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We investigate the phase structure of the two-dimensional lattice Gross-Neveu model formulated with the
Wilson fermion action to leading order ofNl/expansion. The structural change of the parity-broken phase
under the influence of finite temperature and chemical potential is studied. The connection between the lattice
phase structure and the chiral phase transition of the continuum theory is cld&&56-282(198)11021-4
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[. INTRODUCTION ing order of 1N expansion, theT,u«) plane is divided into
two phases, a chirally broken phase at low temperatures and

In spite of the significant effort expended over the yearssmall chemical potential and a symmetric phase at high tem-
[1], thermodynamic studies of lattice QCD with the Wilson peratures and large chemical potential, separated by a phase
fermion action have been lagging behind those with théboundary. Along the phase boundary, the transition is of sec-
Kogut-Susskind action. The origin of the difficulty is the ond order for small chemical potential, which however,
explicit breaking of chiral symmetry due to the Wilson term, changes into a first-order transition for large chemical poten-
with ensuing complications in the analysis of chiral proper-tial. Our aim in this article will be, first, to determine the
ties. It has become clear only recently that the finite-phase diagram of the lattice model for finite temporal lattice
temperature phase diagram has an unconventional structusezes corresponding to finite temperature and finite chemical
[2], having a region of spontaneously broken parity and flapotential, and, second, to study how the continuum phase
vor symmetry[3—6] in addition to the usual parity-flavor diagram is recovered as one takes the limit of continuum
symmetric phase. While this development has considerablgpace-time.
clarified a number of puzzling features observed in numeri- This paper is organized as follows. In Sec. Il, after a brief
cal simulations in the pa$t], there are still questions need- review of the Gross-Neveu model in the continuum, we for-
ing further elucidation. One of the questions is how the conimulate the lattice model with the Wilson fermion action at
tinuum limit is to be taken with the new phase diagram. Thefinite temperature and chemical potential, and analyze the
parity-flavor broken phase has an extension which dependsehavior of the effective potential toward the continuum
on the temporal lattice size, and the tuning of parametermit. In Sec. Il the phase structure of the model at zero
necessary to achieve a continuum limit having chiral symtemperature and zero chemical potential is studied. In Sec.
metry has not been explored in detail. Another interestindV effects of finite temporal lattice sizé.e., of finite tem-
guestion is how the phase diagram generalizes for finitgperatur¢ on the phase diagram is examined, and the con-
quark chemical potential corresponding to finite baryon dentinuum extrapolation is studied. The case of finite chemical
sity. As is well known, finite-density studies of lattice QCD potential is treated in Sec. V where we consider in detail how
have been plagued with serious proble A conceptual the difference in the order of phase transition observed in the
understanding of the phase diagram is a prerequisite in nwgontinuum theory arises in the context of the lattice model.
merical studies of this difficult problem. We conclude with a summary in Sec. VI.

In this article we carry out an analytical exploration of
these problems in the context of the two-dimensional Gross-
Neveu mode[8] on the lattice formulated with the Wilson IIl. ANALYTICAL EXAMINATIONS
fermion action[9,10]. The model shares with QCD the fea- A. Continuum theory
ture of asymptotic freedom and spontaneously broken chiral
symmetry. Furthermore it is analytically solvable ilN1éx-
pansion. These points make the model an useful arena f
exploration of theoretical issues with lattice QCD thermody- o @ _ o
namics with the Wilson quark action. Indeed the model has L=(y,d,+m)p— m[(wwﬂﬂw ys)?], (2.1)
provided significant hints for understanding the structure of
the finite-temperature phase diagrfa.

In the continuum the phase diagram of the Gross-Nevewhere ¢ is anN-component spinor field ang? denotes the
model on the plane of temperatufeand fermion chemical coupling constant. Our convention for the two-dimensiopal
potentialu was determined some time aftil]. In the lead- matrices is

The Gross-Neveu model in two-dimensional Euclidean
cc):rontinuum space-time is defined by the Lagrangian density
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chiral transformation(2.3) represents a rotation on thesw

plane by an angle 2 FIG. 1. Phase diagram of the continuum Gross-Neveu model in

Statistical properties of the system at finite temperalure the (u/A,T/A) parameter space. Solid and dashed curves represent

can be examined by restricting the imaginary time extent o second- and a first-order segment of phase transition restoring

the space-time t@=1/T, and replacing energy integrals for chiral symmetry.

fermions by Matsubara mode sums over half-integer values

according to 1. Inside the boundary ABC chiral symmetry is spontane-
ously broken, while the region outside of this line is chirally
symmetric. The poinB is a tricritical point separating a

2 - irst-
kz—>wn=F(n+ 12), nez. 2.5 second-order phase boundary AB from a first-order one BC.

In order to describe the system at finite chemical poteptjal
we addu "y to £ wherey'y is the fermion number opera-
tor. These replacements, together with the introduction of the Consider a two-dimensional lattice of a lattice spacng

effective fields(2.4), leads to the action given by The lattice Gross-Neveu model with the Wilson fermion ac-

tion is defined by[9]
+o B
S:f dxlf dXz
— 0

N 2 2
+uy) g+ Z—gz(tf +7°)

B. Lattice theory with Wilson fermion action

E( YuluytM+o+iysm

1 — -
Lia= = 5 2 [WOO(1= 9,40+ i)

. (2.6

— .1 —
HPOO(r+y,)p(x— p) ]+ 7 (2r+ oma)(x) ¢(x)

To leading order of M expansion, the ground state of the 1
r_nodel is determined by the minimum of the effective poten- — Q2O P(X)P+ 2B ys(X))?],  (2.8)
tial V(o) for a constantr and 7 given by 2N

wheredm is a mass counterterm. We take the coupling con-

V(o) = i(02+72)_ 1 nmix: topem dk stantg? andg? for the two four-fermion interaction terms to

’ 2g° Bn="n,., J-m 27 be different[10], whose reason will become clear below.
Hereafter we let Wilson parameterbe unity.

