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Field strength correlators are semiclassically evaluated in the dilute gas model of non-Abelian sources
~instantons! and compared with lattice data for QCD at zero temperature. We show that one of the Euclidean
invariant, tensorial structures vanishes for configurations being purely self-dual or anti-self-dual. We compute
the invariant functions contributing to the correlators within the two lowest orders in an instanton density
expansion. Fitting instanton size and density for quenched and full QCD, we obtain a reasonable description.
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I. INTRODUCTION

In recent years a systematic description of nonperturba-
tive effects in QCD has been given in terms of the gluon
field-strength correlators@1–3#. They are of immediate phe-
nomenological importance in the model of stochastic con-
finement of color charge, giving a detailed description of the

level splitting of heavy and lightQ̄Q bound states, and in the
description of high-energy hadron and quark-~anti!quark
scattering@4#. By now, there exist numerical results from
lattice simulations concerning the fundamental field strength
correlators for pure gauge theory with gauge groups SU~2!
@5–7# and SU~3! @8–11# over physical distances ranging up
to O(1) fm. The correlators have also been calculated near
to the deconfinement transition in pure SU~3! gauge theory
@9#. Very recently, this study has been extended to full QCD
with four flavors of dynamical staggered quarks@10#. In this
latter work, an interesting pattern of the quark mass depen-
dence both of the gluon condensate and of the gluonic cor-
relation length has emerged. The correlation length smoothly
changes from the lightest quark mass to the quenched results.
The extraction of the gluon condensate itself is afflicted with
some reservations about the renormalon ambiguity in the de-
termination of the Wilson coefficients of the operator prod-
uct expansion. In Ref.@10# this problem is finally neglected.
As demonstrated there, the emerging mass dependence can
be consistently described by a low-energy theorem which
relates it to the zero-mass case through the quark condensate.
The real problem hard to understand is the much stronger
gluon condensate for pure Yang-Mills theory.

In the direct computations of the gluonic field strength
correlators on the lattice the nonperturbative behavior has
been extracted with a cooling procedure which serves the
purpose to erase short-range perturbative fluctuations. Then
at various distancesd ~in lattice step units! gauge field struc-
tures are expected to become visible in the correlator if an
appropriate number of cooling iterations (n}d2 due to the
diffusive nature of cooling! is applied. In view of these re-
sults it has become very likely that the field correlators have
a semiclassical origin and might provide information about

the importance and the physical parameters of those classical
configurations forming the basis of the semiclassical ap-
proximation.

Instantons—solutions of the Euclidean Yang Mills field
equations—are well-known examples of semiclassical con-
figurations, which exist both in the continuum and on the
lattice. Their contribution to the path integral quantization
plays an important role in explaining chiral symmetry break-
ing and many phenomenological facts~see, e.g.,@12–18#!.

It seems quite in time to compute the field strength corre-
lation functions within a semiclassical model based on in-
stantons and to point out to what extent the latter are able to
describe the results of the lattice measurements mentioned
above. In principle, such a comparison should enable us to
quantify the importance of the semiclassical modes forming
the QCD vacuum or finite-temperature Euclidean fields, re-
spectively, and to provide their relevant physical parameters.

Performing the analysis of field strength correlators with
the simplest instanton solutions we will restrict ourselves to
the SU~2! case, being aware that the embedding into a larger
SU(Nc) gauge group can be easily realized. Therefore, the
parameters of instanton densities and sizes we are going to
determine from a comparison with lattice data will always
refer to the physical SU~3! case.

Earlier studies of field strength correlators due to instan-
tons can be found in@19,20#. There the results for the single
instanton approximation were obtained in terms of two-
dimensional integrals. Here we pay particular attention to the
path dependence of the phase factors. This can only be done
numerically which was beyond the scope of these papers.
Reference@20# points out the insufficiency of the single in-
stanton approximation. We study here also the next order
terms in a density expansion. With the numerically evaluated
invariant functions, we estimate instanton density and size.

II. THE FIELD STRENGTH CORRELATOR

A. General statements

The gauge invariant two-point correlators of the non-
Abelian field strength are defined as
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Dmr,ns~x12x2!5^0uTr$Gmr~x1!S~x1 ,x2!

3Gns~x2!S†~x1 ,x2!%u0&, ~1!

whereGmr5TaGmr
a is the field strength tensor andS(x1 ,x2)

is the Schwinger-line phase operator, i.e., the parallel trans-
porter necessary to join the field-strength operators at points
x1 , x2 in order to respect gauge invariance.Ta denotes the
generators of the gauge group SU(Nc). The most general
form of the correlator compatible with EuclideanO(4) in-
variance at zero temperature is, in the notation of Ref.@1#,

Dmr,ns~x!5~dmndrs2dmsdrn!@D~x2!1D1~x2!#

1emrns D2~x2!1~xmxndrs2xmxsdrn

1xrxsdmn2xrxndms!
]D1~x2!

