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Dynamical Wilson fermions and the problem of the chiral limit in compact lattice QED

A. Hoferichter
DESY/NIC(HLRZ), Zeuthen, Germany

V. K. Mitrjushkin
Joint Institute for Nuclear Research, Dubna, Russia

M. Muller-Preussker
Institut fur Physik, Humboldt-Universitazu Berlin, Berlin, Germany

H. Stiben
Konrad-Zuse-Zentrum funformationstechnik Berlin, Berlin, Germany
(Received 17 November 1997; published 3 November 1998

We study the approach to the chiral transition liag ) in quenched and full compact lattice QED with
Wilson fermions within the confinement phase especially in the pseudoscalar sector of the theory. We show
that in the strong coupling limitg=0) both the quenched and the full theory behave partial-conservation-of-
axial-vector-current-like. However, at larg@rin contrast with the quenched theory the full one exhibits a
chiral transition most likely of first order, such that the pseudo-scalar mass has no zero-mass limit.
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[. INTRODUCTION speculations(see, e.g., Refs[8-10). The corresponding
phase transition ling3;(m) in the (8,m) plane has thor-
Chiral symmetry as a major concept in continuum quan-oughly been studied for staggered fermions within the
tum field theory has remained a problematic topic in latticequenched approximation and for the full thediy,12. The
gauge theories over the years. It is well known that for Wil-latter investigations have shown the transition becoming
son fermions chiral symmetry is explicitly broken in QCD stronger (first ordej in the zero-mass limitm—0 taken
and QED on the latticél,2]. Hopefully, it can be recovered @along the lineB.(m). However, the limitm—0 at fixed
by fine tuning the parameters in the continuum limit. Thenstrong coupling within the confinement phase<(3.) has
some linex.(B) in the phase diagram is associated with thenot been investigated in great detail even for staggered fer-
chiral limit of the theory. On the other hand, for nonvanish-mions. To our knowledge, only the quenched case has been
ing lattice spacing only a partial restoration of chiral symme-considered very recentfi2], showing that the pseudoscalar
try at k= k¢(/3) is possible with Wilson fermiong3,4]. How ~ Massm, tends to zero in accordance with PCA@artial
this mechanism of partial symmetry restoration should evenconservation of axial vector current . _
tually be integrated into the general conception of spontane- It is the analogon of the latter limit for Wilson fermions
ously broken chiral symmetry is still an open question. Ond k— «¢(8) at fixed 3< 8] which we are going to discuss in
cannot exclude that the breakdown of some other symmetrifiis paper. We shall see that the inclusion of the fermionic
group governs the dynamics of the transitiondtg) (e.g., _dete_rmlnant can change the behavior of the theory drastically
Ref. [5]). Viewed in this light the vanishing of the pseudo- in this case. _ _
scalar “pion” massm,, for k— k() is a necessary but not The outline of the paper is as follows. In Sec. Il we intro-
sufficient condition for probing the chiral limit. Another duce the model and discuss its phase diagram. Section IlI
point which sharpened the look on the chiral limit in QCD Will present the chiral limit in the confinement phase and
[6,7] is the discussion of “enhanced logs” due to quenching,d_'SCUSS the effec?s of the fermionic determinant. The conclu-
demonstrating the role of dynamical fermions in chiral prop-Sions are drawn in Sec. IV.
erties of the theory.
In this paper we are concerned with the behavior of fer-  1l. MODEL DESCRIPTION AND PHASE DIAGRAM
mionic observables close ta.(8) in the confinement phase
of compact QED with Wilson fermions. Many similarities of )
this phase with the QCD confinement make compact QED WS:
valuable test ground for lattice QCD with Wilson fermions. B
We shall confront full QED with its valence fermion ap- ZQED:J [dU][dydy]e Swl.vd), (1)
proximation.
In spite of the fact, that Monte Carlo studies of compact _
U(1) lattice gauge theory started a long time ago, the phasehereSy (U, #, 1) denotes the standard Wilson lattice action
transition between the confinement and Coulomb phases re- o
mained an interesting subject and provided new room for Sw=Sc(U)+ S (U, i, 4) 2

The partition function of 4 compact QED reads as fol-
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was not studied at all, a task which will be completed in this

paper. It is interesting to compare this phase diagram with

3" Phase phase diagrams of other lattice models with Wilson fermi-
ons, in particular with that of QCD.

