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Critical comparison of different definitions of topological charge on the lattice
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A detailed comparison is made between the field-theoretic and geometric definitions of topological charge
density on the lattice. Their renormalizations with respect to the continuum are analyzed. The definition of the
topological susceptibilityy, as used in chiral Ward identities, is reviewed. After performing the subtractions
required by it, the different lattice methods yield results in agreement with each other. The methods based on
cooling and on counting fermionic zero modes are also discu§S8856-282(198)10921-9

PACS numbds): 11.15.Ha, 11.10.Gh, 12.38.Gc

[. INTRODUCTION this order the theory describes the main physical features of
hadrons(e.g., confinement[3]. In the 1N, expansion, the

The definition of topological charge density and of topo-anomaly acts as a perturbation, displacing the pole of the
logical susceptibility on the lattice has by now a long storyU,(1) Goldstone boson to the actual mass of #ie The
with contrasting resultfl,2]. This paper intends to be a con- prediction is[4,5]
tribution to clarify the issue. )

Lattice is a regulator of the theory. It should reproduce _ fa
continuum physics in the limit in which the cutoff is re- )(_Z_Nf
moved, i.e., in the limit in which the lattice spaciagtends
to zero. Like any other regularization scheme, however, apwhere
propriate renormalizations have to be performed to deter-
mine physical quantities. Within the rules of renormalization Xzf d*x(0| T(Q(x)Q(0))|0) (4)
theory, the topological charge density and its correlation
functions can be defined on the lattice with the same rigor a
for any other operator of the theory.

(m2+m?, —2mg), )

% the topological susceptibility of the vacuum in the unper-

In QCD turbed (N.=«) theory. This means, among other facts, a
' quenched approximation, fermion loops bei@(g?N;)
gz ~ O(Nf /NC) .
Q(x)= _zfuvpv':iv(x)':ia(x)- (1) In fact, as we shall discuss in detail belowin Eq. (4) is
64 not defined if the prescription is not specified for the singu-

_ _ larity of the productQ(x)Q(0) asx—0. In Refs.[4,5] the
Q(x) has a fundamental physical role, being the anomaly oprescription which leads to E@3) is the following:
the U(1) singlet axial vector current

_ 4
3,350 =—2N;Q(x), X—J d*(x=y) 3, (0| T(K ,(x)K,(y))[0), 5
2
Ne @ whereK ,(x) is the Chern current
3500= 2 i) v ysdi(x). , .
M:éengi IPAe— 3 gfaPeAPAS (6)

N; is the number of light flavors. Equatiaf2) provides a
solution to theU ,(1) problem of Gell-Mann'’s quark model
in which Ji is conserved and the correspondidg(1) is a
symmetry, whereas in hadron physics neither parity doublets 9,K (X)=Q(X). 7
are observed, which would correspond to a Wigner realiza- oK
tion, nor is the inequalityn,, <v3m_ satisfied, which would  The prescriptiofEq. (5)] eliminates all thes-like singulari-
correspond to a spontaneous breaking in the manner of Goldies in the producK ,(x)K,(y) asx—y. In any regulariza-
stone. tion scheme the Eq5) only leaves a multiplicative renor-
Equation(2) could explain the higher value ah,, as  malizationZ? for y, Z being the possible renormalization of
suggested by an approach based dd.lgxpansion of the Q(x). Equation(7) implies that the total topological charge
theory. At the leading order the anomaly beil@§1/N.), is
absent andU,(1) is a Goldstone symmetry like axial QEJ d'x Q(x) )
SU,(3). Theidea behind this expansion is that already at

related toQ(x) by the equation
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has integer values. proposed to determing on the lattice give the same result.
The regularized version @(x), Q,(x), does not, in gen- We shall do this by comparing the geometric methied 0|
eral obey Eq(7) [6]. According to the general rules of renor- to define Q(x) to the field-theoretic ong6,7] for SU(2)
malization theory(in pure gauge theojy gauge theory. The same procedure, applieg83), indeed
confirms[11] the expectatiofiEqg. (16)].