]x2
, ~2!

with x5x12x2 andD(x2), D1(x2), D2(x2) representing in-
variant functions. The invariantD2 term has been added for
later use. It is only relevant for cases in whichCP symmetry
is violated or a restriction to sectors with topological charge
QtÞ0 is possible. It has been shown thatD1 does not con-
tribute to the area law of Wilson loops@2,3#. In the pertur-
bative regime both invariant functionsD and D1 behave as
1/x4. Only D1 receives a contribution from one-gluon ex-
change@1,3#. On very general grounds the perturbative con-
tribution toD ~which appears at one loop and higher orders!
was recently shown to be cancelled by higher correlator con-
tributions @21#. Here, we shall not discuss the perturbative
contributions in more detail. Instead we will concentrate on
the contribution from semiclassical configurations.

We consider the correlator of Eq.~1! as an average of the
expression in brackets over gauge field configurations with a
weight equal to exp(2SE) (SE is the Euclidean action of the
gauge field! times the determinant of the fermionic Dirac
operator. We are going to compare with lattice simulation
data which are taken partly in full QCD, partly within the
quenched approximation when the fermionic backreaction on
the weight is neglected. In our estimates only density and
size of instantons play a role which are—in the case of full
QCD—influenced by the effect of the fermionic determinant.
The instanton solution of the Euclidean field equations is
taken with its algebraic form in the evaluation of the field
strength and of the Schwinger lines. The resulting expres-
sions are then contributing in leading order to the functional
average.

At this place let us make a general statement concerning
the leading order contribution of pure~anti-!self-dual gauge
field configurations to the field strength correlators. This
property of the one-instanton contribution was mentioned be-
fore in Ref.@20#.

Lemma.Pure~anti-!self-dual field configurations can con-
tribute only toD andD2 , but do not contribute toD1 .

In order to prove this we assume that the gauge potential
A satisfies the~anti-!self-duality condition on the field
strength

G̃ag[ 1
2 «agmrGmr56Gag . ~3!

Then the duality transformation12 «agmr
1
2 «bdns , acting on

both field strengths in Eq.~2!, provides

^TrG̃agSG̃bdS†&

5S D~x2!1D1~x2!1x2
]D1~x2!

]x2 D
3~dabdgd2daddbg!1eagbdD2~x2!

2~xaxbdgd2xaxddbg1xgxddab2xgxbdad!

3
]D1~x2!

]x2
. ~4!

The sign of the third term of the right-hand side of Eq.~4! is
just opposite to the sign of the corresponding term in Eq.~2!.
The left-hand sides of Eqs.~2! and ~4! are equal due to
~anti-!self-duality. Thus, we getD15const. From the re-
quirement that the correlators should vanish asx2→` we
arrive with D1[0, Q.E.D.

Corollary. Consequently, a nonzeroD1 may appear only
due to perturbative fluctuations and in higher order of a den-
sity expansion for distinct semiclassical contributions@due to
the nonlinear interference of pairs of~anti-!instantons#.

B. Lattice results

The field-strength correlators~2! have been estimated
from lattice two-point functions for pure SU~2! and SU~3!
gauge theory atT50 and TÞ0 as well as for full QCD
@5,6,8–10#. After applying the cooling method the nonper-
turbative contributions to the correlators have been shown to
fall off exponentially at distances between 0.1 and 1 fm. Fits
to the cooled Monte Carlo data still exhibit a remnant of the
perturbative tail;x24.

In the following we want to consider the zero temperature
case which, in the lattice measurements, is described by the
following two correlators:

D uu~x2!5D~x2!1D1~x2!1x2
]D1~x2!

]x2
,

~5!

D'~x2!5D~x2!1D1~x2!.

We will refer to the best fits to pure SU~3! gauge theory data
obtained for several bare lattice couplings in@8#:

D~x2!5Aexp~2uxu/lA!1
a

x4
exp~2uxu/la!,

~6!

D1~x2!5Bexp~2uxu/lB!1
b

x4
exp~2uxu/lb!,

with
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A

LL
4

'3.33108,
B

LL
4

'0.73108, a'0.69, b'0.46,

~7!

lA5lB'
1

LL

1

182
, la5lb'

1

LL

1

94
.

In physical units, obtained from string tension data, this
amounts to lA'0.22 fm, la'0.43 fm. The fit was
achieved with a very reasonablex2/NDF.1.7. There is an-
other solution reported in@8# with

A

LL
4

'2.73108,
B

LL
4

'0.0, a'0.4, b'0.3,

~8!

lA5lB'
1

LL

1

183
, la5lb→`

and a similarx2 value.
The results show the invariant functionD1(x2) to be by a

factorO(5) smaller thanD(x2). This indicates thatD(x2) is
mostly of nonperturbative nature. For the perturbative con-
tributions alone the opposite relationD1.D has been proven
to be valid@22#.

