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Semiclassical approximation for non-Abelian field strength correlators
in the instanton dilute gas model
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Field strength correlators are semiclassically evaluated in the dilute gas model of non-Abelian sources
(instantony and compared with lattice data for QCD at zero temperature. We show that one of the Euclidean
invariant, tensorial structures vanishes for configurations being purely self-dual or anti-self-dual. We compute
the invariant functions contributing to the correlators within the two lowest orders in an instanton density
expansion. Fitting instanton size and density for quenched and full QCD, we obtain a reasonable description.
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PACS numbgs): 11.15.Ha, 11.15.Kc, 12.38.Gc, 12.38.Lg

I. INTRODUCTION the importance and the physical parameters of those classical
configurations forming the basis of the semiclassical ap-
In recent years a systematic description of nonperturbaproximation.
tive effects in QCD has been given in terms of the gluon Instantons—solutions of the Euclidean Yang Mills field
field-strength correlatorsl—3]. They are of immediate phe- €quations—are well-known examples of semiclassical con-
nomenological importance in the model of stochastic configurations, which exist both in the continuum and on the
finement of color charge, giving a detailed description of thdattice. Their contribution to the path integral quantization

level splitting of heavy and ligh®Q bound states, and in the ﬁ:ay:n%nr;rggor;ir:nrglﬁéEoﬁégilgglll?ag(t;lgalesg?]lngft{é)break-
description of high-energy hadron and quéaktiquark g y ' &9 .

a4l B h . ical its It seems quite in time to compute the field strength corre-
scattering[4]. By now, there exist numerical results from lation functions within a semiclassical model based on in-

lattice simulations concerning the fundamental field strengthiantons and to point out to what extent the latter are able to
correlators for pure gauge theory with gauge group$2bU {egcribe the results of the lattice measurements mentioned

[5-7] and SU3) [8-11] over physical distances ranging Up apove. In principle, such a comparison should enable us to
to O(1) fm. The correlators have also been calculated neaguantify the importance of the semiclassical modes forming
to the deconfinement transition in pure @Jgauge theory the QCD vacuum or finite-temperature Euclidean fields, re-
[9]. Very recently, this study has been extended to full QCDspectively, and to provide their relevant physical parameters.
with four flavors of dynamical staggered quaf€)]. In this Performing the analysis of field strength correlators with
latter work, an interesting pattern of the quark mass deperthe simplest instanton solutions we will restrict ourselves to
dence both of the gluon condensate and of the gluonic cothe SU2) case, being aware that the embedding into a larger
relation length has emerged. The correlation length smoothlBU(N,) gauge group can be easily realized. Therefore, the
changes from the lightest quark mass to the quenched resulisarameters of instanton densities and sizes we are going to
The extraction of the gluon condensate itself is afflicted withdetermine from a comparison with lattice data will always
some reservations about the renormalon ambiguity in the deefer to the physical S(3) case.

termination of the Wilson coefficients of the operator prod- Earlier studies of field strength correlators due to instan-
uct expansion. In Ref.10] this problem is finally neglected. tons can be found ifi19,20. There the results for the single
As demonstrated there, the emerging mass dependence dastanton approximation were obtained in terms of two-
be consistently described by a low-energy theorem whichlimensional integrals. Here we pay particular attention to the
relates it to the zero-mass case through the quark condensagath dependence of the phase factors. This can only be done
The real problem hard to understand is the much strongeiumerically which was beyond the scope of these papers.
gluon condensate for pure Yang-Mills theory. Referencd 20] points out the insufficiency of the single in-

In the direct computations of the gluonic field strengthstanton approximation. We study here also the next order
correlators on the lattice the nonperturbative behavior haterms in a density expansion. With the numerically evaluated
been extracted with a cooling procedure which serves th@évariant functions, we estimate instanton density and size.
purpose to erase short-range perturbative fluctuations. Then
at various distanced (in lattice step unitsgauge field struc-
tures are expected to become visible in the correlator if an Il. THE FIELD STRENGTH CORRELATOR
appropriate number of cooling iterationa{d? due to the
diffusive nature of coolingis applied. In view of these re-
sults it has become very likely that the field correlators have The gauge invariant two-point correlators of the non-
a semiclassical origin and might provide information aboutAbelian field strength are defined as

A. General statements
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D pvo(X1—X2) = (0| Tr{G ,,(X1) S(X1,X7) Then the duality transformatiode ,.,,,3 € gsvo» acting on
both field strengths in Eq2), provides
XGy(%)S (x4 X)}0), (1) 9 d2). p

whereG,,,= TG},  is the field strength tensor argfx; ,X,) (TrG,,SGg,sS")
is the Schwinger-line phase operator, i.e., the parallel trans-
porter necessary to join the field-strength operators at points
X1, X, in order to respect gauge invariandé. denotes the
generators of the gauge group NJf. The most general
form of the correlator compatible with Euclide&@(4) in- X(6450,5— 5a55ﬁ'y)+6ayﬁ5D2(X2)

variance at zero temperature is, in the notation of REf.

dD1(x?)

