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To resolve various outstanding issues associated with the twist four longitudinal structure functionFL
t54(x)

we perform an analysis based on the BJL expansion for the forward virtual photon-hadron Compton scattering
amplitude and equal~light-front! time current algebra. Using the Fock space expansion for states and operators,
we evaluate the twist four longitudinal structure function for dressed quark and gluon targets in perturbation
theory. With the help of a new sum rule which we have derived recently we show that the quadratic and
logarithmic divergences generated in the bare theory are related to the corresponding mass shifts in old-
fashioned light-front perturbation theory. We present numerical results for theF2 andFL structure functions
for the meson in two-dimensional QCD in the one pair approximation. We discuss the relevance of our results
for the problem of the partitioning of the hadron mass in QCD.@S0556-2821~98!02721-0#

PACS number~s!: 12.38.Bx, 13.60.Hb

I. INTRODUCTION

An important problem in applying QCD to deep inelastic
scattering is the existence of power corrections to scaling,
more commonly known as higher twist effects. They are es-
sential for making precision tests of QCD. From the early
days of the establishment of QCD as the underlying theory
of strong interactions, the importance of a proper understand-
ing of power corrections was recognized@1#. Subsequently,
leading 1/Q2 corrections to the unpolarized leading twist
structure functionF2 and the longitudinal structure function
FL were analyzed by the operator product expansion~OPE!
@2# and Feynman diagram@3# approaches. Later Qiu@4# gave
an alternate method based on special propagators~utilizing
unique features of light-cone coordinates! to simplify the
analysis.

The power correction toFL is especially interesting since
the leading~twist two! contribution toFL is perturbative in
origin in contrast with the case ofF2 . Thus the first, nonper-
turbative contributions toFL occur at 1/Q2 order. The com-
plexity of the problem of higher twist appears in the OPE
analysis which utilizes a collinear basis, since at twist four
there appears a proliferation of operator structures. In the
Feynman diagram approach it has been shown, using a trans-
verse basis, that contact could be made with light-front cur-
rent algebra analysis with the result that the twist four part of
FL is given by the Fourier transform of the hadron matrix
element of the minus component of the bilocal vector cur-
rent. Since the minus component of the current involves the
constrained fermion field, the relevant operator has explicit
dependence on the interaction in contrast with the well-

known result for the leading twist contribution toF2 which
involves the plus component of the bilocal current. Even
after many years of investigation, an intuitive physical un-
derstanding of the interaction dependence in the structure of
FL has been elusive. We provide herein a physically intuitive
picture.

Another important problem of current interest is the per-
turbative aspects of the twist four matrix element. Simple
power counting indicates that in the bare theory the twist
four matrix element will be afflicted with quadratic diver-
gences@7#. Understanding the origin and the nature of these
divergences will be quite helpful in finding procedures to
remove them~the process of renormalization!.

A third motivation to study the twist four part ofFL

comes from the present status of deep inelastic scattering
experiments. Measurements@5# of the ratio of the longitudi-
nal to transverse cross section in unpolarized deep inelastic
scattering show@6# that power corrections play an important
role in nucleon structure experiments in the SLAC kinematic
range. It is important to go beyond phenomenological param-
etrizations for a proper understanding of the nonperturbative
nature of these corrections.

Light-front analysis of deep inelastic scattering provides
an intuitive physical picture of various structure functions at
the twist two level. Recently, the resolution of an ambiguity
at the operator level and the parton interpretation of the
transverse component of the bilocal current have been
achieved in an approach based on light-front field theory@8#.
The physical picture of the transverse polarized structure
function @9# and a critical examination of the Wandura-
Wilczek sum rule in perturbation theory@10# have also been
provided in the same approach. Both nonperturbative and
perturbative issues can be addressed in the same language in
this formalism which uses the Fock space expansion for all
the operators and multiparton wave functions for the state
@11#. The approach also provides insights into various renor-
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malization issues associated with the different components of
currents and the Hamiltonian.