Within full QCD the same field strength correlators have
been measured forNf54 flavors of staggered fermions with
the hybrid Monte Carlo~HMC! method@10#. Results were
obtained for two quark massesmq50.01, 0.02~in lattice
units!. Fits with the sameAnsätze~6! have provided, for the
casemq50.01, the following parameters:

A

LF
4

'1.7431010,
B

LF
4

'0.231010, a'0.71, b'0.45,

~9!

lA5lB'
1

LF

1

544
, la5lb'

1

LF

1

42

with a x2/NDF.0.5. Determining the scale parameterLF for
full QCD from the estimate of ther-meson mass one has
lA'0.34 fm, which is somewhat larger than the quenched
value quoted above. For the other quark mass valuelA
'0.29 fm was obtained. We conclude that qualitatively the
functionsD andD1 behave similar in all cases considered.

In a recent paper@11# the field strength correlators have
been investigated in the presence of a staticqq̄ pair for
quenched QCD~see also@7#!. The exponential decay of the
form factorsD andD1 has been seen in this case even with-
out cooling. The correlation lengths estimated are compatible
with the results mentioned before.

C. Semiclassical approximation

Next we want to work out the lowest order semiclassical
approximation for the field-strength correlator by separating
the Gaussian integral over quantum fluctuations on top of a
single classical background field from the gauge invariant
product of field strengths simply evaluated for that classical
field. What then remains are zero-mode integrations over the

appropriate set of collective coordinatesG characterizing the
classical field with a density functionM(G),

Dmr,ns~x!5
1

ZE dGM~G!•Tr$Gmr~x1 ;G!S~x1 ,x2 ;G!

3Gns~x2 ;G!S†~x1, x2 ;G!%, ~10!

whereGmn(x;G) is the field strength tensor corresponding to
configurationsAm(x,G). To be more specific, we imagine a
model of the vacuum state that is semiclassically represented
by superpositions ofN instantons andN̄ anti-instantons@13#

Am~x,G!5(
i 51

N

am~x;g i !1(
j 51

N̄

ām~x;ḡ j !. ~11!

The g i (ḡ j ) denote the collective coordinates of theith in-
stanton~jth anti-instanton!, which include the positionzi ,
the group space orientationv i , and the sizer i . The integra-
tion measure in Eq.~10! is then expressed by

dG5)
i 51

N

dg i)
j 51

N̄

dḡ j , dg i 5 d4zidv idr i ,

dḡ j5d4z̄jdv̄ jdr̄ j .

For practical use we will consider here only~anti-!instantons
of fixed size. This corresponds to the instanton liquid model
invented in@15# with a deltalike size distribution. In prin-
ciple, a more realisticr distribution with a self-consistent
exponential infrared cutoff~allowing to satisfy low-energy
theorems! can be obtained from the assumption that
~anti-!instantons repel each other at short distances@14,16#.
If the instanton liquid or gas is sufficiently dilute we can
approximate the functional integral by an expansion in pow-
ers of the~anti-!instanton densitiesn45N/V (n̄45N̄/V).

Strictly speaking, the superpositionAnsatz ~11! makes
sense as an approximate saddle point of the action only if the
vector potentialsam , ām decrease fast enough. This happens
when the singular gauge expression is used for the
~anti-!instanton solutionsam , ām , instead of the regular
gauge form@13#. The existence of a systematic expansion in
higher order contributions to the measureM(G) has been
proven in Ref.@23#. It will be pointed out in the next section
that, as long as one remains within the single instanton ap-
proximation, the actual choice between an instanton in the
regular or singular gauge does not matter if the field strength
correlator is evaluated on this background with a straight line
Schwinger phase factor inserted. In the calculation of inter-
ference terms containingam(x;g) and ām(x;ḡ), however,
the choice of the singular gauge form of solution is essential,
and will be used in Sec. IV.

III. FIELD STRENGTH CORRELATOR
IN THE ONE-INSTANTON APPROXIMATION

Let us compute next the explicit single-instanton contri-
bution to the field strength correlators~1!. The leading term
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is given by the sum of single instanton (I ) and anti-instanton
( Ī ) contributions

Dmr,ns
~1! ~x1 ,x2!5Dmr,ns

I 1Dmr,ns
Ī

5n4E d4z Tr @Gmr~x1 ;g!S~x1 ,x2 ;g!

3Gns~x2 ;g!S†~x1 ,x2 ;g!#

1~n4 ,g→n̄4 ,ḡ !. ~12!

The integration over the~global! group orientation is trivial
in this case and has been omitted. We emphasize, that the
Schwinger line phase operator is a path dependent matrix in
the fundamental representation

S~x1 ,x2 ;z!5P expF i E
0

1

dt ẋm~ t !am@x~ t !;z#G , ~13!

where the vector potentialam5Taam
a , in leading order of an

expansion in the density, belongs to the single instanton
source localized atz. Together with its adjointS†, S takes
care of the parallel transport of the field strength tensorGmr

from one point of the measurement to the other.
We begin with the instanton solution in the so-called

regular gauge. Its SU~2! vector potential is expressed with
y5x2z as follows:

am
a ~x;z!52 hamn

yn

y21r2
, a51,2,3, ~14!

