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I. INTRODUCTION

In spite of the significant effort expended over the years
@1#, thermodynamic studies of lattice QCD with the Wilson
fermion action have been lagging behind those with the
Kogut-Susskind action. The origin of the difficulty is the
explicit breaking of chiral symmetry due to the Wilson term,
with ensuing complications in the analysis of chiral proper-
ties. It has become clear only recently that the finite-
temperature phase diagram has an unconventional structure
@2#, having a region of spontaneously broken parity and fla-
vor symmetry@3–6# in addition to the usual parity-flavor
symmetric phase. While this development has considerably
clarified a number of puzzling features observed in numeri-
cal simulations in the past@1#, there are still questions need-
ing further elucidation. One of the questions is how the con-
tinuum limit is to be taken with the new phase diagram. The
parity-flavor broken phase has an extension which depends
on the temporal lattice size, and the tuning of parameters
necessary to achieve a continuum limit having chiral sym-
metry has not been explored in detail. Another interesting
question is how the phase diagram generalizes for finite
quark chemical potential corresponding to finite baryon den-
sity. As is well known, finite-density studies of lattice QCD
have been plagued with serious problems@7#. A conceptual
understanding of the phase diagram is a prerequisite in nu-
merical studies of this difficult problem.

In this article we carry out an analytical exploration of
these problems in the context of the two-dimensional Gross-
Neveu model@8# on the lattice formulated with the Wilson
fermion action@9,10#. The model shares with QCD the fea-
ture of asymptotic freedom and spontaneously broken chiral
symmetry. Furthermore it is analytically solvable in 1/N ex-
pansion. These points make the model an useful arena for
exploration of theoretical issues with lattice QCD thermody-
namics with the Wilson quark action. Indeed the model has
provided significant hints for understanding the structure of
the finite-temperature phase diagram@2#.

In the continuum the phase diagram of the Gross-Neveu
model on the plane of temperatureT and fermion chemical
potentialm was determined some time ago@11#. In the lead-

ing order of 1/N expansion, the (T,m) plane is divided into
two phases, a chirally broken phase at low temperatures and
small chemical potential and a symmetric phase at high tem-
peratures and large chemical potential, separated by a phase
boundary. Along the phase boundary, the transition is of sec-
ond order for small chemical potential, which however,
changes into a first-order transition for large chemical poten-
tial. Our aim in this article will be, first, to determine the
phase diagram of the lattice model for finite temporal lattice
sizes corresponding to finite temperature and finite chemical
potential, and, second, to study how the continuum phase
diagram is recovered as one takes the limit of continuum
space-time.

This paper is organized as follows. In Sec. II, after a brief
review of the Gross-Neveu model in the continuum, we for-
mulate the lattice model with the Wilson fermion action at
finite temperature and chemical potential, and analyze the
behavior of the effective potential toward the continuum
limit. In Sec. III the phase structure of the model at zero
temperature and zero chemical potential is studied. In Sec.
IV effects of finite temporal lattice size~i.e., of finite tem-
perature! on the phase diagram is examined, and the con-
tinuum extrapolation is studied. The case of finite chemical
potential is treated in Sec. V where we consider in detail how
the difference in the order of phase transition observed in the
continuum theory arises in the context of the lattice model.
We conclude with a summary in Sec. VI.

II. ANALYTICAL EXAMINATIONS

A. Continuum theory

The Gross-Neveu model in two-dimensional Euclidean
continuum space-time is defined by the Lagrangian density

L5c̄~gm]m1m!c2
g2

2N
@~ c̄c!21~ c̄ ig5c!2#, ~2.1!

wherec is anN-component spinor field andg2 denotes the
coupling constant. Our convention for the two-dimensionalg
matrices is
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g15s2 , g25s1 , g55s35 ig1g2 . ~2.2!

For massless fermionm50, the model possesses U~1! chiral
symmetry defined by

c→eiug5c, c̄→c̄eiug5. ~2.3!

In terms of the bosonic fields introduced by

s[2
g2

N
c̄c, p[2

g2

N
c̄ ig5c, ~2.4!

chiral transformation~2.3! represents a rotation on thes-p
plane by an angle 2u.

Statistical properties of the system at finite temperatureT
can be examined by restricting the imaginary time extent of
the space-time tob51/T, and replacing energy integrals for
fermions by Matsubara mode sums over half-integer values
according to

k2→vn5
2p

b
~n11/2!, nPZ. ~2.5!

In order to describe the system at finite chemical potentialm,
we addmc†c to L wherec†c is the fermion number opera-
tor. These replacements, together with the introduction of the
effective fields~2.4!, leads to the action given by

S5E
2`

1`

dx1E
0

b

dx2 F c̄~gm]m1m1s1 ig5p

1mg2!c1
N

2g2 ~s21p2!G . ~2.6!

