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We show how to perform a resummation, to all orders in perturbation theory, of a certain class of gauge-
invariant diagrams in lattice QCD. These diagrams are often largely responsible for lattice artifacts. Our
resummation leads to an improved perturbative expansion. Applied to a number of cases of interest, this
expansion yields results remarkably close to corresponding nonperturbative estimates.
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I. INTRODUCTION

Ever since the earliest days of lattice field theory, one
problem present in most numerical simulations has been the
calculation of corrections induced by renormalization on
Monte Carlo results. Although this notorious problem has
not as yet been adequately dealt with, several methods have
been used to address it: To begin with, perturbation theory
provides in principle a methodical means of calculating, or-
der by order in the coupling, renormalization functions, op-
erator mixing coefficients, etc. Its drawbacks lie in its
asymptotic nature and that it is a formidable task on the
lattice, which places severe limitations on the order to which
it can be carried out; indeed, at present, exact calculations in
perturbative lattice QCD reach only two loops~for two-point
diagrams! @1–3# and three loops~for vacuum diagrams! @4#.
Various nonperturbative, numerical approaches to renormal-
ization functions have also been devised and there has been
recent progress both in their range of applicability and in
their precision@5–7#. Finally, much effort has also gone in
studying improved actions~which may, among other advan-
tages, show improved renormalization behavior! @8,9# and
improved or boosted perturbation theory@10#.

In this paper, we present an improvement of lattice per-
turbation theory, which results from a resummation to all
orders of a certain class of diagrams, dubbed ‘‘cactus’’ dia-
grams. Briefly stated, these are tadpole diagrams which be-
come disconnected if any one of their vertices is removed
~see Fig. 1!. Our original motivation was the well-known
observation of ‘‘tadpole dominance’’ in lattice perturbation
theory ~see, e.g.,@11#!. This observation must clearly be
taken with a grain of salt: One-sided inclusion of tadpoles
can ruin desirable partial cancellations between tadpole and
nontadpole diagrams; worse, their contribution is gauge de-
pendent. The class of terms we propose to resum circum-
vents the latter objection since, as we shall see, it is gauge
invariant; it also overcomes the former objection in known
cases.

Cactus resummation may be applied either to bare quan-
tities or to quantities which have been calculated to a given
order in perturbation theory; thus contributions which are not
included in the resummation can be reintroduced in a sys-
tematic manner.

In Sec. II we present our calculation, leading to expres-
sions for a dressed propagator and dressed vertices of inter-
est; some derivations and technical details are relegated to
the Appendixes. In Sec. III, we proceed to use these expres-
sions to calculate various renormalization functions and
compare our results with other methods: We find a remark-
able improvement in many cases.

II. CALCULATION

A. Dressed propagator

Consider the standard Wilson action for SU(N) lattice
gauge fields:

S5
1

g0
2 (

x,mn
Re tr~12Ux,mn

h !. ~1!

Ux,mn
h is the usual product of link variables around a

plaquette in them-n plane with the origin atx; in standard
notation it reads

Ux,mn
h 5eig0Ax,meig0Ax1m,ne2 ig0Ax1n,me2 ig0Ax,n,

Ax,m5Ax,m
a Ta. ~2!
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By the Baker-Campbell-Hausdorff~BCH! formula we have

Ux,mn
h 5exp$ ig0~Ax,m1Ax1m,n2Ax1n,m2Ax,n!1O~g0

2!%

[exp$ ig0Fx,mn
~1! 1 ig0

2Fx,mn
~2! 1 ig0

3Fx,mn
~3! 1O~g0

4!%. ~3!

The diagrams which we propose to resum to all orders
will be cactus diagrams made of vertices containingFx,mn

(1) .

Let us see how such diagrams will dress the gluon propaga-
tor; we write

~4!

where the one-particle irreducible piece is given by the re-
cursive equation

~5!

Now, the fact that the vertices involved in the above contain onlyFx,mn
(1) implies that the longitudinal parts of all propagators

will always cancel. As we will see, this fact will lead to the result that the effect of dressing is the same in all covariant gauges.
We will thus denote by a thick~thin! solid line the transverse dressed~bare! propagator.

From Eq.~5! there follows
~6!