XIn[(o+m)?+ 72+ K>+ (0p+in)?],  (2.7) Similar to the continuum theory, we define a pair of

) bosonic fields according to
where M represents an ultraviolet cutoff anah,,,

=BM/(27). In the chiral limitm—0, V is a function ofs®

=02+ 2. At zero temperature and chemical potential, the o2 0.2
minimum of the effective potential is located at=A UE_WU J+ om, WE_WW G ysib. 2.9

=2Me ™9 % 0, which signals spontaneous breakdown of
chiral symmetry. As the cutofM is removedM —, g2
must converge to zero to kegpfinite, that is, the model is In order to consider the system at finite temperaflireve
asymptotically free. take a lattice withNy=1/(Ta) sites in the temporal direc-
At finite temperature and chemical potential, Wdlffl]  tion. A finite chemical potentiak is introduced through a
analyzed the effective potentidR.7) and determined the maodification of the hopping factor in the temporal direction
phase diagram in th&- « plane, which is reproduced in Fig. [12]. The Lagrangian of the model then takes the form

114507-2



TWO-DIMENSIONAL LATTICE GROSS-NEVEU MODE . .. PHYSICAL REVIEW D 58 114507

1 P . with
Liar— = 52 [POO(1= y) d(x+ 1) + () (1+ y) (X —1)]
Ny—1
1 L Jé=+- 2 INA-Bcogwpatip)], (2.12
— 2 H0(1= 7208 2h(x+2)+ Y0 (1+ 72) Nr = e
ua ~ 1 — _277 1
Xe w(x—2)]+a(2+5ma)¢(x)zp(x) wnazN—T n+§ ,
N N
2g2(0' sm)2+ — T 2. (2.10 A=2+ (o +2)2—2(0 +2)cosé+ a2, (213
With these modifications, the effective potentisf B=2(o_ +2)—2cos¢, (2.14

=Va? in lattice units is given by

1 de whereo| =ca, 7 =ma, ém_=dma, andé=k,a are quan-

v e N ) | 2_[ ~s , tities in lattice units. _ _

L(ow,m) 295(0" 2 ZQET L i JE) The Matsubara mode sum jfi{(£) can be carried out as
(2.1  follows:

Nt
. . B . .
g7(§)= NT In ].—.[1 (A_ EefﬂLflﬂ'/NTEZﬂ'nI/NT_ Ee;LLJrI71'/N-|—e7271'nI/N-|—
n=

1 B Nt N Nt
=—I|n ( ) eENTH (1_efEf,u.|_7i7T/N-|—eZﬂ'ni/N-|—)H (1_e*E+/}.L+iﬂ'/NTe*2ﬂ'ni/NT)
NT 2 n=1 n=1
|B| 1 B 1 B
=In —+u + —In|1+eE #INT|+ —|n|1+ e (Bt rINT|, (2.19
2 Nt Nt
|
where We consider the effective potenti&2.11) at T=0 (Ny

=) and u=0, and write it as

cosh }(A/B), if A/B>0,

= 1 S (2.16 1 1
cosh Y A/B|+im, if A/IB<O, VL(ULWL):ﬁ(UL—&nL)ZJFﬁWE

and we have used the formula cr 2
—f 2—2In[DO(§)+D1(§)], (2.18
N —x (27)
IT (1+xe2™iN)=1—(—x)N, (2.17
n=1 where

The real part ofE has the meaning of the energy of the
fermion one-particle state for a given value &f ,7r, and B E 2
dimensionless space momentum 0(§)_V:1,2 sint &,

2
> (1—cos§,,>) +ott g,
v=1.2

(2.19

C. Continuum limit

The lattice Gross-Neveu model as we defined above ex- D,(¢)=20 E (1—cosé,). (2.20
plicitly breaks chiral symmetry due to the Wilson term. To-
ward the continuum limia— 0, an examination of effects of
symmetry breaking is possible through an expansion of thdhe continuum limit of the effective potential is determined
effective potential in powers o [10]. We briefly recapitu- by terms of©O(a?) with o and 7, regarded a€)(a). Since
late the analysis here as it raises an important point for th® (&) =0O(a) while Dy(£)=0O(1), we make an expansion
study of phase diagram in the following sections. in terms ofD,(&) in Eq. (2.18 obtaining
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V(o ,m )= %(O'L— smy )2+ —12—7TE
29, 295
+a d2§
| G oas

o (D" [rm d2E Dy(&)"
+2 f (2m)2 Do(&)™
(2.21)

The integral over IDy(£) in Eq. (2.21) can be estimated
by an expansion around?+ 72=0, paying attention to

logarithmic divergence of the first derivative of the integral

with respect tar?+ 2. The result reads

T dzé: L
f—w (ZT)zln Do(&)=Co(ot+ )~ E(UE+ m %)