=| D(x?)+D(x?)+x? 5
aX

—(XaXg0y5— XaX505, T X\ X5605— X, X3 05)
D,u,p,va'(x):(5 %) _5M(T5pv)[D(X2)+D1(X2)]

S 9D (x?)
+€4pve Da(XD) + (XX, 8,5— X, X5, X P (4)
dD1(x?)
+Xan5W—XpXV5W)T’ (20 The sign of the third term of the right-hand side of E4).is

just opposite to the sign of the corresponding term in(&g.
with x=x;—x, andD(x2), D1(x?), D,(x?) representing in- The_ Ieft-hand_sides of Eqg2) and (4) are equal due to
variant functions. The invariar®, term has been added for (anti-self-duality. Thus, we geD,=const. From the re-
later use. It is only relevant for cases in whicP symmetry ~ duirement that the correlators should vanishxés-e we
is violated or a restriction to sectors with topological charge®"ve withD,=0, Q.E.D.
Q,#0 is possible. It has been shown ttiaf does not con- Corollary. Consequently, a nonzeid, may appear only
tribute to the area law of Wilson loogg,3]. In the pertur- d_ue to pertt_eratlve _flu_ctuatlon_s and in hlgher_ord_er of a den-
bative regime both invariant functior and D, behave as sity expansion for distinct semlcl_assmal_ c_ontrlbutnﬁdse to
1/x*. Only D, receives a contribution from one-gluon ex- the nonlinear interference of pairs @nti-)instantong
chang€g1,3]. On very general grounds the perturbative con-
tribution to D (which appears at one loop and higher orglers B. Lattice results

was recently shown to be cancelled by higher correlator con- The field-strength correlatoré?) have been estimated

e e e ) sl oberatEelrom e tuo pot functons o pure S8 and SUD
| gauge theory af=0 and T#0 as well as for full QCD

the contribution from semiclassical configurations. [5.6,8-10. After applying the cooling method the nonper-

We consider the correlator of E¢l) as an average of the urbative contributions to the correlators have been shown to
expression in brackets over gauge field configurations with all off exponentially at distances between 0.1 and 1 fm. Fits

weight equal to exp(S) (S is the Euclidean action of the X -
gauge field times the determinant of the fermionic Dirac to the coqled l\_/lontilCarIo data still exhibit a remnant of the
perturbative tail~x"".

operator. We are going to compare with lattice simulation In the following we want to consider the zero temperature

data which are taken partly in full QCD, partly within the o . . .
guenched approximation when the fermionic backreaction o 25€ \.Nh'Ch’ in the Iattlcg measurements, is described by the
following two correlators:

the weight is neglected. In our estimates only density and
size of instantons play a role which are—in the case of full 9D 1(x?)
QCD—influenced by the effect of the fermionic determinant. DH(XZ) =D(x?)+ D (x?)+ x21—2
The instanton solution of the Euclidean field equations is X
taken with its algebraic form in the evaluation of the field (5)
strength and of the Schwinger lines. The resulting expres- 2y _ 2 2
sions are then contributing in leading order to the functional D, (x)=D(x)+Da(x.
average. ) )
At this place let us make a general statement concerniny/€ Will refer to the best fits to pure $8) gauge theory data
the leading order contribution of pufanti-self-dual gauge ©OPtained for several bare lattice couplings/&):
field configurations to the field strength correlators. This
property of the one-instanton contribution was mentioned be- a
fore in Ref.[20]. D(x%)=Aexp — x|/ a) + — exp —[x[/\,),
LemmaPure(anti-)self-dual field configurations can con- X
tribute only toD andD,, but do not contribute t®, . 6
In order to prove this we assume that the gauge potential b
A satisfies the(anti-)self-duality condition on the field D1(x?)=Bexp —|x|/\g)+ Fexp(— IX|/\p),
strength

’

Guy=3%ayupCup=*GCay. (3)  with

ay
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A B appropriate set of collective coordinatéscharacterizing the
F%S.SX 108, P%O.?X 1%, a~0.69, b~0.46, classical field with a density functiom(I'),
L L

7 1
1 1 11 @ Dﬂp,w(X)=zf AL M(T)-THG (X1 ;T)S(X1,%2;T)
Ma=Ne~ 71— 7g Ma=Mo~ 3 gz
) - XG,(X2;T) S (X1, X2: 1)}, (10)

:inmgzﬁécatlou)\n/lti,oozbztallcrr;ed )\f ro:cl) Zgl?gn te_rll_ﬁgn ﬁ? atva\‘lasthlswhereG wn(X;T) is the field strength tensor corresponding to
. , Aa=~0. .