Indeed, the dressed propagator will become a multiple of the bare transverse one, where the factorw(g0) will depend ong0
andN, but not on the momentum. Let us now turn the diagrammatic relations~4!, ~5! into an algebraic equation forw(g0);
from Eq. ~4! we have

~7!

and from Eq.~5! we find

~8!

It is crucial to verify at this stage that all diagrams contained above appear with the same combinatorial factors as in the
ordinary perturbative expansion; this is indeed the case.

To proceed, we must evaluate the generic tadpole appearing in Eq.~8!; this comes from ann-point vertex of the action, in
which n22 lines have been pairwise contracted. Before contraction, the vertex reads

2S→
1

n!g0
2 (

x,mn
~ ig0!ntr$~Fx,mn

~1! !n%

5
~ ig0!n

n!g0
2 (

x,mn
E dq1¯dqn@ q̂1mAn

a1~q1!2q̂1nAm
a1~q1!#¯@ q̂nmAn

an~qn!2q̂nnAm
an~qn!#ei ~q11¯1qn!xtr$Ta1Ta2

¯Tan% ~9!

@ q̂m52 sin(qm/2)#. At contraction there will be (n22)/2 loop integrations giving

1

~2p!4 E d4q
2q̂m

2

q̂2
5

1

2
. ~10!
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For the contraction of the SU(N) generators we first define and evaluateF(n;N), which is the sum over all complete
pairwise contractions of tr$Ta1Ta2

¯Tan%:

F~n;N!5
1

2n/2~n/2!! (
PPSn

da1a2
da3a4

¯dan21an
tr$TP~a1!TP~a2!

¯TP~an!% ~11!

@F(2n11;N)[0; Sn is the permutation group ofn objects#. In Appendix A we calculate the generating function ofF(n;N):

G~z;N![ (
n50

`
zn

n!
F~n;N!, whence F~n;N!5

dn

dzn G~z;N!uz50 . ~12!

We find

G~z;N!5ez2~N21!/~4N!LN21
1 ~2z2/2! ~13!

(Lb
a are Laguerre polynomials!. In the present case, two legs are left external, so that the color contraction gives

nF~n;N!

2~N221!
. ~14!

Substituting Eqs.~10! and ~14! in Eq. ~9!, we obtain, for the tadpole,

~ ig0!n

n!g0
2 (

x,mn
E dq1dq2@ q̂1mAn

a~q1!2q̂1nAm
a ~q1!#@ q̂2mAn

a~q2!2q̂2nAm
a ~q2!#ei ~q11q2!x

nF~n;N!

2~N221! S 1

2D ~n22!/2

5 U 2~ ig0!n

~n21!!g0
2

1

N221
F~n;N!S 1

2D ~n22!/2

. ~15!

We can now sum up all terms in Eq.~8!; we obtain

w~g0!5 (
n54,6,8,...

1

@12w~g0!#~n22!/2

2~ ig0!n

~n21!!g0
2

1

N221
F~n;N!S 1

2D ~n22!/2

5H (
n50

`
1

@222w~g0!#n/2

~ ig0!n

n!
F~n11;N!J 2~ ig0!

g0
2~N221!

@222w~g0!#1/211. ~16!

Comparing with the definition ofG(z;N), Eq. ~12!, we see that the expression in curly brackets above is simplyG8(z;N), the
derivative ofG(z;N). Equation~16! now reads

zG8~z;N!uz5~ ig0!/@222w~g0!#1/252
g0

2~N221!

4
. ~17!

From our result forG(z;N), Eq. ~13!, we see that

zG8~z;N!5ez2~N21!/~4N!F2
N21

N
LN21

1 S 2
z2

2 D22LN22
2 S 2

z2

2 D G S 2
z2

2 D . ~18!

This allows us to make explicit Eq.~17!:

ue2u~N21!/~2N!FN21

N
LN21

1 ~u!12LN22
2 ~u!G5

g0
2~N221!

4
, ~19!

u~g0![
g0

2

4@12w~g0!#
.