O'f-l— ’7TE
XIn

+0O(a%), (2.22

where

Cy=0.220634... . (2.23

In the sum oven in Eq. (2.21) only the terms up to and
includingn=2 contribute to®(a?), and UE+ wf in Do(&)
can be set to zero in this limit. We then find that

+a d2§ D (g) o3
f_w(zw)?@ﬂclaﬁaa%, clz?, (2.29
+ar d2§ D1(§)2 V3 L

f—ﬂZwFW:“CNﬁ@(a“% Co=%7 T 12
(2.25

The integralg2.24),(2.25 clearly show that the Wilson term
distorts the effective potential in the direction relative to
that of . Collecting the results together we find

vL=—<5—”;L+2C1 oL+ iz—co)wﬁ
Yo 297
+ iz—co+2c2 o?
295,
O'E-F

2
L o@d).  (2.26

+i(02+w2)|n
4t L e

The necessity for introduction of the two coupIingé and
gi should now be cledrlQ]: chiral symmetry would not be

recovered toward the continuum limit unless one tunes the
couplings. The limit of massless fermion further requires a

tuning of the mass parametém, to remove the linear term
in o. A natural tuning will be

(2.27

1 1
97: 7+4C2+ O(a)

m (o8
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and
omg )
gT: —-2C,;+0O(a%). (2.28
Let us introduce the\ parameter through
c 2
Azae*”’ga, c=e?"Co47C2=0,57160... .
(2.29

With the tuning(2.27) this corresponds to a coupling renor-
malization given by

=——>=Cy—2Co+——In5= 2.30
292 ° 27 4w A% 2.
—=Cot—IN 5= 2.3))
292 7% 4w A% 2.

with which the effective potentialin physical unit$ takes
the standard continuum form

2+2

eA?

1 T
V(O’,’]T):E(O'Z'F 77'2)|n< +0(a). (2.32

It is straightforward to extend the above analysis to the
case of finite temperature and chemical potential. No new
divergences arise in these cases, and the same tuning of pa-
rametersy® g2 and sm_ as specified in Eq$2.27),(2.29 is
necessary for the correct continuum limit. Hereafter, we of-
ten use this tuning ignoring th&(a) corrections. This is
equivalent to taking

T(g5)=(-2C,g;.(1Ig5+4C,) ™Y (2.33
as a tuned point on thesn, ,g2) plane.

We learn from the present analysis that understanding of
the continuum limit requires an elucidation of the phase dia-
gram of the lattice model in the three-dimensional parameter
space of §2,92,6m,). This will be our basic viewpoint in
the following sections.

lll. PHASE DIAGRAM AT T=0 AND p=0

We start our investigation of the phase structure of the
lattice model with the case of zero temperature and zero
chemical potential. To leading order inNL/expansion, the
ground state of the model is determined by the pair of saddle
point equations

&VL 0'|__5mL
o = gz LowF(oL,m)+G(aL,m)]=0,
oL ga’

(3.9

Vv 1
_L:WL(_z_F(UL,WL)):o, (32

(97TL g7T

where
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(7 d% 2
F("L”“)_J.ﬂ(Zﬂﬁzzvsnﬁgy+[af+241—cosg»]?+wf’ 33

[t d% 23 (1—cosé,)
G(ULJH)_JLW(ZWQZEVSWF§V+[U[+Exl—COS§»]L+WE' 34

The second equation allows a nontrivial solution with one moves along the curve from right to left, the valuerpf
a# 0, which corresponds to spontaneous breakdown of pataken as the parameter of the curve decreases from positive
ity symmetry, in addition to the parity-symmetric solution to negative values. The bottom of the three valleys of the
7. =0. If the phase transition between the two phases igyrve reachegfr=0 ato, =0 o=0, —2, and—4 from right

continuous, the phase boundary separating them can be dgy |eft, respectively, wher& (o ,0)= + = and the mass pa-

termined by examining the limit of the parity-broken solu-

tion towardm —0. This yields the pair of equations

O'L_ 5m|_

—gz—ZULF(UL ,0+G(0,0), (3.5
1
g_ZZF(O'L:O)- (3.6)

The second equation ensures that the pion rivassanishes
along the phase boundary since, fgr=0, M . is given by

e N T 3
N - (00.,0). (3.7

=0

The structure of the phase boundary was previously studie

for the case of an equal coupling =g? in Refs.[3,2]. We

have to extend the analysis treating the couplings as indepe

dent.

The pair of Egs(3.5),(3.6) defines a surface in the three-

dimensional parameter spa@fr(,gfr,ﬁmL). We shall tenta-
tively call this surface aparity phase boundaryn Fig. 2 we
show the section of the surface on th&r(,_,gi) plane at
g§=0.8. The region above the curve corresponds to t
parity-breaking solutionm #0, while 7, =0 below it. As

2-038

15 9o

1.0 | /\”#0 /—\

[V
05 | T
T=0 T=0 =0 =0
0.0 .
-4 -3 -2 -1 0

omy,

FIG. 2. Parity phase boundary fgf=0.8 on (5m, ,g2) plane.
Detailed structure near the tuning pofﬁtzT(gi) for taking the
continuum limit is shown in Fig. 3.

rametersm, equalsém, = 6m, o(9%) =0 o—92G(o0,0).