To leading order of 1/N expansion, the ground state of the
model is determined by the minimum of the effective poten-
tial V(s,p) for a constants andp given by

V~s,p!5
1

2g2 ~s21p2!2
1

b (
n52nmax

nmax21 E
2M

1M dk

2p

3 ln@~s1m!21p21k21~vn1 im!2#, ~2.7!

where M represents an ultraviolet cutoff andnmax
[bM/(2p). In the chiral limit m→0, V is a function ofs2

[s21p2. At zero temperature and chemical potential, the
minimum of the effective potential is located ats5L

[2Me2p/g2
Þ0, which signals spontaneous breakdown of

chiral symmetry. As the cutoffM is removedM→`, g2

must converge to zero to keepL finite, that is, the model is
asymptotically free.

At finite temperature and chemical potential, Wolff@11#
analyzed the effective potential~2.7! and determined the
phase diagram in theT-m plane, which is reproduced in Fig.

1. Inside the boundary ABC chiral symmetry is spontane-
ously broken, while the region outside of this line is chirally
symmetric. The pointB is a tricritical point separating a
second-order phase boundary AB from a first-order one BC.

B. Lattice theory with Wilson fermion action

Consider a two-dimensional lattice of a lattice spacinga.
The lattice Gross-Neveu model with the Wilson fermion ac-
tion is defined by@9#

Llat52
1

2a (
m

@c̄~x!~r 2gm!c~x1m̂ !

1c̄~x!~r 1gm!c~x2m̂ !#1
1

a
~2r 1dma!c̄~x!c~x!

2
1

2N
@gs

2
„c̄~x!c~x!…21gp

2
„c̄~x!ig5c~x!…2#, ~2.8!

wheredm is a mass counterterm. We take the coupling con-
stantgs

2 andgp
2 for the two four-fermion interaction terms to

be different @10#, whose reason will become clear below.
Hereafter we let Wilson parameterr be unity.

Similar to the continuum theory, we define a pair of
bosonic fields according to

s[2
gs

2

N
c̄c1dm, p[2

gp
2

N
c̄ ig5c. ~2.9!

In order to consider the system at finite temperatureT, we
take a lattice withNT51/(Ta) sites in the temporal direc-
tion. A finite chemical potentialm is introduced through a
modification of the hopping factor in the temporal direction
@12#. The Lagrangian of the model then takes the form

FIG. 1. Phase diagram of the continuum Gross-Neveu model in
the (m/L,T/L) parameter space. Solid and dashed curves represent
a second- and a first-order segment of phase transition restoring
chiral symmetry.
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Llat→2
1

2a
@c̄~x!~12g1!c~x11̂!1c̄~x!~11g1!c~x21̂!#

2
1

2a
@c̄~x!~12g2!e2mac~x12̂!1c̄~x!~11g2!

3emac~x22̂!#1
1

a
~21dma!c̄~x!c~x!

1
N

2gs
2 ~s2dm!21

N

2gp
2 p2. ~2.10!

With these modifications, the effective potentialVL
5Va2 in lattice units is given by

VL~sL ,pL!5
1

2gs
2 ~sL2dmL!21

1

2gp
2 pL

22E
2p

p dj

2p
J~j!,

~2.11!

with

J~j![
1

NT
(
n50

NT21

ln@A2B cos~vna1 imL!#, ~2.12!

vna[
2p

NT
S n1

1

2D ,

A521~sL12!222~sL12!cosj1pL
2 , ~2.13!

B52~sL12!22 cosj, ~2.14!

wheresL[sa, pL[pa, dmL[dma, andj5k1a are quan-
tities in lattice units.

The Matsubara mode sum inJ(j) can be carried out as
follows:

J~j!5
1

NT
ln )

n51

NT S A2
B

2
e2mL2 ip/NTe2pni/NT2

B

2
emL1 ip/NTe22pni/NTD

5
1

NT
lnF S B

2 D NT

eENT)
n51

NT

~12e2E2mL2 ip/NTe2pni/NT!)
n51

NT

~12e2E1mL1 ip/NTe22pni/NT!G
5 ln

uBu
2

1mL1
1

NT
lnu11e~E2mL!NTu1

1

NT
lnu11e2~E1mL!NTu, ~2.15!

where

E[ H cosh21~A/B!, if A/B.0,
cosh21uA/Bu1 ip, if A/B,0, ~2.16!

and we have used the formula

)
n51

N

~11xe2pni/N!512~2x!N. ~2.17!

The real part ofE has the meaning of the energy of the
fermion one-particle state for a given value ofsL ,pL and
dimensionless space momentumj.

C. Continuum limit

The lattice Gross-Neveu model as we defined above ex-
plicitly breaks chiral symmetry due to the Wilson term. To-
ward the continuum limita→0, an examination of effects of
symmetry breaking is possible through an expansion of the
effective potential in powers ofa @10#. We briefly recapitu-
late the analysis here as it raises an important point for the
study of phase diagram in the following sections.

We consider the effective potential~2.11! at T50 (NT
5`) andm50, and write it as

VL~sL ,pL!5
1

2gs
2 ~sL2dmL!21

1

2gp
2 pL

2

2E
2p

1p d2j

~2p!2 ln@D0~j!1D1~j!#, ~2.18!

where

D0~j!5 (
n51,2

sin2 jn1S (
n51,2

~12cosjn! D 2

1sL
21pL

2 ,

~2.19!