In this work, we show that using the same framework one
can resolve outstanding issues associated with the twist four
contributions to the longitudinal structure function. A brief
summary of some of our results is presented in Ref.@12#. In
this work we extend our previous calculations and also
present several new results. Our starting point is the Bjorken-
Johnson-Low ~BJL! expansion for the forward virtual
photon-hadron Compton scattering amplitude. This leads us
to the commutator of currents which we present in detail for
arbitrary flavors in SU~3!. Next we consider the specific case
of electromagnetic currents and arrive at expressions for the
twist two part ofF2 and twist four part ofFL in terms of
specific flavor-dependent form factors. In the rest of the pa-
per we consider the flavor singlet part of the structure func-
tions. We identify the integral ofFL(x)/x with the fermionic
part of the light-front QCD Hamiltonian density. The consid-
eration of mixing in the flavor singlet channel leads us to the
definition of the twist four longitudinal gluon structure func-
tion and then we find a sum rule, free from radiative correc-
tions.

The sum rule which the physical structure function has to
satisfy involves the physical mass of the hadron which is a
finite quantity. A theoretical evaluation of the sum rule
which starts with the bare theory, on the other hand, will be
afflicted with various divergences~see Sec. IV! depending
on the regulator employed. In order to compare with the
physical answer resulting from the measurement, we need to
renormalize the result by adding counterterms. For the
dressed parton target, for example, these counterterms are
dictated by mass counterterms in light-front Hamiltonian
perturbation theory. For a dressed gluon target, calculations
in Sec. IV B show that quadratic divergences are generated
and one does not automatically get the result expected for a
massless target. The divergence generated is shown to be
directly related to the gluon mass shift in old-fashioned per-
turbation theory. To a given order in perturbation theory,
counterterms have to be added to the calculated structure
function. The precise selection of counterterms is dictated
entirely by the regularization and renormalization of the
light-front QCD Hamiltonian. The choice of counterterms in
the Hamiltonian, in turn, determines the counterterms to be
added to the longitudinal structure function which results in a
theoretical prediction of the physical longitudinal structure
function. Recall that in Hamiltonian perturbation theory we
cannot automatically generate a massless gluon by a clever
choice of regulators. The point we emphasize is that the twist
four longitudinal structure function is one-to-one related to
the Hamiltonian density and that there is no arbitrary free-
dom in this relationship.

We also note that in the pre-QCD era, there were discus-
sions about a possibled(x) function contribution to the lon-
gitudinal structure function which may appear to invalidate
the sum rule derived ignoring such subtleties. In two-
dimensional QCD Burkardt has shown@13# thatFL /x2 has a
delta function contribution and he has discussed implications
of this for the sum rule forFL /x2. Obviously,FL /x will not
be affected by such a singular contribution and we show

explicitly in Sec. V that the sum rule is verified in two-
dimensional QCD by virtue of the ’t Hooft equation.

To gain an understanding of the nature of quadratic diver-
gences, we evaluate the twist four longitudinal structure
functions for quark and gluon targets each dressed through
lowest order in perturbation theory. The sum rule allows us
to relate these divergences to quark and gluon mass correc-
tions in QCD in time-ordered light-front perturbation theory.
We also verify the sum rule in a nonperturbative context in
two-dimensional QCD. We also present numerical results for
F2 andFL structure functions in this model using wave func-
tions calculated in a variational approximation. Finally we
discuss the relevance of our results for the problem of the
partitioning of hadron masses in QCD.

The plan of this paper is as follows. In Sec. II we derive
the expressions for the twist two structure functionF2 and
the twist four longitudinal structure functionFL using the
BJL expansion and equal-time (x1) current algebra. The
sum rule forFL is given in Sec. III. In Sec. IV we evaluate
FL for quark and gluon targets dressed through lowest order
in perturbation theory and explicitly verify the sum rule. The
sum rule is verified explicitly in a nonperturbative context in
two-dimensional QCD in Sec. V. In this section, to provide a
qualitative picture, we also present numerical results for the
F2 andFL structure functions in this model. In Sec. VI we
discuss the issue of the breakup of hadron mass in QCD in
the context of our sum rule. Discussion and conclusions are
presented in Sec. VII and our notation and conventions are
summarized in an appendix.

II. PRELIMINARIES

In this section we present the expressions for structure
functions for arbitrary flavors in SU~3! which follow from
the use of the Bjorken-Johnson-Low expansion and light-
front current algebra. In terms of the flavor currentJa

m(x)

5c̄(x)gm(la /2)c(x), the hadron tensor relevant for deep
inelastic scattering is given by

Wab
mn5

1

4pE d4jeiq•j^Pu@Ja
m~j!,Jb

n~0!#uP&. ~2.1!

The forward virtual photon-hadron Compton scattering am-
plitude is given by

Tab
mn5 i E d4jeiq•j^PuT„Ja

m~j!Jb
n~0!…uP&. ~2.2!