QL(X)=ZQ(x). C)
In generalZ# 1, unless Eq(7) is preserved by regulariza- IIl. DEFINING Q(x) ON THE LATTICE
tion. To determineZ, it is sufficient to measurgQ,) In analogy to any lattice operata®, (x) will be defined

7a4ZéQ> (;ln a state belonging to a definite eigenvalu€of py the requirement that, in the formaiave) limit a—0,
see Sec.

The productQ, (x)Q, (y) will not satisfy Eq.(5), in gen- a—0
eral at the singularitk—Yy. In the limit a—0 it will differ Q.L(x) ~ a*Q(x)+0(a’). (17
from it by additive termsSy, which can be classified by use
of the Wilson operator product expansiofi. Defining (Vis A prototype definition is

the 4-volume ;)

QL (x)= -1 27 € TH[IL,, (), ,(X)]
2 QL(X)QL(y), (10) L 297T2 = nvpo w oo .
Xy

XL=

<k

(18

we will have EWW is the standard Levi-Civita tensor for positive direc-

1 tions, while for negative ones the relatiey, ,,= — €_ 4,0
XL=VZZQ234+ ox, (1) holds.
0O(a®) irrelevant terms in Eq(17) will disappear in the
where the first term corresponds to E@). Taking the scaling regime. However, their presence may be used to im-

vacuum expectation value of EfL1) gives prove the operatdr12]. In what followsQ{" (i=0, 1, and 2
4o will denote the operator defined by E48) and the once and
xXL=a’Zx+ xo, (12 twice improved versions of it, respectively. Improvement is

the recursive smearing of the links developed in R&2].

Also, the geometric definitio@°°"(x) satisfies Eq(17) [9].
Xo=(0| 5x|0). (13 Li.ke any pther regulgrized operat@p,; (x) will mix_in the

continuum limit, when irrelevant terms become unimportant,
Taking the expectation value of E(L1) on eigenstatefy,,) with all the operators having the same quantum numbers and
of Q gives lower or equal dimension. The only pseudoscalar of dimen-
sion <4 is Q(x) itself:

with

1
(Al xulan) = o Z2ana* +(an| Sx|an)- (14) QLX) =ZQ(x). (19

Itis a generally accepted wisdom that renormalization effectd he nave expectation foZ would beZ=1 sinceQ, as an
produced by short-range quantum fluctuations are practicallipteger, should not renormalize. As first realized in Rét,
independent of the semiclassical instanton background whichis is not true on the lattice whei®,(x) is not a diver-
determinesy,. The independence am, of (q,|dx|q,) can gence.Z can be computed in perturbation theory, as it was
be checked numerically by Eq14) and proves to be true done in the early works on the subj¢6l. A better way is to
within errors[8]. Then(q,|dx|dn)=x0. andx, can be de- measurgQ, ), the total topological charge on the lattice, on
termined from Eq.(14) as (q,=0|x.|q,=0), i.e., as the & state on whichQ has a known value, e.g., on a one-

expectation value of, on the trivial topological sector. instanton state wher@ =1. This can be done by a heating
From Eq.(12), technique[8] where a background instanton is put by hand
on the lattice, and quantum fluctuations at a given value of

Xreg™ X0 B=2N./g? are added to it. In the continuum, the instanton

(15 configuration is stable, being a minimum of the action, and
therefore perturbing it by small fluctuations does not change
the value ofQ. On the lattice, instantons are not stable, so
thatQ could change during this heating procedure. The way

x=(180 MeW)* (1)  to avoid this inconvenience is to create a sample of configu-

rations by the usual Monte Carlo updating, starting from the

in the quenched approximation within &{1/N;) system- original instanton. Each of them is checked in its instanton

atic error. content by a rapid cooling: configurations where the original
In this paper we will show that, if the prescriptikq.  topological charge seems to be changed are discarded. This
(5)] is properly implemented, all methods which have beercan be done after any number of heating steps, and the result

ZZ

It is with this prescription thaj is expected to be
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FIG. 1. Values ofZ as obtained by the heating method for the FIG. 3. The same as in Fig. 2 for the geometrical topological

geometric and 0-, 1-, and 2-smeared field-theoretic topological
charge.

charges(circles, squares, up-triangles, and down-triangles, respec-
tively). i i com . .
figuration, the value ofQ*°™ depends on the interpolation
. . ) used to define if10].

must be independent of this number. The result is a sample
w!th topological char.geQ._QL me;asured on this ensemble . TOPOLOGICAL SUSCEPTIBILITY
will reach a plateau in this heating procedure, on which
can be read. If the instanton were stable, the plateau would The lattice topological susceptibility is written as
stay flat forever.