The existence of a strong coupling upper phashich
corresponds to the fourth phase in Fig.wtas numerically
established for lattice QCD5], the Nambu—Jona-Lasinio
model [14] and also for the Schwinger modgl5]. This
phase was argued to show parity-flavor breaking, which
might explain the pion mass to vanish fer- .. But, the
existence of a parity-flavor breaking phase may be a pure
<2 transiyy, 5 strong coupling artifactsee Ref.[16]). The hope that the

T 18 cusp of this phase could be extended into the weak coupling

region is based on an analogy with the Gross-Neveu model

with Nego= [5]. However,N;=2 QCD on a symmetric
lattice does not exhibit such a phase o« 6/g2=5.0 [17]
and the temperature dependence of the tip position of the
cusp of this phase turns out to be rather weak, such that the
cusp seems to remain in the strong coupling redib8l.
5 Whether elongated lattices can finally “push” the cusp into
’ © the weak coupling regiofil9], remains an open question.

From this reasoning it is interesting to examine the
mechanism of chiral symmetry breaking also in four-
dimensional4D) compact lattice QED with dynamical Wil-
son fermions taken into account. It looks as though the mere
existence of the strong coupling upper phase is model inde-

pendent.
SG(U):ﬂ'X_Z (1—cosby.,.,), ©) In this paper we want to explore the behavior of the
e theory near to the chiral transition more thoroughly. We are
going to study thec dependence of theseudgcalar observ-
ables, in particular the pion norid and the masm,, of the

1/4

Confinement Phase

Coulomb Phase

0

0

FIG. 1. The phase diagram of the compact lattice QED with
Wilson fermions.

consisting of the plaquette action

and the fermionic parSF(U,Z, )

2 pseudoscalar particle as given in the following.
SF=21 Xzy YM WY, The “pion norm”
1
o o - . -1 -1
Myy=1—1-[8ys 5 (1= 7,)- Uy, (D)= 7y (THM ™ ysM ™ ys))e, (5
+Oyu i (Aty) U= 1, (@

is a good indicator for small eigenvalues of the fermionic
matrix. The mass of the pseudoscalar partioleis extracted
with 8= 1/95, e, andU,, =exp(6,),6x, € (—m,m] represent  from the nonsinglet pseudoscalar zero-momentum correlator
the link fields. The plaquette angles, ,, in Eq. (3) are
given by 6. ,,= Oy ,+ Oy = Oxi: u— Ox. - In the fer- 1 _ Lo .
mionic part of the actionM,, denotes Wilson’s fermionic I'(r)=- EE (bysp(7,X) - hysp(0y))
matrix with the hopping parameterand the flavor—index. s Xy

The phase diagram of this model in the presence of dy-
namical fermions has been studied in Rdf3] and its con-
jectured form is shown qualitatively in Fig. 1. Within the
region of values & x=<0.30 the existence of four phases has

been argued for. The transition region between the third anth Egs. (5), (6) ()¢ indicates averaging over gauge field
the fourth phase has not yet been studied in great detail. gonfigurations, and/=N,-N? is the number of sites. Sp

thorough study of this area is left for the future. The line means the trace with respect to the Dirac indices. Other ob-
x:(B) separates both the confinement phase f3< 8y( )

servables such &9,,y—the density of DeGrand-Toussaint
with B¢(0)=1.01] and the Coulomb phasg¥ B,) from  monopoleg20}—and the photon correlator have also been
two upper phaseévhich we called the third phase at weak determined.
and the fourth phase at strong couplingn Ref. [13] we Formally we define the bare fermion mass parametgr
already have reported on a discontinuity of the scalar conby
densate() on the line between the pointg3{,«;) and
(B,,k>) (see Fig. 1giving a first indication that the transi- 1

tion there might be of first order. But the pseudoscalar mass quf

%l
m@H
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TABLE I. Compilation of different parametefsee text for the

dynamical and quenched theories &0 and 3=0.8 on an §
X 16 lattice.

K¢ B CO Cl

0.2456) 4.875)
0.2502) 4.914)
0.1832)
0.2171)

B=0.0 dynamical
guenched
dynamical

guenched

0.8951)
0.9962)

0.8491)

0.80(1)
5=0.8
3.423)

0.942) 0.721)

follows the m; dependence of the full pion norgil) very

well, even quantitatively. Asn,— 0+ the singularity of1I)

at B=0 is well described in both cases by E) with val-

ues ofCq,C, listed in Table I. Note thaC, and C, differ
somewhat for the quenched and dynamical cases and could
not be forced to coincide by shifting.. The quenched and
dynamical theories nevertheless exhibit the same functional
dependence omy; whenmg— 0.