Giveng0 , N, this equation can be solved numerically foru(g0) and, subsequently, forw(g0). The region ing0 for which
a solution exists contains the whole range of physical interest. Indeed one finds a solution in the region 0<g0

2<16/3e1/2

.3.23 forN52 and 0<g0
2<1.558 forN53. In Figs. 2 and 3 we plot the left-hand side of Eq.~19! versusu, for SU~2! and

SU~3!, respectively.
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FIG. 2. Plot of the left-hand side of Eq.~19! versusu, for SU~2!. The solid part of the curve identifies the interval ofg0 values for which
a solution exists.

FIG. 3. As in Fig. 2, for the case of SU~3!.
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B. Vertices from the action

The three-point vertex of the action can be dressed to all orders in a manner similar to Eq.~5!. We have

~20!

The calculation is described in Appendix B. The result turns out to be very simple:

~21!

wherew(g0) is the quantity calculated previously.
Vertices with more lines can be treated similarly; however, the dressed vertex in these cases is not merely a multiple of the

bare one, which tends to complicate matters somewhat. Since we will not need such vertices for the numerical results of Sec.
III, we only present some relevant formulas in Appendix C.

C. Other operators

Various lattice operators can be dressed by the same procedure. Let us take as an example a typical operator involving
gluons:

O5( tr$U1U2¯Un%[( tr$eig0Q%, ~22!

where the sum runs over the Lorentz indices involved. Using the first order BCH expansion forQ, we can write, once again
for the two-point tadpole built out of ann-point vertex,

~23!

Here,a is the value of the one-loop momentum integration coming from the contraction ofQ with itself; it is a pure number
which depends on the operator under consideration. For example,

O5S, a5
1

2
, as before, ~24!

O5 (
m,n,r,s

«mnrstr$Ux,mnUx,rs%, a51, ~25!

O5 (
m,n,r

tr$Ux,mn@Ux,nr ,Ux,rm#%, a5
3

2
2

3

2~2p!4 E d4q
q̂m

2 q̂n
2

q̂2
.0.85332, ~26!

and so on. The complete resummation of cactus diagrams then leads to

~27!
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It turns out that three-point bare and dressed vertices are
related by the same proportionality factor as the two-point
vertices, Eq.~27!.

For the topological charge density operator of Eq.~25! an
alternative resummation is possible by using the BCH expan-
sion as follows:

(
m,n,r,s

«mnrstr$Ux,mnUx,rs%

5 (
m,n,r,s

«mnrstr$exp~ ig0Fx,mn!exp~ ig0Fx,rs!%. ~28!

Keeping the first order terms inFx,mn andFx,rs the complete
resummation leads to the simple result

~29!

The square in the above expression can be traced to the fact
that the operator is composed of two mutually orthogonal
plaquettes.

Cactus resummation can be also used to estimate the per-
turbative vacuum expectation value of an operator:

~30!

This can be shown to equal

~31!

D. Other representations

The calculation performed above can be generalized to
encompass several other cases, e.g., operators involving
higher representations for gluons. To illustrate this, we con-
sider a class of variant actions proposed some time ago@12#:

S5
b

2 (
x,mn

S 12
1

N
trUx,mnD

1
bA

2 (
x,mn

S 12
1

N221
trAUx,mnD . ~32!

Here b and bA are adjustable parameters and trAUx,mn de-
notes the trace of a product of links in the adjoint represen-
tation, around a plaquette.

The calculation proceeds as before; the one new ingredi-
ent we need isFAdj(n;N), the sum over all complete pair-
wise contractions of tr$T a1T a2

¯T an% (T a are generators in
the adjoint representation!. In Appendix D we compute
GAdj(z;N), the generating function forFAdj . In terms of
GAdj , the equation for the factorwvar(g0) which dresses the
propagator now becomes

b

2N
zG8~z;N!1

bA

2~N221!
zGAdj8 ~z;N!U

z5~ ig0!/[222wvar~g0!] 1/2

52
N221

4
, ~33!

where

g0
25F b

2N
1

bAN

N221G21

. ~34!

It is straightforward to solve Eq.~33! numerically for
wvar(g0).

We conclude this section by noting that the extension to
vertices with fermions is immediate. First of all, vertices
coming from the Wilson fermionic action stay unchanged,
since their definition contains no plaquettes on which to ap-
ply the linear BCH formula. We will see how this affects
corresponding renormalization functions in the next section.
For more complicated fermionic vertices, such as those of
the clover action, cactus resummation proceeds in precisely
the same manner as Eqs.~23!, ~27!.