We have

Tab
mn~x,Q2!52E

2`

`

dq81
Wab

mn~x8,Q2!

q812q1
. ~2.3!

Using the BJL expansion@14#, we have

Tab
mn52

1

q2E dj2d2j'eiq•j^Pu@Ja
m~j!,Jb

n~0!#j150uP&

1•••, ~2.4!
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where the ellipsis represents higher order terms in the expan-
sion which we ignore in the following. In the limit of large
q2, from Eq. ~A1!, we have

Wab
125

1

2
FL~ab!1~P'!2

F2~ab!

n
1

P'
•q'

xn
F2~ab! , ~2.5!

with x52q2/2n andn5P•q. On the other hand, from Eq.
~2.4!,

lim
q2→`

Tab
1252

1

q2E dj2d2j'eiq•j

3^Pu@Ja
1~j!,Jb

2~0!#j150uP&. ~2.6!

The components of the flavor currentJa
m(x) obey the

equal-x1 canonical commutation relation@to be specific, we
consider SU~3! of flavors#

@Ja
1~x!,Jb

2~y!#x15y152i f abcc̄~x!g2
lc

2
c~x!d2~x'2y'!d~x22y2!

2
1

2
]x

1$e~x22y2!@ i f abcV c
2~xuy!1 idabcV̄c

2~xuy!#d2~x'2y'!%

1
1

2
i f abce~x22y2!]x

i $d2~x'2y'!@V c
i ~xuy!2e i j Āc

j ~xuy!#%

1
1

2
idabce~x22y2!]x

i $d2~x'2y'!@ V̄c
i ~xuy!1e i jA c

j ~xuy!#%. ~2.7!

In deriving the above relations, use has been made of the relation

lalb5 i f abclc1dabclc . ~2.8!

We have defined the bilocal currents as follows:

V c
m~xuy!5

1

2F c̄~x!
lc

2
gmc~y!1c̄~y!

lc

2
gmc~x!G , V̄c

m~xuy!5
1

2i F c̄~x!
lc

2
gmc~y!2c̄~y!

lc

2
gmc~x!G ,

A c
m~xuy!5

1

2F c̄~x!
lc

2
gmg5c~y!1c̄~y!

lc

2
gmg5c~x!G , Āc

m~xuy!5
1

2i F c̄~x!
lc

2
gmg5c~y!2c̄~y!

lc

2
gmg5c~x!G .

~2.9!

Further, we introduce the bilocal form factors

^PuV c
m~ju0!uP&5PmVc

1~j2,P•j!1jmVc
2~j2,P•j!, ~2.10!

^PuV̄c
m~ju0!uP&5PmV̄c

1~j2,P•j!1jmV̄c
2~j2,P•j!. ~2.11!

From Eqs.~2.6! and ~2.7!, we get

lim
q2→`

q2Tab
12522i f abcP

2Gc1
q1

2 E dj2e~ i /2!q1j2
e~j2!@ f abĉ PuV c

2~ju0!uP&1dabĉ PuV̄c
2~ju0!uP&#

2
qi

2 E dj2e~ i /2!q1j2
e~j2!@ f abĉ PuV c

i ~ju0!uP&1dabĉ PuV̄c
i ~ju0!uP&#. ~2.12!

Note that matrix elements ofA c
m(xuy) do not contribute to unpolarized scattering. Using the dispersion relation given in Eq.

~2.3!, together with Eqs.~2.5! and ~2.12! and comparing the coefficient ofqi on both sides, we get

F2~ab!~x!

x
5

i

4pE dhe2 ihx@ f abcVc
1~h!1dabcV̄c

1~h!#. ~2.13!

Comparing the coefficients ofq1 on both sides, we get
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FL~ab!~x!5
1

Q2

i

p

~q1!2

P1 E dhe2 ihx@ f abĉ PuV c
2~ju0!uP&1dabĉ PuV̄c

2~ju0!uP&#

2
~P'!2

Q2

i

pP1 x2E dhe2 ihx@ f abĉ PuV c
1~ju0!uP&1dabĉ PuVc

1~ju0!uP&#. ~2.14!

We have introducedh5 1
2 P1j2.

Note that our result forFL differs from the one given in the literature@15#. The difference can be traced to the expression
for FL that one employs. It is customary@15,3# to ignore the target massM2 in the expression forFL @see Eq.~A2!#. This leads
to an incorrect expression forFL which in turn will lead to an incorrect sum rule~see the following section!.

