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To resolve various outstanding issues associated with the twist four longitudinal structure féjctf¢r)
we perform an analysis based on the BJL expansion for the forward virtual photon-hadron Compton scattering
amplitude and equdlight-front) time current algebra. Using the Fock space expansion for states and operators,
we evaluate the twist four longitudinal structure function for dressed quark and gluon targets in perturbation
theory. With the help of a new sum rule which we have derived recently we show that the quadratic and
logarithmic divergences generated in the bare theory are related to the corresponding mass shifts in old-
fashioned light-front perturbation theory. We present numerical results fdf thend F_ structure functions
for the meson in two-dimensional QCD in the one pair approximation. We discuss the relevance of our results
for the problem of the partitioning of the hadron mass in QCEN556-282(98)02721-0

PACS numbd(s): 12.38.Bx, 13.60.Hb

[. INTRODUCTION known result for the leading twist contribution E, which
involves the plus component of the bilocal current. Even
An important problem in applying QCD to deep inelastic after many years of investigation, an intuitive physical un-
scattering is the existence of power corrections to scalingderstanding of the interaction dependence in the structure of
more commonly known as higher twist effects. They are esF| has been elusive. We provide herein a physically intuitive
sential for making precision tests of QCD. From the earlypicture.
days of the establishment of QCD as the underlying theory Another important problem of current interest is the per-
of strong interactions, the importance of a proper understandyrpative aspects of the twist four matrix element. Simple
ing of power corrections was recognizgt]. Subsequently, ower counting indicates that in the bare theory the twist
leading 10* corrections to the unpolarized leading twist tor matrix element will be afflicted with quadratic diver-
structure functior-, and the longitudinal structure function genceq7]. Understanding the origin and the nature of these
F, were analyzed by the operator product expan$®RB 4 ergences will be quite helpful in finding procedures to
[2] and Feynman diagraf3] approach_es. Later QM.] 9av€  remove them(the process of renormalizatipn
an alternate method based on special propagdtiizing A third motivation to study the twist four part of

gzgsseisfeatures of light-cone coordingtas simplify the comes from the present status of deep inelastic scattering
The power correction t&| is especially interesting since experiments. Measuremer[&} of 'the ratio of the Iongltydl- .
the leading(twist two) contribution toF, is perturbative in nal to transverse cross section in unpolarized deep inelastic
scattering showW6] that power corrections play an important

origin in contrast with the case &f,. Thus the first, nonper- X : . ) .
turbative contributions t&, occur at 102 order. The com- role in nucleon structure experiments in the SLAC kinematic

plexity of the problem of higher twist appears in the OPE'ange. It is important to go beyond phenomenological param-
analysis which utilizes a collinear basis, since at twist fouretrizations for a proper understanding of the nonperturbative
there appears a proliferation of operator structures. In th@ature of these corrections.
Feynman diagram approach it has been shown, using a trans- Light-front analysis of deep inelastic scattering provides
verse basis, that contact could be made with light-front curan intuitive physical picture of various structure functions at
rent algebra analysis with the result that the twist four part othe twist two level. Recently, the resolution of an ambiguity
F, is given by the Fourier transform of the hadron matrix at the operator level and the parton interpretation of the
element of the minus component of the bilocal vector curtransverse component of the bilocal current have been
rent. Since the minus component of the current involves thachieved in an approach based on light-front field thé8ty
constrained fermion field, the relevant operator has expliciThe physical picture of the transverse polarized structure
dependence on the interaction in contrast with the wellfunction [9] and a critical examination of the Wandura-
Wilczek sum rule in perturbation theoF{0] have also been
provided in the same approach. Both nonperturbative and

*Email address: hari@tnp.saha.ernet.in perturbative issues can be addressed in the same language in
"Email address: rajen@tnp.saha.ernet.in this formalism which uses the Fock space expansion for all
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malization issues associated with the different components adxplicitly in Sec. V that the sum rule is verified in two-
currents and the Hamiltonian. dimensional QCD by virtue of the 't Hooft equation.

