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We study the approach to the chiral transition linekc(b) in quenched and full compact lattice QED with
Wilson fermions within the confinement phase especially in the pseudoscalar sector of the theory. We show
that in the strong coupling limit (b50) both the quenched and the full theory behave partial-conservation-of-
axial-vector-current-like. However, at largerb in contrast with the quenched theory the full one exhibits a
chiral transition most likely of first order, such that the pseudo-scalar mass has no zero-mass limit.
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I. INTRODUCTION

Chiral symmetry as a major concept in continuum quan-
tum field theory has remained a problematic topic in lattice
gauge theories over the years. It is well known that for Wil-
son fermions chiral symmetry is explicitly broken in QCD
and QED on the lattice@1,2#. Hopefully, it can be recovered
by fine tuning the parameters in the continuum limit. Then
some linekc(b) in the phase diagram is associated with the
chiral limit of the theory. On the other hand, for nonvanish-
ing lattice spacing only a partial restoration of chiral symme-
try at k5kc(b) is possible with Wilson fermions@3,4#. How
this mechanism of partial symmetry restoration should even-
tually be integrated into the general conception of spontane-
ously broken chiral symmetry is still an open question. One
cannot exclude that the breakdown of some other symmetry
group governs the dynamics of the transitions atkc(b) ~e.g.,
Ref. @5#!. Viewed in this light the vanishing of the pseudo-
scalar ‘‘pion’’ massmp for k→kc(b) is a necessary but not
sufficient condition for probing the chiral limit. Another
point which sharpened the look on the chiral limit in QCD
@6,7# is the discussion of ‘‘enhanced logs’’ due to quenching,
demonstrating the role of dynamical fermions in chiral prop-
erties of the theory.

In this paper we are concerned with the behavior of fer-
mionic observables close tokc(b) in the confinement phase
of compact QED with Wilson fermions. Many similarities of
this phase with the QCD confinement make compact QED a
valuable test ground for lattice QCD with Wilson fermions.
We shall confront full QED with its valence fermion ap-
proximation.

In spite of the fact, that Monte Carlo studies of compact
U~1! lattice gauge theory started a long time ago, the phase
transition between the confinement and Coulomb phases re-
mained an interesting subject and provided new room for

speculations~see, e.g., Refs.@8–10#!. The corresponding
phase transition linebc(m) in the (b,m) plane has thor-
oughly been studied for staggered fermions within the
quenched approximation and for the full theory@11,12#. The
latter investigations have shown the transition becoming
stronger ~first order! in the zero-mass limitm→0 taken
along the linebc(m). However, the limitm→0 at fixed
strong coupling within the confinement phase (b,bc) has
not been investigated in great detail even for staggered fer-
mions. To our knowledge, only the quenched case has been
considered very recently@12#, showing that the pseudoscalar
massmp tends to zero in accordance with PCAC~partial
conservation of axial vector current!.

It is the analogon of the latter limit for Wilson fermions
[k→kc(b) at fixedb,bc] which we are going to discuss in
this paper. We shall see that the inclusion of the fermionic
determinant can change the behavior of the theory drastically
in this case.

The outline of the paper is as follows. In Sec. II we intro-
duce the model and discuss its phase diagram. Section III
will present the chiral limit in the confinement phase and
discuss the effects of the fermionic determinant. The conclu-
sions are drawn in Sec. IV.

II. MODEL DESCRIPTION AND PHASE DIAGRAM

The partition function of 4d compact QED reads as fol-
lows:

ZQED5E @dU#@dc̄dc#e2SW~U,c̄,c!, ~1!

whereSW(U,c̄,c) denotes the standard Wilson lattice action

SW5SG~U !1SF~U,c̄,c! ~2!
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consisting of the plaquette action

SG~U !5b• (
x;m.n

~12cosux;mn!, ~3!

and the fermionic partSF(U,c̄,c)

SF5(
f 51

2

(
x,y

c̄x
fMxycy

f ,

Mxy[1̂2k•@dy,x1m̂•~ 1̂2gm!•Uxm

1dy,x2m̂•~ 1̂1gm!•Ux2m̂,m
†

#, ~4!

with b51/gbare
2 , andUxm5exp(iuxm),uxmP(2p,p# represent

the link fields. The plaquette anglesux; mn in Eq. ~3! are
given by ux; mn5ux; m1ux1m̂; n2ux1 n̂; m2ux; n . In the fer-
mionic part of the actionMxy denotes Wilson’s fermionic
matrix with the hopping parameterk and the flavor–indexf .