The horizontal line marks the position of equal coupling
gf,zgi. We observe that there are three parity-broken inter-
vals in between the parity-symmetric ones. Toward the
weak-coupling limitg2—0, the horizontal line moves to-
ward the bottom of the valley, which in turn converges to-
ward ém, ((0)= 0 (,=0,—2,— 4. Hence each of the parity-
broken intervals narrows to a point g§=0; the point at
ém_ =0 is the conventional continuum limit, whilém,
=—2 (ém_=—4) represents the point where the doublers
with momentumé=(0,7w) and (7,0) [ é=(m,7)] become
massless physical modes. These are the results previously
obtained in Refs[3,2].

As we have emphasized in the previous section, however,

proper continuum limit has to be taken along the line speci-
ied by Eqs.(2.27),(2.29. The pointT(g?2) corresponding to
H]is line without O(a) corrections, given in Eq(2.33), is
marked by a cross in Fig. 2. The parity-broken interval is
significantly narrower near the point, and the location of the
point itself is indistinguishable from the curve in the scale of
the figure. A more detailed study of the region near the point
is clearly needed. As we shall see, the phase structure near

héhe point is far more complex than would seem from Fig. 2.

An indication is a self-crossing behavior of the curve already
visible for the central valley in Fig. 2, which also occurs for
the right and left valleys.

In Fig. 3 we plot an expanded view of the region near the
tuned pointT(g2); we takegZ=2.0 for this figure as the
structure is enhanced and so easier to draw. The thick curve
represents the parity phase boundary, while the set of thin
curves are lines of constant, , as determined from Eqgs.
(3.1),(3.2), for O<7 <0.12 in steps of 0.02. A number of
important features are revealed in this figure. First of all, the
boundary curve crosses with itself at the poinitBis point
differs from the tuned poinT(g(Z,) marked by a cross, to be
discussed beloyw To understand why the crossing takes
place, we note that the right-hand side of E85 behaves
as (o In 6d)/2w+2C, near o, =0. Hence Eq.(3.5 re-
garded as an equation of for a givendm, has three solu-
tions in the neighborhood afm, = —2clg§, leading to the
self-crossing behavior. Since the existence of three solutions
is valid for arbitrarily small values ofi%, the crossing per-

g
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g?, =20

second order

phase boundary
2
97 & first order
1.05 phase boundary
s::;z broken ¢ phase boundary
1.00
* %
i 0.95
0.90 | T
0
0.85 | ; ; _ _
FIG. 4. Schematic phase diagram fdf= and x, =0. The
phase boundary of the parity-broken phase AOB-CDEF forms a
080 ' e 0 blade whose edge touches the pointd3 (g% ,6m,)=(0,0,0). The

smy, first order part EOD shrinks to a point gf,=0. Parity-symmetric
phase is divided into two phases with <0 ando >0 by a first-
FIG. 3. Magnified view of the region near the tuned pdigg?2) ordero phase boundary DOG which vertically drops from the edge
for g2=2.0. Thick curve represents the parity phase boundanOD.
while thin lines are contour curves of fixed, values @r_
=0.02,0.04,0.06,0.08,0.10,0.12). True phase boundary consists aeous breakdown of chiral symmetry.
AD (second order DF(first ordey, and FBGsecond order We emphasize that the intricate structure involving first-

g . . . 3
sists down tq;2=0. Quite clearly there is no guarantee thatOrder transitions dgscnbed a_bove _ongmates _from(ﬂﬁe_a )
v term of the effective potentiaV/, [i.e., O(a) in physical

the boundary curve represents the true phase boundary below. . . o . .
the crossing point. units] which contains terms cubic i, . This contrasts with

. 5 ; . . :
Another important feature is that the lines of constapt the IefadmgO(a ) terms in Eq'.(.2'26) which g|vezs rise to

spill beyond the boundary curve to the right of the crossingfnIy 3|mple se_cond-ordeg tran5|t!on§ on IM .97) plane.

point. In the triangular region DBE formed by the two seg- ndeed, including thed(a”) contributions given by

ments of the boundary curve DB-BE and the envelope ED of

lines of constantr, , the saddle point equatior(8.1),(3.2) _ 8 5 N P >
have three solutions, one with, =0 and two more with VL= 3C3UL+2 1 swln(ULJrWL) oo+ m)
. #0. Which of the solutions represent the true minimum (3.8

can only be determined by examining the value of the effec-

tive potential. This is a typical situation where a first-orderwith

phase transition occurs.

_ A detailed numerical investigation of the effective poten- C;=0.0647.., C,=0.0904.., (3.9

tial shows that the true phase boundary runs as follows.

Starting from right, the true phase boundary coincides with . . .

the parity phase boundary, and hence being of second ordéj’, the effective potential2.26), one quantltauvely repro-

from the point A to the point D where the envelope of lines uces the features of the phase d|azgram shown in F'gj 3.

of constantir, starts out. Beyond this point, the phase tran- 1h€ phasze structure on thérq, ,g7) plane we have dis-

sition becomes of first order, and runs along the dashed cur/@!ssed forg, =2 remains the same towagf.—0 except

from the point D to the point F which is located on the parity that the structure as a whole moves down tovgfre 0 and

phase boundary curve below the crossing point B. At théecomes narrower horizontally. In the weak-coupling limit

point F, the phase transition returns to second order, and rurg&,=0, the boundary line degenerates t@2+F(5m_,0)

along the boundary curve from the point F through the crosswhich does not have a self-crossing. The first-order line DF

ing point B toward the point C. Altogether the parity-broken disappears, and the entire phase boundary becomes of second

phase occupies the region above the line ADFBC. order. We thus find the phase structure in the three-
Below this line the ground state of the model can be ex-dimensional parameter spaag?(g>,5m,) as schematically

amined by the effective potential withy =0. The potential drawn in Fig. 4.