In this work, we show that using the same framework one To gain an understanding of the nature of quadratic diver-
can resolve outstanding issues associated with the twist fo@ences, we evaluate the twist four longitudinal structure
contributions to the longitudinal structure function. A brief functions for quark and gluon targets each dressed through
summary of some of our results is presented in Ref]. In ~ lowest order in perturbation theory. The sum rule allows us
this work we extend our previous calculations and alsd© relate these divergences to quark and gluon mass correc-
present several new results. Our starting point is the Bjorkenions in QCD in time-ordered light-front perturbation theory.
Johnson-Low (BJL) expansion for the forward virtual We a!so verlfy the sum rule in a nonperturbatllve context in
photon-hadron Compton scattering amplitude. This leads u&vo-dimensional QCD. We also present numerical results for
to the commutator of currents which we present in detail for 2 @hdF structure functions in this model using wave func-
arbitrary flavors in S(B). Next we consider the specific case tlpns calculated in a variational approximation. Finally we
of electromagnetic currents and arrive at expressions for thdiscuss the relevance of our results for the problem of the
twist two part of F, and twist four part ofF, in terms of Partitioning of hadron masses in QCD. _
specific flavor-dependent form factors. In the rest of the pa- 1he plan of this paper is as follows. In Sec. Il we derive
per we consider the flavor singlet part of the structure funcihe expressions for the twist two structure functiep and
tions. We identify the integral df (x)/x with the fermionic ~ the twist four longitudinal structure functioR_ using the
part of the light-front QCD Hamiltonian density. The consid- BJL expansion and equal-timex{) current algebra. The
eration of mixing in the flavor singlet channel leads us to thesum rule forF, is given in Sec. lll. In Sec. IV we evaluate
definition of the twist four longitudinal gluon structure func- Fi for quark and gluon targets dressed through lowest order
tion and then we find a sum rule, free from radiative correcin perturbation theory and explicitly verify the sum rule. The
tions. sum rule is verified explicitly in a nonperturbative context in

The sum rule which the physical structure function has tdwo-dimensional QCD in Sec. V. In this section, to provide a
satisfy involves the physical mass of the hadron which is Aualitative picture, we also present numerical results for the
finite quantity. A theoretical evaluation of the sum rule F2 andF structure functions in this model. In Sec. VI we
which starts with the bare theory, on the other hand, will bediscuss the issue of the breakup of hadron mass in QCD in
afflicted with various divergencesee Sec. IY depending the context of our sum rule. Discussion and conclusions are
on the regulator employed. In order to compare with thePresented in Sec. VII and our notation and conventions are
physical answer resulting from the measurement, we need g/mmarized in an appendix.
renormalize the result by adding counterterms. For the
dressed parton target, for example, these counterterms are Il. PRELIMINARIES
dictated by mass counterterms in light-front Hamiltonian
perturbation theory. For a dressed gluon target, calculation
in Sec. IV B show that quadratic divergences are generate ) ) .
and one does not automatically get the result expected for A€ YS€ of the Bjorken-Johnson-Low expansion and light-
massless target. The divergence generated is shown to BQNt current algebra. In terms of the flavor currel(x)
directly related to the gluon mass shift in old-fashioned per= #(x) ¥*(Aa/2)#(x), the hadron tensor relevant for deep
turbation theory. To a given order in perturbation theory,inelastic scattering is given by
counterterms have to be added to the calculated structure 1
function. The precise selection of counterterms is dictated v_ 4p00q- v
entirely by thg regularization and renormalization of the ng_ﬂf d*&e'4P|[I4(£),Ip(D)]IP). (2.1
light-front QCD Hamiltonian. The choice of counterterms in
the Hamiltonian, in turn, determines the counterterms to bd he forward virtual photon-hadron Compton scattering am-
added to the longitudinal structure function which results in ablitude is given by
theoretical prediction of the physical longitudinal structure
function. Recall that in Hamiltonian perturbation theory we Tg‘;=if d*&e' 4 P|TA%(&)ILO0NIP). (2.2
cannot automatically generate a massless gluon by a clever
choice of regulators. The point we emphasize is that the twist
four longitudinal structure function is one-to-one related to"We have
the Hamiltonian density and that there is no arbitrary free- o
dom in this relationship. T(x Q2)=2fm d L WE (X', Q%)

We also note that in the pre-QCD era, there were discus- abl™ Cw q*t—q*
sions about a possiblé(x) function contribution to the lon-
gitudinal structure function which may appear to invalidate  yUsing the BJL expansiofl4], we have
the sum rule derived ignoring such subtleties. In two-
dimensional QCD Burkardt has showt3] thatF, /x? has a 1 .
delta function contribution and he has discussed implications Tab= — q—,f d&™d?é, €9 5(P|[34(£),35(0)]¢+=ol P)
of this for the sum rule foF | /x?. Obviously,F /x will not
be affected by such a singular contribution and we show +-- (2.4)

In this section we present the expressions for structure
nctions for arbitrary flavors in S@@) which follow from

2.3
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where the ellipsis represents higher order terms in the expan- . L o
sion which we ignore in the following. In the limit of large lim To, =— q_f d¢d?é, e9¢
g, from Eq.(Al), we have q —o
PI[J2(£),3p(0)]g+—olP). (2.6
1 Foup P X(P|[Ja (£).3p (0)]¢+ =0
W, IEFuab)JF(PL)Z%JF %y 2ab) (2.9

