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A detailed comparison is made between the field-theoretic and geometric definitions of topological charge
density on the lattice. Their renormalizations with respect to the continuum are analyzed. The definition of the
topological susceptibilityx, as used in chiral Ward identities, is reviewed. After performing the subtractions
required by it, the different lattice methods yield results in agreement with each other. The methods based on
cooling and on counting fermionic zero modes are also discussed.@S0556-2821~98!10921-9#

PACS number~s!: 11.15.Ha, 11.10.Gh, 12.38.Gc

I. INTRODUCTION

The definition of topological charge density and of topo-
logical susceptibility on the lattice has by now a long story
with contrasting results@1,2#. This paper intends to be a con-
tribution to clarify the issue.

Lattice is a regulator of the theory. It should reproduce
continuum physics in the limit in which the cutoff is re-
moved, i.e., in the limit in which the lattice spacinga tends
to zero. Like any other regularization scheme, however, ap-
propriate renormalizations have to be performed to deter-
mine physical quantities. Within the rules of renormalization
theory, the topological charge density and its correlation
functions can be defined on the lattice with the same rigor as
for any other operator of the theory.

In QCD,

Q~x!5
g2

64p2
emnrsFmn

a ~x!Frs
a ~x!. ~1!

Q(x) has a fundamental physical role, being the anomaly of
the UA(1) singlet axial vector current
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Nf is the number of light flavors. Equation~2! provides a
solution to theUA(1) problem of Gell-Mann’s quark model
in which Jm

5 is conserved and the correspondingUA(1) is a
symmetry, whereas in hadron physics neither parity doublets
are observed, which would correspond to a Wigner realiza-
tion, nor is the inequalitymh8<)mp satisfied, which would
correspond to a spontaneous breaking in the manner of Gold-
stone.

Equation ~2! could explain the higher value ofmh8 as
suggested by an approach based on 1/Nc expansion of the
theory. At the leading order the anomaly beingO(1/Nc), is
absent andUA(1) is a Goldstone symmetry like axial
SUA(3). The idea behind this expansion is that already at

this order the theory describes the main physical features of
hadrons~e.g., confinement! @3#. In the 1/Nc expansion, the
anomaly acts as a perturbation, displacing the pole of the
UA(1) Goldstone boson to the actual mass of theh8. The
prediction is@4,5#
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2

22mK
2 !, ~3!

where

x5E d4x^0uT~Q~x!Q~0!!u0& ~4!

is the topological susceptibility of the vacuum in the unper-
turbed (Nc5`) theory. This means, among other facts, a
quenched approximation, fermion loops beingO(g2Nf)
;O(Nf /Nc).

In fact, as we shall discuss in detail below,x in Eq. ~4! is
not defined if the prescription is not specified for the singu-
larity of the productQ(x)Q(0) asx→0. In Refs.@4,5# the
prescription which leads to Eq.~3! is the following:

x5E d4~x2y!]m
x ]n

y^0uT„Km~x!Kn~y!…u0&, ~5!

whereKm(x) is the Chern current
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related toQ(x) by the equation

]mKm~x!5Q~x!. ~7!

The prescription@Eq. ~5!# eliminates all thed -like singulari-
ties in the productKm(x)Kn(y) asx→y. In any regulariza-
tion scheme the Eq.~5! only leaves a multiplicative renor-
malizationZ2 for x, Z being the possible renormalization of
Q(x). Equation~7! implies that the total topological charge

Q[E d4x Q~x! ~8!
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has integer values.
The regularized version ofQ(x), QL(x), does not, in gen-

eral obey Eq.~7! @6#. According to the general rules of renor-
malization theory~in pure gauge theory!,

QL~x!5ZQ~x!. ~9!

In generalZÞ1, unless Eq.~7! is preserved by regulariza-
tion. To determineZ, it is sufficient to measurê QL&
5a4Z^Q& on a state belonging to a definite eigenvalue ofQ
~see Sec. II!.

The productQL(x)QL(y) will not satisfy Eq.~5!, in gen-
eral at the singularityx→y. In the limit a→0 it will differ
from it by additive termsdx, which can be classified by use
of the Wilson operator product expansion@7#. Defining (V is
the 4-volume!

xL[
1

V (
xy

QL~x!QL~y!, ~10!

we will have

xL5
1

V
Z2Q2a41dx, ~11!

where the first term corresponds to Eq.~5!. Taking the
vacuum expectation value of Eq.~11! gives

xL5a4Z2x1x0 , ~12!

with

x05^0udxu0&. ~13!