no longer depends og?, and as a function ofr, has a Let us now discuss the continuum limit, in particular, how

double well structure. As one varigsn, below the point F  the phase structure relates with the tuning of parameters

from right to left, the true minimum switches from a positive specified by Eqs(2.27),(2.29. The tuned poinT(g2) with-

to a negative value oé discontinuously. This leads to a out O(a) terms(cross in Fig. 3is located slightly to the left

first-order phase transition along the line FH reaching dowrand below the point B in the parity-symmetric phase. When

to g2=0. We shall call this line as the phase boundary one takes the coupling? to zero, the relative location of the

Qualitatively, one may describe the behavior of the systentuned point and ther phase boundary remains the same.

near and below the point F as “almost” exhibiting sponta- Therefore taking the continuum limit exactly along the tuned
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12
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< =
>~1.0 =
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09 |
0.8 . L
107 107 10~
al

FIG. 5. Order parameter in units of A as a function of lattice
spacingaA=c exp(—w/gf,) calculated for three choices of con-
tinuum extrapolation specified bm for Ag,=0. Sign of o is
negative forAm=0.

FIG. 6. Pion mass squared as a function of lattice spaaifg
under continuum extrapolation. See text for tuning of couplings
employed.

whether the limit is taken on the lefdA(n=0) or the right

point T(g;) leads to a negative value of This, however, f(Am=1,2) of the point F of the phase boundary.

does not mean that a continuum limit with a positive value of* 1 pion mas\l_ is more interesting since the mecha-

o is not possible. . : - S
As we have already pointed out, the structure around th(ra"sm [3,2] which ensuresd =0 even for finitea no longer

; 3 . works along the segment DF in Fig. 3 because of the first-
Eg;nta'; dStﬁg:]i;rci)tr; ;ihzf(shZir:E;m;so; thgvg];gg%iepoctae:' order nature of the phase transition in this part of the phase

' . P boundary. We seledm=1,1.5,2.0 and tunA g, so that the
estimate the effect of adding E(3.8) to Eq. (2.26 by an oint (5m, ,g2) given by Eqs.(3.11,(3.12 is placed just
order counting. Sincem_ is the coefficient of the linear P L:9x) 9 y £G5.(2.2D.(3. P J

: 3 . under the first-order line DF in the parity-symmetric phase.
tsirlr]:tn ;Lfc')r:mEq' (226, the O(a") correction(3.8) causes a Solving the saddle point equatiof&1),(3.2) for o, and sub-

stituting the result into Eq(3.7), we obtain the curve for
smy— dmy + O(a?) ~ sm_ + O(a?). 3.10 M »/A)? plotted in Fig. 6 as a function &fA. The squared
pion mass vanishes as a poweratoward the continuum
Hence the structure has a size@fa?) in ém, . By a similar  limit, demonstrating that the first-order nature of the parity-
argument forg, we conclude a size aP(a) for g2. The  breaking phase transition along DF does not cause problems.
point of tuning, on the other hand, has a degree of freedom SO far we have concentrated on the phase structure near
of O(a?) for sm_ andO(a) for g>. Therefore one may shift #M.=0. The phase structure arouadh, = —4 is obtained
the point of tuning within a rectangular region of sia¢a?) Py @ reflectiondm ——4-—6m,_. The phase structure near
times O(a) around the poinT(g2), including a shift to the OM.=—2 is different. It is symmetric across them,
right of the point F, in which case the continuum valuesof = — 2 Plane, and the parity phase boundary turned out to be
becomes positive. e}lways of seconq order. In adQ|t|onoaphase boundary of
In order to demonstrate that the correct continuum limit is/irSt-order transition across which the sign @f, ¢+ 2) flips
obtained within the freedom of the choice of the parameter§XiSts atém = —2, similar to the line FH in Fig. 3.
described above, we examine the scaling of two physical !N the following we concentrate on the phase structure
observablesr/A and (M _/A)?2 along the lines given by aroundém; =0 relevant for the usual continuum limit.
2
om = —2C,g,+Am(ar)?, (319 IV. PHASE DIAGRAM AT T#0 AND p=0
Our analysis of the phase diagram for the case of finite
temperature and zero chemical potential proceeds in essen-
tially the same way as for the zero-temperature case; choos-
whereAm andAg,. are O(1) constants. We show the solu- ing a temporal lattice sizi; and a value o2, we analyze
tion of the saddle point equatiof®.1) for o/A=0c/(aA) the solution of the saddle point equations and the value of the
for Am=0,1,2 andAg,=0 in Fig. 5 as a function oAA effective potential given by Eq$2.11)—(2.195 with u, =0
=c exp(—/g?) whereA is defined in Eq(2.29. One sees as a function of?2 and 6m, .
that o/A converges to the correct continuum resai\ =1 In Fig. 7 we show the result of such an analysisgét

+4C,+AgaA, (3.12

e
S
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95 =20, ur, =0
/ 6.0x1078}
1.05 / ’/'// 1 ' Nr =154
2 ) . Nr =160
1.00 ¢
B 20q08 /
// Ny =16 E
~k 095 T —— Ne=
> j fF—r——Nr=14
090 | ~2.0x1078-
i
T
085 1+ _0 o, <0 t m=0,0p>0 " , .
A -soxi0 X103 o 5x1073
1
0.80 MR - o
-1.60 -1.55 -1.50
omy, FIG. 8. Effective potential fogf,:O.S for temporal lattice size

o N.=160 andN;=154. m, is tuned according td (g2).
FIG. 7. Temporal lattice size dependence of phase structure

plotted forN;+=<,16,14,13,12,10,8. Phase transition is of first or-

F(ém_ ,0) computed for a finitédN; is finite and positive at
der along dashed lines, while it is of second order along solid lines (omy ,0) P T P

its maximum atém;_ =0.