The phase diagram of this model in the presence of dy-
namical fermions has been studied in Ref.@13# and its con-
jectured form is shown qualitatively in Fig. 1. Within the
region of values 0<k<0.30 the existence of four phases has
been argued for. The transition region between the third and
the fourth phase has not yet been studied in great detail. A
thorough study of this area is left for the future. The line
kc(b) separates both the confinement phase [0<b,b0(k)
with b0(0).1.01] and the Coulomb phase (b.b0) from
two upper phases~which we called the third phase at weak
and the fourth phase at strong coupling!. In Ref. @13# we
already have reported on a discontinuity of the scalar con-
densatê c̄c& on the line between the points (b1 ,k1) and
(b2 ,k2) ~see Fig. 1! giving a first indication that the transi-
tion there might be of first order. But the pseudoscalar mass

was not studied at all, a task which will be completed in this
paper. It is interesting to compare this phase diagram with
phase diagrams of other lattice models with Wilson fermi-
ons, in particular with that of QCD.

The existence of a strong coupling upper phase~which
corresponds to the fourth phase in Fig. 1! was numerically
established for lattice QCD@5#, the Nambu–Jona-Lasinio
model @14# and also for the Schwinger model@15#. This
phase was argued to show parity-flavor breaking, which
might explain the pion mass to vanish fork→kc . But, the
existence of a parity-flavor breaking phase may be a pure
strong coupling artifact~see Ref.@16#!. The hope that the
cusp of this phase could be extended into the weak coupling
region is based on an analogy with the Gross-Neveu model
with Ncolor5` @5#. However,Nf52 QCD on a symmetric
lattice does not exhibit such a phase forb56/g2*5.0 @17#
and the temperature dependence of the tip position of the
cusp of this phase turns out to be rather weak, such that the
cusp seems to remain in the strong coupling region@18#.
Whether elongated lattices can finally ‘‘push’’ the cusp into
the weak coupling region@19#, remains an open question.

From this reasoning it is interesting to examine the
mechanism of chiral symmetry breaking also in four-
dimensional~4D! compact lattice QED with dynamical Wil-
son fermions taken into account. It looks as though the mere
existence of the strong coupling upper phase is model inde-
pendent.

In this paper we want to explore the behavior of the
theory near to the chiral transition more thoroughly. We are
going to study thek dependence of thepseudoscalar observ-
ables, in particular the pion normP and the massmp of the
pseudoscalar particle as given in the following.

The ‘‘pion norm’’

^P&5
1

4V
•^Tr~M21g5M21g5!&G , ~5!

is a good indicator for small eigenvalues of the fermionic
matrix. The mass of the pseudoscalar particlemp is extracted
from the nonsinglet pseudoscalar zero-momentum correlator

G~t!52
1

Ns
6
•(

xW ,yW
^c̄g5c~t,xW !•c̄g5c~0,yW !&

[
1

Ns
6
•(

xW ,yW
^Sp~M xy

21g5M yx
21g5!&G . ~6!

In Eqs. ~5!, ~6! ^ &G indicates averaging over gauge field
configurations, andV5Nt•Ns

3 is the number of sites. Sp
means the trace with respect to the Dirac indices. Other ob-
servables such as^rmon&—the density of DeGrand-Toussaint
monopoles@20#—and the photon correlator have also been
determined.

Formally we define the bare fermion mass parametermq
by

mq5
1

2S 1

k
2

1

kc~b! D . ~7!

FIG. 1. The phase diagram of the compact lattice QED with
Wilson fermions.
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For the determination of thekc see below.
In this work we discuss data from 83316 and 163332

lattices for different values ofb within the confinement
phase. For the production of dynamical gauge field configu-
rations we employed a Cray-T3D implementation of the hy-
brid Monte Carlo~HMC! method. A detailed presentation of
algorithmic issues, such the tuning of the HMC parameters
when approachingkc will be published elsewhere.

III. EFFECTS OF DYNAMICAL WILSON FERMIONS

First, we shall discuss the behavior of the bulk observable
^P& when approaching the linekc(b) at fixedb within the
range 0<b,b0 ~confinement phase!. As in our previous
work for representativeb values we have chosenb50.8 and
the strong coupling limitb50. In the latter limit the com-
parison with analytical results is possible~e.g., Refs.@3,21#!.

Provided the pseudoscalar mass vanishes formq→0 it
will yield the dominant contribution to the pion norm̂P&
;1/mp

2 . In case of a PCAC-like relation betweenmp andmq

the pion norm can be expressed in the following form:

^P&5
C0

mq
1C1 , mq→0, ~8!

whereC0.0—up to a factor—is the subtracted chiral con-
densate@22# ~see also Ref.@23#!. C15^Pm& comes from the
contribution of the massive modes.