The electromagnetic current

Jm~x!5J3
m~x!1

1

A3
J8

m~x!. ~2.15!

From the flavor structure of electromagnetic current, we observe that onlydabc contributes to the structure functions in deep
inelastic electron-hadron scattering. Explicitly, we have

F2~x!

x
5

i

2pP1E dhe2 ihx^PuV̄1~ju0!uP&. ~2.16!

The longitudinal structure function is given by

FL~x!5
2

Q2

i

p

~q1!2

P1 E dhe2 ihx^PuV̄2~ju0!uP&22
~P'!2

Q2

i

pP1x2E dhe2 ihx^PuV̄1~ju0!uP&. ~2.17!

We have defined the functions

V̄6~ju0!5S 2

3D 3/2

V̄0
6~ju0!1

1

3
V̄3

6~ju0!1
1

3A3
V̄8

6~ju0!. ~2.18!

In arriving at our final results we have used explicit values of the structure constants of SU~3!:

d3385
1

A3
, d88852

1

A3
, d3305d8805A2

3
. ~2.19!

V̄0
m is the flavor singlet component of the fermion bilocal vector current.

III. SUM RULE

Consider the flavor singlet part of the structure functionsF2( f ) andFL( f ) defined by

F2~ f !~x!

x
5

1

4pP1E dhe2 ihx^Pu@c̄~j!g1c~0!2c̄~0!g1c~j!#uP&, ~3.1!

FL~ f !~x!5
1

Q2

1

p

~q1!2

P1 E dhe2 ihx^Pu@c̄~j!g2c~0!2c̄~0!g2c~j!#uP&

2
~P'!2

Q2

1

pP1 x2E dhe2 ihx^Pu@c̄~j!g1c~0!2c̄~0!g1c~j!#uP&. ~3.2!

From Eq.~3.1! it follows that F2( f )(2x)5F2( f )(x) and from Eq.~3.2! we explicitly find thatFL( f )
t54(2x)52FL( f )

t54(x). It
can be verified@12# that FL( f )

t54 satisfies the sum rule

E
0

1

dx
FL~ f !

t54~x,Q2!

x
5

2

Q2F ^Puuq
12~0!uP&2

~P'!2

~P1!2^Puuq
11~0!uP&G , ~3.3!
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whereuq
125 i c̄g2]1c is the fermionic part of light-front

QCD Hamiltonian density anduq
115 i c̄g1]1c is the fermi-

onic part of light-front longitudinal momentum density in the
light-front gaugeA150.

Here we have used the fact that the physical structure
function vanishes forx.1. Neglect ofM2 in the expression
@Eq. ~A2!# for FL will lead to (P')21M2 instead of (P')2

in the above equation which would spoil the correct sum rule
given below.

The integral ofFL( f )
t54/x is therefore related to the hadron

matrix element of the~gauge invariant! fermionic part of the
light-front Hamiltonian density. This result manifests the
physical content and the nonperturbative nature of the twist
four part of the longitudinal structure function.

The fermionic operator matrix elements appearing in Eq.
~3.3! change withQ2 as a result of the mixing of quark and
gluon operators in QCD under renormalization. Analyzing
the operator mixing we obtain a new sum rule at the twist
four level @12#:

E
0

1dx

x
FL

t5454
M2

Q2 , ~3.4!

where M is the invariant mass of the hadron andFL
t54

5FL(q)
t541FL(g)

t54 , FL(g)
t54 is the twist four longitudinal gluon

structure function which we define as

FL~g!
t54~x!5

1

Q2

xP1

2p E dy2e2~ i /2!P1y2xH F ^Pu~2 !F1la~y2!F la
2 ~0!1

1

4
g12Flsa~y2!Flsa~0!uP&1~y2↔0!G

2
~P'!2

~P1!2 @^Pu~2 !F1la~y2!F la
1 ~0!uP&1~y2↔0!#J , ~3.5!

whereFmla5]mAna2]nAma1g fabcAb
mAc

n . Note that in the
definition of FL(g)

t54(x) the second term where the arguments
of Flsa are interchanged is missing in Ref.@12#.

