal point in compact U~1! lattice gauge theory with a Wilson
action and periodic boundary conditions has been strongly
dependent on the computing power available at the time.

The early simulations@3# made runs with a few hundred
iterations at each coupling constant on rather small (44 to
64) lattices. They reported a second-order phase transition
but observed some signs of metastability with longer runs at
isolated points. Subsequent simulations@4# made runs with a
few thousand iterations on larger (84 up to 164) lattices. It
became possible to histogram the runs and to observe a gap
in the plaquette energy. They concluded to the existence of a
first-order critical point but did notice a decrease of the gap
with the lattice size which was later confirmed@5# on 94 and
(3A3)4 lattices.

But the situation became still more confusing in the fol-
lowing years. Indeed the results, always for lattices with pe-
riodic boundary conditions and with runs ofO(104) length,
have usually depended on which method was used for study-
ing the phase transition. Most studies using the Monte Carlo
renormalization-group transformation@6–9# have claimed a
second-order phase transition, but sometimes with very dif-
ferent critical exponents, whereas most works based on
finite-size scaling theory@10–12# have concluded to a first-

order transition, but again with a critical exponent not con-
sistent with the first-order prediction. These discrepancies
led the subject into an expectant state.

The interest about the nature of the phase transition has
been revived more recently by two kinds of results. The role
played by topological excitations, the monopoles, had been
the object of inquiries since the very beginning of numerical
studies of the U~1! lattice gauge theory@13#. The influence of
topology on the critical properties can be probed in several
ways. One approach@14–17# is to add to the standard Wilson
action a couplingl controlling the density of monopoles.
There is some evidence@18# in favor of the existence of a
non-Gaussian second-order critical point in the (b,l) plane
when monopoles are suppressed. There is also preliminary
evidence@19# against universality with respect tol. Another
approach@20,21# is to study the compact U~1! gauge theory
on lattices with a spherelike topology with a Wilson action
extended by a couplingg of charge 2:

S5b(
P

cosQP1g(
P

cos 2QP . ~1!

No signs of metastability are found on these lattices forg
<0. A finite-size scaling analysis of the data on spherelike
lattices @22# has concluded to the existence, forg<0, of a
second-order transition with a non-Gaussian continuum
limit. However we must notice that the critical exponents of
these two approaches are still different.

The latter result has spawned further investigations. There
has been a study@23# of the scaling behavior of gauge-ball
masses and of the static potential, which claims to confirm
the second-order nature of the transition also on lattices with
periodic boundary conditions atg520.2 andg520.5 with
a critical exponentn'0.36 consistent with universality and
the finite-size scaling analysis of spherelike lattices. The re-
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sults on lattices with spherical topology could also lend sup-
port to the suspicion that the first-order signal observed on
toroidal lattices might be a finite-size effect due to the topol-
ogy of the lattice. This suspicion had been raised by the
observation of the decrease of the gap mentioned above.
However the measurements of gaps were not accurate
enough and systematic enough to make a statement about the
infinite volume limit. The particular case of the Wilson ac-
tion was therefore reinvestigated@24,25# with increased sta-
tistics @O(105) for each coupling constant# and an emphasis
on the study of gaps. There was definite evidence that the
latent heat extrapolates to a nonzero value in the infinite
volume limit of toroidal lattices. Moreover the measurement
of the critical exponent,n'0.33, though clearly different
from the first-order prediction, was not statistically consis-
tent with the claim of universality with respect to the cou-
pling g.

Therefore there is always an apparent contradiction be-
tween the simulations on lattices with spherelike topology
and on lattices with periodic boundary conditions since one
observes a gap on the latter even wheng,0. Moreover the
dispersion of the predicted values for the critical exponentn
is always as large as before, despite the increase in statistics
since the last decade. One can fairly state that the confusion
about the nature of the transition has also increased. But one
can now strongly suspect that the origin of these paradoxical
results could be explained by the presence of systematic cor-
rections to the asymptotic finite-size scaling formulas. This
will be our working hypothesis. There are two ways of cir-
cumventing these corrections. The most straightforward ap-
proach is to simulate the largest possible lattices for a given
computing power. However, for a transition with a weak
first-order signal like U~1!, one must thoroughly assess
whether the number of tunneling events is sufficient to get
statistically reliable results. The other approach is to perform
a finite-size scaling analysis of the four-dimensional compact
U~1! gauge theory on smaller lattices but with the same qual-
ity standard as the best analyses of three-dimensional spin
models. Such an analysis must meet two criteria. On the one
hand, the simulation must be done on many lattice sizes~and
not restricted to 3 or 4 data points as is so often the case! in
order to be able to test thestability of the fits. On the other
hand, the statistics must be large enough todisentanglethe
systematic errors from the statistical errors. Only then can we
interpret correctly the observed deviations in a critical expo-
nent extracted from different observables. We can learn from
the two- and three-dimensional numerical studies of spin
models how large the statistics must be: one needs at least
O(106) configurations at each coupling constant. None of
the presently published studies of the U~1! phase transition
satisfy both constraints and we contend that this is the source
of the contradictory results.