D1~j!52sL (
n51,2

~12cosjn!. ~2.20!

The continuum limit of the effective potential is determined
by terms ofO(a2) with sL andpL regarded asO(a). Since
D1(j)5O(a) while D0(j)5O(1), we make an expansion
in terms ofD1(j) in Eq. ~2.18! obtaining
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VL~sL ,pL!5
1

2gs
2 ~sL2dmL!21

1

2gp
2 pL

2

2E
2p

1p d2j

~2p!2 ln D0~j!

1 (
n51

`
~21!n

n E
2p

1p d2j

~2p!2

D1~j!n

D0~j!n .

~2.21!

The integral over lnD0(j) in Eq. ~2.21! can be estimated
by an expansion aroundsL

21pL
250, paying attention to

logarithmic divergence of the first derivative of the integral
with respect tosL

21pL
2 . The result reads

E
2p

p d2j

~2p!2 ln D0~j!5C0~sL
21pL

2!2
1

4p
~sL

21pL
2!

3 ln
sL

21pL
2

e
1O~a4!, ~2.22!

where

C050.220634... . ~2.23!

In the sum overn in Eq. ~2.21! only the terms up to and
including n52 contribute toO(a2), andsL

21pL
2 in D0(j)

can be set to zero in this limit. We then find that

E
2p

1p d2j

~2p!2

D1~j!

D0~j!
52C1sL1O~a3!, C15

2)

9
, ~2.24!

E
2p

1p d2j

~2p!2

D1~j!2

D0~j!2 54C2sL
21O~a4!, C25

2)

27
1

1

12p
.

~2.25!

The integrals~2.24!,~2.25! clearly show that the Wilson term
distorts the effective potential in thes direction relative to
that of p. Collecting the results together we find

VL52S dmL

gs
2 12C1DsL1S 1

2gp
2 2C0DpL

2

1S 1

2gs
2 2C012C2DsL

2

1
1

4p
~sL

21pL
2!ln

sL
21pL

2

e
1O~a3!. ~2.26!

The necessity for introduction of the two couplingsgs
2 and

gp
2 should now be clear@10#: chiral symmetry would not be

recovered toward the continuum limit unless one tunes the
couplings. The limit of massless fermion further requires a
tuning of the mass parameterdmL to remove the linear term
in s. A natural tuning will be

1

gp
2 5

1

gs
2 14C21O~a! ~2.27!

and

dmL

gs
2 522C11O~a2!. ~2.28!

Let us introduce theL parameter through

L[
c

a
e2p/gs

2
, c[e2pC024pC250.57160... .

~2.29!

With the tuning~2.27! this corresponds to a coupling renor-
malization given by

1

2gs
2 5C022C21

1

4p
ln

1

L2a2 , ~2.30!

1

2gp
2 5C01

1

4p
ln

1

L2a2 , ~2.31!

with which the effective potential~in physical units! takes
the standard continuum form

V~s,p!5
1

4p
~s21p2!lnS s21p2

eL2 D1O~a!. ~2.32!

It is straightforward to extend the above analysis to the
case of finite temperature and chemical potential. No new
divergences arise in these cases, and the same tuning of pa-
rametersgs

2 ,gp
2 anddmL as specified in Eqs.~2.27!,~2.28! is

necessary for the correct continuum limit. Hereafter, we of-
ten use this tuning ignoring theO(a) corrections. This is
equivalent to taking

T~gs
2 ![~22C1gs

2,„1/gs
214C2…

21! ~2.33!

as a tuned point on the (dmL ,gp
2 ) plane.

We learn from the present analysis that understanding of
the continuum limit requires an elucidation of the phase dia-
gram of the lattice model in the three-dimensional parameter
space of (gs

2 ,gp
2 ,dmL). This will be our basic viewpoint in

the following sections.

III. PHASE DIAGRAM AT T50 AND µ50

We start our investigation of the phase structure of the
lattice model with the case of zero temperature and zero
chemical potential. To leading order in 1/N expansion, the
ground state of the model is determined by the pair of saddle
point equations

]VL

]sL
5

sL2dmL

gs
2 2@sLF~sL ,pL!1G~sL ,pL!#50,

~3.1!

]VL

]pL
5pLS 1

gp
2 2F~sL ,pL! D 50, ~3.2!

where
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F~sL ,pL!5E
2p

1p d2j

~2p!2

2

(n sin2 jn1@sL1(n~12cosjn!#21pL
2 , ~3.3!

G~sL ,pL!5E
2p

1p d2j

~2p!2

2(n~12cosjn!

(n sin2 jn1@sL1(n~12cosjn!#21pL
2 . ~3.4!

The second equation allows a nontrivial solution with
pLÞ0, which corresponds to spontaneous breakdown of par-
ity symmetry, in addition to the parity-symmetric solution
pL50. If the phase transition between the two phases is
continuous, the phase boundary separating them can be de-
termined by examining the limit of the parity-broken solu-
tion towardpL→0. This yields the pair of equations

sL2dmL

gs
2 5sLF~sL ,0!1G~sL ,0!, ~3.5!

1

gp
2 5F~sL ,0!. ~3.6!