Taking the expectation value of Eq.~11! on eigenstatesuqn&
of Q gives

^qnuxLuqn&5
1

V
Z2qn

2a41^qnudxuqn&. ~14!

It is a generally accepted wisdom that renormalization effects
produced by short-range quantum fluctuations are practically
independent of the semiclassical instanton background which
determinesqn . The independence onqn of ^qnudxuqn& can
be checked numerically by Eq.~14! and proves to be true
within errors@8#. Then^qnudxuqn&5x0 , andx0 can be de-
termined from Eq.~14! as ^qn50uxLuqn50&, i.e., as the
expectation value ofxL on the trivial topological sector.

From Eq.~12!,

x5
x reg2x0

Z2
. ~15!

It is with this prescription thatx is expected to be

x5~180 MeV!4 ~16!

in the quenched approximation within anO(1/Nc) system-
atic error.

In this paper we will show that, if the prescription@Eq.
~5!# is properly implemented, all methods which have been

proposed to determinex on the lattice give the same result.
We shall do this by comparing the geometric method@9,10#
to define Q(x) to the field-theoretic one@6,7# for SU(2)
gauge theory. The same procedure, applied toSU(3), indeed
confirms@11# the expectation@Eq. ~16!#.

II. DEFINING Q„x… ON THE LATTICE

In analogy to any lattice operator,QL(x) will be defined
by the requirement that, in the formal~naı̈ve! limit a→0,

QL~x! ;
a→0

a4Q~x!1O~a6!. ~17!

A prototype definition is

QL~x!5
21

29p2 (
mnrs561

64

ẽmnrs Tr@Pmn~x!Prs~x!#.

~18!

ẽmnrs is the standard Levi-Civita tensor for positive direc-
tions, while for negative ones the relationẽmnrs52 ẽ2mnrs

holds.
O(a6) irrelevant terms in Eq.~17! will disappear in the

scaling regime. However, their presence may be used to im-
prove the operator@12#. In what followsQL

( i ) ( i 50, 1, and 2!
will denote the operator defined by Eq.~18! and the once and
twice improved versions of it, respectively. Improvement is
the recursive smearing of the links developed in Ref.@12#.
Also, the geometric definitionQL

geom(x) satisfies Eq.~17! @9#.
Like any other regularized operator,QL(x) will mix in the

continuum limit, when irrelevant terms become unimportant,
with all the operators having the same quantum numbers and
lower or equal dimension. The only pseudoscalar of dimen-
sion <4 is Q(x) itself:

QL~x!5ZQ~x!. ~19!

The naı¨ve expectation forZ would beZ51 sinceQ, as an
integer, should not renormalize. As first realized in Ref.@6#,
this is not true on the lattice whereQL(x) is not a diver-
gence.Z can be computed in perturbation theory, as it was
done in the early works on the subject@6#. A better way is to
measurê QL&, the total topological charge on the lattice, on
a state on whichQ has a known value, e.g., on a one-
instanton state whereQ51. This can be done by a heating
technique@8# where a background instanton is put by hand
on the lattice, and quantum fluctuations at a given value of
b52Nc /g2 are added to it. In the continuum, the instanton
configuration is stable, being a minimum of the action, and
therefore perturbing it by small fluctuations does not change
the value ofQ. On the lattice, instantons are not stable, so
that Q could change during this heating procedure. The way
to avoid this inconvenience is to create a sample of configu-
rations by the usual Monte Carlo updating, starting from the
original instanton. Each of them is checked in its instanton
content by a rapid cooling: configurations where the original
topological charge seems to be changed are discarded. This
can be done after any number of heating steps, and the result
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must be independent of this number. The result is a sample
with topological chargeQ. QL measured on this ensemble
will reach a plateau in this heating procedure, on whichZ
can be read. If the instanton were stable, the plateau would
stay flat forever.