The components of the flavor curredf(x) obey the
with x=—g?%/2v andv="P-q. On the other hand, from Eq. equalx® canonical commutation relatidio be specific, we
(2.4), consider SB) of flavors|

fron - . v -
[3a (), 35 (N)]xs =y =20 apctl(X) ¥~ 5 () S (x" =y") o(x™ —y")
1 —
— 5 {ex” =y )IfapVe (X]y) +idapeVy (X]Y)]85(x" —y*)}
1 . . J—
5 ifabce(X” =y ) 8 (X =y [V o(X|y) — ) Ay(x|y) ]}

1 . _ o
+ Sidapee(x” —y ) A S (x" =y )[Ve(X|y) + €l AL(Xy) 1} 2.7

In deriving the above relations, use has been made of the relation

)\b:ifabc)\c+dabc)\c- (2.9
We have defined the bilocal currents as follows:
1
Vé‘(XIy)— w<x) 7”a/f(y)+d/(y)—7’*¢f(x) VE(X|Y) = 5 5 ¢(x) S yr(y) — df(y) Sy u(x) |,
11— A
Ag(Xy)=5 (X)—7 y ¢(y)+¢(y)—y Y P(x) |, A“(le)—2I t/f(X) =y ySu(y) - l,b(y) 7 Y P(X)|.
(2.9
Further, we introduce the bilocal form factors
(PIVE(£|0)|P)y=PHVL(£,P- &)+ E*VHE,P-§), (2.10
(PIVE(£|0)|Py=PHVL(£2,P-£)+ EMVE(E2,P- §). (2.1
From Egs.(2.6) and(2.7), we get
lim  q Ta =—2if,PT +—f dé™ €297 E () fap( P[V¢ (£10)|P)+dapd P V5 (£]0)|P)]
q_ﬁoo
q dé™e1297E ¢(£7)[ f 1 PIVL(E]0)|P) + dap PIVA(€]0)[P) 1. (2.12

Note that matrix elements of %(x|y) do not contribute to unpolarized scattering. Using the dispersion relation given in Eq.
(2.3), together with Eqs(2.5 and(2.12) and comparing the coefficient of on both sides, we get

F2(ab)(X)

X fdve [ fapVe(7) + dapVe(7)]. (2.13

Comparing the coefficients @ft on both sides, we get
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1i(q")? .
FLian(0= g = 7| dre” P PIV, (£10)P) + das IV (£0)1P)]

(PL)Z I —inx + I+
Q7 APt fdﬂe [ fanPIV¢ (£]0)|P) +dap PV (£]0)|P)]. (2.14

We have introduced)y=31P* ¢,

Note that our result foF, differs from the one given in the literatuf&5]. The difference can be traced to the expression
for F|_ that one employs. It is customalry5,3] to ignore the target madd? in the expression foF, [see Eq(A2)]. This leads
to an incorrect expression fét, which in turn will lead to an incorrect sum rulsee the following section

The electromagnetic current

JH(x)=J5(X)+ iJg‘(x). (2.15

V3

From the flavor structure of electromagnetic current, we observe thatigplycontributes to the structure functions in deep
inelastic electron-hadron scattering. Explicitly, we have

Fa(x)
X

— 5= | dve PV o) P, (216

The longitudinal structure function is given by

2 i (q")? (PH)2 i : —
FUX= g2 x| dme PRIV (@0)IP)~2 g~ [ dre (PP (E0IP). (219
We have defined the functions
- 2 3/2
v(d0-(3] Vo 350+ Vo, 218

In arriving at our final results we have used explicit values of the structure constantg 3t SU

1 1 2
d338:ﬁ1 dggg= — ﬁ, d330=dggo= \/; (2.19

Vg is the flavor singlet component of the fermion bilocal vector current.

I1l. SUM RULE
Consider the flavor singlet part of the structure functiéng, andF () defined by

F 1 . _ _
) | ane Pl w0~ w0 Y wOIP) (31
11(q")?
FLn(0= g2 7 po L[ ane PIHOY w0~ HO)y U HIP)
PH2 1 ‘ — —
—7(Q) szf dne” P(PI[(£)y" ¥(0) = (0)y" (§)]|P). 3.2

From Eq.(3.) it follows thath(f)( X)=F ) (x) and from Eq.(3.2) we explicitly find thatF[j(—x) = —F[}(x). It
can be verified12] thatF[(‘f) satisfies the sum rule

(P)?