For k= k. the averages of fermionic bulk observables in
the quenched approximation become poorly defined due to
large fluctuations caused by “exceptional” configurations
[23,24. In the theory with dynamical fermions we also ob-

m serve increasing fluctuations of, e.dl, when « is tuned
K towards «. from below. We were able to proceed to
=0.242 (my~0.0253) atB=0, before being faced with se-
rious problems with the acceptance rate of the HMC method.
The situation changes drastically when the gauge cou-

pling B is increased. By examining time histories Idfand
In this work we discuss data from®& 16 and 18x32  other observables g8=0.8 we observe the formation of

lattices for different values of3 within the confinement metastable states in a “critical” region around, in the
phase. For the production of dynamical gauge field configupresence of dynamical fermions. Figur¢aj3illustrates a
rations we employed a Cray-T3D implementation of the hy-clearly double peaked distribution ®f close tox, for the
brid Monte Carlo(HMC) method. A detailed presentation of case of dynamical fermions.

algorithmic issues, such the tuning of the HMC parameters As an example concerning the behavior of other observ-
when approaching will be published elsewhere. ables, the dependence(@f,oy On « is depicted in Fig. @).

The evolution of {pnoy resembles the situation of the
confinement-deconfinement transitionBatfor a sufficiently
small fixedx and varyingg [13].

First, we shall discuss the behavior of the bulk observable Measurements of the effective photon energy extracted

(IT) when approaching the line,(8) at fixed 8 within the  from plaquette-plaquette correlators for nonzero momentum

range G<B<p, (confinement phageAs in our previous confirm that in the case of dynamical fermions the system

work for representativ@ values we have chosgg=0.8 and  undergoes a confinement-deconfinement transition, &ee

the strong coupling limi3=0. In the latter limit the com- Ref. [13]). With increasingx the effective energy of the

parison with analytical results is possiliieg., Refs[3,21]).  photon rapidly decreases arourg and becomes well con-
Provided the pseudoscalar mass vanishesnigr-0 it sistent with the lattice dispersion relation for a zero—mass

will yield the dominant contribution to the pion noril) photon.

~1/mf,. In case of a PCAC-like relation betwesm, andm, We used further “order parameters” to determingand

the pion norm can be expressed in the following form: to make sure that there are no other transition points different

from that within the investigated range. For example, the
variancea?(I1) which is a suitable parameter to locate the
line k.(B) within the Coulomb phasfl 3] peaks at the same
Kc.
whereC,>0—up to a factor—is the subtracted chiral con- In Fig. 4 as counterpart of Fig. 2 we confront the depen-
densatd22] (see also Ref.23]). C;=(II,,) comes from the dence of(II) onm, in the quenched approximation with the
contribution of the massive modes. corresponding data when dynamical fermions are taken into
In Fig. 2 data for the quenched and dynamical cases account. The general features of the valence approximation
B=0 are presented to view. The quenched approximatiomt 3=0.8 are the same as A&=0. (II) has a singularity for

FIG. 2. The pion norm{II) vs m, at 3=0. The curved lines
correspond to Eq8) with Cy,C, given in Table 1.

For the determination of the. see below.

lll. EFFECTS OF DYNAMICAL WILSON FERMIONS

Co
(=5 +C1 M0, (8)
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FIG. 3. The unnormalized distribution dl at 8=0.8 in the  values ofx, obtained for the dynamical and the quenched
vicinity of k. () and(pnon in dependence ot at the same value cases on an$< 16 lattice. The extrapolated values if for
of B8 (b) both for the theory with dynamical fermions. the quenched case are well consistent with the prediction at

strong couplind 3]. In both, quenched and dynamical cases

my— 0+ described very well by Eq8) (dashed line in Fig. we observe the following d_ependencemﬁ, on the hopping
4) with parameter<C,, C, given in Table I. However, the Parameter when approachirg from below
effect of the fermionic determinant is now seen as a qualita-
tive change in the behavior of the pion norm, which does not
behave as-1/m, but rather exhibits a finite discontinuity

accompanied by a met'astable be'ha‘{'Zixir Fig. ({a)} arou'nd. which in this limit transforms into a PCAC-like relation
k. As shown in the inset of this figure the discontinuity

2 ; .
becomes even larger when the lattice size is increased, harg(?tweenran and the bare fermion mass,
ening that it will persist in the infinite volume limit. In the
guenched theory averagesléfbecome statistically not well

defined fork=«, as in the case op=0, while in the  The corresponding slope for the quenched and full theo-
dyngmlqal case a§=0.8 there is no problem to go beyond ries coincide within the error bafsee Table)l Thus, Fig. 5
K¢ (i.e., into the third phasfL3]). The dependence ¢fl) on  suggests a zero-mass pseudoscalar particle exists. However,

K (respectivelymg) is not symmetric aroune.. this is a necessary but not a sufficient prerequisite for the
To substantiate the emerging picture g=0 and B definition of the chiral limit.