Gmn
a ~x;z!524 hamn

r2

~y21r2!2
, m,n51,2,3,4. ~15!

The rotational degrees of freedom in the group space have
been omitted. The t’Hooft tensorhamn ~and h̄amn for the
anti-instanton! is defined in@12#. The Schwinger line phase
factor depends on a particular path between the points of
measurementx1 andx2 . For a straight line path betweenx1
andx2 , the Schwinger line can be written explicitly:

S~x1 ,x2 ;z!5P expS i tahamnE
0

1

dt
~x22x1!myn

r21y2 D ,

~16!

where ta are the Pauli matrices andy5x11(x22x1) t2z
denotes a point running fromx1 to x2 relative to the instan-
ton centerz. The Schwinger line can be conveniently param-
etrized withz15x12z andz25x22z as follows:

S~x1 ,x2 ;z!5expS i

2
ta naQ D , ~17!

where

Q52@z1
2 z2

22~z1z2!2#1/2C,
~18!

C5
arctan~x2!2arctan~x1!

@~z12z2!2 r21z1
2z2

22~z1z2!2#1/2
,

and

x i5
zi~z22z1!

@~z12z2!2 r21z1
2 z2

22~z1z2!2#1/2
, i 51,2.

~19!

Herena denotes the components of a unit vector in isotopic
space,

na5hamn

z2mz1n

@z1
2z2

22~z1z2!2#1/2
. ~20!

In what follows we shall compare the straight line case~17!–
~20! with a special case when the Schwinger~path depen-
dent! phase factor becomes trivial asS(x1 ,x2 ;z)51 for all
points x1 and x2 . This happens if the path connects the
points x1 and x2 via the instanton centerz along the two
radial rays. In this case it is very simple to perform the inte-
gration overz in Eq. ~12!. The result can be expressed by the
following function of x/r5ux12x2u/r

I r S x

r D5E d4z
r4

~z1
21r2!2~z2

21r2!2
. ~21!

The result of the integration in Eq.~12! for an instanton is

Dmr,ns
I ~x!5~dmndrs2dmsdrn1«mrns! 8n4I r S x

r D ,

~22!

where

I r S x

r D5
p2

2

r2

x2Fx4

c
1S 11

x4

c D r2

Ac

3 lnS 11
Ac

r2

Ac1x2

Ac2x2D 21G ~23!

andc5x414r2x2, which coincides with the result obtained
in @20#. The asymptotic behavior of this function is

lim
x→0

I r S x

r D→ p2

6
, lim

x→`

I r S x

r D→ 4p2r4

x4
ln

x

r
. ~24!

The correlator due to an anti-instanton is obtained by the
replacementh→h̄ which results in

Dmr,ns
Ī ~x!5~dmndrs2dmsdrn2«mrns!8n̄4I rS x

r̄
D .

~25!
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In the instanton–anti-instanton dilute gas the observed cor-
relator in the lowest order of the density expansion is the
sum of Eqs.~22! and ~25!. Under the standard assumption
that the instanton and anti-instanton scale sizes are equal we
obtain for the invariant functions

D ~1!~x2!58~n41n̄4!I r S x

r D , D1
~1!~x2!50,

~26!

D2
~1!~x2!58~n42n̄4!I r S x

r D .

The vanishing of the one-instanton contribution toD1 illus-
trates the general theorem formulated in Sec. II A. Only in
the case that the densitiesn4 and n̄4 are different, thee
tensor structure of the field strength correlator is different
from zero. In lattice computations one could select gauge
field configurations according to their net topological charge
QtÞ0. Such an ensemble would allow to extractD2(x).
However, this is not the standard case. Therefore, we shall
put n45n̄4 in the following.

If the Schwinger line is chosen to connect the pointsx1
andx2 along a straight path some corrections to formula~23!
appear. One has to replace in Eq.~23! I r(x/r) by I ph(x/r)
where

I ph~x/r!5
I r~x/r!12 I 1~x/r!

3

and

I 1S x

r D5E d4z cosQ
r4

~z1
21r2!2~z2

21r2!2
, ~27!

with Q given in Eq.~18!. The integralI 1 cannot be evaluated
analytically. Let us estimate the degree to what the field
strength correlators depend on the choice of path in the
Schwinger line. For the straight-line path between the points
x1 , x2 the result can be rewritten from Eqs.~21!,~27! as

I ph~x!5S 1

3
1

2

3
^cosQ& D I r~x!,

whereQ is given in Eq.~18! and the average is with respect
to the measure in Eq.~21!. An estimate forQ can be given
for x5x12x2 , with the instanton center located at distance
R ~with R@uxu) from the midpoint (x11x2)/2:Q
.2uxuR/(R21r2). Thus the difference 12^cosQ&'^Q2&/2
.^2x2R2/(R21r2)2&.0.2, where the typical instanton gas
parametersR'1 fm, x'r'0.3 fm have been inserted.
The result of the numerical integration for the straight line is
compared with the expression~23! for the radial path gauge
transporter in Fig. 1. The correlator with the straight
Schwinger line is roughly 20% smaller than for theS51
case in accordance to the estimate, and correspondingly the
half width is smaller by roughly one third. In the estimation
of the ~anti-!instanton density and size below, the numeri-

cally calculated correlator with this minimal, straight path
Schwinger line should be used.