fldXF[u‘}(x,QZ) e

0 X

2
= Q2 (PlOs " (Q)IP)~ (=Pl (OIP)), 33
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where 6; ~=iyy "y is the fermionic part of light-front ~_ The fermionic operator matrix elements appearing in Eq.
QCD Hamiltonian density aﬂﬂ;+=ia7+t9+¢ is the fermi- (3.3) change withQ~ as a result of the mixing of quark and

onic part of light-front longitudinal momentum density in the '?t:léo(r)] g?aetz)e:t%?xilr? ?NCeDogtna?r?rarigc\:\:rgilrﬁiﬂ?en.a'tA?haeiythlv?sgt
light-front gaugeA™ = P 9

Here we have used the fact that the physical structuré\Our level[12]:
function vanishes fok> 1. Neglect ofM? in the expression
[Eq. (A2)] for F_ will lead to (P+)?+ M? instead of P+)? 1dx M2
in the above equation which would spoil the correct sum rule f _|:[=4:4_2, (3.9
given below. 0 X Q
The integral ofFL(f)/x is therefore related to the hadron
matrix element of thégauge invariantfermionic part of the
light-front Hamiltonian density This result manifests the Where M is the invariant mass of the hadron afd~*
physical content and the nonperturbative nature of the twist FL(q)+FL(g), Flio 4 is the twist four longitudinal gluon

four part of the longitudinal structure function. structure function WhICh we define as
_ - _ 1 B B
Fla()= g2 f dy~e (2P7 XH<P|(—>F+“(y>F \a(0)F 70" Ay )Fya(0)|P)+(y~ = 0)
(P l)z +a +
NG )2[<P|( JF(y )F 0[Py +(y < 0)]), (3.9
|
whereF# 3= grA"— gVAra+ g fab°ALAL . Note that in the 2 dk d2k.
definition of F{{;}(x) the second term where the arguments |P,a)=¢1b'(P,0)|0)+ ek
of F2 are interchanged is missing in R¢L2]. TLh2 2(2m)%,
To our knowledge, this is the first sum rule at the twist dk 2k’
four level for deep inelastic scattering or for QCD in general. ———\227)°P" 3 (P—k;—ky)

The previously known sum rules in deep inelastic scattering V2(2m )3k2
are all at the twist two level. The operators involved are ) + +
kinematical (light-front longitudinal momentum, light-front X d2(Polks 01k Ap)b kg, 1)@l (K, 12)][0).
helicity, etc) in nature. In contrast, the sum rule we have (4.7)
derived involves a dynamical operatglight-front QCD

Hamiltoniar), thus revealing a new aspect of the underlying In the previous work12] we have given results for mass-
nonperturbative dynamics. Our results show that the medess quark state. We have shown that the twist four longitu-
suremnent of the flavor singlet part of the fermionic contri-dinal structure function has quadratic divergences in pertur-
butions to the twist four longitudinal structure function in bation theory. In this section, we show that for a massive
deep inelastic scattering directly reveals the hadron expectauark, in addition to quadratic divergences, logarithmic di-
tion value of the fermionic part of the light-front QCD vergences are generated. We have

Hamiltonian density in light-front gauge.

FL:M1+M2, (42)
where
IV. DRESSED PARTON CALCULATIONS
1 AR
— —a(—il2)PTy"x +toy—
A. Dressed quark with nonzero mass My Wsz dy-e <P|¢ )
i - 0
Next, we investigate the implications of E®.3) for qua- X[at-[iat+gA (y)]+y°m]

dratic divergences iﬁ[(zq‘)1 in perturbation theory. We select X[a*-[id*+gA-(0)]+ y°m]y(0)+H.cP)
the target to be a dressed quark and evaluate the structure
functions to ordeig®. That is, we take the stat®) to be a 4.3
dressed quark consisting of bare states of a quark and a quark
plus a gluon: and
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In the case of quark contributions, the second term in the
expression for the bilocal current in E@®.9) vanishes. First

M = _4_QQ_XF2(q)(X)
we evaluate the contributiotM, given in Eq. (4.4). We

where|P) now has a maskl andm is the bare quark mass. obtain
|
2 +y2
(P')>2 K+ (1—x)°m? k2 +(1—y)3m?
My=—4 x?| 8(1— X)+ g3 c fdz —51—xfd o’k :
2 Q? (1) f [m2(1 x)2+ k212 (1) | dyeie [m2(1—y)2+K2]?

(4.5

whereC=(N2—1)/2N for SU(N).

Here we have presented the result without working out the transverse integration to maintain a greater degree of transpar-
ency.