To our knowledge, this is the first sum rule at the twist
four level for deep inelastic scattering or for QCD in general.
The previously known sum rules in deep inelastic scattering
are all at the twist two level. The operators involved are
kinematical ~light-front longitudinal momentum, light-front
helicity, etc.! in nature. In contrast, the sum rule we have
derived involves a dynamical operator~light-front QCD
Hamiltonian!, thus revealing a new aspect of the underlying
nonperturbative dynamics. Our results show that the mea-
suremnent of the flavor singlet part of the fermionic contri-
butions to the twist four longitudinal structure function in
deep inelastic scattering directly reveals the hadron expecta-
tion value of the fermionic part of the light-front QCD
Hamiltonian density in light-front gauge.

IV. DRESSED PARTON CALCULATIONS

A. Dressed quark with nonzero mass

Next, we investigate the implications of Eq.~3.3! for qua-
dratic divergences inFL(q)

t54 in perturbation theory. We select
the target to be a dressed quark and evaluate the structure
functions to orderg2. That is, we take the stateuP& to be a
dressed quark consisting of bare states of a quark and a quark
plus a gluon:

uP,s&5f1b†~P,s!u0&1 (
s1 ,l2

E dk1
1d2k1

'

A2~2p!3k1
1

3E dk2
1d2k2

'

A2~2p!3k2
1
A2~2p!3P1d3~P2k12k2!

3f2~P,suk1 ,s1 ;k2 ,l2!b†~k1 ,s1!a†~k2 ,l2!u0&.

~4.1!

In the previous work@12# we have given results for mass-
less quark state. We have shown that the twist four longitu-
dinal structure function has quadratic divergences in pertur-
bation theory. In this section, we show that for a massive
quark, in addition to quadratic divergences, logarithmic di-
vergences are generated. We have

FL5M11M2 , ~4.2!

where

M15
1

pQ2E dy2e~2 i /2!P1y2x^Puc1†~y2!

3†a'
•@ i ]'1gA'~y2!#1g0m‡

3†a'
•@ i ]'1gA'~0!#1g0m‡c1~0!1H.c.uP&

~4.3!

and
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M2524
~P'!2

Q2 xF2~q!~x!, ~4.4!

whereuP& now has a massM andm is the bare quark mass.

In the case of quark contributions, the second term in the
expression for the bilocal current in Eq.~2.9! vanishes. First
we evaluate the contributionM2 given in Eq. ~4.4!. We
obtain

M2524
~P'!2

Q2 x2F d~12x!1
g2

8p3 CfS E d2k'

11x2

12x
k'

2 1~12x!3m2

@m2~12x!21k'
2 #2

2d~12x!E dyd2k'

11y2

12y
k'

2 1~12y!3m2

@m2~12y!21k'
2 #2

D G ,

~4.5!

whereCf5(N221)/2N for SU(N).
Here we have presented the result without working out the transverse integration to maintain a greater degree of transpar-

ency.
The contribution fromM1 is split into four parts with additional contributions coming from quark mass terms and can be

written as follows:

M15
1

pQ2E dy2e~2 i /2!P1y2x^Puc1†~y2!@2~]'!21m2#c1~0!uP&

1g
1

pQ2E dy2e~2 i /2!P1y2x^Puc1†~y2!~ i ]'
•a'1g0m!a'

•A'~0!c1~0!uP&

1g
1

pQ2E dy2e~2 i /2!P1y2x^Puc1†~y2!a'
•A'~y!~ i ]'

•a'1g0m!c1~0!uP&

1g2
1

pQ2E dy2e~2 i /2!P1y2x^Puc1†~y2!A'~y!•A'~0!c1~0!uP& ~4.6!

[M 1
a1M 1

b1M 1
c1M 1

d . ~4.7!

Since the operators in Eq.~4.3! are taken to be normal ordered, the contribution ofM 1
d vanishes to orderg2.

Explicit calculation leads to the diagonal Fock basis contributions

~M1!diag5M 1
a54

~P'!2

Q2 x2F d~12x!1
g2

8p3 CfS E d2k'

11x2

12x
k'

2 1~12x!3m2

@m2~12x!21k'
2 #2

2d~12x!E dyd2k'

11y2

12y
k'

2 1~12y!3m2

@m2~12y!21k'
2 #2

D G1
4m2

Q2 d~12x!F 12Cf

g2

8p3E dyd2k'

11y2

12y
k'

2 1~12y!3m2

@m2~12y!21k'
2 #2

G
1

4Cf

Q2

g2

8p3E d2k'~k'
2 1m2!

11x2

12x
k'

2 1~12x!3m2

@m2~12x!21k'
2 #2

. ~4.8!