Let us consider the continuum limit of the model at finite
=2 for a set of temporal lattice siZéd;. For largeNt, the  temperature. This limit is defined by simultaneously taking
topological structure of the phase boundary remains the samé;—« and gf,—>0 such that
as atNy=< corresponding to zero temperature. In particular
the left-half of the phase boundary hardly changes. On the T exp w/gi)
other hand, the right-half of the boundary with the first-order AT T oNr (4.3)
segment moves toward upper left. The lower end point of the

first-order segment slides up along the second-order part ¢f kept fixed. The couplingfr and the mass parametém,
the boundary foNy=9. The verticalo phase boundary also have to be tuned according to Eq8.27,(2.29 to restore
moves toward left with the end point. chiral symmetry. An alternative way to take the limit, which
This structure changes at a threshold valu®ef which s closer to the method practiced in numerical simulations, is
equalsNy=13 for g2=2 chosen for Fig. 7, when the first- to vary g2 for a fixedN;. For eachN+ this yields physical
order segment of the boundary disappears. The entire phasgservables as a function 8 A, and the continuum limit is
boundary becomes a smooth line of second-order transitiombtained as a limit of this function &é— . We follow the
along whicho continuously varies from positive to nega- |atter approach in the following analysis.
tive values as one traverses the boundary curve from right to A qualitative picture of how finite-temperature transition
left. As may be inferred from this, the verticat phase appears in this approach is as follows. The continuum limit is
boundary also disappears at the threshold temporal latticgken along the line satisfyin@.27),(2.29, which converges
size. to (g%,9%,6m)=(0,0,0). Above the threshold valug’
To the extent that the first-orderboundary is interpreted :gic(NT), this line runs along either side of the lower edge

as indicative of spontaneous breakdown of chiral symmetrygys the parity-broken phase where physical quantities take
its disappearance may be regarded as signifying restoration

of chiral symmetry. Indeed the value of becomes small 6
when theo phase boundary disappears. We illustrate this
point in Fig. 8 which shows how the effective potential
changes from a double-well to a single-well structure across
the threshold value oy at the tuned poinf(g?) for g2 pary broken
=0.8.

The structural change found as a function df for a
fixed g2 can be translated into that for a varyigg with a
fixed temporal sizéN;: as one Iower:gi_, there is a thresh-
old valueg?=g?2.(N1) below which the first-order segment
of the parity-broken phase boundary and the vertical first-
order o boundary cease to exist. This leads to the three-
dimensional phase structure for a fixed and filte sche-
matically drawn in Fig. 9. Contrary to théy=x case, the FIG. 9. Schematic phase diagram for fixed and fimite. For
boundary curve ag(’é;:o does not reach the vaILgf;rzo small g2, first-order parity-breaking boundaffJE) and o phase
since it is given by H2=F(sm_,0) where the function boundary(EJIH) disappear.

second order
phase boundary

9 4 first order

phase boundary

o phase boundary
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pr=0 pr=0
\
15}
\\
AN 1.0
S e
< | ~S=mmeeo
=1.0 == =
T € .
7 —— N,=100 % 05 | l(ilontlr(;l(;um
———- N;=200 e Ny=1
05 | ———" N;=500 - mﬁfgg .
9 [ —— N,=1000 = Ny=100(mid)
continuum 3 ~ N =200(mid)
‘ 0.0 |
0.0 . . . . .
0.0 0.2 0.4 0.6 0.0 0.2 04 0.6
T/A T/A
FIG. 10. Order parameter as a function of temperatufe for FIG. 11. Positive solutiow " as a function off for u=0. Cou-

u=0 evaluated for several temporal lattice size along the poinplings are tuned along the edge of the parity-breaking phase bound-

T(g?) without O(a) corrections. Inset shows an expanded view ofary (line EJB in Fig. 9 for each value ofN;. The combination
the critical region. (e"—07)/2 is also plottedsee curves specified agmid.)” ]. In-

set shows an expanded view of the critical region.

values similar to those at zero temperature. In particajar (92,9%,6m,)=(0,0,0) asNq—o. Above the threshold

has a non-zero value of positive or negative sign depending, e ofg(z, (point J where thes phase boundary exist(T)

on whether the line is on the right or left of the vertical has two solutions of opposite sign{ ,o[). At the bottom
WYL/

phase boundary. However, ag, is lowered below the ¢pe valley, these two solutions are the balancing minima
threshold value, the parity-breaking phase boundary moveg; ihe effective potential, i.e.

up toward Iargelgi, and theo phase boundary disappears.