The second equation ensures that the pion massMp vanishes
along the phase boundary since, forpL50, Mp is given by

S Mp

L D 2

5
]2VL

]pL
2 U

pL50

5
1

gp
2 2F~sL ,0!. ~3.7!

The structure of the phase boundary was previously studied
for the case of an equal couplinggs

25gp
2 in Refs.@3,2#. We

have to extend the analysis treating the couplings as indepen-
dent.

The pair of Eqs.~3.5!,~3.6! defines a surface in the three-
dimensional parameter space (gs

2 ,gp
2 ,dmL). We shall tenta-

tively call this surface asparity phase boundary. In Fig. 2 we
show the section of the surface on the (dmL ,gp

2 ) plane at
gs

250.8. The region above the curve corresponds to the
parity-breaking solutionpLÞ0, while pL50 below it. As

one moves along the curve from right to left, the value ofsL

taken as the parameter of the curve decreases from positive
to negative values. The bottom of the three valleys of the
curve reachesgp

2 50 atsL5sL050, 22, and24 from right
to left, respectively, whereF(sL ,0)51` and the mass pa-
rameterdmL equalsdmL5dmL0(gs

2)[sL02gs
2G(sL0,0).

The horizontal line marks the position of equal coupling
gs

25gp
2 . We observe that there are three parity-broken inter-

vals in between the parity-symmetric ones. Toward the
weak-coupling limit gs

2→0, the horizontal line moves to-
ward the bottom of the valley, which in turn converges to-
ward dmL0(0)5sL050,22,24. Hence each of the parity-
broken intervals narrows to a point atgs

250; the point at
dmL50 is the conventional continuum limit, whiledmL

522 (dmL524) represents the point where the doublers
with momentumj5(0,p) and ~p,0! @j5(p,p)# become
massless physical modes. These are the results previously
obtained in Refs.@3,2#.

As we have emphasized in the previous section, however,
a proper continuum limit has to be taken along the line speci-
fied by Eqs.~2.27!,~2.28!. The pointT(gs

2) corresponding to
this line withoutO(a) corrections, given in Eq.~2.33!, is
marked by a cross in Fig. 2. The parity-broken interval is
significantly narrower near the point, and the location of the
point itself is indistinguishable from the curve in the scale of
the figure. A more detailed study of the region near the point
is clearly needed. As we shall see, the phase structure near
the point is far more complex than would seem from Fig. 2.
An indication is a self-crossing behavior of the curve already
visible for the central valley in Fig. 2, which also occurs for
the right and left valleys.

In Fig. 3 we plot an expanded view of the region near the
tuned pointT(gs

2); we takegs
252.0 for this figure as the

structure is enhanced and so easier to draw. The thick curve
represents the parity phase boundary, while the set of thin
curves are lines of constantpL , as determined from Eqs.
~3.1!,~3.2!, for 0<pL<0.12 in steps of 0.02. A number of
important features are revealed in this figure. First of all, the
boundary curve crosses with itself at the point B@this point
differs from the tuned pointT(gs

2) marked by a cross, to be
discussed below#. To understand why the crossing takes
place, we note that the right-hand side of Eq.~3.5! behaves
as (sL ln sL

2)/2p12C1 near sL50. Hence Eq.~3.5! re-
garded as an equation ofsL for a givendmL has three solu-
tions in the neighborhood ofdmL522C1gs

2 , leading to the
self-crossing behavior. Since the existence of three solutions
is valid for arbitrarily small values ofgs

2 , the crossing per-

FIG. 2. Parity phase boundary forgs
250.8 on (dmL ,gp

2 ) plane.
Detailed structure near the tuning pointT5T(gs

2) for taking the
continuum limit is shown in Fig. 3.
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sists down togs
250. Quite clearly there is no guarantee that

the boundary curve represents the true phase boundary below
the crossing point.

Another important feature is that the lines of constantpL
spill beyond the boundary curve to the right of the crossing
point. In the triangular region DBE formed by the two seg-
ments of the boundary curve DB-BE and the envelope ED of
lines of constantpL , the saddle point equations~3.1!,~3.2!
have three solutions, one withpL50 and two more with
pLÞ0. Which of the solutions represent the true minimum
can only be determined by examining the value of the effec-
tive potential. This is a typical situation where a first-order
phase transition occurs.

A detailed numerical investigation of the effective poten-
tial shows that the true phase boundary runs as follows.
Starting from right, the true phase boundary coincides with
the parity phase boundary, and hence being of second order,
from the point A to the point D where the envelope of lines
of constantpL starts out. Beyond this point, the phase tran-
sition becomes of first order, and runs along the dashed curve
from the point D to the point F which is located on the parity
phase boundary curve below the crossing point B. At the
point F, the phase transition returns to second order, and runs
along the boundary curve from the point F through the cross-
ing point B toward the point C. Altogether the parity-broken
phase occupies the region above the line ADFBC.