The purpose of this work is to present a study at eight
lattice sizes with statistics up toO(107) at each pseudocriti-
cal coupling after reweighting and to clarify the nature of the
U~1! phase transition. In the next section we shall review the
part of finite-size scaling theory that we shall need in the
sequel to interpret the data. Then we shall describe the de-
tails of our Monte Carlo simulation and present the results of

the measurements. In the following sections we shall discuss,
for various cumulants, the finite-size scaling analysis of their
pseudocritical couplings and of their extrema. The conclu-
sion will be devoted to putting all these results into a coher-
ent perspective.

II. FRAMEWORK OF THE FINITE-SIZE
SCALING ANALYSIS

A. Scaling Ansatz

Most of the numerical finite-size scaling analyses of the
phase transition in the U~1! lattice gauge theory have been
restricted to the specific-heat and the Binder cumulant. When
scaling violations are important, as it turns out for U~1!,
introducing higher-order cumulants brings some improve-
ment as we shall explain below. Most reviews on finite-size
scaling theory discuss the magnetic cumulants only. Study-
ing energy cumulants carries some specific features. Even if
this is standard lore we shall briefly remind some useful for-
mulas not always easy to find elsewhere. First, to fix our
notations, we recall that the canonical partition function of a
lattice gauge theory on ad-dimensional cubic lattice of size
L can be written as

Z~b,L !5E V~E,L !e2bVEdE ~2!

5e2VF~b,L !, ~3!

whereV(E,L) is the microcanonical partition function,E is
the plaquette energy, and the volume, for a lattice gauge
theory, isV5 1

2 d(d21)Ld.
Standard arguments@26# lead for continuous phase tran-

sitions to the free-energy density decomposition in a singular
part and an analytic contribution:

F~b,L !5L2df 0~x!1 f ns~ t,L !, ~4!

wherex5utuL1/n is the scaling variable andt5b/bc21 is
the reduced coupling. In this parametrization, the hyperscal-
ing relation a522nd is assumed with only one relevant
scaling variablex and no dangerous irrelevant variable.
Moreover one assumes that there are no marginal variables
and no logarithmic bulk singularities, even if we work in
dimensiond54, which could be the upper critical dimension
of the continuum limit if there were a second-order phase
transition.

The function f ns represents the nonsingular contribution
of the background to the free-energy density.f ns(t,L) is an
analytic function int. Its dependence uponL is not so clear.
There is a conjecture@27# that for periodic systems one can
take f ns(t,L)' f (t,`). We shall assume that this conjecture
holds true and that theL dependence is exponentially sup-
pressed:

f ns~ t,L !5 f 001 f 01t1 f 02t
21•••1O~e2L/j!. ~5!

However, one must be aware that for systems with free
boundary conditions one expects in general thatF(b,L) can

BURKHARD KLAUS AND CLAUDE ROIESNEL PHYSICAL REVIEW D58 114509

114509-2



have geometrical terms present, which are proportional to
inverse integral powers of 1/L.

There are further analytic corrections introduced by non-
linearities in the scaling variables away from criticality either
when solving the renormalization group beyond the linear
approximation,t85t1O(t2), or for instance, when using
t85bc /b21 instead oft. Expressing the nonlinear scaling
variablex85t8L1/n in terms ofx yields corrections in powers
of L21/n. We will neglect these corrections.

In the renormalization-group description of second-order
phase transitions, one expects corrections to the asymptotic
scaling functionf 0(x) induced by the irrelevant variables.
We shall keep the leading contribution in these corrections
and parametrize it by an exponentv.0. Therefore we write

F~b,L !5L2d
„f 0~x!1L2v f 1~x!…1 f ns~ t !. ~6!

We stress that thisAnsatzfor the free-energy density is a
natural, but completely phenomenological generalization of
the asymptotic scaling formula. Moreover thisAnsatzstill
depends at least upon four parameters. It is not yet possible
to extract that many parameters from a numerical finite-size
analysis. We will have to resort to further approximations
and limit ourselves to considering three-parameter fittingAn-
sätze.

Ansatz~6! can also describe the finite-size behavior at
first-order transitions. Even if there is not so much known
about this behavior from a theoretical standpoint, one usually
expects@28# that n215v5d. Heuristic arguments based on
the double-Gaussian approximation@29–31# predict that the
corrections should be expressible as a power series inV21.
These arguments can be put onto a rigorous basis@32–34# in
the special case ofq-states Potts models for largeq.

B. Standard cumulants

In principle we would better like to determine directly the
finite-size scaling properties ofV(E,L) or equivalently of
the probability distributionP(E,L) of the plaquette energy.
In practice it is more convenient to extract the different mo-
ments of the plaquette distribution:

^En&5
~21!n

Vn

1

Z~b,L !

]nZ

]bn
, ~7!

]^En&
]b

5V~^E&^En&2^En11&!. ~8!

Then, withAnsatz~6! it is easy to derive the scaling proper-
ties of any cumulant from these moments. The choice of
cumulants to include in the analysis is, in a large respect,
rather arbitrary. Of course, for the sake of comparison with
previous works, we have to study standard cumulants such as
the specific heat:

Cv~b,L !52b2
]2

]b2
F~b,L ! ~9!