achieved with a very reasonabié/Npe=1.7. There is an- configurationsi, (x,I'). To be more sp_ecific,_ we imagine a
other solution reported ifg] with bF model of the vacuum state that is semiclassically represented

by superpositions ofl instantons andN anti-instantong13]

A B N N
—~27x10°, —=~0.0, a~04, b=03, -
A} Af A xTD)=2 a,(7)+ 2, a,(%7)). (12)
(8) =1 j:j.
1 _
ANa=A\g A 183’ Na=Ap—® The y; (1;) denote the collective coordinates of tik in-
L

stanton(jth anti-instantojy which include the positiorg;,
the group space orientatiasy , and the sizg; . The integra-

and a similary? value. ; . .
simrény vau tion measure in Eq.10) is then expressed by

The results show the invariant functi@n (x?) to be by a
factorO(5) smaller tharD(x?). This indicates thaD (x?) is N N
mostly of nonperturbative nature. For the perturbative con- _ _ o o A4 dedn
tributions alone the opposite relatién >D has been proven dt .Hl dy'jﬂl 47, dy = dzdedp,
to be valid[22].

Within full QCD the same field strength correlators have d;j=d4?jdajd;j.
been measured fo¥;=4 flavors of staggered fermions with
the hybrid Monte CarldHMC) method[10]. Results were For practical use we will consider here orfgnti-)instantons
obtained for two quark masses,=0.01, 0.02(in lattice  of fixed size. This corresponds to the instanton liquid model
unit). Fits with the samé\nsdze (6) have provided, for the invented in[15] with a deltalike size distribution. In prin-
casem,=0.01, the following parameters: ciple, a more realistip distribution with a self-consistent

exponential infrared cutoffallowing to satisfy low-energy
A , B 0 theoremg can be obtained from the assumption that
F~1.74>< 10, F“O-ZX 10 a~0.71, b~0.45  (anti)instantons repel each other at short distarjddsl.

F F If the instanton liquid or gas is sufficiently dilute we can
) approximate the functional integral by an expansion in pow-
ers of the(anti-instanton densitiea,=N/V (n;=N/V).

Strictly speaking, the superpositiofnsatz (11) makes
sense as an approximate saddle point of the action only if the

11 11
AA=Np™~ = )\a:)\b”A_FIZ

with a y?/Npe=0.5. Determining the scale paramefes for i ]
full QCD from the estimate of th@-meson mass one has Vector potential®,, , a, decrease fast enough. This happens
Ma~0.34 fm, which is somewhat larger than the quenchegvhen the singular gauge expression is used for the
value quoted above. For the other quark mass valye (anti-instanton solutionsa,, a,, instead of the regular
~0.29 fm was obtained. We conclude that qualitatively thegauge forn13]. The existence of a systematic expansion in
functionsD andD; behave similar in all cases considered. higher order contributions to the measuté(I") has been

In a recent papefl1] the field strength correlators have proven in Ref[23]. It will be pointed out in the next section

been investigated in the presence of a stafiy pair for that, as long as one remains within the single instanton ap-
quenched QCHisee alsd7]). The exponential decay of the proximation, the actual choice between an instanton in the
form factorsD andD; has been seen in this case even with-regular or singular gauge does not matter if the field strength

out cooling. The correlation lengths estimated are compatibl§OrTelator is evaluated on this background with a straight line
with the results mentioned before. Schwinger phase factor inserted. In the calculation of inter-

ference terms containing,,(X;y) andgﬂ(x;;), however,
the choice of the singular gauge form of solution is essential,

C. Semiclassical approximation . -
and will be used in Sec. IV.

Next we want to work out the lowest order semiclassical
approxma_tlon_for the field-strength correlato_r by separating Il FIELD STRENGTH CORRELATOR
the Gau55|a_n integral over quantum fluctuations on top _of a IN THE ONE-INSTANTON APPROXIMATION
single classical background field from the gauge invariant
product of field strengths simply evaluated for that classical Let us compute next the explicit single-instanton contri-
field. What then remains are zero-mode integrations over thbution to the field strength correlato(¥). The leading term

114508-3
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is given by the sum of single instantoh) (and anti-instanton 0=2[22 72— (2,2,)*1V2¥,
(I contributions (18
_ arctan y,) —arctari x4)
(1) -n' I = ,
DlupvoX1:%2) =By v+ Doy s [(z1-2,)% p?+2525—(242,)2]*?
:n4J d'z Tr[G,,(X1;7)S(X1,X2; %) and
X Ge(X237) S (X1,%237)] = zi(z,—71) _12
- i N2 2.2 2_ 29120 T T
+(Ng,y—Ng, 7). (12) [(z1—=22)° p"+71 25— (212,)°]