III. SOME APPLICATIONS

In this section we apply the resummation of the cactus
diagrams derived for the Wilson action to the calculation of
the renormalization of some lattice operators. Approximate
expressions for these renormalizations on the lattice are ob-
tained by dressing the corresponding one-loop results. We
will consider here operators whose anomalous dimensions
are zero. A consistent, as well as physically motivated,
means of implementing the cactus dressing is to apply it to
the one-loop difference between lattice and continuum con-
tributions that determine the renormalization, and not only to
the lattice part. Cases with nonzero anomalous dimension
can be dealt with in an analogous manner, by setting the
scalem51/a and dressing the finite renormalization coeffi-
cients as before.

As a first example we consider the calculation of the lat-
tice renormalizationZ(g0

2) of the topological charge density
operator

Q~x!52
1

24332p2 (
m,n,r,s561

64

«mnrstr$Ux,mnUx,rs%.

~35!

Z(g0
2) is a finite function ofg0

2; it approaches 1 in the limit
g0→0, and is much smaller than 1 in the regiong0.1,
where Monte Carlo simulations using the Wilson action are
actually performed. A nonperturbative numerical calculation
using the heating method@13# has produced the estimate
@14,15#

Z~g0
251!50.19~1! for SU~3!. ~36!

In this case few terms of the perturbation theory ing0
2 can

hardly provide an acceptable estimate ofZ(g0
2) for g0

2.1
without some kind of resummation.
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In perturbation theoryZ(g0
2) has been computed toO(g0

2)
@16# with the result

Z~g0
2!511z1g0

21O~g0
4!,

z15NS 1

4N2 2
1

8
2

1

2p2 20.15493D . ~37!

Numerically z1.20.908 for SU~3! and z1.20.536 for
SU~2!. So perturbation theory toO(g0

2) would give Z(g0
2)

.0.092 for SU~3!, which is very far from its actual value,
Eq. ~36!. In order to obtain a better approximation, we per-
form a cactus dressing of the one-loop calculation. The tree
order is dressed by mere use of Eq.~29!. One can now dress
the one-loop contributions~for details of the standard pertur-
bative calculation see Refs.@16, 17#!. Using Eqs.~7!, ~21!,
and~29!, and a simple combinatorial counting applied to the
diagrams contributing toZ(g0

2), one arrives at the expression

Z~g0
2!'@12w~g0!#21@12w~g0!#S z11

2N223

12N Dg0
2 .

~38!

The quantity (2N223)/12N must be added toz1 to avoid
double counting, since such a contribution is already incor-
porated in the dressed tree-order approximation. Solving Eq.
~19! for N53 andg051 one finds

12w~g051!50.749775. ~39!

Thus from Eq.~38! one obtainsZ(g0
251).0.193, which

compares very well with the numerical result~36!. Further
confirmation of the validity of the approximation~38! comes
from a comparison with available data for SU~2! in the range
2.45<b<3.0 (b54/g0

2) obtained by the heating method
@18#, as shown in Table I. The agreement is remarkable.

We wish to point out that other improvement recipes,
such as those proposed in Ref.@10#, consisting in a redefini-
tion of the bare coupling, do not help in this case. For ex-
ample one recipe entails the use of

g̃25
g0

2

1
3 ^TrUh&

~40!

~whereUh is the plaquette! as the expansion parameter for
N53. In many cases this recipe represents an improvement.

However, substituting the value ofg̃2 corresponding tog0
2

51, i.e., g̃2.1.68, in Eq.~37!, one would obtainZ(g0
251)

.20.54, which is much worse than the plain one-loop ap-
proximation. Similarly, a change of coupling constant and
momentum scale, in the manner of Lepage and Mackenzie
@10#, also leads to a wider discrepancy in this case: indeed,
the corresponding value ofa(q* ) ~defined in@10#! turns out
to be too large.