.
The first term here explicitly cancels the termM2 given in Eq.~4.5!.
Off-diagonal contributions

~M1!nondiag5M 1
b1M 1

c5
Cf

Q2

g2

p3Fd~12x!E dyd2k'

m2~12y!

@m2~12y!21k'
2 #

2E d2k'

k'
2 1m2~12x!2

~12x!@m2~12x!21k'
2 #

G . ~4.9!

Adding all the contributions, we have
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FL~q!
t54~x!5

4m2

Q2 d~12x!1
4Cf

Q2

g2

8p3
F E d2k'~k'

2 1m2!

11x2

12x
k'

2 1~12x!3m2

@m2~12x!21k'
2 #2

2d~12x!m2E dyd2k'

11y2

12y
k'

2 1~12y!3m2

@m2~12y!21k'
2 #2

G
2

Cf

Q2

g2

p3F E d2k'

k'
2 1m2~12x!2

~12x!@m2~12x!21k'
2 #

2d~12x!E dyd2k'

m2~12y!

@m2~12y!21k'
2 #

G . ~4.10!

Here we have usedM5m, since the difference that it entails is higher order in the coupling. Note that we are getting back the
free quark answer once we switch off the interaction. Also, the dressed massless quark answer can be easily regenerated by
puttingM5m50. Note that thek' integration now produces logarithmic divergences with the expected quadratic ones, as we
remarked earlier.

To check the sum rule explicitly, we evaluate the right-hand side~RHS! of Eq. ~3.3! next. A straightforward evaluation
leads to

^Puuq
12~0!uP&nondiag52Cf

g2

2p3E dxd2k'

k'
2 1m2~12x!3

x~12x!

1

@m2~12x!21k'
2 #

, ~4.11!

^Puuq
12~0!uP&diag2

~P'!2

~P1!2^Puuq
11~0!uP&diag52m212Cf

g2

8p3E dxd2k'

k'
2 1~12x!m2

x

11x2

12x
k'

2 1~12x!3m2

@m2~12x!21k'
2 #2

.

~4.12!

Adding the diagonal and off-diagonal contributions from the fermionic part of the Hamiltonian density and multiplying it by
2/Q2 one obtains the RHS of the sum rule. Comparing it with the integral ofFL

t54/x, whereFL is given in Eq.~4.10!, one
easily sees that the sum rule is verified.

To see the connection ofFL with the fermionic mass shift, we calculate the contribution of the gluonic part of the energy
momentum tensoru12 to the sum rule for the totalFL . Explicit calculation gives

^Puug
12~0!uP&nondiag52Cf

g2

2p3E dxd2k'

~11x!k'
2

~12x!2

1

@m2~12x!21k'
2 #

, ~4.13!

^Puug
12~0!uP&diag2

~P'!2

~P1!2^Puug
11~0!uP&diag52Cf

g2

8p3E dxd2k'

k'
2

~12x!

11x2

12x
k'

2 1~12x!3m2

@m2~12x!21k'
2 #2

. ~4.14!

Thus, we get

^Puuq
12~0!1ug

12~0!uP&nondiag52Cf

g2

2p3E dxd2k'

~11x2!

12x
k'

2 1~12x!3m2

x~12x!

1

@m2~12x!21k'
2 #

, ~4.15!

^Puuq
12~0!1ug

12~0!uP&diag2
~P'!2

~P1!2^Puuq
111ug

11~0!uP&diag

52Cf

g2

8p3E dxd2k'

~11x2!

12x
k'

2 1~12x!3m2

x~12x!

1

@m2~12x!21k'
2 #

. ~4.16!

Adding diagonal and off-diagonal contributions, we get
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^Puu12~0!uP&2
~P'!2

~P1!2^Puu11~0!uP&52Cf

g2

4p3E dxd2k'

~11x2!

12x
k'

2 1~12x!3m2

x~12x!

1

@m2~12x!21k'
2 #

. ~4.17!

Note that this result is connected to the full fermion mass shiftdp1
2 in second order perturbation theory. We have@see Eq.

~4.10!#, in Ref. @16#,

dp1
252

1

2P1 Cf

g2

4p3E dxd2k'

~11x2!

12x
k'

2 1~12x!3m2

x~12x!

1

@m2~12x!21k'
2 #

. ~4.18!