Below this line the ground state of the model can be ex-
amined by the effective potential withpL50. The potential
no longer depends ongp

2 , and as a function ofsL has a
double well structure. As one variesdmL below the point F
from right to left, the true minimum switches from a positive
to a negative value ofsL discontinuously. This leads to a
first-order phase transition along the line FH reaching down
to gp

2 50. We shall call this line as thes phase boundary.
Qualitatively, one may describe the behavior of the system
near and below the point F as ‘‘almost’’ exhibiting sponta-

neous breakdown of chiral symmetry.
We emphasize that the intricate structure involving first-

order transitions described above originates from theO(a3)
term of the effective potentialVL @i.e., O(a) in physical
units# which contains terms cubic insL . This contrasts with
the leadingO(a2) terms in Eq.~2.26! which gives rise to
only simple second-order transitions on the (dmL ,gp

2 ) plane.
Indeed, including theO(a3) contributions given by

dVL52
8

3
C3sL

312FC182
1

8p
ln~sL

21pL
2!GsL~sL

21pL
2!

~3.8!

with

C350.0647..., C1850.0904..., ~3.9!

to the effective potential~2.26!, one quantitatively repro-
duces the features of the phase diagram shown in Fig. 3.

The phase structure on the (dmL ,gp
2 ) plane we have dis-

cussed forgs
252 remains the same towardgs

2→0 except
that the structure as a whole moves down towardgp

2 50 and
becomes narrower horizontally. In the weak-coupling limit
gs

250, the boundary line degenerates to 1/gp
2 5F(dmL ,0)

which does not have a self-crossing. The first-order line DF
disappears, and the entire phase boundary becomes of second
order. We thus find the phase structure in the three-
dimensional parameter space (gs

2 ,gp
2 ,dmL) as schematically

drawn in Fig. 4.
Let us now discuss the continuum limit, in particular, how

the phase structure relates with the tuning of parameters
specified by Eqs.~2.27!,~2.28!. The tuned pointT(gs

2) with-
outO(a) terms~cross in Fig. 3! is located slightly to the left
and below the point B in the parity-symmetric phase. When
one takes the couplinggs

2 to zero, the relative location of the
tuned point and thes phase boundary remains the same.
Therefore taking the continuum limit exactly along the tuned

FIG. 3. Magnified view of the region near the tuned pointT(gs
2)

for gs
252.0. Thick curve represents the parity phase boundary

while thin lines are contour curves of fixedpL values (pL

50.02,0.04,0.06,0.08,0.10,0.12). True phase boundary consists of
AD ~second order!, DF~first order!, and FBC~second order!.

FIG. 4. Schematic phase diagram forNT5` and mL50. The
phase boundary of the parity-broken phase AOB-CDEF forms a
blade whose edge touches the point O (gs

2 ,gp
2 ,dmL)5(0,0,0). The

first order part EOD shrinks to a point atgs
250. Parity-symmetric

phase is divided into two phases withsL,0 andsL.0 by a first-
orders phase boundary DOG which vertically drops from the edge
OD.
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point T(gs
2) leads to a negative value ofs. This, however,

does not mean that a continuum limit with a positive value of
s is not possible.

As we have already pointed out, the structure around the
point F stems from theO(a3) terms of the effective poten-
tial, and hence its size shrinks as a power ofa. One can
estimate the effect of adding Eq.~3.8! to Eq. ~2.26! by an
order counting. SincedmL is the coefficient of the linear
term sL in Eq. ~2.26!, theO(a3) correction~3.8! causes a
shift of form

dmL→dmL1O~sL
2!;dmL1O~a2!. ~3.10!

Hence the structure has a size ofO(a2) in dmL . By a similar
argument forgp

2 , we conclude a size ofO(a) for gp
2 . The

point of tuning, on the other hand, has a degree of freedom
of O(a2) for dmL andO(a) for gp

2 . Therefore one may shift
the point of tuning within a rectangular region of sizeO(a2)
timesO(a) around the pointT(gs

2), including a shift to the
right of the point F, in which case the continuum value ofs
becomes positive.

In order to demonstrate that the correct continuum limit is
obtained within the freedom of the choice of the parameters
described above, we examine the scaling of two physical
observabless/L and (Mp /L)2 along the lines given by

dmL522C1gs
21Dm~aL!2, ~3.11!

1

gp
2 5

1

gs
2 14C21DgpaL, ~3.12!

whereDm andDgp areO~1! constants. We show the solu-
tion of the saddle point equation~3.1! for s/L5sL /(aL)
for Dm50,1,2 andDgp50 in Fig. 5 as a function ofaL
5c exp(2p/gs

2) whereL is defined in Eq.~2.29!. One sees
that s/L converges to the correct continuum results/L51

whether the limit is taken on the left (Dm50) or the right
(Dm51,2) of the point F of the phase boundary.

The pion massMp is more interesting since the mecha-
nism @3,2# which ensuresMp50 even for finitea no longer
works along the segment DF in Fig. 3 because of the first-
order nature of the phase transition in this part of the phase
boundary. We selectDm51,1.5,2.0 and tuneDgp so that the
point (dmL ,gp

2 ) given by Eqs.~3.11!,~3.12! is placed just
under the first-order line DF in the parity-symmetric phase.
Solving the saddle point equations~3.1!,~3.2! for sL and sub-
stituting the result into Eq.~3.7!, we obtain the curve for
(Mp /L)2 plotted in Fig. 6 as a function ofaL. The squared
pion mass vanishes as a power ofa toward the continuum
limit, demonstrating that the first-order nature of the parity-
breaking phase transition along DF does not cause problems.