(19

The integration over théglobal group orientation is trivial  Heren, denotes the components of a unit vector in isotopic
in this case and has been omitted. We emphasize, that thgace,
Schwinger line phase operator is a path dependent matrix in

the fundamental representation 2,21,

2.2
[212;—(Z125)

n,= Nauv 2]1/2. (20)

1
S(xl,xz;z)zPexp{if dtx,(t)a,[x(t);z]|, (13
0 In what follows we shall compare the straight line cék8—
(20) with a special case when the Schwindpath depen-
where the vector potentiaIM=TaaZ, in leading order of an  den) phase factor becomes trivial &x,,x,;z)=1 for all
expansion in the density, belongs to the single instantopoints x; and x,. This happens if the path connects the
source localized at. Together with its adjoin8', Stakes points x; and x, via the instanton centez along the two
care of the parallel transport of the field strength ter8gy  radial rays. In this case it is very simple to perform the inte-
from one point of the measurement to the other. gration overzin Eq. (12). The result can be expressed by the
We begin with the instanton solution in the so-calledfollowing function of x/p=|x;—X,|/p
regular gauge. Its S@) vector potential is expressed with

y=x—z as follows: X p?
I|=|= f ‘2— 5 . (21)
p (zi+p)2%(25+p?)?
Yy
Aly o) — —
2,u(x2)=2 na“”y2+p2’ a=123, (14) The result of the integration in Eg12) for an instanton is
2 D! o) =(8,,8,0— 8,08,,+ )8n|(x
Y uwp,vo X)=(0410p67~ OuoOpy™ € ypuo 4l 1
G2 (x;2)=—4 —, ,wv=1,2,3,4. (15 p
,uV( ) 77a,uv(y2+p2)2 Iu‘ v ( ) (22)
. . \é{here
The rotational degrees of freedom in the group space havi
been omitted. The t'Hooft tenson,,, (and 7,,, for the x| w2pd x* x4\ p2
anti-instantop is defined in[12]. The Schwinger line phase | (_ =5 = 1+ —|—
factor depends on a particular path between the points of p 2x3c c/\e
measurememnt,; andx,. For a straight line path between )
andx,, the Schwinger line can be written explicitly: winl 1+ \/_E VJe+x -1 23
pz c—x2
. Y 1 (XZ_Xl);LyV 4 2.2 . L . .
S(X1,X2;2)=Pexp i 77794, dtﬁ andc=x"+4p“x*, which coincides with the result obtained
0 pety 16 in [20]. The asymptotic behavior of this function is
2 2 4
. . X X 4 X
where 7, are the Pauli matrices ang=x;+ (Xo—X;) t—2 liml, —)_>7T_, Iimlr(—)—> 774’) In—. (29
denotes a point running fromy to x, relative to the instan- x—0 \P 67 'l X p
ton centerz. The Schwinger line can be conveniently param-
etrized withz,=x;—z andz,=Xx,—z as follows: The correlator due to an anti-instanton is obtained by the
replacement;— 7 which results in
i
S(xl,xz;z)=exy{irana®), 17 _ _ [x
D,lup,VO'(X):(é,uvﬁpO'_ 5;1,0'5pv_8p,p110')8n4|r ; .
where (25)
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In the instanton—anti-instanton dilute gas the observed cor-
relator in the lowest order of the density expansion is the | o
sum of Egs.(22) and (25). Under the standard assumption

that the instanton and anti-instanton scale sizes are equal we
obtain for the invariant functions

w”u%=8mmﬁin{9, D (x3)=0, o
(26)
D%k%r:&nf4in%§)

The vanishing of the one-instanton contributiontg illus- 0.5
trates the general theorem formulated in Sec. Il A. Only in

the case that the densities, and n, are different, thee

tensor structure of the field strength correlator is different
from zero. In lattice computations one could select gauge

&)
[ 3 N VA T

field configurations according to their net topological charge 0.0 L O e S BRI
Q;#0. Such an ensemble would allow to extrd2p(x). x/rho

However, this is not the standard case. Therefore, we shall

put n,=n, in the following. FIG. 1. The one-instanton contributiohg, s to the correlator

If the Schwinger line is chosen to connect the poixts D, according to Eq(26), for different paths in the Schwinger line
andx, along a straight path some corrections to form{@@  factor S Eq. (13). The upper solid curve refers =1 for the
appear. One has to replace in EB3) I,(x/p) by I,4(x/p) regular gaugdanti-Jinstanton (,), the dashed line to the straight-

where line path (), and the lower solid line téanti-instantons in the
singular gauge with the infinite arc path as explained in the text
[, (XIp)+211(XIp) (Is)-
| on(X/p)= 3

cally calculated correlator with this minimal, straight path
Schwinger line should be used.
Considering the so-called singular gauge instanton solu-

o tion (a=1,2,3 andu,»=1,2,3,94

I1<§)=j d*zcos® , (27
p (Z+pH)(Z5+p?)?