One can also apply cactus resummation to the lattice
renormalization of fermionic operators. Let us consider the
local nonsinglet vector and axial currentsVm

a 5c̄lagmc and

Am
a 5c̄lagmg5c. The lattice renormalizations of these op-

erators,ZV(g0
2) and ZA(g0

2), respectively, are again finite
functions ofg0 . In perturbation theory and for SU~3! one has
@19#

ZV,A511zV,Ag0
21O~g0

4!, ~41!

wherezV.20.17 andzA.20.13. Thus, atg0
251 one-loop

perturbation theory givesZV(g0
251).0.83 andZA(g0

251)
.0.87. For these fermionic operators, one may use cactus
resummation to dress the gluon propagators appearing in the
diagrams contributing to one-loop order, according to Eq.
~7!. This procedure leads to

ZV,A'11zV,A

g0
2

12w~g0!
. ~42!

At g0
251, this givesZV.0.77 andZA.0.83. One may com-

pare these numbers with those obtained in nonperturbative
calculations based on Ward identities@5#. The only limitation
of this method is due to scaling corrections, which turn out to
be rather large atg0

2.1 in the case of the Wilson lattice
formulation. Depending on the matrix element one looks at,
at g0

251 one finds values ranging from 0.57 to 0.79 forZV

and from 0.72 to 0.85 forZA @20–22# ~see also Ref.@23# for
a review of these results!. Other methods of improvement
~see, e.g.,@10#, and also@23# for a partial review!, using
various boosting procedures, result in numbers ranging from
0.63 to 0.71 forZV and from 0.72 to 0.77 forZA . Hence, a
conclusive comparison is not possible in these cases. A bet-
ter numerical situation occurs when one considers the clover
action @8#, for which scaling corrections are largely reduced
in the region where Monte Carlo simulations are performed
and precise estimates can be obtained using the Ward iden-
tities ~see Ref.@23# and references therein!. An application of
our cactus resummation to the clover action would require
the dressing of the new fermion-gluon three-point vertex.
This point is under investigation.

In conclusion, the above examples show that the resum-
mation of cactus diagrams leads to a general improvement in
the evaluation of lattice renormalizations based on perturba-
tion theory. A combination of this method with improved
actions is expected to give a reliable evaluation of renormal-
ization functions, which can complement corresponding non-
perturbative estimates. We hope to return to this issue in a
future publication.

TABLE I. For the SU~2! lattice gauge theory we list the esti-
mates ofZ(g0

2) as obtained by the heating method@18# ~h.m.!, by
the standard one-loop perturbative expansion~p.t.!, and by cactus
dressing, Eq.~38!, of the one-loop calculation~d.p.t.!.

b[4/g0
2 h.m. p.t. d.p.t.

2.45 0.20~2! 0.125 0.219
2.5 0.22~1! 0.142 0.233
2.6 0.25~2! 0.175 0.259
2.8 0.32~2! 0.234 0.305
3.0 0.33~2! 0.285 0.347
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APPENDIX A: CALCULATION OF G„z;N…

We wish to calculateF(n;N), the sum over all complete pairwise contractions of tr$Ta1Ta2
¯Tan%. For evenn, F(n;N) is

defined by

F~n;N!5
1

2n/2~n/2!! (
PPSn

da1a2
da3a4

¯dan21an
tr$TP~a1!TP~a2!

¯TP~an!% ~A1!

@F(2n11;N)[0#. Sn is the permutation group ofn objects, andTa are an orthonormal basis for su(N) in the fundamental

representation, tr$TaTb%5 1
2 dab.

We define

M[uaTa, u25uaua ~a51,...,N221!, uaPR. ~A2!

ThenF(n;N) can be written as

F~n;N!5
1

N E )
a

duae2u2/2tr$Mn%5
1

N E @dM#e2M2
tr$Mn%, N5E @dM#e2M2

. ~A3!

@The normalizationN is redefined below as necessary, to ensure thatF(0;N)5N remains valid.# By definition, @dM#
5Padua is the integration measure over traceless Hermitian matrices. When the integrand is invariant under similarity
transformations, as is our case, ‘‘angular’’ integrations can be performed, leaving behind an integral over theN eigenvaluesl i
@24#:

F~n;N!5
1

N E S)
i

dl i D F)
i , j

~l i2l j !
2GdS (

i
l i DexpS 2(

i
l i

2D S (
i

l i
nD . ~A4!

At this stage, it is convenient to introduce the generating function forF(n;N):

G~z;N![ (
n50

`
zn

n!
F~n;N!, F~n;N!5

dn

dzn G~z;N!uz50 . ~A5!