5b2V~^E2&2^E&2! ~10!

and the Binder cumulant

U4~b,L !5
1

3S 12
^E4&

^E2&2D . ~11!

We shall also introduce the second cumulant:

U2~b,L !512
^E2&

^E&2
. ~12!

These low-order cumulants are sensitive to the analytic con-
tribution to the free-energy density in Eq.~6!. For instance
Ansatz~6! implies the following for the scaling behavior of
the specific heat:

Cv~b,L !52
b2

bc
2

L2d12/n
„f 09~x!1L2v f 19~x!…22 f 00

b2

bc
2

.

~13!

But we know that 1/d<n<1/2 and we can expect thatv
'2/n2d. Such an approximate equality would imply that
the next-to-leading contribution comes both from the correc-
tions to scaling and from the analytic background. Then we
can anticipate difficulties in describing the scaling behavior
of the specific heat with three-parameterAnsätze.

In the same way the predicted finite-size scaling behavior
of the second cumulant and the Binder cumulant is

U2~b,L !5L22d12/n@u20~x!1u21~x!L2d11/n

1O~Ld22/n,L22d12/n,L2v!#, ~14!

U4~b,L !5L22~d21/n!@u40~x!1u41~x!L2~d21/n!

1O~L22~d21/n!,Ld22/n,L2v!#. ~15!

The corrections to scaling are now governed by the exponent
d21/n. We can expect to run into problems describing these
corrections whenn'1/d. In the limit n51/d, for first-order
transitions, Eqs.~13!–~15! yield the correct leading behavior
but the corrections become of orderL2d.

One can notice@35# that deriving Eqs.~13!–~15! with
respect tob introduces an additional factorL1/n through the
scaling variablex. Therefore studying the finite-size scaling
behavior of the derivatives of the standard cumulants should
make it easier to determine the critical exponentn. We have
also introduced these cumulants into our analysis:

]Cv

]b
5V@2b~^E2&2^E&2!

2b2V~^E3&23^E2&^E&12^E&3!#, ~16!

]U2

]b
5

V

^E&3
~^E3&^E&1^E2&^E&222^E2&2!, ~17!

]U4

]b
5

V

3^E2&3
~^E5&^E2&1^E4&^E2&^E&22^E4&^E3&!.

~18!
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In order to make a comparison between different lattice
sizes one still needs a prescription to define a common value
of the scaling variablex. One usually uses the location of an
extremum of a cumulantk(b,L) to define a universal value
xk* , independent ofL. When there are several extrema it is
natural to choose the extremum closest to the infinite volume
critical point. Figure 1 displays the plots of the cumulants
Cv3V21,U4 and their derivatives]Cv /]b3V21,]U4 /
]b3V21 as a function ofb and which extremum we have
studied in each case. They have been produced by reweight-
ing a run with 106 iterations on a 124 lattice at b
51.010 24. We recall that the critical coupling of U~1! lat-
tice gauge with a Wilson action and periodic boundary con-
ditions isbc(`)'1.011.

C. Derivatives of the free-energy density

We have just seen that it is not always easy to interpret
the scaling corrections to the standard cumulants or their
derivatives. The interpretation would be more tractable if we
could study cumulants which are directly expressible in
terms of the free energy. In particular we can introduce the
energy cumulantskn(b,L) @36#, which are defined through
the Taylor expansion of the free-energy densityF(b,L):

F~b8,L !5F~b,L !2 (
n51

`
~21!n

n!
kn~b,L !~b82b!n.

~19!

The finite-size scaling behavior of these energy cumulants is
much simpler since they are simply the derivatives of the
free-energy density:

~21!n11kn~b,L !

5
]nF~b,L !

]bn

5
1

bc
n

L2d1n/n
„f 0

~n!~x!1L2v f 1
~n!~x!…1 f ns

~n!~b!. ~20!

The analytic piecef ns
(n)(b) can be neglected as soon asn

>3. The first three cumulants coincide with the central mo-
ments:

k15^E&, ~21!

k25V~^E2&2^E&2!5m25Cv /b2, ~22!

k35V2^~E2^E&!3&5m3 . ~23!

The higher-order cumulants can be expressed as nonlinear
combinations of the central momentsmn5Vn21^(E
2^E&)n&. We shall introduce in our analysis the cumulants
kn up to sixth order:

k45m423Vm2
2 , ~24!

k55m5210Vm2m3 , ~25!

k65m6215Vm2m4210Vm3
2130V2m2

3 . ~26!

Figure 2 displays the plots of the cumulantskn3V2n11 on a
124 lattice as a function ofb and which extremum we have
studied in each case.

FIG. 1. The cumulantsCv3V21,U4 and their derivatives
]Cv /]b3V21,]U4 /]b3V21 on a 124 lattice as a function ofb.

FIG. 2. The cumulantskn3V2n11 on a 124 lattice as a function
of b.
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These energy cumulants have not been studied very often
in finite-size scaling analyses of phase transitions. In lower
dimensions and for spin models the emphasis is of course on
magnetic cumulants and the standard set of cumulants is
natural in this context. The energy cumulantskn are more
suitable to the analysis of four-dimensional field theories.