and

y,p°

AL (X2)=2 Nauy——5 5 (28)
with ® given in Eq.(18). The integral ; cannot be evaluated ye(y“+p°)
analytically. Let us estimate the degree to what the field
strength correlators depend on the choice of path in the 82 [1_ oy
Schwinger line. For the straight-line path between the points Gl (x2)=— ﬁ{ 5 Mauvt WaVKK—ZM
X1, X, the result can be rewritten from Eq&1),(27) as (y*+p°) y
—  YuYy
| ph(X) = %+§(cos®) 1(X), _77a;u<7], (29)

where® is given in Eq.(18) and the average is with respect we notice that it is related to the regular gauge
to the measure in Ed21). An estimate for® can be given (anti-instanton by a singular gauge transformation. With the
for x=x;—X,, with the instanton center located at distancestraight Schwinger line inserted, the correlator is identical to
R (with R>|x|]) from the midpoint &;+Xx,)/2:0 the correlator numerically evaluated for the regular gauge
=2|x|R/(R?+p?). Thus the difference 4{co®)~(®?)/2 instanton. Just in order to see how the choice of the
=(2x°R?/(R?+ p?)2)=0.2, where the typical instanton gas Schwinger line influences the field strength correlator, we
parametersR~1 fm, x~p~0.3 fm have been inserted. can consider also a path for which the Schwinger line non-
The result of the numerical integration for the straight line isAbelian phase factor is equal &= 1. This is the path leav-
compared with the expressig@3) for the radial path gauge ing x; along a radial raystarting from the instanton cenjer
transporter in Fig. 1. The correlator with the straighttowards infinity and approaching, from infinity along an-
Schwinger line is roughly 20% smaller than for t8e=1  other radial ray, with an arc at infinity in between.

case in accordance to the estimate, and correspondingly the The result of the integration over instanton position can
half width is smaller by roughly one third. In the estimation be expressed as a function xffip by the replacemerit— I

of the (anti-instanton density and size below, the numeri-which is defined as
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X \ p4[4(2122)2/(2§25)_ 1] The Iattlce n_weasurgments of.the fle_ld strength correlators
I =|= TN T RN I (30) are obtained with straight Schwinger line gauge transporters
p (zi+p9)(23+p°) inserted between the poinks and x,. Comparing with the

lattice data of Di Giacomet al.[8] we can roughly estimate
the instanton gas parameters. Fitting the instanton results for
D according to Eq(26) (with I, ,l,,,l related to different

There exists a closed expression of the inte¢gaé the lower
curve in Fig. 1

s f) =7T_2 p_2{ ) (x2+ p?) (x2+3p?) EZC,)I(CG‘iSi_Oef,The Schwinger line patto the first term ofD in
p 6 x? (X?+4p?)p? ) )
D'”5‘~Ae_X/)‘A, DI{ISt%0 (33)
X6 X2 2 2
_ZE"‘;‘% 1+;) (?_2) within the range ¥x/p<5, we obtain forp and ny=n,
+ny, the radius and the total density of pseudoparticles, the
x2 x2\| 2 x4 following results:
XIn| 1+ - + 1+ | 2
P P P guenched QCD I, I'oh ls
x? x? 3x% | p? /
_3l 14 _) 1435 - P pINA 0.78 1.35 2.12
p? p2  x2+4p?|\c ny/fm =4 6.19 4.03 2.29
plGev ! 0.87 1.51 2.36
p2(\Jc—x?) ny/GeVv* 9.39x10°% 6.11x10°% 3.47x10°3
Xln(p2+xz)\/g+x4+3pzxz ' 3D nyp* 5.37x10°% 3.14x10°% 1.08x10 !
2
The asymptotic behavior of this function is G2=49—772((GW)2>/GeV4 751x10°%  4.89x10° 2 2.77x10°?
, x\ = x| 2m? p® whereG, denotes the gluon condensate ang* the pack-
X“Lnols vl 6 XITLIS p) T3 y6 (32) ing fraction.