Considering the so-called singular gauge instanton solu-
tion ~a51,2,3 andm,n51,2,3,4!

am
a ~x;z!52 h̄amn

ynr2

y2~y21r2!
, ~28!

Gmn
a ~x;z!52

8r2

~y21r2!2H 1

2
h̄amn1h̄ank

ykym

y2

2h̄amk

ykyn

y2 J , ~29!

we notice that it is related to the regular gauge
~anti-!instanton by a singular gauge transformation. With the
straight Schwinger line inserted, the correlator is identical to
the correlator numerically evaluated for the regular gauge
instanton. Just in order to see how the choice of the
Schwinger line influences the field strength correlator, we
can consider also a path for which the Schwinger line non-
Abelian phase factor is equal toS51. This is the path leav-
ing x1 along a radial ray~starting from the instanton center!
towards infinity and approachingx2 from infinity along an-
other radial ray, with an arc at infinity in between.

The result of the integration over instanton position can
be expressed as a function ofx/r by the replacementI→I s
which is defined as

FIG. 1. The one-instanton contributionsI r ,ph,s to the correlator
D, according to Eq.~26!, for different paths in the Schwinger line
factor S, Eq. ~13!. The upper solid curve refers toS51 for the
regular gauge~anti-!instanton (I r), the dashed line to the straight-
line path (I ph), and the lower solid line to~anti-!instantons in the
singular gauge with the infinite arc path as explained in the text
(I s).
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I sS x

r D5E d4z
r4@4~z1z2!2/~z1

2z2
2!21#

~z1
21r2!2~z2

21r2!2
. ~30!

There exists a closed expression of the integral~see the lower
curve in Fig. 1!

I sS x

r D5
p2

6

r2

x2H 24
~x21r2!~x213r2!

~x214r2!r2

22
x6

r6
ln

x2

r2
14S 11

x2

r2D 2S x2

r2
22D

3 lnS 11
x2

r2D 1F S 11
x2

r2D 2
x4

r4

23S 11
x2

r2D S 113
x2

r2D 2
3x2

x214r2G r2

Ac

3 ln
r2~Ac2x2!

~r21x2!Ac1x413r2x2J . ~31!

The asymptotic behavior of this function is

lim
x→0

I sS x

r D→ p2

6
, lim

x→`

I sS x

r D→ 2p2

3

r6

x6
. ~32!

Note that in the next to leading order~i.e., the approximation
quadratic in the density! only instantons written in the sin-
gular gauge can be employed to form superpositions accord-
ing to Eq.~11!.

The long-distance asymptotics of the field strength cor-
relator evaluated nonperturbatively with single instanton
contributions resembles a perturbative contribution and does
not show an exponential falloff. This indicates that only a
strongly interacting instanton gas or liquid might mimic the
correct infrared behavior of the theory. Nevertheless, it is
reasonable to ask, whether single instanton contributions can
describe reliably the behavior of the field correlators at inter-
mediate distances, where lattice data are available. Indepen-
dently of its concrete form the instanton contributions to the
correlation functions should be compared only with the non-
perturbative part of the lattice result, i.e., with the pure ex-
ponential terms in Eq.~6!.

As already mentioned the lattice data forD1 are definitely
smaller than those forD. Due to the~anti-!self-duality, the
tensor structure related toD1 even strictly vanishes in the
leading order of the density expansion in a dilute instanton
gas picture. Therefore, the leading instanton result points
qualitatively into the right direction.

The lattice measurements of the field strength correlators
are obtained with straight Schwinger line gauge transporters
inserted between the pointsx1 and x2. Comparing with the
lattice data of Di Giacomoet al. @8# we can roughly estimate
the instanton gas parameters. Fitting the instanton results for
D according to Eq.~26! ~with I r ,I ph ,I s related to different
choices of the Schwinger line path! to the first term ofD in
Eq. ~6!, i.e.,

D inst'Ae2x/lA, D1
inst'0 ~33!

within the range 1,x/r,5, we obtain forr and n4
t 5n4

1n̄4 , the radius and the total density of pseudoparticles, the
following results:

quenched QCD I r I ph I s

r/lA 0.78 1.35 2.12
n4

t /fm24 6.19 4.03 2.29
r/GeV21 0.87 1.51 2.36
n4

t /GeV4 9.3931023 6.1131023 3.4731023

n4
t r4 5.3731023 3.1431022 1.0831021

G25
g2

4p2
^~Gmn!

2&/GeV4 7.5131022 4.8931022 2.7731022

whereG2 denotes the gluon condensate andn4
t r4 the pack-

ing fraction.
Strictly speaking, only the column denoted byI ph with

this function evaluated in the instanton field according to the
straight Schwinger line prescription should be compared
with the result of measurements obtained on the lattice. We
provide also the other estimates in order to get a feeling
about the sensitivity with respect to the choice of the
Schwinger line path.