The contribution fromM is split into four parts with additional contributions coming from quark mass terms and can be
written as follows:

1 o -
7[ dy”e AP Y X(Ply T (y )~ () 2+ m?]yT (0)|P)
1 o -
+g?f dy” e TP Pl (yT)(i9" - ot + 4’ m)art- AL (0)y(0)|P)

1 b
?f dy e 2PY Pl Ty )at - AL(y)(iat - at +y°m) gt (0)]P)

1 AR
+92WJ dy~e!""2P Y X(PIy (Y )AN(y) - A (0)47 (0)|P) (4.6
= M3+ MO+ MS+ MY, (4.7
Since the operators in E¢4.3) are taken to be normal ordered, the contribution’\/cbﬁ’ vanishes to ordeg?.
Explicit calculation leads to the diagonal Fock basis contributions
1+ x2
(PJ_)Z 2 1—x kf—f_(l_x)gmz
M) giag=Mi=4 x?| 8(1-x)+ 5—C fdzk
+y? +y?
L+(l_y)3m2 Am? L+(1_y)3m2

2
—5(1—x)f dyd’k, > 8(1—X) 1—cf%f dydPk,

21—y + ke )] Q (M1 y) 2+ kT2
2

X
K+ (1-x)°m?

4C
— g fdzk k2 + — 4.9
[m2(1 x)2+k$1?
The first term here explicitly cancels the teri, given in Eq.(4.5).
Off-diagonal contributions
2 2 2 2
b . Cs g J' m-(1-y) —J kT +m“(1—x)
(Ml)nondlag M1+M1 Q2 1 X) dydzk [mz(l_y)2+ki] d l(l—X)[mz(l—X)z-i-ki] . (49)

Adding all the contributions, we have
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1+x?
2

4m 4C; ) 5
L(q)(x) o7 o(1-x)+ g 8 a3 fd k. (k?+m?)

k2 (1—x)3m?

[m2<1—x)2+kf]2

+y?

-y
[m?(1-y)?+ k]2
Ci o’ [, k? +m?(1-x)? (1-y)

_62;3“(1 l(1—x)[m2(l—X)2+kf]_5(1_X)fddeKL[mz(l_Y)z‘*'kf] . (4.10

kZ+(1—y)m?

- 5(1—x)m2j dyd?k,

Here we have usell =m, since the difference that it entails is higher order in the coupling. Note that we are getting back the
free quark answer once we switch off the interaction. Also, the dressed massless quark answer can be easily regenerated by
putting M = m=0. Note that the, integration now produces logarithmic divergences with the expected quadratic ones, as we
remarked earlier.

To check the sum rule explicitly, we evaluate the right-hand $RidS) of Eq. (3.3 next. A straightforward evaluation
leads to

k2 +m?(1—x)°® 1

<P|0;7(0)|P>nondiag Cf2 J' dx d2 X(l_X) [m2(1_x)2+ ki]’ (41]’)

2
K2+ (1—x)m? 1—x

X [m?(1—x)2+k2]2

( L)Z k2+(1 X)3 2
<P|0; (O)|P>d|ag (P )2<P|0++(o)|P>d|ag 2m2+2Cf8_f dXd2

4.12

Adding the diagonal and off-diagonal contributions from the fermionic part of the Hamiltonian density and multiplying it by
2/Q? one obtains the RHS of the sum rule. Comparing it with the integr&l[c?f‘/x, whereF, is given in Eq.(4.10, one
easily sees that the sum rule is verified.

To see the connection &f, with the fermionic mass shift, we calculate the contribution of the gluonic part of the energy
momentum tensof” ~ to the sum rule for the totdf, . Explicit calculation gives

- (1+x)k? 1
<P|09 (O)|P>nondiag Cf2 dedz L (1—X)2 [mz(l—x)2+kf]’ (4-13)
1+x?
(P12 g2 K2 ﬁkf+(1—x)3m2
— ~ 2
(P16~ (O)IP)aing~ (pr)2(Pl6; (0>|P>diag—2cf8wsfdxd e R T (414
Thus, we get
o2 (1J:);2) K2+ (1-x)°m? .
<P|0(-;_(0)+03—_(0)|P>nondiag Cf2 dedsz X(l_X) [mz(l_x)2+kf]i (415)
P ( l) ++ ++
< |6 0)+0g (0|P>d|ag (P 2<P|0 +6 0)|P>dlag
2
o (14 X)k2+(1 x)3m? 1
— 2
_2Cf§gf dxd kJ_ X(l—X) [mz(l—x)2+kf]' (416

Adding diagonal and off-diagonal contributions, we get
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(1+x%) -
X ki +(1—x)"m 1

X(1—X) [m2(1-x)2+k?]

L
(Pl0"(O)1P)~ P Pl6” (0P =1

f dxdPk, (4.17

Note that this result is connected to the full fermion mass sigft in second order perturbation theory. We hsee Eq.
(4.10], in Ref.[16],

2
(1+ X)k2+(1 X)3m? 1

x(1—x) [m?(1—x)%2+k?]"