B. Dressed gluon

In this section we check the sum rule explicitly for a dressed gluon target. We consider the gluon to be composed of a bare
gluon and a quark-antiquark pair:

uP,s&5f1a†~P,l!u0&1 (
s1 ,s2

E dk1
1d2k1

'

A2~2p!3k1
1E dk2

1d2k2
'

A2~2p!3k2
1

A2~2p!3P1d3~P2k12k2!

3f2~P,suk1 ,s1 ;k2 ,s2!b†~k1 ,s1!d†~k2 ,s2!u0&. ~4.19!

The target gluon and the bare quark and antiquark masses are
taken to be zero. Note that, to the orderg2, there will be a
contribution from the two-gluon Fock sector due to the non-
Abelian nature of the gauge coupling. For simplicity, we
exclude that contribution. It is easy to incorporate that con-
tribution by trivially extending our calculation presented
here.FL can be written in terms ofM1 andM2 given in
Eqs. ~4.3! and ~4.4!, whereuP& now stands for the dressed
gluon represented by Eq.~4.19!. Explicit calculation gives

M2524
~P'!2

Q2 xF2~q!
dressed gluon

52
x2~P'!2

Q2

g2

p2 NfTf@x21~12x!2# lnL2.

~4.20!

HereTf5
1
2 andNf is the number of flavors.

M1 is again divided into four parts as in Eq.~4.7! and
explicit calculation in this case gives the following:

M1~diag!5M1~a!5
x2~P'!2

Q2

g2

p2 NfTf@x21~12x!2# lnL2

1
L2

Q2

g2

p2 NfTf@x21~12x!2#, ~4.21!

M1~o f f-diag!5M1~b!1M1~c!

52
L2

Q2

g2

p2 NfTf2~12x!. ~4.22!

Thus, we get

FL5
L2

Q2 NfTf

g2

p2 @x21~12x!222~12x!#. ~4.23!

On the other hand, we get

^Puuq
12~0!uP&diag2

~P'!2

~P1!2^Puuq
11~0!uP&diag

5L2NfTf

g2

4p2E dxFx21~12x!2

x~12x! G ~4.24!

and

^Puuq
12~0!uP&o f f-diag52L2NfTf

g2

2p2E dxFx21~12x!2

x~12x! G .
~4.25!

Adding diagonal and off-diagonal contributions, we get

^Puuq
12~0!uP&2

~P'!2

~P1!2^Puuq
11~0!uP&

52L2NfTf

g2

4p2E dxFx21~12x!2

x~12x! G . ~4.26!

Note that this result is connected to the gluonic mass shift
dq2

2 due to pair production, since the contribution from the
gluonic part of the energy-momentum tensorug

12 in this
case vanishes. In the massless limit, we have†see Eq.~4.40!
in Ref. @16#‡

dq2
252

1

2P1L2NfTf

g2

4p2E dxFx21~12x!2

x~12x! G .
~4.27!
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From Eq.~4.23! we compute*dx FL /x. Sincex integration
is from 0 to 1, it can be written in the following form:

E dx
FL

x
52

L2

Q2 NfTf

g2

2p2E dxFx21~12x!2

x~12x! G .
~4.28!

Comparing Eq.~4.26! and Eq.~4.28!, one explicitly verifies
the sum rule for a dressed gluon target.

As we have emphasized, in the bare theory, the twist four
longitudinal structure function is afflicted with divergences.
We have to add counterterms to carry out the renormaliza-
tion procedure so that we have physical answers. The sum
rule for the bare theory clearly shows that the quadratic di-
vergences generated are directly related to the gluon mass
shift in second order light-front perturbation theory arising
from an intermediate quark-antiquark pair. In order to ensure
a massless gluon in second order perturbation theory, we
have to add the negative of the shift as a counterterm. After
adding the counterterm, the gluon mass shift in second order
perturbation theory is zero and the twist four longitudinal
structure function for a massless gluon becomes zero. Thus,
after renormalization, the sum rule is satisfied, with a trivial
~i.e., zero! gluon longitudinal structure function.