The difference to the value of the gluon condensateG2
50.14(8) GeV4 extracted for the quenched theory in Ref.
@9#, can be explained by the fact that the latter result relies on
the validity of the exponential part of the fit down tox50,
while the single-instanton correlator itself is flat forx→0.
The instanton size, practically identified with the correlation
length, is as usually adopted,r' 1

3 fm within the parametri-
zations leading toI ph and I s . The packing fractionn4

t r4

almost coincides with the value for the instanton liquid. Yet,
the density estimated is bigger compared with the density of
1 fm24 usually adopted in phenomenological applications.

However, the instanton liquid phenomenology makes ref-
erences only to full QCD with realistic quark masses. There-
fore, we give here a fit based on the instanton gas formula to
the full QCD lattice data, too, described by expression~6!
and parameters~9!. We obtain from a fit in the range 1
,x/r,5 the following parameter values:

full QCD I r I ph I s

r/lA 0.78 1.28 2.
n4

t /fm24 0.72 0.55 0.64
r/GeV21 1.34 2.21 3.45
n4

t /GeV4 1.0931023 8.3431024 9.731024

n4
t r4 3.5631023 1.9731022 1.3731021
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Through an estimate based on the Banks-Casher formula~see, e.g., the recent review by Scha¨fer and Shuryak@17#!

^q̄q&52
1

pr
A3Nc

2
n4, ~34!

we obtain for the quark condensate:

full QCD I r I ph I s experiment

^q̄q&/GeV3 21.6631022 28.8231023 26.131023 21.0631022—1.6631022

We conclude that the nonperturbative tensor structure
D(x2) in the field strength correlator at zero temperature can
be roughly described by a semiclassical picture based on
instantonlike nonperturbative field configurations. The ex-
tracted parameters are in the expected ballpark when the fit is
applied to the lattice measurements with dynamical fermi-
ons. This lends support to the conjecture that~anti-!self-dual
configurations are dominantly contributing to the correlator
and the gluon condensate as known from real QCD.

The gluon condensate in the quenched theory obtained in
Ref. @9#, however, is almost one order of magnitude bigger
than that for full QCD with light Kogut-Susskind quarks.
With our instanton shape for the correlation function we can
reduce this to a roughly half as big estimate. Still this results
in an unexpectedly high instanton density. Due to the larger
correlation length with dynamical light quarks, according to
our fits, the packing fraction is bigger only by some 50% in
pure Yang Mills theory compared to QCD. In the following
section we will study the influence on estimated instanton
density and radius for the quenched case when corrections of
second order in the density to the field strength correlator are
taken into account.

IV. SECOND ORDER DENSITY CONTRIBUTION

In this section we shall present some estimates of the next
order term in a density expansion. We have to consider the
field strength for a superposition of solutionsa andb, where
both a andb can represent an instanton or anti-instanton,

Gmr~a,b!5Gmr~a!1Gmr~b!1nGmr~a,b!,
~35!

nGmr~a,b!52 i $@am ,br#1@bm ,ar#%.

We neglect for the purpose of this estimate the Schwinger
phase factors which are known to give a 20% effect in first
order in the density approximation. The interference between
classical solutions contributes terms of second order in the
density, and the resulting field strength is neither self-dual
nor anti-self-dual. Therefore we expectD1 to receive the
leading contributions in this order. The functional weight
~10! specified for superpositions of Euclidean solutions is
approximated by an uncorrelated ansatz in terms of the
single-~anti-!instanton density. Therefore the second order
contribution to the correlator has the form

Dmr,ns
~2! ~x1 ,x2!5

1

2 (
a,b5I Ī

n4
~a! n4

~b!E d4z1E d4z2

3E dv1E dv2

3Tr $Gmr@a~x1 ,g1!,b~x1 ,g2!#

3Gns@a~x2 ,g1!,b~x2 ,g2!#%. ~36!

When considering superpositions, one has to take the
single~anti-!instanton field configurationsa andb in the sin-
gular gauge. With the notationy5x2z their vector potential
is expressed as follows:

am
a ~x;z!5h̄amnyn f ~y,r!, bm

a ~x;z!5vaa8h̄a8mnyn f ~y,r!,
~37!

f ~y,r!5
2r2

y2~y21r2!
,

wherevaa8 denotes the relative color orientation of the pair
~replaceh̄→h for anti-instantons!.

As was mentioned above, within the approximation linear
in n4 the correlatorD1 is strongly zero. However, the inter-
ference between~anti-!instantons generates nontrivial contri-
butions to it. In general, one can easily derive the contribu-
tions to the field strength correlators by averaging over
the color orientation of the~anti-!instantona relative to the
~anti-!instantonb. Only thenGmr(a,b)nGns(a,b) contri-
bution is nonzero after this average has been taken. Introduc-
ing the tensorial decomposition of the integral

E d4yym~y1x!n f ~y,r! f ~y1x,r!