This procedure has been checked and used repeatedly
within the field-theoretical method@11,13–15#. The result for
Z is shown in Fig. 1 as a function ofb for different defini-
tions of QL(x). The data for the 0-, 1-, and 2-smeared op-
erators are taken from Ref.@15#, and are computed on a
one-instanton configuration on a 164 lattice. The data for the
geometrical definition, are new and are computed with the
same procedure. For the geometric definition,Z is compat-
ible with 1 ~within two standard deviations!. However, the
values ofQL

geom have a large spread~as large asQ610),
showing that it can assume values different from the original
Q on configurations which are presumed to belong to that
sector. Only the average satisfies^QL&5Q, but not the value
configuration, by configuration. Moreover, on a given con-

figuration, the value ofQL
geom depends on the interpolation

used to define it@10#.

III. TOPOLOGICAL SUSCEPTIBILITY

The lattice topological susceptibility is written as

xL5(
x

^QL~x!QL~0!&5
QL

2

V
, ~20!

and analogously forQL
geom. To make a connection to the

continuum susceptibility as defined by Eq.~5!, in general,
there will be an additive renormalization due to the singular-
ity at x→y and a multiplicative residual renormalization (x
Þy) which will simply be the square ofZ computed in Sec.
II.

As a matter of fact,̂ QL(x)QL(0)& is expected to be
negative due to reflection positivity atxÞ0, sinceQL(x)
changes its sign under time reversal@16#. In fact, this holds
at distances larger than the extension of the operator if it is
smeared. Figures 2 and 3 show that this is indeed the case

FIG. 2. Correlation function̂ QL(x)QL(0)& as a function of
uxu/(1.2a) for the 0-, 1-, and 2-smeared topological charges
~squares, up-triangles, and down-triangles, respectively! at b
52.57.

FIG. 3. The same as in Fig. 2 for the geometrical topological
charge.

FIG. 4. Values ofM as obtained by the heating method for the
geometric and 0-, 1-, and 2-smeared field-theoretic topological
charges~circles, squares, up-triangles, and down-triangles, respec-
tively!.

FIG. 1. Values ofZ as obtained by the heating method for the
geometric and 0-, 1-, and 2-smeared field-theoretic topological
charges~circles, squares, up-triangles, and down-triangles, respec-
tively!.
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both for the geometric operator and the field-theoretical defi-
nition. SinceQL

2 is positive, its value is determined mainly
by the point atx50, i.e., by the singularity of the product at
x→0. This peak is there, no matter howQL(x) is defined,
and its height depends on the definition used. In Figs. 2 and
3 the values for̂ QL(x)QL(0)& have been summed over all
points x inside a shell at distanceuxu from the originx50.
The width of this shell was 1.2a.

Thus, in general@6,7#,

xL5Z~b!2a4x1M ~b!. ~21!

M (b) will describe a mixing with all scalar operators of
dimension<4 @b̄(g) is the beta function#:

M ~b!5A~b!K b̄~g!

g
Fmn

a Fmn
a L a41P~b!31. ~22!

M is the value ofx0 in Eq. ~12! in the lattice regularization.
To match the prescription of Eq.~5!, x has to be zero in

the sectorQ50. Thus, in that sectorxL5M (b), andM (b)
can be determined by measuringxL in it. This is again done

by a heating procedure@8#. The flat, zero-field configuration
@Um(x)51# can be dressed with local quantum fluctuations,
which do not change its topological content, by the usual
updating procedure at the desired value ofb. xL will soon
reach a plateau: if the sector were stable the plateau would
persist forever. Instead, a nonvanishing topological charge
can be created on the lattice, and care must be taken to elimi-
nate configurations where this happens. Again this must be
done by cooling and checks can be done to test the consis-
tency of the procedure. Figure 4 shows the determination of
M (b) for the geometric definition and for three different
field-theoretical definitions. Analogously to Eq.~15!, from
Eq. ~21! we obtain

a4x5
xL2M ~b!

Z~b!2
. ~23!

xL , M , andZ depend on the choice of the regulator as well
as on the choice of the action;a depends on the choice of the
action, butx must be independent of all of it. Figure 5 shows
that this is the case. In this figure we have used the data of
Ref. @15# for the 0- and 2-smeared field-theoretical charges.
The data for the geometric definition has been obtained on a
164 lattice with the same updating procedure~heat bath! and
compatible statistics~5000 configurations!. The result of the
simulations is in factx/LL

4 . Usually, people determineLL

by computing the string tensions/LL
2, and by assuming the

physical value fors. This allows one to expressx1/4 in
physical units. We do the same in order to compare our

FIG. 5. x in LL and MeV units for the unsubtracted geometrical
charge~stars!, subtracted geometrical charge~circles!, and 0- and
2-smeared charges~up and down triangles!.