So far we have concentrated on the phase structure near
dmL50. The phase structure arounddmL524 is obtained
by a reflectiondmL→242dmL . The phase structure near
dmL522 is different. It is symmetric across thedmL
522 plane, and the parity phase boundary turned out to be
always of second order. In addition as phase boundary of
first-order transition across which the sign of (sL12) flips
exists atdmL522, similar to the line FH in Fig. 3.

In the following we concentrate on the phase structure
arounddmL50 relevant for the usual continuum limit.

IV. PHASE DIAGRAM AT TÞ0 AND µ50

Our analysis of the phase diagram for the case of finite
temperature and zero chemical potential proceeds in essen-
tially the same way as for the zero-temperature case; choos-
ing a temporal lattice sizeNT and a value ofgs

2 , we analyze
the solution of the saddle point equations and the value of the
effective potential given by Eqs.~2.11!–~2.15! with mL50
as a function ofgp

2 anddmL .
In Fig. 7 we show the result of such an analysis atgs

2

FIG. 5. Order parameters in units of L as a function of lattice
spacingaL[c exp(2p/gs

2) calculated for three choices of con-
tinuum extrapolation specified byDm for Dgp50. Sign of s is
negative forDm50.

FIG. 6. Pion mass squared as a function of lattice spacingaL
under continuum extrapolation. See text for tuning of couplings
employed.
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52 for a set of temporal lattice sizeNT . For largeNT , the
topological structure of the phase boundary remains the same
as atNT5` corresponding to zero temperature. In particular
the left-half of the phase boundary hardly changes. On the
other hand, the right-half of the boundary with the first-order
segment moves toward upper left. The lower end point of the
first-order segment slides up along the second-order part of
the boundary forNT5`. The verticals phase boundary also
moves toward left with the end point.

This structure changes at a threshold value ofNT , which
equalsNT513 for gs

252 chosen for Fig. 7, when the first-
order segment of the boundary disappears. The entire phase
boundary becomes a smooth line of second-order transition,
along whichsL continuously varies from positive to nega-
tive values as one traverses the boundary curve from right to
left. As may be inferred from this, the verticals phase
boundary also disappears at the threshold temporal lattice
size.

To the extent that the first-orders boundary is interpreted
as indicative of spontaneous breakdown of chiral symmetry,
its disappearance may be regarded as signifying restoration
of chiral symmetry. Indeed the value ofsL becomes small
when thes phase boundary disappears. We illustrate this
point in Fig. 8 which shows how the effective potential
changes from a double-well to a single-well structure across
the threshold value ofNT at the tuned pointT(gs

2) for gs
2

50.8.
The structural change found as a function ofNT for a

fixed gs
2 can be translated into that for a varyinggs

2 with a
fixed temporal sizeNT : as one lowersgs

2 , there is a thresh-
old valuegs

25gsc
2 (NT) below which the first-order segment

of the parity-broken phase boundary and the vertical first-
order s boundary cease to exist. This leads to the three-
dimensional phase structure for a fixed and finiteNT sche-
matically drawn in Fig. 9. Contrary to theNT5` case, the
boundary curve atgs

250 does not reach the valuegp
2 50

since it is given by 1/gp
2 5F(dmL ,0) where the function

F(dmL ,0) computed for a finiteNT is finite and positive at
its maximum atdmL50.

Let us consider the continuum limit of the model at finite
temperature. This limit is defined by simultaneously taking
NT→` andgs

2→0 such that

T

L
5

exp~p/gs
2 !

cNT
~4.1!

is kept fixed. The couplinggp
2 and the mass parameterdmL

have to be tuned according to Eqs.~2.27!,~2.28! to restore
chiral symmetry. An alternative way to take the limit, which
is closer to the method practiced in numerical simulations, is
to vary gs

2 for a fixedNT . For eachNT this yields physical
observables as a function ofT/L, and the continuum limit is
obtained as a limit of this function asNT→`. We follow the
latter approach in the following analysis.

A qualitative picture of how finite-temperature transition
appears in this approach is as follows. The continuum limit is
taken along the line satisfying~2.27!,~2.28!, which converges
to (gs

2 ,gp
2 ,dmL)5(0,0,0). Above the threshold valuegs

2

5gsc
2 (NT), this line runs along either side of the lower edge

of the parity-broken phase where physical quantities take

FIG. 7. Temporal lattice size dependence of phase structure
plotted forNT5`,16,14,13,12,10,8. Phase transition is of first or-
der along dashed lines, while it is of second order along solid lines.

FIG. 8. Effective potential forgs
250.8 for temporal lattice size

NT5160 andNT5154. dmL is tuned according toT(gs
2).