In Fig. 2 data for the quenched and dynamical cases at
b50 are presented to view. The quenched approximation

follows the mq dependence of the full pion norm̂P& very
well, even quantitatively. Asmq→01 the singularity of̂ P&
at b50 is well described in both cases by Eq.~8! with val-
ues ofC0 ,C1 listed in Table I. Note thatC0 and C1 differ
somewhat for the quenched and dynamical cases and could
not be forced to coincide by shiftingkc . The quenched and
dynamical theories nevertheless exhibit the same functional
dependence onmq whenmq→0.

For k*kc the averages of fermionic bulk observables in
the quenched approximation become poorly defined due to
large fluctuations caused by ‘‘exceptional’’ configurations
@23,24#. In the theory with dynamical fermions we also ob-
serve increasing fluctuations of, e.g.,P when k is tuned
towards kc from below. We were able to proceed tok
50.242 (mq;0.0253) atb50, before being faced with se-
rious problems with the acceptance rate of the HMC method.

The situation changes drastically when the gauge cou-
pling b is increased. By examining time histories ofP and
other observables atb50.8 we observe the formation of
metastable states in a ‘‘critical’’ region aroundkc in the
presence of dynamical fermions. Figure 3~a! illustrates a
clearly double peaked distribution ofP close tokc for the
case of dynamical fermions.

As an example concerning the behavior of other observ-
ables, the dependence of^rmon& on k is depicted in Fig. 3~b!.
The evolution of ^rmon& resembles the situation of the
confinement-deconfinement transition atb0 for a sufficiently
small fixedk and varyingb @13#.

Measurements of the effective photon energy extracted
from plaquette-plaquette correlators for nonzero momentum
confirm that in the case of dynamical fermions the system
undergoes a confinement-deconfinement transition atkc ~see
Ref. @13#!. With increasingk the effective energy of the
photon rapidly decreases aroundkc and becomes well con-
sistent with the lattice dispersion relation for a zero–mass
photon.

We used further ‘‘order parameters’’ to determinekc and
to make sure that there are no other transition points different
from that within the investigatedk range. For example, the
variances2(P) which is a suitable parameter to locate the
line kc(b) within the Coulomb phase@13# peaks at the same
kc .

In Fig. 4 as counterpart of Fig. 2 we confront the depen-
dence of̂ P& on mq in the quenched approximation with the
corresponding data when dynamical fermions are taken into
account. The general features of the valence approximation
at b50.8 are the same as atb50. ^P& has a singularity for

FIG. 2. The pion norm̂ P& vs mq at b50. The curved lines
correspond to Eq.~8! with C0 ,C1 given in Table I.

TABLE I. Compilation of different parameters~see text! for the
dynamical and quenched theories atb50 and b50.8 on an 83

316 lattice.

kc B C0 C1

b50.0 dynamical 0.2450~6! 4.87~5! 0.895~1! 0.88~1!

quenched 0.2502~1! 4.91~4! 0.996~2! 0.80~1!

b50.8 dynamical 0.1832~3!

quenched 0.2171~1! 3.42~3! 0.94~2! 0.72~1!
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mq→01 described very well by Eq.~8! ~dashed line in Fig.
4! with parametersC0 , C1 given in Table I. However, the
effect of the fermionic determinant is now seen as a qualita-
tive change in the behavior of the pion norm, which does not
behave as;1/mq but rather exhibits a finite discontinuity
accompanied by a metastable behavior@cf. Fig. 3~a!# around
kc . As shown in the inset of this figure the discontinuity
becomes even larger when the lattice size is increased, hard-
ening that it will persist in the infinite volume limit. In the
quenched theory averages ofP become statistically not well
defined for k*kc , as in the case ofb50, while in the
dynamical case atb50.8 there is no problem to go beyond
kc ~i.e., into the third phase@13#!. The dependence of^P& on
k ~respectively,mq) is not symmetric aroundkc .