- 1
31 =~ 55+ cf4 dedzk

(4.18

B. Dressed gluon

In this section we check the sum rule explicitly for a dressed gluon target. We consider the gluon to be composed of a bare
gluon and a quark-antiquark pair:

dki d?ki dk3 d%ks
P,o)=¢,a"(P,\)|0)+ f 11 2= "2 _\2(2m)3P T 83(P—ky—k,)
|P.a)=g1a’(P,\)|0) E 20 \/2(27r)3k2+J (2m)3P T 8%(P—ky—k,
X $o(P,alKy,01;Kp,02)b"(Ky,01)d"(ky,07)[0). (4.19
|
The target gluon and the bare quark and antiquark masses are A2 g? ) )
taken to be zero. Note that, to the ordgr there will be a FL:@Nfo?[X +(1-x)-2(1-x)]. (423
contribution from the two-gluon Fock sector due to the non-
Abelian nature of the gauge coupling. For simplicity, we on the other hand, we get
exclude that contribution. It is easy to incorporate that con-
tribution by trivially extending our calculation presented (P1)?
here.F, can be written in terms ofM; and M, given in (Pl65 (0)|P)giag— i) 2<P|¢9 "(0)|P)giag
Egs. (4.3) and (4.4), where|P) now stands for the dressed
luon represented by E¢.19. Explicit calculation gives 2 X2+ (1—x)?
9 P y EG19. Exp 9 =A2Nfog_2fdx (1-x) 424
A X(1—X)
(PL)Z
MZZ 4 Q Fg(rg)ssed gluon and
x2(PH)2 g
x“(P7) ~ X2+ (1—x)?
=TT & 2N T([x*+(1—x)*]InA?, (P|6q ~(0)|P)ofrgiag= — A*Ng Tf2 f X%
(4.20 (4.25

HereT;=3% andN; is the number of flavors.
M is again divided into four parts as in E@.7) and
explicit calculation in this case gives the following:

2( L)Z
Q?

A2 2

+— ?Nfo[x2+(1—x)2],

Q

Mi(diagy= M= 2 N T2+ (1-x)?]InA2

(4.21

M (ott-diagy = M1y T My

A2 g2
=—- _Z?NfoZ(l_X).

o (4.22

Thus, we get

Adding diagonal and off-diagonal contributions, we get

(l)

(Pl6; ~(0)|P)— 2<P|0 T(0)|P)
=—A2 NTf4 fdx x((ll 0? . (4.26

Note that this result is connected to the gluonic mass shift
49, due to pair production, since the contribution from the

gluonic part of the energy-momentum tens@)~ in this
case vanishes. In the massless limit, we Haex Eq(4.40
in Ref.[16]]

X2+ (1—x)?
x(l X)

S0, = — 2P+A NTf4 fd
(4.27
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From Eq.(4.23 we computefdx F_/x. Sincex integration By virtue of the bound state equatidit Hooft equation
is from O to 1, it can be written in the following form: obeyed by the ground state wave functig(x) for the me-

F son,
dx— = — NT dx
f X Q2 272 f . m g
MA) = S YOG f By

Comparing Eq(4.26 and Eq.(4.28, one explicitly verifies ©9

the sum rule for a dressed gluon target. together with the normalization conditigigdxy?(x) =1, we
As we have emphasized, in the bare theory, the twist foueasily verify that the twist four longitudinal structure func-

longitudinal structure function is afflicted with divergences.tion of the meson obeys the sum rule

We have to add counterterms to carry out the renormaliza-

tion procedure so that we have physical answers. The sum dx _ _, .

rule for the bare theory clearly shows that the quadratic di- 0 7': Q2<P|‘9 (0)|P)= 4Q2 : (5.6

vergences generated are directly related to the gluon mass

shift in second order light-front perturbation theory arising | the same model, the contribution to the twist two struc-

from an intermediate quark-antiquark pair. In order to ensuryre function from the fermionic constituents is given by
a massless gluon in second order perturbation theory, we

have to add the negative of the shift as a counterterm. After  Fyq)(x)=(x+1—Xx)¢* (X)(x) = ¢* (X)(x). (5.7)
adding the counterterm, the gluon mass shift in second order

perturbation theory is zero and the twist four longitudinalNote that, since there are no partonic gluons or sea in this
structure function for a massless gluon becomes zero. Thumodel, the longitudinal momentum of the meson is carried
after renormalization, the sum rule is satisfied, with a trivialentirely by the valence quark and antiquark. Thus the mo-

X2+ (1—x)?
x(l X)

2 P(y)— (X)

2

(i.e., zerg gluon longitudinal structure function. mentum sum rule is saturated by the fermionic part of the
longitudinal momentum density. On the other hand, light-