=0.8 we will discuss the evolution of the pseudoscalar mass The corresponding behavior ofm> at =0.8 for

m, when k— .. We present in Fig. 5 the dependence ofquenched and dynamical fermions is plotted in Fig. 6. From
me on « for the full and quenched theories on aA>8l6  the inset of Fig. 6 it can be seen, that as long as the quenched
lattice atB=0. The quenched data farvery close tox. are  theory is considered the situation is fully compatible with
obtained by an improved estimator of, [23] in order to  Eq. (9). Thus Eq.(10) holds as in the case g8=0. Con-
increase the signal-to-noise ratio. Since the existence of eerning dynamical fermions, again the situationgat 0.8
massless pseudoscalar particle is predicted by strong coappears to be in sharp contrast to t8e=0 and to the
pling argumentg3] we extrapolate our dynamical data for quenched cases, as could be expected from the properties of
me linearly to zero in order to determine.,(8=0) as we the pion norm. By approaching the “critical” value.(3)

have done in the quenched cd488]. In Table | we list the from below with dynamical fermions, the dependence of

1—5), KS K¢, 9

m2~
Kc

mZ=B-my, mg—0+. (10)
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FIG. 5. Thex dependence ahZ for the quenched and dynami- 0.181 0.182 0.183 o o184
cal theories a3=0 on an §x 16 lattice. The broken lines repre-
sent linear fits. FIG. 6. The behavior of? aroundx, at 8=0.8. Thex scale of

the smaller plot is condensed in order to permit a direct comparison
between the dynamical and quenched data. The straight line corre-

mZ. is not linear anymore, i.e., is hot compatible with £®j. . .
” y P £ sponds to a linear fit of the quenched data.

Moreover, close tac.(8) m, has a comparatively large fi-

nite minimal value, which would imply that a zero-mass s .. compared to the quenched aporoximation does not
pseudoscalar patrticle is not contained in the spectrum of thg,__ ¢ P 9 PP

theory at this particular coupling. Increasirdeyondx,. the qhange. Our data suggest, thagat 0 the pseudoscalar par-
. ; ; . .ticle becomes massless when- k.. .
pseudoscalar mass starts to rise again. Note that in the vicin- At B=0.8 the presence of the dynamicisea”) fermi-
ity of k. the dependence of the pseudoscalar masg @ o P T
different for k> .. and k< ... in accordance with the dis- °"S drastically changes the transition. There we have found a
cussion of the icgn norm be?‘c,)re As Fid. 6 Shows increasintransition which cannot be associated with the zero-mass
P i 9. ' mit of a pseudoscalar particle anymore, in sharp contrast to

tmhe lattice size does not qualitatively change the behavior O e quenched case.

s Lo o Naively, one would expect that the chiral limit could be
The situation ai3=0.6 looks similar to that observed at c ) ; !
5=0.8. However, in the full theory the minimum of the established everywhere in the confinement phase when ap

“pion” mass comes closer to zero, This comes not ur]ex_proaching the “critical” line x;(B). This is not the case. At

i . ; . B=0 we cannot exclude that the upper phaseatk. cor-
gfgsihzlg%wi ;ﬂi?] Izi?gpr(iachmg the endpoint of the fir esponds to the broken parity flavor, which explains the van-
2, 2 . .

ishing of the pion mass at. .

It might be interesting to carry out an analogous investi-
IV. CONCLUSIONS AND DISCUSSION gation for staggered fermions. However, this does not mean
that wea priori expect a universal behavior for the chiral

We have studied the approach ig(B) at different 8 |imit of strong coupling lattice QED with different discreti-
values within the confinement phase of the compact latticg 5tions of the fermion fields.

QED with Wilson fermions comparing the full theory with
its quenched approximation. We have shown the importance
of vacuum polarization effects due to dynamical fermions in
the context of the chiral limit. The calculations have been performed on Cray-T3D,

In the strong coupling limi{8=0 the main effect of dy- Cray-YMP, Cray-J90 at Konrad-Zuse-Zentrum Berlin and on
namical fermions seems to be a renormalization of the “criti-Convex-C3820 at the computer center of Humboldt Univer-
cal” value kg, k¥ «3“®". The functional dependence of sity Berlin. This work was supported by the Deutsche Fors-
the studied observables an(respectivelym,) in the limit ~ chungsgemeinschaft under research grant Mu 932/1-4.
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