5dmnJ1~x,r!1xmxnJ2~x,r! ~38!

in terms of invariant functionsJ1 andJ2 , after some minor
algebraic manipulations one can obtain the following system
of equations for the second order terms, proportional to the
number density of differentpairs in the gas:

D ~2!~x!1D1
~2!~x!5

Nc

Nc
221

~n41n̄4!2

2

3@3J1~x,r!1x2J2~x,r!#2, ~39!
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]D1
~2!~x!

]x2
52

Nc

Nc
221

~n41n̄4!2

2

3@3J1~x,r!1x2J2~x,r!#J2~x,r!.

The integralsJ1 andJ2 can be computed analytically,

J1~x,r!5
p2r2

6

r4

x4H 4
x2

r2
12

x6

r6
ln

x2

r2

24S 11
x2

r2D 3

lnS 11
x2

r2D
2

c3/2

r6
ln

r2~Ac2x2!

~r21x2!Ac1x413r2x2J , ~40!

J2~x,r!5
p2

3

r6

x6H 28
x2

r2
12

x6

r6
ln

x2

r2

24S 11
x2

r2D 2S x2

r2
22D lnS 11

x2

r2D
2

x2

r2S x2

r2
22DAc

r2
ln

r2~Ac2x2!

~r21x2!Ac1x413r2x2J ,

~41!

where the notationc5x414r2x2 was used again. The
asymptotic behavior of these functions is

lim
x→0

J1~x,r!→p2r2, lim
x→`

J1~x,r!→2p2
r4

x2
. ~42!

lim
x→0

J2~x,r!→
2p2

3
ln~x2/r2!, lim

x→`

J2~x,r!→24p2
r4

x4
.

~43!

The solution of the system of equations~39! can be written
as

D ~2!~x!59p4
Nc

Nc
221

~n41n̄4!2 r4

2
I ~2!~x/r!,

~44!

D1
~2!~x!529p4

Nc

Nc
221

~n41n̄4!2r4

2
I 1

~2!~x/r!.

where the functionsI (2), I 1
(2) have been determined numeri-

cally. These functions turn out to be non-negative for allx.
Their values at zero distance areI (2)(0)51.28 andI 1

(2)(0)
50.28. Taking the first- and second-order terms in the den-
sity expansion into account, Eqs.~23! and ~44!, one obtains
the following form of the correlation functions in the dilute
I Ī gas model:

D~x!58~n41n̄4!I ~x/r!

19p4
Nc

Nc
221

~n41n̄4!2r4

2
I ~2!~x/r!,

~45!

D1~x!529p4
Nc

Nc
221

~n41n̄4!2r4

2
I 1

~2!~x/r!,

whereI (x/r) denotes one of the possible parametrizations of
the first order contribution@for physical reasons preferably
I ph(x/r)#. We stress again that in agreement with the lemma
above the violation of ~anti-!self-duality, not only in
instanton–anti-instanton but also in instanton-instanton and
anti-instanton–anti-instanton superpositions, leads to the
contributions}(n41n̄4)2. Besides these approximative so-
lutions, there are also exact multi-instanton or multi-anti-
instanton solutions of the Euclidean field equations. They are
suppressed by higher action, and the corresponding distribu-
tion of their collective coordinates is even less certain within
the real vacuum. Fortunately, they cannot give a contribution
to D1 due to their strict~anti-!self-duality. A comparison
between the leading and second order~in the density! con-
tributions toD leads to an upper bound for the packing frac-
tion n4

t r4!(23/33p2)@(Nc
221)/Nc#. As long as this holds,

the density expansion of the dilute gas approximation should
be reliable.

With our numerical solution forI 1
(2) one can see from Eq.

~45! that the instanton contribution toD1(x) is negative for
all x, in contrast to the nonperturbative contribution as ex-
tracted from best fits to lattice data in@6–11#. This fact raises
several questions. First of all, one might wonder whether the
existing lattice data are incompatible with a negative nonper-
turbative contribution toD1 , and hence are in contradiction
with the instanton-gas model. Our experience with the exist-
ing lattice data tells, that the fits are not conclusive concern-
ing the sign of the pure exponential contribution inD1 .
Other reasonable fits are possible as well. One such solution
found by an own fit to the lattice data of Ref.@8# is shown in
Fig. 2. The corresponding parameters in Eq.~6! are

A

LL
4

'2.523108,
B

LL
4

'25.143107,

a'0.415, b'0.307, ~46!

lA'0.22 fm, lB'0.24 fm, la5lb→`.

This fit achieves a reasonable valuex2/NDF.3.45.
A second question directly addresses the phenomenologi-

cal consequences of negativeD1 . It was shown in@1# thatD
and D1 define the scalar and spin-dependent potentials of
heavy quarkonia. In@24# functions D and D1 of Gaussian
shape have been used to predict the spin-orbit and hyperfine
splitting of charmonium and bottomonium, and it was shown
that only negativeD1 can reproduce the experimental situa-
tion. Therefore, it is quite possible thatD and D1 , as ob-
tained from the instanton gas model, can generate a phenom-
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enologically reasonable spectrum of heavy quarkonia. Work
in this direction is planned for the future.