Once the line enters into this region, the valueogf be- Vi(o)=V(a)). 4.2

comes small. In other words, for each fixed temporal size, )

the threshold value ofg2 marks the region of finite- At the threshold value of, o" ando_ merge through a

temperature transition. second-order singularity corresponding to the second-order
We illustrate the description above in Fig. 10 where wephase transitioiline JI) marking the end of the first-order

plot o/A as a function ofT/A calculated along the line Phase boundary.

T(g(z)_) without O(a) corrections for several values NT! With this choice of the continuum I|m|t, we obtain the

together with the curve in the continuum limit. We observebehavior ofo ™ (T) ando ™ (T) shown by dashed lines in Fig.

that the curves for finiteN+ smoothly approaches the con- 11 and Fig. 12, exhibiting convergence to the continuum

tinuum result drawn by a thick line ds; increases toward result(thick line). A notable property is that the system ex-

. hibits a second-order phase transition already for finite val-
Several remarks are in order with this figufi@:The nega-  ues ofNr as the line passes through the point J in Fig. 9.

tive sign of o is due to the fact, already remarked in Sec. ll,

that the continuum limit is taken on the left side of the pr =0
phase boundaryiii) In the region close to the continuum 15 \\ . ' '
critical point T/A=T./A=exp(ye/m)=0.56694.., o(T) AN

has a small discontinuity, as shown in the inset of Fig. 10, \\\\:\\\

which reduce with increasiny; . This is due to the fact that 10 I

the tuned pointT(gi) goes through the vertical phase
boundary a:gi is decreased just before the threshold value is
reached[see the relative location of the boundary % — continuum
=13 andT(g?) in Fig. 7]. (iii) The value ofo(T) after the 05} -~ N=100

. AT L ———- N;=200
discontinuity is very small but nonzero for a finité;. It
exactly vanishes folf =T, only in the limit of Nt—o°.

—a(T)/A

Another possible choice for the continuum limitistorun |~ Yzzz77 7]
along the bottom of the valley of the parity-breaking phase 00t

0.0 0.2 0.4 0.6

boundary for each value dfi; (line EJB in Fig. 9. The /A
limiting point B of the line atgf,zo has a nonzero value of
g . This point, however, reaches the correct continuum limit FIG. 12. Same as Fig. 11 for the negative solutioh
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gg =2.0,Np =00

7TL7éO 7

09 r

0.8

-1.55 -1.53 -1.49

FIG. 13. Phase structure for, =0.110 andNy= at gf,
=2.0. Hatched region is the new phase with~0. Phase transi-

tions between this phaser(=0,0~0) and other three phases

(7 #0,0.<0,0.>0) are all first order.
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FIG. 15. Same as Fig. 13 fqr, =0,0.10,0.11,0.12,0.13. Sym-
bol T represent the tuned poin't(gf,).

from that with u, =0. However, as we show in Fig. 13 for

Also shown in Fig. 11 by dotted lines is the difference of thed>=2, when s, exceeds a threshold valug, .~0.09 for

two solutions divided by 2, &, — o )/2, which shows a
faster convergence to the continuum result.

V. PHASE DIAGRAM FOR p#0
A. The case ofu#0 and T=0

Fig. 13, the verticalo phase boundary splits into two verti-
cal first-order boundaries such tha{ between the two
boundaries is near zero. The end points of the two bound-
aries slide upwards in the opposite directions along the parity
phase boundary fdd;=«, and the phase boundary connect-
ing the two end points, which is of first-order, is convex and

We now consider the phase diagram for nonzero chemicdnoves upward toward larggy’. . This behavior reflects the

potential, starting with the case of zero temperaturgy (

=), In this case, from Eqs(2.11)—(2.15), the effective
potential is given by

1 ., L 5
VLZZ_g(Z;(UL_‘smL) + EWL

= d
_J, %[In(UL-FZ—COSf)'Fma)(EuU«L)]- (5.3)

As one expects from this expression, as longwads small,
the phase boundary on thér, ,gzw) plane does not move

8.0x107®
g1, = 0.009
6.0x10781- /
pr, = 0.008
4.0x1076}
3
)
b
2.0x1078}
’ _/
-6 . . .
—2.0X10
~2.0x1072 ~1.0x1072 0 1.0x1072 2.0x1072
oL

FIG. 14. Effective potential as a function of for g§=0.8 and
N;=o0 at the tuned poinT(g2).

fact that the effective potential, which has a double well
structure afu, ~0 develops an additional minimum close to
o_.=0 aspu, increases beyond the threshold value. See Fig.
14. Which of the three minima represents the true minimum
depends on the value aofm; , which leads to the double
first-order boundaries seen in Fig. 13.

An important point with the behavior described above is
that the two vertical first-order boundaries move away from
the edge point F of the parity phase boundaryuat=0.
Since the point2.27),(2.28 for taking the continuum limit is
located near the point F, this means that the system, initially
in one of the phases with a nonzero valueogf at u, =0

second order
phase boundary

first order

parity broken phase boundary

phase

o phase boundary

FIG. 16. Sketch of phase structure for fixed and finite for
Nr=c0. Below a threshold value (g‘f, the verticalo phase bound-
ary splits into two, both being of first order, enclosing a region with
0'|_~0.