III. SIMULATION DETAILS

Previous studies@24,25# provide us already with a good
knowledge of the locations of pseudocritical couplings at
eight lattice sizes. We have therefore decided to increase the
statistics at several couplings inside the error bars of these
pseudocritical points. For each coupling we did at least two
runs with hot and cold starts, different random generators
with large periods, and statistics of 53105 configurations.
For a complete overview of our statistics we refer to Table I.
The simulatedb values are quite close to each other and we
can use the spectral density method@37# to study the pseu-
docritical points without noticeable extrapolation errors.

We have of course simulated the full U~1! group in
double precision. We used two different programs to gener-
ate our configurations. One is an improved heatbath algo-
rithm, the other one is capable of multicanonical updates
~MC! combined with overrelaxation@38,24#. Both programs
were tuned to yield acceptance rates of about 60%. The mul-
ticanonical algorithm was used in addition to the heatbath
algorithm on 124 lattices. To produce the histogram needed
for the multicanonical simulation we generated 1.53105

configurations using an overrelaxed Metropolis algorithm.
For b51.010 20 the multicanonically reweighted histograms
of the runs atb51.010 24 were used as the input. In allMC

runs we used eight Metropolis updates followed by one over-
relaxation step per link. A drastic reduction of the tunneling
time is evident in Fig. 3. On smaller lattice sizes the heatbath
algorithm is sufficient to generate statistics that allow a pre-
cise determination of all observables.

For safety reasons all results on our data sets were cross
checked with two independently developed evaluation pro-
grams. As a test of consistency we reweighted the multica-
nonical histogram to a coupling where we had heatbath data
~see Fig. 4!. Though we did not apply any smoothing algo-
rithms to the histograms no relevant deviation can be ob-
served. To calculate the errors of our observables we pro-
ceeded as follows: We first divided our runs into five bins
and calculated the error in each run by binning. The error for
each lattice size was then calculated by ax2 fit to a constant
of all runs’ binning results. In other words we did not recom-
bine the histograms at the pseudocritical points and used
each run as an independent sample. Secondly we performed
a jacknife error analysis in the same manner but with ten
bins. The larger error was taken into account. The jacknife
error appeared to be usually larger, especially for the cumu-
lants’ derivatives, in heatbath data at all lattice sizes except
L512. ForL512 the binning error was very large in heat-
bath data while no significant difference could be seen be-
tween the two methods in MC data. We interpret this phe-
nomenon as a consequence of the lack of tunneling events
within a bin on a 124 lattice with a local heatbath algorithm.
We observe just a few phase flips in 105 iterations. It is our
experience that one needs at least a total ofO(102) flips in
order to control the statistical errors on the observables.

IV. MEASUREMENTS

The measurements of the standard cumulants and their
derivatives are displayed in Table II for all the lattice sizes
that we have studied and the results for the cumulantskn(3
<n<6) are gathered in Table III.

It can be read from the tables that the statistical accuracy
of the measurements of the pseudocritical couplings and of
the cumulants extrema has been improved by roughly one
order of magnitude with respect to previous studies. In par-
ticular the relative accuracy of our results for the pseudocriti-

TABLE I. Number of configurations generated on different lattice sizes. MC indicates multicanonical
data. Simulations were performed in steps of 1024.

L b Iterations L b Iterations

4 0.9785 5 0.9940
u 53106 u 123106

0.9795 0.9952

6 1.0014 7 1.0052
u 73106 u 43106

1.0020 1.0055

8 1.0072 9 1.0084
u 5.53106 u 4.53106

1.0076 1.0088

10 1.0092 13106 12 1.0101 13106

1.0093 13106 1.0102 13106

1.0094 1.53106 1.0103 13106

1.0095 13106 MC 1.01024 4.23106

MC 1.0102 1.43106
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cal couplings on the 124 lattice is now below 1025, which is
nearly comparable to the best results of numerical studies of
lower-dimensional spin models.

In the following sections we shall present a finite-size
scaling analysis of these results. But our analysis of correc-
tions to scaling will be conventional and far from exhaustive.
With our measurements given in raw form, without any in-
terpretation, the reader has the possibility of doing alterna-
tive analyses.

V. PSEUDOCRITICAL COUPLINGS

The pseudocritical couplings are expected to follow the
asymptotic finite-size scaling formula:

bc~L !5bc~`!1aL21/n. ~27!

With data at eight lattice sizes it is possible to fit the three
unknown parameters for each cumulant independently. With
our statistics it is even possible to test the stability of the fits
with respect to the lattice size. Table IV displays the results
of such fits for the standard cumulants and their derivatives.

The fits are clearly not stable. The statistical errors are
small enough to show the systematic decrease of the critical
exponentn with the lattice sizeL. There is also a slight
systematic decrease of the infinite-volume limit of the criti-
cal couplingbc(`). Moreover the fits are pretty consistent
for all cumulants. Therefore we can try a combined fit to the
pseudocritical couplings of all standard cumulants and their
derivatives, with a common value ofn andbc(`). Such a fit
is meaningful since these cumulants are defined in terms of
algebraically independent combinations of the moments of
the plaquette energy distribution. We can also test the stabil-
ity of this combined fit with respect to the lattice size. The
parameters of these fits are given in Table V. Figure 5 dis-
plays the result of the combined fit to theL>6 data points.
Errors on the data points are much smaller than the marker
sizes.