Strictly speaking, only the column denoted by, with

Note that in the next to leading ordére., the approximation this function evaluated in the instanton field according to the
quadratic in the densifyonly instantons written in the sin- Straight Schwinger line prescription should be compared
gular gauge can be employed to form superpositions accordvith the result of measurements obtained on the lattice. We
ing to Eq.(11). provide also the other estimates in order to get a feeling

The long-distance asymptotics of the field strength corabout the sensitivity with respect to the choice of the
relator evaluated nonperturbatively with single instantonSchwinger line path.
contributions resembles a perturbative contribution and does The difference to the value of the gluon condendate
not show an exponential falloff. This indicates that only a=0.14(8) GeV extracted for the quenched theory in Ref.
strongly interacting instanton gas or liquid might mimic the [9], can be explained by the fact that the latter result relies on
correct infrared behavior of the theory. Nevertheless, it ighe validity of the exponential part of the fit down xe=0,
reasonable to ask, whether single instanton contributions canhile the single-instanton correlator itself is flat for- 0.
describe reliably the behavior of the field correlators at inter-The instanton size, practically identified with the correlation
mediate distances, where lattice data are available. Indepelength, is as usually adoptegs~3 fm within the parametri-
dently of its concrete form the instanton contributions to thezations leading td ,, and Is. The packing fractiom}p*
correlation functions should be compared only with the non-almost coincides with the value for the instanton liquid. Yet,
perturbative part of the lattice result, i.e., with the pure ex-the density estimated is bigger compared with the density of
ponential terms in Eq6). 1 fm~* usually adopted in phenomenological applications.

As already mentioned the lattice data fdy are definitely However, the instanton liquid phenomenology makes ref-
smaller than those fob. Due to the(anti-)self-duality, the erences only to full QCD with realistic quark masses. There-
tensor structure related 0, even strictly vanishes in the fore, we give here a fit based on the instanton gas formula to
leading order of the density expansion in a dilute instantorthe full QCD lattice data, too, described by express{én
gas picture. Therefore, the leading instanton result pointand parameter¢9). We obtain from a fit in the range 1

gualitatively into the right direction. <x/p<5 the following parameter values:

full QCD l, Ioh I's

pI\a 0.78 1.28 2.
ny/fm~4 0.72 0.55 0.64
plGeV 1 1.34 2.21 3.45
nY/GeV* 1.09x 103 8.34x 104 9.7x1074
nyp* 3.56x10°3 1.97x10°? 1.37x10°*
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Through an estimate based on the Banks-Casher for(eaka e.g., the recent review by Sfeveand Shuryak17])

_ 1 /3N 34
(qq)= N2 e (39
we obtain for the quark condensate:
full QCD I I'on ls experiment
(qq)/Ge\? —1.66x10°2 —8.82x10°3 -6.1x10°° —1.06x10 2—1.66x102

We conclude that the nonperturbative tensor structure 1
D(x?) in the field strength correlator at zero temperature caerp),w(Xsz):E > ng nglb)f dAZlf d*z,
be roughly described by a semiclassical picture based on a,b=ll
instantonlike nonperturbative field configurations. The ex-
tracted parameters are in the expected ballpark when the fit is X f do; j dw,
applied to the lattice measurements with dynamical fermi-
ons. This lends support to the conjecture tfzatiti-)self-dual XTr{GMp[a(xl,yl),b(xl,yz)]
configurations are dominantly contributing to the correlator
and the gluon condensate as known from real QCD. XG,.la(xz,v1),b(X2,72)1}- (36)

The gluon condensate in the quenched theory obtained in S »
Ref. [9], however, is almost one order of magnitude bigger = When considering superpositions, one has to take the
than that for full QCD with light Kogut-Susskind quarks. smgle(antl-)mstgnton field qonflguratlorm}andb in the sin-
With our instanton shape for the correlation function we car@ular gauge. With the notation=x—z their vector potential
reduce this to a roughly half as big estimate. Still this resultdS expressed as follows:
in an unexpectedly high instanton density. Due to the larger o o
correlation length with dynamical light quarks, according to a‘;(x;z)= Naur¥ T (Y:p), bz(x;z):waa, Nar wn¥ o (Y,P),

our fits, the packing fraction is bigger only by some 50% in (37)
pure Yang Mills theory compared to QCD. In the following 2

section we will study the influence on estimated instanton f(y,p)= '

density and radius for the quenched case when corrections of y2(y?+p?)

second order in the density to the field strength correlator are

taken into account. wherew,, denotes the relative color orientation of the pair

(replacen— 7 for anti-instantons
As was mentioned above, within the approximation linear
IV. SECOND ORDER DENSITY CONTRIBUTION in n, the correlatoD, is strongly zero. However, the inter-

In this section we shall present some estimates of the nexgrence betweetanti-jinstantons generates nontrivial contri-
order term in a density expansion. We have to consider th@utions to it. In general, one can easily derive the contribu-
field strength for a superposition of soluticasndb, where ~ tions to the field strength correlators by averaging over
botha andb can represent an instanton or anti-instanton, the color orientation of théanti-)instantona relative to the

(anti-instantonb. Only the AG,,(a,b)AG,(a,b) contri-

bution is nonzero after this average has been taken. Introduc-

Gp(a,b)=G,,(a)+G,,(b)+AG,,(a,b), ing the tensorial decomposition of the integral
€
AG,,(ab)=—i{la, b,]+[b,.a,I} R A
= 6/1,1/‘]1()(![)) +XMXV‘]2(X:p) (38)