By Eq. ~A4! we have

G~z;N!5(
i
E P jdl j

N F)
k, l

~lk2l l !
2GdS (

m
lmDexpS 2(

n
ln

21zl i D
5NE P jdl j

N F)
k, l

~lk2l l !
2GdS (

m
lmDexpS 2(

n
ln

21zl1D . ~A6!

To simplify the exponents we shift thel’s so as to keep their sum equal to zero:

l185l11
z

2N
2

z

2

l i85l i1
z

2N
~ iÞ1!, ~A7!

G~z;N!5NE P idl i

N F )
1Þk, l

~lk2l l !
2GF )

kÞ1
S l11

z

2
2lkD 2GdS (

i
l i DexpS 2(

i
l i

21z2~N21!/~4N! D . ~A8!

The d function can now be easily eliminated, using the exponential representation*da exp(ia(ili):
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G~z;N!5Nez2~N21!/~4N!E daP idl i

N F )
1Þk, l

~lk2l l !
2GF )

kÞ1
S l11

z

2
2lkD 2GexpS 2(

i
~l i2 ia/2!22a2N/2D

5Nez2~N21!/~4N!E P idl i

N F )
1Þk, l

~lk2l l !
2GF )

kÞ1
S l11

z

2
2lkD 2GexpS 2(

i
l i

2D . ~A9!

Let us isolate the integral overl i( iÞ1):

G~z;N!5Nez2~N21!/~4N!E dl1e2l1
2
e~l11z/2!2F E P iÞ1dl i8

N S)
k, l

~lk82l l8!2DexpS 2(
i

l i8
2D G

l
185l11z/2

. ~A10!

The integral in square brackets, involving the Vandermonde determinantPk, l(lk82l l8), equals@24#

1

N (
j 50

N21

f j
2S l11

z

2D , f j~x![~2 j j !Ap!21/2ex2/2S 2
d

dxD
j

e2x2
. ~A11!

We thus obtain

G~z;N!5ez2~N21!/~4N!E dl1e2l1
2
e~l11z/2!2

(
j 50

N21
1

2 j j !Ap
e~l11z/2!2F S 2

d

dl1
D j

e2~l11z/2!2G2

5ez2~N21!/~4N!E dl1e2l1
2

(
j 50

N21
1

2 j j !Ap
FH j S l11

z

2D G2

5ez2~N21!/~4N! (
j 50

N21

L j
0S 2

z2

2 D
5ez2~N21!/~4N!LN21

1 S 2
z2

2 D ~A12!

in terms of the Hermite (H j ) and Laguerre (Lb
a) polynomials.

APPENDIX B: PROOF OF Eq. „21…

To prove Eq.~21!, we must first evaluate thej -loop tadpole diagrams appearing in Eq.~20!. Contracted legs come from
Fx,mn

(1) , while external legs necessarily originate fromFx,mn
(1) andFx,mn

(2) . The corresponding vertex comes from

2
1

g0
2 (

mn
tr@12exp~ ig0Fx,mn!#, ~B1!

taking 2j 12 powers from the exponent. We have

~B2!

The first factor above is the ratio of Taylor coefficients for the vertices on the left-hand side~LHS! and RHS; the factor in
square brackets is the outcome of color contractions; the factor (1/2)j is the outcome ofj one-loop integrations. Combining
Eqs.~B2! and ~20! we find
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~B3!

In the last equality, use was made of Eq.~17!.

APPENDIX C: DRESSING THE FOUR-POINT VERTEX

The bare four-point vertex contains parts coming from tr$Fx,mn
(1) Fx,mn

(1) Fx,mn
(1) Fx,mn

(1) %, tr$Fx,mn
(2) Fx,mn

(2) %, and tr$Fx,mn
(1) Fx,mn

(3) %. In
general, these are expected to dress differently, thus yielding a dressed vertex which is not merely proportional to the bare one.
In all other respects, this calculation is a direct generalization of the three-point vertex case.

We will not present the final expression for the dressed four-point vertex, since we will not be needing it in Sec. III; rather
we evaluate the one new ingredient present in this case: the sum over all pairwise contractions of tr$(Fx,mn

(1) )n%, with four legs
left external. The result can be written as

S 1

2D ~n24!/2

Fx,mn
~1!a Fx,mn

~1!b Fx,mn
~1!c Fx,mn

~1!d Tabcd, ~C1!

whereTabcd is necessarily of the form

Tabcd5a tr$Ta~TbTcTd1permutations!%1b~dabdcd1dacdbd1daddbc!. ~C2!