FIG. 9. Schematic phase diagram for fixed and finiteNT . For
small gs

2 , first-order parity-breaking boundary~FJE! and s phase
boundary~EJIH! disappear.
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values similar to those at zero temperature. In particularsL

has a non-zero value of positive or negative sign depending
on whether the line is on the right or left of the verticals
phase boundary. However, asgs

2 is lowered below the
threshold value, the parity-breaking phase boundary moves
up toward largergp

2 , and thes phase boundary disappears.
Once the line enters into this region, the value ofsL be-
comes small. In other words, for each fixed temporal size,
the threshold value ofgs

2 marks the region of finite-
temperature transition.

We illustrate the description above in Fig. 10 where we
plot s/L as a function ofT/L calculated along the line
T(gs

2) without O(a) corrections for several values ofNT ,
together with the curve in the continuum limit. We observe
that the curves for finiteNT smoothly approaches the con-
tinuum result drawn by a thick line asNT increases toward
`.

Several remarks are in order with this figure:~i! The nega-
tive sign ofs is due to the fact, already remarked in Sec. III,
that the continuum limit is taken on the left side of thes
phase boundary.~ii ! In the region close to the continuum
critical point T/L'Tc /L5exp(gE /p)50.56694..., s(T)
has a small discontinuity, as shown in the inset of Fig. 10,
which reduce with increasingNT . This is due to the fact that
the tuned pointT(gs

2) goes through the verticals phase
boundary asgs

2 is decreased just before the threshold value is
reached@see the relative location of the boundary ofNT

513 andT(gs
2) in Fig. 7#. ~iii ! The value ofs(T) after the

discontinuity is very small but nonzero for a finiteNT . It
exactly vanishes forT>Tc only in the limit of NT→`.

Another possible choice for the continuum limit is to run
along the bottom of the valley of the parity-breaking phase
boundary for each value ofNT ~line EJB in Fig. 9!. The
limiting point B of the line atgs

250 has a nonzero value of
gp

2 . This point, however, reaches the correct continuum limit

(gs
2 ,gp

2 ,dmL)5(0,0,0) as NT→`. Above the threshold
value ofgs

2 ~point J! where thes phase boundary exist,s(T)
has two solutions of opposite sign(sL

1 ,sL
2). At the bottom

of the valley, these two solutions are the balancing minima
of the effective potential, i.e.,

VL~sL
1!5VL~sL

2!. ~4.2!

At the threshold value ofgs
2 , sL

1 andsL
2 merge through a

second-order singularity corresponding to the second-order
phase transition~line JI! marking the end of the first-orders
phase boundary.

With this choice of the continuum limit, we obtain the
behavior ofs1(T) ands2(T) shown by dashed lines in Fig.
11 and Fig. 12, exhibiting convergence to the continuum
result ~thick line!. A notable property is that the system ex-
hibits a second-order phase transition already for finite val-
ues ofNT as the line passes through the point J in Fig. 9.

FIG. 10. Order parameters as a function of temperatureT for
m50 evaluated for several temporal lattice size along the point
T(gs

2) withoutO(a) corrections. Inset shows an expanded view of
the critical region.

FIG. 11. Positive solutions1 as a function ofT for m50. Cou-
plings are tuned along the edge of the parity-breaking phase bound-
ary ~line EJB in Fig. 9! for each value ofNT . The combination
(s12s2)/2 is also plotted@see curves specified as ‘‘~mid.!’’ #. In-
set shows an expanded view of the critical region.

FIG. 12. Same as Fig. 11 for the negative solutions2.
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Also shown in Fig. 11 by dotted lines is the difference of the
two solutions divided by 2, (sL

12sL
2)/2, which shows a

faster convergence to the continuum result.

V. PHASE DIAGRAM FOR µÞ0

A. The case ofµÞ0 and T50

We now consider the phase diagram for nonzero chemical
potential, starting with the case of zero temperature (NT
5`). In this case, from Eqs.~2.11!–~2.15!, the effective
potential is given by

VL5
1

2gs
2 ~sL2dmL!21

1

2gp
2 pL

2

2E
2p

p dj

2p
@ ln~sL122cosj!1max~E,mL!#. ~5.1!

As one expects from this expression, as long asmL is small,
the phase boundary on the (dmL ,gp

2 ) plane does not move

from that withmL50. However, as we show in Fig. 13 for
gs

252, whenmL exceeds a threshold value~mLc'0.09 for
Fig. 13!, the verticals phase boundary splits into two verti-
cal first-order boundaries such thatsL between the two
boundaries is near zero. The end points of the two bound-
aries slide upwards in the opposite directions along the parity
phase boundary forNT5`, and the phase boundary connect-
ing the two end points, which is of first-order, is convex and
moves upward toward largergp

2 . This behavior reflects the
fact that the effective potential, which has a double well
structure atmL'0 develops an additional minimum close to
sL50 asmL increases beyond the threshold value. See Fig.
14. Which of the three minima represents the true minimum
depends on the value ofdmL , which leads to the double
first-order boundaries seen in Fig. 13.