This procedure has been checked and used repeatedly QE
within the field-theoretical methdd 1,13—15. The result for XL= EX: (QL(X)QL(0))= v
Z is shown in Fig. 1 as a function ¢ for different defini-

tions of Q. (x). The data for the 0-, 1-, and 2-smeared oP-and analogously foQ%°™. To make a connection to the
eratqrstare takenffromfRe[lS], ﬁgd.are_l%omdpute? OTI a continuum susceptibility as defined by E&), in general,
one-mst z_;mtlog cf(_)r!t!gura lon on a dttlce. € attad or':heth there will be an additive renormalization due to the singular-
Szggep?c():?e duerénlli%?’tr?geggﬁvr;eiﬂc gg?inﬁg;]%uceomvg;t Gfty at x—Yy and a multiplicative residual renormalizatior (

) ! o L "~ #Yy) which will simply be the square & computed in Sec.
ible with 1 (within two standard deviationsHowever, the y) Py q P

value_s OfQEe?m have a large sprea(_hs large athlO)_, ) As a matter of fact(Q,(x)Q.(0)) is expected to be
showing that it can assume values different from the Or'g'”ahegative due to reflection positivity at#0, since Q,(x)

Q on configurations which are presumed to belong to thapyanges its sign under time reverfa6]. In fact, this holds
sector. Only the average satisf(@,)=Q, but not the value ¢ gistances larger than the extension of the operator if it is
configuration, by configuration. Moreover, on a given CoN-gmeared. Figures 2 and 3 show that this is indeed the case

(20
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FIG. 2. Correlation functionQ,_(x)Q_(0)) as a function of FIG. 4. Values ofM as obtained by the heating method for the

|x|/(1.2a) for the 0-, 1-, and 2-smeared topological chargesgeometric and O-, 1-, and 2-smeared field-theoretic topological
(squares, up-triangles, and down-triangles, respeciively 8 charges(circles, squares, up-triangles, and down-triangles, respec-
=2.57. tively).
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FIG. 5. xin A_ and MeV units for the unsubtracted geometrical  F|G. 7. The same as in Fig. 6 for the geometrical topological
charge(starg, subtracted geometrical chargeircles, and 0- and  charge.
2-smeared chargésip and down triangles

] ] ) by a heating procedul@]. The flat, zero-field configuration

b_o_th for Fhe gegmetnc_o_perator and the f|eld—th¢oret|cal_ def'[UM(x) =1] can be dressed with local quantum fluctuations,
hition. SinceQy is positive, its value is determined mainly which do not change its topological content, by the usual
by the point ax=0, i.e., by the singularity of the product at ypdating procedure at the desired valuefofy, will soon
x—0. This peak is there, no matter ha@( (x) is defined, reach a plateau: if the sector were stable the plateau would
and its height depends on the definition used. In Figs. 2 andersist forever. Instead, a nonvanishing topological charge
3 the values foxQ(x)Q.(0)) have been summed over all can be created on the lattice, and care must be taken to elimi-
pointsx inside a shell at distande| from the originx=0.  nate configurations where this happens. Again this must be

The width of this shell was 1 done by cooling and checks can be done to test the consis-
Thus, in general6,7], tency of the procedure. Figure 4 shows the determination of
M(B) for the geometric definition and for three different
_ 2,4
xu=2(B)7a’x+M(p). (@) field-theoretical definitions. Analogously to E(L5), from

M(B) will describe a mixing with all scalar operators of Eq. (21) we obtain

dimension<4[3(g) is the beta functioh _M(B)
aty=X P 23)

B(9) Z(B)?