V. (1+1)-DIMENSIONAL QCD: front energy density is shared between fermionic and gauge

EXPLICIT CALCULATIONS bosonic parts and as a consequence the fermions carry only a

fraction of the hadron mass. This seemingly paradoxical situ-
In this section, we turn to two-dimensional QCD in order ation further illuminates the difference between the physical
to test the sum rule given in E(3.4) explicitly in a nonper-  -ontent of theF, andF{~ 4 sum rules.

turbative context. In +1 dimensions, iPA"=0 gauge, we To geta quantitative picture, next, we explicitly calculate
have the structure functions=,(X) and Fq(x)/x for the
1dx ground state meson in two-dimensional QCD. We have pa-
f Flig()= <P|[6’§_(0)+ 6. (0)1|P), rametrized the ground state wave function as
#(X) =Nx5(1—x)® and determined the value efvariation-

(5. ally by minimizing M2 for given values ofn? andg?. The
_ b +t o factor \V is determined from the normalization condition
with +T9a =2m? fz (1+/'T‘9 a)w and 04 fédxw*(x) Y(x)=1. The resulting structure functions are
—4g*yT Ty [1/(‘9 )*1y" Ty, We consider the stan- presented in Fig. 1 for two different values wf.
dard one pair§q) approximation to the meson ground state.  Since both the quark and antiquark have equal mass in the
Explicit evaluations show that model, both structure functions are symmetric abosits.
When the fermions are heay¥ig. 1(a)], the system is es-
sentially nonrelativistic and the structure functions are sig-
nificant only near the regiorn=3. When the fermions be-
come lighter [Fig. 1(b)], contributions to the structure
and function from the end-point regions become significant indi-
4 cating substantial high momentum components in the ground
Jldxm 2 - _j de dyu* (x )lﬂ(Y) $(X) state wave function. Note th& ) /x measures the fermion
0 X (x—y)? kinetic energy(in light-front coordinates The exponens in
(5.3 the wave function is a function of the fermion mass and
decreases a1 decreases. In the massless lingityanishes

2

Fla
Q2 b (X)X(1 %) P(X) (5.2

X

m2

wherey(x) is the ground state wave function for the meson.[17] so that the wave function for the ground state becomes
Thus Y(x)=60(x)0(1—x). This results in a flaE, structure func-
tion. However, because of the presencendf F[(:q‘;' van-

1dx 4 (1 . .

f —F[:4(X):_2f dxy* (x) W(X) ishes. Because of an exact can_cell_atlon between_the self-

0 X Q°Jo X(1—x) energy and gluon exchange contributions, the gluonic part of

the F{~* also vanishes. Thus the sum rule is satisfied exactly

J YY)~ ¢(x) (5.4) since, in the zero-quark-mass limit, the ground state meson is

(X— )/)2 ' massless in two-dimensional QCD.
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'( )I T Thus we have the fermion kinetic energy contribution given
a, by

solid curve: F,
dotted curve: (Q%F./x)/500

aq(free) 2¢+T[ (aL)Z‘l‘mz]lﬂ (6.2)

and the interaction-dependent part given by

F, and Q°F,/x

Oqiny =299 T| o Ai—(a -igt++°m)

1
+(ai-i<9l+yom)7a AL lﬁ'

- P PR BRI, -
0 0.2 0.4 0.8 08 1.0
X

1
+29%yt tat- AL at Aty (6.3

o
T T T

Note that the fermion kinetic energy constitutes only a part
of the total contribution from fermions. Any theoretical esti-

mate of the fermionic part of the longitudinal structure func-
tion necessarily has to involve off-diagonal contributions
from Fock states differing in the number of gluons by 1 and
2.

(b)

15—

It is important to emphasize the difference between equal-
time and light-front Hamiltonians in the context of our cal-
culations. The equal-time Hamiltonian contains the scalar

solid curve: Fy ] density term (/) accompanying the quark mass In con-
03IT dotted curve: (§°Fy/x)/20 LT trast, the quark mass appears quadratically in the free part of
the light-front Hamiltonian. Recently the question of the par-
; T tition of hadron masses in QCD has been addressed by Ji
SN A R B R BN [18] in the context of the equal-time Hamiltonian and in
0-0 02 0.4 L oC 0.8 10 terms of twist two and twist three observables. In his analy-
sis, the extraction of the fraction of the hadron mass carried
FIG. 1. Fermionic contributions to the structure functiéigx) by the fermion constituents is not straightforward because of
and F{~*/x for the ground state meson in the 't Hooft model for the presence of the scalar density term. The hadron expecta-
two different values ofn, the quark massia) m=5, s=4.96.(b)  tion value of the strange quark scalar density remains un-
m=1, s=0.70. The parameteyappearing in the wave function is known (experimentally. Our analysis, however, shows that

F, and Q°F./x

determined by a variational calculation. We haveG@?/ m=1.  the twist four longitudinal structure function, once extracted
experimentally, directly yields the fraction of the hadron
VI. PARTITION OF THE HADRON MASS IN QCD mass carried by fermionic constituents.