To substantiate the emerging picture atb50 and b
50.8 we will discuss the evolution of the pseudoscalar mass
mp when k→kc . We present in Fig. 5 the dependence of
mp

2 on k for the full and quenched theories on an 83316
lattice atb50. The quenched data fork very close tokc are
obtained by an improved estimator ofmp @23# in order to
increase the signal-to-noise ratio. Since the existence of a
massless pseudoscalar particle is predicted by strong cou-
pling arguments@3# we extrapolate our dynamical data for
mp

2 linearly to zero in order to determinekc(b50) as we
have done in the quenched case@23#. In Table I we list the

values ofkc obtained for the dynamical and the quenched
cases on an 83316 lattice. The extrapolated values ofkc for
the quenched case are well consistent with the prediction at
strong coupling@3#. In both, quenched and dynamical cases
we observe the following dependence ofmp

2 on the hopping
parameter when approachingkc from below

mp
2 ;S 12

k

kc
D , k<kc , ~9!

which in this limit transforms into a PCAC–like relation
betweenmp

2 and the bare fermion massmq :

mp
2 5B•mq , mq→01. ~10!

The corresponding slopesB for the quenched and full theo-
ries coincide within the error bars~see Table I!. Thus, Fig. 5
suggests a zero-mass pseudoscalar particle exists. However,
this is a necessary but not a sufficient prerequisite for the
definition of the chiral limit.

The corresponding behavior ofmp
2 at b50.8 for

quenched and dynamical fermions is plotted in Fig. 6. From
the inset of Fig. 6 it can be seen, that as long as the quenched
theory is considered the situation is fully compatible with
Eq. ~9!. Thus Eq.~10! holds as in the case ofb50. Con-
cerning dynamical fermions, again the situation atb50.8
appears to be in sharp contrast to theb50 and to the
quenched cases, as could be expected from the properties of
the pion norm. By approaching the ‘‘critical’’ valuekc(b)
from below with dynamical fermions, thek dependence of

FIG. 3. The unnormalized distribution ofP at b50.8 in the
vicinity of kc ~a! and^rmon& in dependence ofk at the same value
of b ~b! both for the theory with dynamical fermions.

FIG. 4. Counterpart to Fig. 2 atb50.8.
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mp
2 is not linear anymore, i.e., is not compatible with Eq.~9!.

Moreover, close tokc(b) mp has a comparatively large fi-
nite minimal value, which would imply that a zero-mass
pseudoscalar particle is not contained in the spectrum of the
theory at this particular coupling. Increasingk beyondkc the
pseudoscalar mass starts to rise again. Note that in the vicin-
ity of kc the dependence of the pseudoscalar mass onk is
different for k.kc andk,kc , in accordance with the dis-
cussion of the pion norm before. As Fig. 6 shows, increasing
the lattice size does not qualitatively change the behavior of
mp .

The situation atb50.6 looks similar to that observed at
b50.8. However, in the full theory the minimum of the
‘‘pion’’ mass comes closer to zero. This comes not unex-
pected, since we are approaching the endpoint of the first
order line at (b2 ,k2) in Fig. 1.

IV. CONCLUSIONS AND DISCUSSION

We have studied the approach tokc(b) at different b
values within the confinement phase of the compact lattice
QED with Wilson fermions comparing the full theory with
its quenched approximation. We have shown the importance
of vacuum polarization effects due to dynamical fermions in
the context of the chiral limit.

In the strong coupling limitb50 the main effect of dy-
namical fermions seems to be a renormalization of the ‘‘criti-
cal’’ value kc , kc

dynÞkc
quen. The functional dependence of

the studied observables onk ~respectively,mq) in the limit

k→kc compared to the quenched approximation does not
change. Our data suggest, that atb50 the pseudoscalar par-
ticle becomes massless whenk→kc .

At b50.8 the presence of the dynamical~‘‘sea’’ ! fermi-
ons drastically changes the transition. There we have found a
transition which cannot be associated with the zero-mass
limit of a pseudoscalar particle anymore, in sharp contrast to
the quenched case.

Naively, one would expect that the chiral limit could be
established everywhere in the confinement phase when ap-
proaching the ‘‘critical’’ linekc(b). This is not the case. At
b50 we cannot exclude that the upper phase atk.kc cor-
responds to the broken parity flavor, which explains the van-
ishing of the pion mass atkc .

It might be interesting to carry out an analogous investi-
gation for staggered fermions. However, this does not mean
that we a priori expect a universal behavior for the chiral
limit of strong coupling lattice QED with different discreti-
zations of the fermion fields.
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FIG. 5. Thek dependence ofmp
2 for the quenched and dynami-

cal theories atb50 on an 83316 lattice. The broken lines repre-
sent linear fits. FIG. 6. The behavior ofmp

2 aroundkc at b50.8. Thek scale of
the smaller plot is condensed in order to permit a direct comparison
between the dynamical and quenched data. The straight line corre-
sponds to a linear fit of the quenched data.
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