We neglect for the purpose of this estimate the Schwinger
phase factors which are known to give a 20% effect in first . . . .
order in the density approximation. The interference betweel]! t6rms of Invariant functions, andJ%, after Some minor

; glgebralg manipulations one can obtain the followlng system
density, and the resulting field strength is neither self—duaPf equations for the _second _ord_er terms, .proport|onal to the
nor anti-self-dual. Therefore we expebt; to receive the number density of differerpairs in the gas:
leading contributions in this order. The functional weight

(10) specified for superpositions of Euclidean solutions is N¢ (H4+F4)2

D@ (x)+DP(x)=

approximated by an uncorrelated ansatz in terms of the N2—1 2
single{anti-instanton density. Therefore the second order ¢
contribution to the correlator has the form X[331(X,p) +x25(X,p) 1% (39

114508-7



E.-M. ILGENFRITZ et al.

DX Ne (ngtny)?
ax? NZ-1 2

X [3J1(X1P) +X2‘]2(X1P)]‘J2(X1P)-

The integrals]; andJ, can be computed analytically,
2.2 4 2 6 2
T X X° X
PP [ 4—2 + 2_6 In—2
pe PP

J(xp)="5—

Pl (40)
p®  (p2+x3)Je+x4+3p2x2)’
3,(%,p) m ps[ g 1 2
2(X,p)= 5 —{ —8—+2—In—
3 6 02 b2
x2\ %[ x2 x2
—4 1+E ?—2 In 1+?
x?[ x2 X ﬁl p?(\e—x?)
—— — _n s
p?\ p? | p? (pP+x3) e+ x*+3p2x?
(41

where the notationc=x*+4p?x?> was used again. The
asymptotic behavior of these functions is

4

lim Jy(x,p)—72p2,  lim Jy(x,p) 22, (42
x—0 X—s 00 X
277.2 4
lim Jo(x,p)— —2~IN(p?),  lim Jp(x,p)——4m2o.
Xx—0 3 X— 00 X
(43

The solution of the system of equatio(&9) can be written
as

Ne (ng+ng)? p*
NZ-1 2

D@ (x)=97* 1@)(xlp),

(44)
(ng+ny)2p*
NZ-1 2

12 (x/p).

where the functions®, 1{2) have been determined numeri-
cally. These functions turn out to be non-negative forxall
Their values at zero distance arfé)(0)=1.28 andi{?(0)

PHYSICAL REVIEW D 58 114508

D(x)=8(n,+ny)l(x/p)

Ne  (ng+ng)2p
+9mt —— 1D(x/p),
NZ-1 2 P
_ (45)
N, (ng+ny)?p*
__ 4 c 4 4 (2)

wherel (x/p) denotes one of the possible parametrizations of
the first order contributiorifor physical reasons preferably
Ion(X/p)]. We stress again that in agreement with the lemma
above the violation of (anti-)self-duality, not only in
instanton—anti-instanton but also in instanton-instanton and
anti-instanton—anti-instanton superpositions, leads to the

contributions (n,+n,)?. Besides these approximative so-
lutions, there are also exact multi-instanton or multi-anti-
instanton solutions of the Euclidean field equations. They are
suppressed by higher action, and the corresponding distribu-
tion of their collective coordinates is even less certain within
the real vacuum. Fortunately, they cannot give a contribution
to D; due to their strict(anti-)self-duality. A comparison
between the leading and second ordarthe density con-
tributions toD leads to an upper bound for the packing frac-
tion nyp*<(2%/3°7?)[(N2—1)/N.]. As long as this holds,
the density expansion of the dilute gas approximation should
be reliable.

With our numerical solution fot{?) one can see from Eq.
(45) that the instanton contribution #,(x) is negative for
all x, in contrast to the nonperturbative contribution as ex-
tracted from best fits to lattice data[iB—11]. This fact raises
several questions. First of all, one might wonder whether the
existing lattice data are incompatible with a negative nonper-
turbative contribution td,, and hence are in contradiction
with the instanton-gas model. Our experience with the exist-
ing lattice data tells, that the fits are not conclusive concern-
ing the sign of the pure exponential contribution iy .
Other reasonable fits are possible as well. One such solution
found by an own fit to the lattice data of R¢8] is shown in
Fig. 2. The corresponding parameters in E).are

A B
—5~2.52x10°, — ~-5.14x10,
AL AL

a~0.415, b=0.307, (46)

)\A~022 fm, )\8%024 fm, )\a:)\b—>oo.

This fit achieves a reasonable valy® Npg=3.45.