114507-10



TWO-DIMENSIONAL LATTICE GROSS-NEVEU MODE . .. PHYSICAL REVIEW D 58 114507

g2 =15, Np =120 T/A=02
) 15 : .
0.85 | L
70 5
<
[ >

0.80 | 3 —— N,=200

‘lb ............... N,=500
———- N,=1000
o> 0 0.5+ —_ cgntinuum
0'7§1.16 -1.15 -1.14 0.0 , , , ; . ,
dmy, 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

u/A

FIG. 19. — ¢ as a function ofu for T/A=0.2. Couplings are
undergoes a first-order phase transition when the boundatyned atT(g5).
moves over the point §¢, increases. After this takes place, ) . ) )
the system is in the middle phase with ~0, which quali- ~chemical potgntlal case _examlned in Sec. lll. We plot an
tatively means that chiral symmetry becomes restored. Thi€xample of this case in Fig. 18 for whid¥y is decreased to
then, is the mechanism by which the lattice model yields the?8: the parity-broken phase shrinks, and the first-order seg-
first-order finite density phase transition at zero temperaturénent of the phase boundary and thihase boundary dis-
These points are illustrated in Fig. 15 fgf =2.0. For the ~@Ppear as one increases . In this case the phase transition
tuned pointT(g?), for example, the left vertical phase 'S ©f second order in the continuum limit.
boundary moves over the point betweenu, We plot in F|g._19 and Fig. 20_curves of(T,u)/A cal-
=0.12 and 0.13. In Fig. 16 we translate the behavior into £ulated as a function gi/A for a fixed value off/A along

schematic three-dimensional phase diagram\ipe: o and a the tuned poinﬂ'(gfr). A clear discontinuity observed in Fig.
fixed value ofy, . 19 for T/A=0.2 contrasts sharply with the convergence to

second-order behavior seen fofA=0.5 in Fig. 20. This
difference reflects the change of order of finite-density tran-
B. The case ofu#0 and T+0 sition for large and small temporal lattice sizes discussed
Finally we consider the finite-density transition at finite above. In the continuum limit we thus find a line of phase
temperature. We examine this case by decreasing the tempigansition on the &,T) plane which switches from being of
ral lattice size fromNt=c. The phase structure fdd = first-order to second order as the critical temperature in-
found in Sec. V A implies that the mechanism of generationcreases. This agrees with the phase diagram of the con-
of a first-order transition through a splitting of thephase  tinuum theory drawn in Fig. 1.
boundary asu, increases will remain operative for large
temporal sizeNt. We found this to be the case as shown in VI. CONCLUSIONS
Fig. 17 forNy=120 atg®>=1.5.
On the other hand, for small temporal sizes, we expect thﬁ1
behavior to become similar to the finite-temperature and zero

FIG. 17. Effect ofu, on the phase structure for lary; .

In this article we have investigated the phase structure and
e continuum extrapolation of the two-dimensional lattice

T/A=0.5
0.8 .
0.85
0.83 ¢ 0.6 F==ozo~~o
081 | =
e ’ 30.4 3
? — N,=100
i D 2 N S —— N,=200
0.2 ¢ ———- N,=500
T 4 e Np=1000
0.77 P —— continuum
op <0 i op >0
P 0.0 |
0.75 . . . :
-1.160 -1.155 -1.150 0.0 0.2 0.4
(SmL //L/A
FIG. 18. Effect ofu, on the phase structure for smalk . FIG. 20. Same as Fig. 19 far/A=0.5.
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Gross-Neveu model at finite temperature and chemical paerms odd ino would be present also for QCD, possibly
tential. The choice of the Wilson action for fermions leads totriggering a first-order phase transition.
the existence of a parity-broken phase separated from the The relevance of the structure we found for finite chemi-
parity-symmetric phase by a two-dimensional boundary surcal potential is more likely; the emergence of three regions
face in the three-dimensional space of the couplinggorresponding to three different valuesofor largeu is a
(giagiﬁmL) that specifies the model. The phase transitiorPhyS'C§| effect, not s_,pecn‘lcally tied with the use pf the Wil-
across the surface is generally of second order. However, i#°n actions for fermions. The crossover from a first-order to
the region relevant for the continuum limif)(a) effects of second-order transition depending on t_he_ critical temperature
the Wilson term gives rise to a complicated structure, renm€ans, however, 'Fhat the order of the finite density transition
dering the transition to be of first order in a region whoseMay depend sensitively on the parameters of the model, per-
size vanishes in the continuum limit. The parity-symmetricn@ps the space-time dimension playing an important role
phase is also divided into subregions by a first-order phase-1l- These, then, are the issues which have to be directly
boundary corresponding to different minima of the effective@ddressed in QCD.
potential. We found that these detailed structures intertwine
to lead to the continuum phase diagram reported in [R4i.

An interesting issue is how much of the detailed structure We thank Y. Taniguchi for informative discussions. One
we found for the Gross-Neveu model has relevance for QCIdf us (A.U.) would like to thank F. Karsch for warm hospi-
in four dimensions. Of particular interest is the question thatality while visiting Zentrum fu interdisziplinae Forschung
a part of the parity-flavor breaking phase boundary may b€ziF) of Bielefeld University under the program “Multicriti-
of first order. While the necessity of two independent cou-cal phenomena in complex systems,” where part of the work
plings g2 and g2 appears to be a specific feature of thewas carried out. This work is supported in part by the
Gross-Neveu model, arising from the presence of fourGrants-in-Aid for Scientific Research from the Ministry of
fermion couplings in the model, a distortion of the effective Education, Science and Cultugos. 2375, 10640246T.1.
potential for effective meson fields in the direction by is supported by Japan Society for the Promotion of Science.
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