We can repeat the same kind of analysis for the energy
cumulantskn . The independent fits are shown in Table VI
and the combined fits in Table VII. The result of the com-
bined fit to theL>6 data points is also displayed in Fig. 6.

The critical values ofn and bc(`) extracted from the
cumulantskn are very similar to those extracted from the
standard cumulants or their derivatives. Studying the pseu-

FIG. 3. The histories in multicanonical and heatbath simulations on a 124 lattice and the corresponding histograms normalized to unit
area.

FIG. 4. The histograms in MC~solid! and heatbath simulations
~dashed! on a 124 lattice.
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docritical couplings of the cumulantskn does not give any
significant improvement over the standard cumulants. The
pseudocritical couplings are not very sensitive to the correc-
tions to asymptotic scaling. Even if the finite-size scaling
violations are clearly visible on Figs. 5 and 6 at the small
lattice sizesL54 or 5, it would not be possible to introduce
additional parameters in the fits.

VI. CUMULANTS’ EXTREMA

In this section we will present some selected analyses of
the finite size scaling behavior of the cumulants we calcu-
lated. As the main result we can state that the finite-size
scaling behavior of all cumulants is consistent with a first-
order transition. However we observe a difference in the cor-
rections to scaling of the specific heat and the Binder cumu-
lant, on one hand, and their derivatives and the energy
cumulants on the other hand. Up to the lattice sizes we cal-
culated, the first do not follow yet the expected pattern in a
first-order phase transition, while the other show a clear first-
order behavior. To demonstrate this we will present selected
fits to our data. In all pictures in the following subsections

the solid curves denote the fit to theAnsatzwhich yields the
best results.

A. Asymptotic scaling

It is certainly not possible to describe the data without
taking into account the corrections to scaling. However it is
instructive to define, for any cumulantk, an ‘‘effective criti-
cal exponent’’nk(L) by fitting the data at scalesL,L11 and
L12 to the asymptotic form of the scalingAnsätzeof Sec.
II:

FSS2a: k~L !5bLt. ~28!

We shall refer to thisAnsatzasFSS2a. The relation between
the critical exponentst and n depends of course upon the
cumulant. The results are displayed in Table VIII. We ob-
serve again in Table VIII a systematic decrease of the critical
exponentn with the lattice sizeL. The effective critical ex-
ponentn(L) is pretty consistent at each scaleL across the
cumulantskn and with the values found in the combined fits
of the pseudocritical couplings. There is however some dis-
persion among the standard cumulants and their derivatives

TABLE II. Pseudocritical couplings and extrema ofCv ,U2 ,U4 and their derivatives as a function of the
lattice sizeL.

L bc(Cv) CV,max3V21 bc(]Cv /]b) (]CV /]b)max3V21

4 0.9791~2! 0.2205~5!E-02 0.9901~2! 0.0803~8!

5 0.99466~5! 0.1390~3!E-02 1.00035~6! 0.101~1!

6 1.00172~4! 0.955~3!E-03 1.00499~4! 0.124~3!

7 1.00532~5! 0.703~3!E-03 1.00735~5! 0.150~7!

8 1.00744~4! 0.551~4!E-03 1.00877~4! 0.186~10!

9 1.00862~3! 0.453~3!E-03 1.00951~3! 0.230~14!

10 1.00939~5! 0.382~4!E-03 1.01002~6! 0.265~11!

12 1.010232~7! 0.302~2!E-03 1.010567~8! 0.429~5!

L bc(U2) U2,min bc(]U2 /]b) (]U2 /]b)min3V21

4 0.9764~2! 20.670~2!E-02 0.9882~2! 20.1574~15!E-03
5 0.99371~5! 20.3857~9!E-02 0.99961~6! 20.752~8!E-04
6 1.00132~4! 20.2525~7!E-02 1.00466~4! 20.423~9!E-04
7 1.00512~5! 20.1802~8!E-02 1.00719~5! 20.269~12!E-04
8 1.00734~4! 20.1387~9!E-02 1.00868~4! 20.191~10!E-04
9 1.00855~3! 20.1122~8!E-02 1.00945~3! 20.146~9!E-04
10 1.00935~5! 20.944~10!E-03 1.00998~6! 20.110~6!E-04
12 1.010217~6! 20.734~4!E-03 1.010553~7! 20.841~9!E-05

L bc(U4) U4,min bc(]U4 /]b) (]U4 /]b)min3V21

4 0.9753~2! 20.897~2!E-02 0.9870~2! 20.211~2!E-03
5 0.99327~5! 20.5158~11!E-02 0.99918~6! 20.1006~10!E-03
6 1.00111~4! 20.3372~10!E-02 1.00446~4! 20.565~12!E-04
7 1.00501~5! 20.2404~11!E-02 1.00708~5! 20.359~15!E-04
8 1.00728~4! 20.1851~12!E-02 1.00861~4! 20.255~13!E-04
9 1.00851~3! 20.1513~11!E-02 1.00941~3! 20.195~12!E-04
10 1.00932~5! 20.1254~14!E-02 1.00996~4! 20.148~9!E-04
12 1.010203~7! 20.979~6!E-03 1.010538~9! 20.1122~12!E-04
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TABLE III. Pseudocritical couplings and extrema ofkn cumulants as a function of the lattice sizeL.