We must computea andb for genericn, N.
The tensors multiplyinga andb above are in general independent, except for the casesN52, N53. One way to see this

is by taking the scalar product ofTabcd ~a real tensor! with itself:

TabcdTabcd53~N221!~N211!Fa2
N426N2118

8N2~N211!
1ab

2N223

N~N211!
1b2G

53~N221!~N211!F S b1
2N223

2N~N211!
a D 2

1a2
~N229!~N224!

8~N211!2 G . ~C3!

The above can vanish only forN52 or N53, if b52 1
4 a.

To computea andb we further contractTabcd with either :de fdgh: or :tr$TeTfTgTh%:, to arrive at two relations fora and
b:

4!~N221!

2N
@~2N223!a12N~N211!b#5n~n22!F~n;N!,

4!~N221!

16N2 @~N426N2118!a14N~2N223!b#5
n

2
F~n12;N!2

n~2N2241n!

4N
F~n;N!

1
n~n21!~N21n23!

8N2 F~n22;N!. ~C4!

The solution of these linear equations gives the required expressions fora andb.
For N52, N53, Eqs.~C4! are linearly dependent, as expected. Since the two tensors inTabcd are proportional to each other

in this case, we can seta50. Then, from Eq.~C4! we find

a50, b5
n~n22!F~n;N!

4!~N221!~N211!
~N52 or N53!. ~C5!
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APPENDIX D: RESULTS FOR THE ADJOINT REPRESENTATION

We calculate

FAdj~n;N!5
1

2n/2~n/2!! (
PPSn

da1a2
da3a4

¯dan21an
tr$T P~a1!T P~a2!

¯T P~an!%. ~D1!

Here,T a denote su(N) generators in the adjoint representation. We can relate them to the fundamental representation using the
standard decomposition

~N! ^ ~N* !→~N221! % ~1!. ~D2!

In terms of the generators, this says that there exists a unitary matrixU such that

U†~Ta
^ 111^ Ta* !U5T a

% ~0!. ~D3!

Using anN23(N221) projectorP @the (N221)3(N221) unit matrix augmented by a row of zeros#,

T a5P†U†@Ta
^ 111^ ~Ta!* #UP. ~D4!

Substituting this in Eq.~D1! and making use of Eq.~A3! we find

FAdj~n;N!5
1

N E )
a

duae2u2/2tr$~M ^ 111^ M* !n%5
1

N E )
a

duae2u2/2(
m50

n S n
mD tr$Mm%tr$Mn2m%. ~D5!

The corresponding generating function is now given by

FAdj~n;N!5
dn

dzn GAdj~z;N!uz50 ,

GAdj~z;N!5 (
n1 ,n250

`
zn11n2

n1!n2!

1

N E )
a

duae2u2/2tr$Mn1%tr$Mn2%

5(
i , j

E Pmdlm

N F)
k, l

~lk2l l !
2GdS (

m
lmDexpS 2(

n
ln

21z~l i1l j ! D . ~D6!

A somewhat tedious integration overlm , by analogy with Eqs.~A11!, ~A12!, gives

GAdj~z;N!5G~2z;N!1ez2~N22!/~2N!H FLN21
1 S 2

z2

2 D G2

2 (
n50

N21 FLn
0S 2

z2

2 D G2

22 (
n51

N21

(
m50

N212n S 2
z2

2 D n12m 1

m! ~n1m!!
LN2n2m21

n12m11 S 2
z2

2 D J . ~D7!

From this point on, dressing the variant action propagator proceeds just as in Eqs.~8!, ~15!, leading to

wvar~g0!5H (
n50

`
1

@222wvar~g0!#n/2

~ ig0!n

n! S b

2N
F~n11;N!1

bA

2~N221!
FAdj~n11;N! D J

3
2~ ig0!

N221
@222wvar~g0!#1/211. ~D8!

Substituting the definitions ofG(z;N) andGAdj(z;N) in the above immediately produces Eq.~33!.
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