The resulting combined fit of bothD and D1 with our
model dependent input functions~usingI ph) is shown in Fig.
3 together with the fitted exponential contributions to the
lattice data for quenched QCD. One can see that it is still
possible to imitate lattice data withD andD1 constrained by
the instanton model. The result of the best fit including the
second-order correction is the following:

quenched QCD I r I ph I s

r/lA 0.78 1.29 1.85
n4

t /fm24 4.76 3.42 2.97

One should note that the shape ofI ,I (2),I 1
(2) as functions

of x/r depends on the path taken for the Schwinger phase
factor and on the profile of individual instantons. Concerning
the choice of the path the straight line path~corresponding to
I ph) is the most natural one in view of the way the correla-
tors are measured on the lattice. As far as the profile is con-
cerned, in the present paper we have chosen the exact clas-
sical solution~14!, while its shape is expected to be changed
due to the interactions between the~anti-!instanton and the
vacuum~medium! on the classical and quantum level. There-
fore, we can choose a more general instanton potential

am
a ~x!52 h̄amn

xn

x2
f ~x!, ~47!

as proposed in@16# with a profile functionf behaving for
large x as ;exp(2mx), with m25 27

8 p2(n41n̄4)r2. This
will certainly allow to describe the lattice results in a better
way. The numerical evaluation of this effect is now in
progress.

V. CONCLUSIONS AND DISCUSSION

We have considered the semiclassical approximation for
the non-Abelian field correlators. The dilute instanton gas
model was used. Generically, the correlators for an indi-
vidual background configuration had to be evaluated numeri-
cally, partly in order to take into account the Schwinger line
correctly.

Let us briefly summarize our main results. The compari-
son of the considered correlators with lattice data at zero
temperature@8,10#, shows the following. The nonperturba-
tive part of the correlatorD can be reasonably described by
the mixedI 2 Ī gas ~see Fig. 3!. It was shown analytically
that self-dual configurations contribute only to the correlators
D and D2 in the leading order of the density expansion,
while D1 appears only in the second order. This may explain
qualitatively the large ratioD/D1 found in lattice simulations
@6,8–10#.

Another interesting result is that non-positivity ofD1 is
characteristic for the instanton gas model. We have demon-
strated that this feature is compatible with lattice data. More-

FIG. 2. Fits toD' ~upper curves! and D uu ~lower curves!, as
defined in Eq.~5!, given in units of (lattice spacingLL)4 versus
physical distance~in units of fermi!. The lattice data are taken from
Ref. @8#. Solid lines represent the fit according to the parametriza-
tion ~6!,~8!. Dashed lines show our own fit~46! with a negativeD1 ,
as discussed in the text.

FIG. 3. The correlatorD with the second order corrections~45!
taken into account~upper solid line! and the correlatoruD1u ~lower
solid line! as given by the instanton gas model compared with the
nonperturbative parts extracted from lattice data for quenched QCD
@8# @fit ~46!, upper and lower dashed lines, respectively#. For com-
parison, the long-dashed line shows the first order density contribu-
tion to D with the straight Schwinger line expressionI ph . The
evaluated curves correspond to the parametersn4

t 53.42 fm24, r
51.29lA .
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over, we have argued that this might be even favorable from
a phenomenological point of view.

The fitted values of the instanton densities turn out to be
large in the case of quenched simulations~several instantons
per 1 fm4). To describe this case consistently within the
instanton density expansion a medium correction for the in-
stanton profile@16# must be taken into account. In the case of
full QCD ~with dynamical fermions! the situation is more
safe for the naive instanton superposition. For this case, the
estimated values for instanton density and radius are found in
the right ballpark known from instanton phenomenology, as
well as the estimated gluon and quark condensate values ex-
tracted from the lattice data were consistent with QCD sum
rules.

In this paper the effect of the inclusion of parallel trans-
porters~Schwinger linesS! into a semiclassical calculation
~and the path dependence! has been studied for the first time.
It is displayed in Fig. 1 that the effect~compared with a
choice of path withS51) is of the order of 20% in the
region of physical interest.

We did not discuss here the question whether instantons,
which yield phenomenologically realistic hadron correlators
@18# give a complete description of the QCD vacuum con-
figurations. The point is that the dilute instanton gas model
~also in the way we have treated it here! does not confine.
Within the vacuum correlator model, the nonzero contribu-
tion to the string tension which would be obtained from our
correlatorD, would be cancelled by higher correlators~see

@2# for discussion and more references!. Therefore to get
realistic vacuum there are at least two possibilities: to modify
the instanton model in a way that instantons give only con-
tributions of Gaussian nature~some Gaussian instanton en-
semble! or to assume additional contributions, such as dyons
and antidyons. Work in this second direction is now in
progress.
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