L bc(k3) k33V22 bc(k4) k43V23

4 0.9902~2! 20.511~6!E-04 0.9983~2! 0.156~3!E-05
5 1.00035~6! 20.264~3!E-04 1.00452~6! 0.659~9!E-06
6 1.00499~4! 20.156~4!E-04 1.00737~5! 0.334~9!E-06
7 1.00735~5! 20.102~5!E-04 1.00882~5! 0.191~9!E-06
8 1.00877~4! 20.74~4!E-05 1.00973~4! 0.126~7!E-06
9 1.00951~3! 20.57~4!E-05 1.01016~3! 0.90~6!E-07
10 1.01002~6! 20.43~2!E-05 1.01048~6! 0.68~8!E-07
12 1.010564~9! 20.338~4!E-05 1.010807~10! 0.460~7!E-07

L bc(k5) k53V24 bc(k6) k63V25

4 0.9851~2! 0.385~7!E-06 0.9907~2! 20.278~6!E-07
5 0.99827~6! 0.131~3!E-06 1.00110~6! 20.770~13!E-08
6 1.00381~4! 0.55~2!E-07 1.00543~4! 20.273~8!E-08
7 1.00663~5! 0.27~2!E-07 1.00764~5! 20.117~6!E-08
8 1.00830~4! 0.162~13!E-07 1.00895~4! 20.62~4!E-09
9 1.00919~3! 0.11~9!E-07 1.00964~3! 20.38~3!E-09
10 1.00979~6! 0.71~8!E-08 1.01011~6! 20.24~4!E-09
12 1.010446~8! 0.452~9!E-08 1.010611~9! 20.137~3!E-09

TABLE IV. Independent second-order finite-size scaling fits to the pseudocritical couplings of standard
cumulants and their derivatives.

Cumulant L x2 n21 a bc(`)

Cv L>4 2.42 2.999~17! 22.091~56! 1.01145~3!

L>5 1.42 3.037~23! 22.226~81! 1.01141~3!

L>6 0.731 3.111~46! 22.54~21! 1.01135~5!

L>7 0.379 3.23~11! 23.17~65! 1.01128~7!

U2 L>4 1.29 3.090~16! 22.554~64! 1.01140~2!

L>5 1.04 3.112~22! 22.648~92! 1.01138~3!

L>6 0.829 3.161~44! 22.89~23! 1.01134~4!

L>7 0.704 3.26~11! 23.48~68! 1.01128~7!

U4 L>4 1.24 3.116~16! 22.727~67! 1.01139~2!

L>5 1.08 3.136~21! 22.818~97! 1.01137~3!

L>6 0.878 3.184~43! 23.07~24! 1.01133~4!

L>7 0.816 3.28~11! 23.66~71! 1.01127~7!

]Cv /]b L>4 1.43 3.012~26! 21.398~58! 1.01136~3!

L>5 1.01 3.057~37! 21.509~91! 1.01133~3!

L>6 0.715 3.140~71! 21.75~22! 1.01128~5!

L>7 0.730 3.26~17! 22.22~72! 1.01123~7!

]U2 /]b L>4 1.12 3.096~24! 21.705~66! 1.01133~2!

L>5 0.836 3.133~35! 21.81~11! 1.01131~3!

L>6 0.704 3.196~67! 22.03~24! 1.01128~4!

L>7 0.898 3.28~16! 22.37~73! 1.01124~7!

]U4 /]b L>4 0.724 3.142~24! 21.904~71! 1.01131~3!

L>5 0.687 3.165~34! 21.98~11! 1.01130~3!

L>6 0.613 3.218~66! 22.18~26! 1.01127~4!

L>7 0.732 3.30~16! 22.57~77! 1.01123~7!
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not observed in the analysis of pseudocritical couplings. In
fact thex2 of these asymptotic fits is quite high even with
two parameters and only three data points. We see here a first
manifestation of the expected improved scaling behavior of
the energy cumulantskn .

B. Corrections to scaling

The asymptotic scaling fits for the cumulants’ extrema as
well as for the pseudocritical couplings hint at a first-order
transition. Our working hypothesis will be to describe the
data with scaling corrections to a first-order transition. These
corrections are expected to be expressible as a series expan-
sion in the inverse volumeV21. Since we limit ourselves to
three-parameter fits, we shall introduce the two fittingAn-
sätze:

FSS1a: k~L !3V2k5a1bL2d, ~29!

FSS1b: k~L !3V2k5a1bL2d1cL22d.
~30!

The volume normalization factor is chosen such that the fit-
ting Ansatzmakes sense. With the definitions of Sec. II we
havek50 for U2 and U4, k51 for Cv ,]U2 /]b,]U4 /]b,
k52 for ]Cv /]b andk5n21 for kn .

We shall need another, more phenomenological fitting
Ansatz:

FSS2b: k~L !3V2k5a1bL2v. ~31!

The volume normalization factorV2k is by definition the

FIG. 5. Combined fit to theL>6 data points of the pseudocriti-
cal couplings of the standard cumulants and their derivatives.