M(B) =A(B)< TFZVFZV> a’+P(B)x1. (22
XL, M, andZ depend on the choice of the regulator as well
M is the value ofy, in Eq. (12) in the lattice regularization. as on the choice of the actioa;depends on the choice of the
To match the prescription of E@5), xy has to be zero in action, buty must be independent of all of it. Figure 5 shows
the sectolQ=0. Thus, in that sectoy, =M(8), andM(B)  that this is the case. In this figure we have used the data of

can be determined by measurigg in it. This is again done Ref.[15] for the 0- and 2-smeared field-theoretical charges.
The data for the geometric definition has been obtained on a

16* lattice with the same updating proceduheat bath and
compatible statistic§5000 configurations The result of the
simulations is in facty/A}. Usually, people determind,

by computing the string tensios/A?, and by assuming the
physical value foro. This allows one to expresg** in
physical units. We do the same in order to compare our

300

-0)

200

dN/IQ, (Q

TABLE I. x.,Z, and M for the O-smeared, 1l-smeared, 2-
100 | 1 smeared, and geometric topological charge density operatg@s at

=2.57.
. . tLL'-L . Operator 18x . z 10°X M

0
10 o é’L > 1o geometric 16.60) 0.93726) 13.2623)
0-smeared 2.3262) 0.24Q26) 2.20032)
FIG. 6. Distribution ofQ, in the zero-topological charge sector 1-smeared 1.01@9) 0.5079) 0.44Q18)
Q=0 for the O-smearedsolid line) and 2-smeareddotted ling 2-smeared 1.16864) 0.6758) 0.1875)
topological charge densities gt=2.57.
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result with other people’s determinations. The scale is detempological charge. This seems to be true for the multiplicative
mined from the data of Ref$17,18. The data at 2 smear- renormalization. Having integer values, however, does not
ings yield (y)¥4=198+2+6 MeV for the SU(2) gauge exempt one from having singularities at a short distance in
group, the first error being statistical and the second onéhe product which defineg, . Figure 5 clearly proves that.
coming from the error inA, . The “naive” unsubtracted The field-theoretical definition started as aweadefini-
geometric definition does not scale, and is almost one orddion. Z was not noticed and set equal to B{8) was sub-
of magnitude larger than the subtracted value. In the jargotracted by use of perturbation theory. As a reshfty was
of the geometrical method, this is called an effect of dislo-determined instead of itself, and found to be much smaller
cations. It is the mixing with the identity operator which than the expectatiofEq. (16)] [19].
indeed describes these dislocations, which have dimensions The idea was then put forward that the veadefinition
lower than 4. There is, however, an additional mixing in Eq.might not be correct and the geometric meti8¢R0], the
(22) which has the same dimension gsand still must be cooling method21,22 and the Atiyah-Singer-based meth-
subtracted: checking only by dimension is not sufficient toods[23] were developed. The haa method was promoted to
ensure thajy, is indeed equal to the physicgl as defined by the field-theoretic method only after introducidgand a cor-
Eq. (5). rect subtractionM [6,7]. The non-perturbative determina-
Figures 6 and 7 show the distribution of values@rin  tions of these constantg8], as explained above, finally
the sector with trivial topology. Its variance is, apart from abrought about a reliable determination yafwhich is indeed
normalization factor, a measure bf(B). A good operator regulator independent.

Q. (x) is one for which the subtractioM (3) is small com- The cooling method automatically performs the additive
pared toy, . On the other hand, also haviyz=1 is more  subtraction because it givag =0 on the trivial sector; and
reassuring than having a small also bringsZ to 1 by freezing the quantum fluctuations. The

Table | showsy, , Z, andM for the 0-, 1-, and 2-smeared problem with this was that instantons could be lost in the
field-theoretical charges and the geometric chargeBat procedure, leading to an underestimationyofCooling with
=2.57. The 2-smeared definition @ (x) is the best among improved forms of the actiof24,25 seems to have elimi-
these choices. The geometric definition is good with respeadtated this problem, and indeed gives results which confirm
to Z, but is definitively bad with respect to the additive the field-theoretic determination. The same seems to be true
renormalizatiorM. for the modern versions of the Atiyah-Singer proced@@.

IV. DISCUSSION
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