A second question directly addresses the phenomenologi-
cal consequences of negatie . It was shown if1] thatD
and D, define the scalar and spin-dependent potentials of
heavy quarkonia. 1124] functionsD and D; of Gaussian
shape have been used to predict the spin-orbit and hyperfine

=0.28. Taking the first- and second-order terms in the densplitting of charmonium and bottomonium, and it was shown

sity expansion into account, Eq®3) and (44), one obtains
the following form of the correlation functions in the dilute

Il gas model:

that only negativeD, can reproduce the experimental situa-
tion. Therefore, it is quite possible th&t andD,, as ob-
tained from the instanton gas model, can generate a phenom-
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FIG. 2. Fits toD, (upper curvesand D (lower curveg, as

) : ! ; i . ) 4
defln_ed n Eq.(5)_, given in units of (lattl(.:e spacing, )" versus taken into accounfupper solid ling and the correlatojD,| (lower
physical distancéin units of ferm). The lattice data are taken from o . . :

solid line) as given by the instanton gas model compared with the

Ref. [8]. Solid lines represent the fit according to the parametriza- . .
tion (6),(8). Dashed lines show our own f46) with a negatived nonperturbative parts extracted from lattice data for quenched QCD

) . 8] [fit (46), upper and lower dashed lines, respectiyelfor com-

as discussed in the text. E);ri[son(, the I(F))r?g-dashed line shows the first orr():ier (}Iee:?(s)ity contribu-
tion to D with the straight Schwinger line expressiop,. The
enologically reasonable spectrum of heavy quarkonia. Worlevaluated curves correspond to the parameiges3.42 i ?, p
in this direction is planned for the future. =12%,.
The resulting combined fit of bot® and D, with our

model dependent input functiofissingl ;) is shown in Fig.  as proposed if16] with a profile functionf behaving for
3 together with the fitted exponential contributions to thejgrge x as ~exp(-mx), with m2=2L 72(n,+n,)p2. This
lattice data for quenched QCD. One can see that it is stillyj|| certainly allow to describe the lattice results in a better

possible to imitate lattice data with andD, constrained by way. The numerical evaluation of this effect is now in
the instanton model. The result of the best fit including theprogress.

second-order correction is the following:

FIG. 3. The correlatob with the second order correctiof45)

quenched QCD I I ph I V. CONCLUSIONS AND DISCUSSION
pINa 0.78 1.29 1.85 We have considered the semiclassical approximation for
ny/fm=* 4.76 3.42 2.97 the non-Abelian field correlators. The dilute instanton gas

model was used. Generically, the correlators for an indi-
vidual background configuration had to be evaluated numeri-

(2) 1(2) i
One should note that the shapelof”™,17™ as fgnctlons cally, partly in order to take into account the Schwinger line
of x/p depends on the path taken for the Schwinger phas@orrectly.

factor and on the profile of individual instantons. Concerning Let us briefly summarize our main results. The compari-
the choice of the path the straight line patbrresponding to son of the considered correlators with lattice data at zero

Ior) is the most natural one in view of the way the Correla'temperature[&lo], shows the following. The nonperturba-

tors are measured on the lattice. As far as the profile is cor, o part of the correlatob can be reasonably described by
cerned, in the present paper we have chosen the exact cl

sical solution(14), while its shape is expected to be changedatﬁetm')&egl _II g"’]‘f (se?_ Fig. 3. Itt.\éva;s shlovzn t?]nalytmalll){
due to the interactions between ttanti-)instanton and the at seil-dual configurations contribute only 1o the correlators

vacuum(medium on the classical and quantum level. There-D and Dy in the Iead|_ng order of the densn_y expansion,
fore, we can choose a more general instanton potential Wh”? D.1 appears only |n.the second (.)rder..Thls. may gxplam
qualitatively the large rati®/D; found in lattice simulations

[6,8—10.
Another interesting result is that non-positivity Bf; is
a — % characteristic for the instanton gas model. We have demon-
a%(X) =2 9auy 5 1(X), (47) _ : s model, W
X strated that this feature is compatible with lattice data. More-
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over, we have argued that this might be even favorable fromi2] for discussion and more referenge¥herefore to get

a phenomenological point of view. realistic vacuum there are at least two possibilities: to modify
The fitted values of the instanton densities turn out to b&he instanton model in a way that instantons give only con-

large in the case of quenched simulatigesveral instantons  tributions of Gaussian natur@ome Gaussian instanton en-

per 1 fnf). To describe this case consistently within the semblg or to assume additional contributions, such as dyons

instanton density expansion a medium correction for the ingnd antidyons. Work in this second direction is now in
stanton profilg 16] must be taken into account. In the case of progress.

full QCD (with dynamical fermionsthe situation is more
safe for the naive instanton superposition. For this case, the
estimated values for instanton _density and radius are found in ACKNOWLEDGMENTS
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