TABLE V. Combined asymptotic finite-size scaling fits to the
pseudocritical couplings of the cumulantsCv , U2, U4, ]Cv /]b,
]U2 /]b, and]U4 /]b.

L x2 bc(`) n21

L>4 5.86 1.011348~8! 3.1059~72!

L>5 4.09 1.011317~10! 3.144~10!

L>6 1.81 1.011269~14! 3.222~19!

L>7 0.692 1.011224~19! 3.329~35!

L>8 0.799 1.011235~29! 3.304~62!

L>9 0.872E-01 1.011206~43! 3.4249~69!

TABLE VI. Independent second-order finite-size scaling fits to the pseudocritical couplings of thekn

cumulants.

Cumulant L x2 n21 a bc(`)

k3 L>4 1.72 3.005~27! 21.381~58! 1.01136~3!

L>5 1.05 3.060~38! 21.515~92! 1.01132~3!

L>6 0.720 3.146~72! 21.77~23! 1.01128~5!

L>7 0.711 3.28~17! 22.26~74! 1.01122~7!

k4 L>4 1.18 3.011~44! 20.858~60! 1.01129~3!

L>5 0.872 3.078~62! 20.959~97! 1.01127~3!

L>6 0.724 3.20~13! 21.19~27! 1.01123~5!

L>7 0.812 3.38~28! 21.69~93! 1.01119~7!

k5 L>4 1.02 3.083~22! 21.876~65! 1.01133~3!

L>5 1.08 3.063~31! 21.815~92! 1.01134~3!

L>6 0.684 3.139~60! 22.08~22! 1.01130~5!

L>7 0.721 3.24~15! 22.51~68! 1.01125~8!

k6 L>4 0.843 3.103~28! 21.512~67! 1.01129~3!

L>5 0.887 3.079~40! 21.454~95! 1.01130~3!

L>6 0.485 3.174~77! 21.72~24! 1.01126~5!

L>7 0.489 3.29~19! 22.137~64! 1.01122~7!
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same as for the first-order fittingAnsätze. Therefore the ex-
ponentv parametrizes the corrections to an asymptotic first-
order behavior. Introducing such an effective exponent al-
lows a more flexible description of the corrections. One
should find thatv→d when we reach the asymptotic regime.

The bestFSS1b fit to the specific heat is represented by
the dashed line in Fig. 7. Obviously it cannot describe the
smallest lattice sizes. On the other hand, the fittingAnsatz
FSS2b describes our data on the specific heat perfectly. Our
data on]Cv /]b have the largest errors of all the results we
produced. Thus the quality of the best fits withFSS1b ~solid
line! or FSS1a ~dashed line! is not good.

The Ansatz FSS2b is also able to reproduce the data on
the Binder cumulant quite accurately~solid line in Fig. 8!.
We observe again thatAnsatz FSS1b ~dashed line! fails to
reproduce the smallest lattice sizes. The description of the
derivative]U4 /]b by FSS1b ~solid line! is much better and
FSS1a gives already a good fit for all but the smallest lattice
sizes~dashed line!. The results forU2 and its derivative are
quite similar toU4 and its derivative and will not be repro-
duced here.

In the same way we find that the first-orderAnsätzecan fit
the data on the energy cumulantskn . In Fig. 9 all solid lines
represent the best fits withAnsatz FSS1b whereas all dashed
lines represent the best fits withAnsatz FSS1a. The cumu-

lant k4 is a noticeable exception. The asymptotic first-order
Ansatz FSS1a is already able to describe all data points and
is nearly indistinguishable fromAnsatz FSS1b. We have
another, and more vivid manifestation of the improved scal-
ing behavior of the energy cumulantskn .

Table IX gives a quantitative content to the previous
qualitative observations. This table contains the parametersa
and b of the best fits displayed in the figures. We always
choose the smallest lattice size with ax2 per degree of free-
dom less than 2.

The main feature is the smallness of the ratiosa/b. In the
first-order fits, the leading contributiona is generally smaller
than the correction termbL2d up to the lattice sizeL512. It

FIG. 6. Combined fit to theL>6 data points of the pseudocriti-
cal couplings of the cumulantskn .

TABLE VII. Combined asymptotic finite-size scaling fits to the
pseudocritical couplings of the cumulantsk3, k4, k5, andk6.

L x2 bc(`) n21

L>4 2.41 1.011299~12! 3.084~14!

L>5 1.59 1.011288~13! 3.105~18!

L>6 0.718 1.011244~17! 3.202~31!

L>7 0.442 1.011206~25! 3.319~63!

L>8 0.564 1.011220~37! 3.27~11!

L>9 0.856E-02 1.011191~53! 3.429~14!

TABLE VIII. Critical exponentn21 extracted from lattice sizesL, L11, andL12 for each cumulant
extremum with the ansatzFSS2a.

L Cv U4 ]Cv /]b ]U4 /]b

9 3.299~17! 3.250~17! 3.467~56! 3.402~63!

8 3.177~28! 3.132~27! 3.19~11! 3.19~12!

7 3.121~16! 3.070~17! 3.23~11! 3.183~97!