As is well known, experiments that measure the twist two
part of theF, structure function yield information on the VII. DISCUSSION AND CONCLUSIONS
fraction of longitudinal momenta carried by the charged par-

ton constituents of the hadraguarks and antiquarksThe gyt re function and to understand the occurrence of qua-

sum rule we have derived yields other useful informationy i givergences and the associated renormalization issues,

about.the hadron structure. Namely, our sum rule ShQWS.th e have studied the twist four longitudinal structure function
experiments to measure the twist four part of the longitudinaf, . approach based on Fock space expansion methods in

structure function will directly reveal the fraction of the had- ljght-front field theory. We have identified the integral ok1/
ron mass carried by charged parton components of the ha imes the twist four part of the fermionic contribution to the
ron. The light-front Hamiltonian provides theoretical insight longitudinal structure function as the hadron matrix element
'”toAth's gac“on as fo”o}"’s e st £ e 1on. Of the fermionic part of the light-front QCD Hamiltonian

_ According to our analysis, t .etW'5t our part of the on- density in the light-front gauge apart from an overall con-
gitudinal structure function is directly related to the ferml- stant. We have tested this relation to ordérin QCD per-
onic part of the light-front QCD Hamiltonian densit ~ | turbation theory for both dressed quark and gluon targets.

To gain physical intuition on the twist four longitudinal

+
the gaugeA, =0. Explicitly we have Our result shows that quadratic and logarithmic divergences
in the twist four longitudinal structure function are directly
ag‘ =2y at-(ig"+gA")+9°m] related to mass corrections in the light-front theory.

1 By investigating the mixing of operators in the flavor sin-
e PR N 0 + glet channel, we have recently derivgl2] a new sum rule
x ig" [a (10" +gAT)+ yom]y™. ©. which involves the invariant mass of the hadron. The validity
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of the sum rule has been explicitly checked in two- ACKNOWLEDGMENTS
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We have also discussed the implication of our results for ysICS.

the problem of breakup of hadron masses in QCD in terms of

fermionic and bosonic constituents. We have emphasized the

differences between equal-time and light-front formulations

relevant for this study. The hadron tensor relevant to unpolarized electron-hadron
Our results indicate that the experiments to measure thgeep inelastic scattering is given by

twist four longitudinal structure function reveal the fraction

of the hadron mass carried by the charged parton compo-

nents. Thus these experiments play a complementary role to WH

the longitudinal momentum and helicity distribution infor-

mation obtained at the twist two level. It is of interest to

investigate the feasibility of the direct measurement of the

twist four gluon structure function in high energy experi-

ments. Recent work of Qiu and co-workers has shown that (A1)

semi-inclusive single jet production in deep inelastic scatter1ha dimensionless functions

ing [19] and direct photon production in hadron nucleus scat-

tering [20] provide direct measurement of twist four gluon

matrix elements. FL(x,Q%)=2
On the theoretical side we note that some significant

progress has been made recently in the bound state problegnd

in light-front QCD [21] based on similarity renormalization

group method. In the near future, we plan to undertake a Fa(x,Q%) = vW,(x,Q?) (A3)

nonperturbative calculatiofutilizing Fock space expansion

and Hamiltonian renormalization techniques the longitu-

dinal structure function for a mesonlike bound state. Such a

calculation will undoubtedly help to check the validity of

current phenomenological moddl6] based on simple as-

APPENDIX: SUMMARY OF NOTATION
AND CONVENTIONS

a9“q”
—gr'+ 7 )Wl(X,QZ)

P-q

P-q
[Pt -t

(P-g)?

—W;+ M2——2—q )Wz}, (A2)

are the unpolarized structure functions.

We have defined-Q?=q?=q*q~—(q")2

The light-front coordinates are defined Ry =x°+ x3.

The constraint equation for the fermion field, which fol-

sumptiong 22] employed in analyzing the data. lows from the Dirac equation, iA" =0 gauge is given by
Another important problem is the scale evolution of the 1

twist four structure function which is far more complicated v (2)= —,f dy e(z —y7)

than the twist two case. Recently we have provided a physi- 4

cal picture of scale evolution of the, structure function of X[at- (1" +gA ) ++°m]y (y7), (Ad)

a composite system in terms of multiparton wave functions
in momentum spac€23]. We plan to carry out a similar where the antisymmetric step function
analysis of the twist four longitudinal structure function, elu-

pldatlng a!l possible scale dependences and their physical e(x*)z—l—PJ’ d_we(i/z)wxf_ (A5)
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