An important point with the behavior described above is
that the two vertical first-order boundaries move away from
the edge point F of the parity phase boundary atmL50.
Since the point~2.27!,~2.28! for taking the continuum limit is
located near the point F, this means that the system, initially
in one of the phases with a nonzero value ofsL at mL50

FIG. 13. Phase structure formL50.110 andNT5` at gs
2

52.0. Hatched region is the new phase withsL'0. Phase transi-
tions between this phase (pL50,sL'0) and other three phases
(pLÞ0,sL,0,sL.0) are all first order.

FIG. 14. Effective potential as a function ofsL for gs
250.8 and

NT5` at the tuned pointT(gs
2).

FIG. 15. Same as Fig. 13 formL50,0.10,0.11,0.12,0.13. Sym-
bol T represent the tuned pointT(gs

2).

FIG. 16. Sketch of phase structure for fixed and finitemL for
NT5`. Below a threshold value ofgs

2 the verticals phase bound-
ary splits into two, both being of first order, enclosing a region with
sL'0.
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undergoes a first-order phase transition when the boundary
moves over the point asmL increases. After this takes place,
the system is in the middle phase withsL'0, which quali-
tatively means that chiral symmetry becomes restored. This,
then, is the mechanism by which the lattice model yields the
first-order finite density phase transition at zero temperature.
These points are illustrated in Fig. 15 forgs

252.0. For the
tuned point T(gs

2), for example, the left vertical phase
boundary moves over the point betweenmL
50.12 and 0.13. In Fig. 16 we translate the behavior into a
schematic three-dimensional phase diagram forNT5` and a
fixed value ofmL .

B. The case ofµÞ0 and TÞ0

Finally we consider the finite-density transition at finite
temperature. We examine this case by decreasing the tempo-
ral lattice size fromNT5`. The phase structure forNT5`
found in Sec. V A implies that the mechanism of generation
of a first-order transition through a splitting of thes phase
boundary asmL increases will remain operative for large
temporal sizeNT . We found this to be the case as shown in
Fig. 17 forNT5120 atgs

251.5.
On the other hand, for small temporal sizes, we expect the

behavior to become similar to the finite-temperature and zero

chemical potential case examined in Sec. III. We plot an
example of this case in Fig. 18 for whichNT is decreased to
28: the parity-broken phase shrinks, and the first-order seg-
ment of the phase boundary and thes phase boundary dis-
appear as one increasesmL . In this case the phase transition
is of second order in the continuum limit.

We plot in Fig. 19 and Fig. 20 curves ofs(T,m)/L cal-
culated as a function ofm/L for a fixed value ofT/L along
the tuned pointT(gs

2). A clear discontinuity observed in Fig.
19 for T/L50.2 contrasts sharply with the convergence to
second-order behavior seen forT/L50.5 in Fig. 20. This
difference reflects the change of order of finite-density tran-
sition for large and small temporal lattice sizes discussed
above. In the continuum limit we thus find a line of phase
transition on the (m,T) plane which switches from being of
first-order to second order as the critical temperature in-
creases. This agrees with the phase diagram of the con-
tinuum theory drawn in Fig. 1.

VI. CONCLUSIONS

In this article we have investigated the phase structure and
the continuum extrapolation of the two-dimensional lattice

FIG. 17. Effect ofmL on the phase structure for largeNT .

FIG. 18. Effect ofmL on the phase structure for smallNT .

FIG. 19. 2s as a function ofm for T/L50.2. Couplings are
tuned atT(gs

2).

FIG. 20. Same as Fig. 19 forT/L50.5.
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Gross-Neveu model at finite temperature and chemical po-
tential. The choice of the Wilson action for fermions leads to
the existence of a parity-broken phase separated from the
parity-symmetric phase by a two-dimensional boundary sur-
face in the three-dimensional space of the couplings
(gs

2 ,gp
2 ,dmL) that specifies the model. The phase transition

across the surface is generally of second order. However, in
the region relevant for the continuum limit,O(a) effects of
the Wilson term gives rise to a complicated structure, ren-
dering the transition to be of first order in a region whose
size vanishes in the continuum limit. The parity-symmetric
phase is also divided into subregions by a first-order phase
boundary corresponding to different minima of the effective
potential. We found that these detailed structures intertwine
to lead to the continuum phase diagram reported in Ref.@11#.

An interesting issue is how much of the detailed structure
we found for the Gross-Neveu model has relevance for QCD
in four dimensions. Of particular interest is the question that
a part of the parity-flavor breaking phase boundary may be
of first order. While the necessity of two independent cou-
plings gs

2 and gp
2 appears to be a specific feature of the

Gross-Neveu model, arising from the presence of four-
fermion couplings in the model, a distortion of the effective
potential for effective meson fields in thes direction by

terms odd ins would be present also for QCD, possibly
triggering a first-order phase transition.

The relevance of the structure we found for finite chemi-
cal potential is more likely; the emergence of three regions
corresponding to three different values ofs for largem is a
physical effect, not specifically tied with the use of the Wil-
son actions for fermions. The crossover from a first-order to
second-order transition depending on the critical temperature
means, however, that the order of the finite density transition
may depend sensitively on the parameters of the model, per-
haps the space-time dimension playing an important role
@11#. These, then, are the issues which have to be directly
addressed in QCD.
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