6 3.030~12! 2.942~12! 3.123~64! 3.064~59!

5 2.983~7! 2.856~7! 3.050~36! 2.962~32!

4 2.968~5! 2.788~5! 3.016~18! 2.906~16!

L k3 k4 k5 k6

9 3.479~63! 3.422~57! 3.405~55! 3.416~47!

8 3.19~11! 3.30~13! 3.27~12! 3.30~11!

7 3.22~12! 3.247~80! 3.282~90! 3.246~62!

6 3.125~66! 3.139~51! 3.135~59! 3.126~39!

5 3.048~38! 3.075~30! 3.055~36! 3.061~22!

4 3.019~20! 3.046~20! 3.038~18! 3.045~15!
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is no surprise that the first-order nature of the transition is so
difficult to observe.

We can get order-of-magnitude estimates of the param-
eters of a first-order transition by comparing the values ofa
with the predictions of the~very crude! double-Gaussian ap-
proximation@29#. The height of the maximum of the specific
heat should increase linearly withLd as

Cv,max5V
3bc

2

2
~eo2ed!21O~1!, ~32!

where bc is the infinite-volume critical coupling andeo
2ed is the latent heat. We find

eo2ed'0.029. ~33!

The minimum of the Binder cumulant is predicted to be
@30,31#

U4,min52
~eo

22ed
2!2

12~eoed!2
1O~V21!. ~34!

We get another estimate of the latent heat which agrees
pretty well with Eq.~33!:

eo2ed'0.026. ~35!

VII. CONCLUSION

Our study shows that finite-size scaling violations are in-
deed present in each observable for lattice sizes 4<L<12.
The observed scaling violations are consistent for all observ-
ables: the critical exponentn systematicallydecreaseswith
the lattice sizeL. Asymptotic finite-size scaling of all cumu-
lants and of their pseudocritical couplings yields consistently
n'0.29 for L>9 which points towards a first-order transi-
tion.

The scaling violations in the pseudocritical couplings and
the cumulant values decrease slowly with the lattice size.
This slow variation, which is hard to unravel, can explain the
claims for a second-order transition withn'0.33. However
the scaling violations seem to decrease more rapidly for the
derivatives of the standard cumulants and for the cumulants
kn . The finite-size size behavior of all these cumulants can
be completely described in the range 4<L<12 by volume

correction terms of orderV21 andV22. The cumulantk4 is
even completely described by the asymptotic first-order for-
mula.

There seems to be a correlation between the amount of
scaling violations in each cumulant extremum and the loca-
tion of its pseudocritical coupling. The closer the pseu-
docritical coupling is, at fixed lattice size, from the infinite-
volume critical point, the better the description of the extre-
mum by a first-order transition. All the cumulants we have
studied follow this rule. Then we can make two observations.

On the one hand, if we had chosen to study the extremum
in each cumulant which is farthest frombc(`) we would
certainly have found a behavior inconsistent with a first-
order transition and concluded to a second-order transition
with a critical exponentn greaterthan 0.33. We suggest that
this is the origin of many claims for a large critical exponent
n. Most of them are not based on finite-size scaling analyses
of the standard cumulants, which all should given<0.33,

FIG. 7. Fits to the specific heat and its derivative. FIG. 8. Fits to the Binder cumulant and its derivative.

FIG. 9. Fits to the energy cumulantskn .
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but come from various analyses done at couplingsb smaller
thanbCv

(L), the pseudocritical coupling of the specific heat
in the corresponding lattices.

On the other hand, we could think of studying still higher-
order kn cumulants to get closer tobc(`). However we
would face two difficulties. First the statistical noise in-
creases withn. Secondly the extrapolation from the cou-
plings where we generated our configurations gets large. The
solution might be to generate the configurations for all lattice
sizes at the infinite-volume critical point and use the method
developed@32,33# for the study of first-order transitions in
Potts models.

However it is not clear how the proofs can be extended to
the case of the U~1! phase transition. Potts models have a
discrete symmetry and a local order parameter whereas the
U~1! lattice gauge theory has a continuous local symmetry
and a nonlocal order parameter since the proof of the exis-
tence of the phase transition uses the Wilson criterion@37#.
In Potts models the physical correlation lengths in both pure

phases stay finite in the infinite volume limit whereas there
exist massless photons in the ordered phase of U~1!. Clearly
the U~1! lattice gauge theory deserves as much numerical
study as the lower-dimensional spin models and theoretical
understanding of the scaling violations will be required be-
fore a definitive conclusion on the nature of its phase transi-
tion.

ACKNOWLEDGMENTS

C.R. is grateful to the Freie Universita¨t Berlin for its hos-
pitality during a visit when this manuscript was completed
and acknowledges a financial support by the Graduiertenkol-
leg ‘‘Strukturuntersuchungen, Pra¨zisionstests und Erweiter-
ungen des Standardmodells der Elementarteilchenphysik.’’
B. K. wants to thank P. E. L. Rakow from DESY-IfH
Zeuthen for his support during the preparation of the diploma
thesis. He initialized the investigation of the latent heat.

@1# M. Creutz, L. Jacobs, and C. Rebbi, Phys. Rev. D20, 1915
~1979!.
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