FIG. 6. Distribution ofQL in the zero-topological charge sector
Q50 for the 0-smeared~solid line! and 2-smeared~dotted line!
topological charge densities atb52.57.

FIG. 7. The same as in Fig. 6 for the geometrical topological
charge.

TABLE I. xL , Z, and M for the 0-smeared, 1-smeared, 2-
smeared, and geometric topological charge density operators atb
52.57.

Operator 1053xL Z 1053M

geometric 16.6~3! 0.937~26! 13.26~23!

0-smeared 2.320~52! 0.240~26! 2.200~32!

1-smeared 1.010~49! 0.507~9! 0.440~18!

2-smeared 1.165~64! 0.675~8! 0.187~5!
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result with other people’s determinations. The scale is deter-
mined from the data of Refs.@17,18#. The data at 2 smear-
ings yield (x)1/451986266 MeV for the SU(2) gauge
group, the first error being statistical and the second one
coming from the error inLL . The ‘‘naı̈ve’’ unsubtracted
geometric definition does not scale, and is almost one order
of magnitude larger than the subtracted value. In the jargon
of the geometrical method, this is called an effect of dislo-
cations. It is the mixing with the identity operator which
indeed describes these dislocations, which have dimensions
lower than 4. There is, however, an additional mixing in Eq.
~22! which has the same dimension asx and still must be
subtracted: checking only by dimension is not sufficient to
ensure thatxL is indeed equal to the physicalx, as defined by
Eq. ~5!.

Figures 6 and 7 show the distribution of values forQL in
the sector with trivial topology. Its variance is, apart from a
normalization factor, a measure ofM (b). A good operator
QL(x) is one for which the subtractionM (b) is small com-
pared toxL . On the other hand, also havingZ'1 is more
reassuring than having a smallZ.

Table I showsxL , Z, andM for the 0-, 1-, and 2-smeared
field-theoretical charges and the geometric charge atb
52.57. The 2-smeared definition ofQL(x) is the best among
these choices. The geometric definition is good with respect
to Z, but is definitively bad with respect to the additive
renormalizationM .

IV. DISCUSSION

The main conclusion of the above analysis is that with
any definition of topological charge density on the lattice, an
additive renormalization for the topological susceptibility
and a multiplicative one are necessary. If properly renormal-
ized, all definitions bring about the same physical value for
x.

Confusion on this subject in the past was generated by a
mistreatment of renormalization. On the one hand, the geo-
metric definition was believed to be free from renormaliza-
tions because it always gave integer values for the total to-

pological charge. This seems to be true for the multiplicative
renormalization. Having integer values, however, does not
exempt one from having singularities at a short distance in
the product which definesxL . Figure 5 clearly proves that.

The field-theoretical definition started as a naı¨ve defini-
tion. Z was not noticed and set equal to 1;P(b) was sub-
tracted by use of perturbation theory. As a result,Z2x was
determined instead ofx itself, and found to be much smaller
than the expectation@Eq. ~16!# @19#.

The idea was then put forward that the naı¨ve definition
might not be correct and the geometric method@9,20#, the
cooling method@21,22# and the Atiyah-Singer-based meth-
ods@23# were developed. The naı¨ve method was promoted to
the field-theoretic method only after introducingZ and a cor-
rect subtractionM @6,7#. The non-perturbative determina-
tions of these constants@8#, as explained above, finally
brought about a reliable determination ofx, which is indeed
regulator independent.

The cooling method automatically performs the additive
subtraction because it givesxL50 on the trivial sector; and
also bringsZ to 1 by freezing the quantum fluctuations. The
problem with this was that instantons could be lost in the
procedure, leading to an underestimation ofx. Cooling with
improved forms of the action@24,25# seems to have elimi-
nated this problem, and indeed gives results which confirm
the field-theoretic determination. The same seems to be true
for the modern versions of the Atiyah-Singer procedure@26#.
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