V. „111…-DIMENSIONAL QCD:
EXPLICIT CALCULATIONS

In this section, we turn to two-dimensional QCD in order
to test the sum rule given in Eq.~3.4! explicitly in a nonper-
turbative context. In 111 dimensions, inA150 gauge, we
have

E
0

1dx

x
FL~q!

t54~x!5
2

Q2 ^Pu@uq
12~0!1ug

12~0!#uP&,

~5.1!

with uq
1252m2c1†(1/i ]1)c1 and ug

125
24g2c1†Tac1@1/(]1)2#c1†Tac1. We consider the stan-
dard one pair (qq̄) approximation to the meson ground state.
Explicit evaluations show that

FL~q!
t54

x
5

4

Q2 c* ~x!
m2

x~12x!
c~x! ~5.2!

and

E
0

1

dx
FL~g!

t54

x
5

4

Q2 ~2 !Cf

g2

p E
0

1

dxE
0

1

dyc* ~x!
c~y!2c~x!

~x2y!2 ,

~5.3!

wherec(x) is the ground state wave function for the meson.
Thus

E
0

1dx

x
FL

t54~x!5
4

Q2E
0

1

dxc* ~x!F m2

x~12x!
c~x!

2Cf

g2

p E
0

1

dy
c~y!2c~x!

~x2y!2 G . ~5.4!

By virtue of the bound state equation~’t Hooft equation!
obeyed by the ground state wave functionc(x) for the me-
son,

M2c~x!5
m2

x~12x!
c~x!2Cf

g2

p E dy
c~y!2c~x!

~x2y!2 ,

~5.5!

together with the normalization condition*0
1dxc2(x)51, we

easily verify that the twist four longitudinal structure func-
tion of the meson obeys the sum rule

E
0

1dx

x
FL

t545
2

Q2 ^Puu12~0!uP&54
M2

Q2 . ~5.6!

In the same model, the contribution to the twist two struc-
ture function from the fermionic constituents is given by

F2~q!~x!5~x112x!c* ~x!c~x!5c* ~x!c~x!. ~5.7!

Note that, since there are no partonic gluons or sea in this
model, the longitudinal momentum of the meson is carried
entirely by the valence quark and antiquark. Thus the mo-
mentum sum rule is saturated by the fermionic part of the
longitudinal momentum density. On the other hand, light-
front energy density is shared between fermionic and gauge
bosonic parts and as a consequence the fermions carry only a
fraction of the hadron mass. This seemingly paradoxical situ-
ation further illuminates the difference between the physical
content of theF2 andFL

t54 sum rules.
To get a quantitative picture, next, we explicitly calculate

the structure functionsF2(q)(x) and FL(q)(x)/x for the
ground state meson in two-dimensional QCD. We have pa-
rametrized the ground state wave function as
c(x)5Nxs(12x)s and determined the value ofs variation-
ally by minimizing M2 for given values ofm2 andg2. The
factor N is determined from the normalization condition
*0

1dxc* (x)c(x)51. The resulting structure functions are
presented in Fig. 1 for two different values ofm2.

Since both the quark and antiquark have equal mass in the
model, both structure functions are symmetric aboutx5 1

2 .
When the fermions are heavy@Fig. 1~a!#, the system is es-
sentially nonrelativistic and the structure functions are sig-
nificant only near the regionx5 1

2 . When the fermions be-
come lighter @Fig. 1~b!#, contributions to the structure
function from the end-point regions become significant indi-
cating substantial high momentum components in the ground
state wave function. Note thatFL(q) /x measures the fermion
kinetic energy~in light-front coordinates!. The exponents in
the wave function is a function of the fermion mass ands
decreases asm decreases. In the massless limit,s vanishes
@17# so that the wave function for the ground state becomes
c(x)5u(x)u(12x). This results in a flatF2 structure func-
tion. However, because of the presence ofm2, FL(q)

t54 van-
ishes. Because of an exact cancellation between the self-
energy and gluon exchange contributions, the gluonic part of
theFL

t54 also vanishes. Thus the sum rule is satisfied exactly
since, in the zero-quark-mass limit, the ground state meson is
massless in two-dimensional QCD.
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VI. PARTITION OF THE HADRON MASS IN QCD

As is well known, experiments that measure the twist two
part of theF2 structure function yield information on the
fraction of longitudinal momenta carried by the charged par-
ton constituents of the hadron~quarks and antiquarks!. The
sum rule we have derived yields other useful information
about the hadron structure. Namely, our sum rule shows that
experiments to measure the twist four part of the longitudinal
structure function will directly reveal the fraction of the had-
ron mass carried by charged parton components of the had-
ron. The light-front Hamiltonian provides theoretical insight
into this fraction as follows.

According to our analysis, the twist four part of the lon-
gitudinal structure function is directly related to the fermi-
onic part of the light-front QCD Hamiltonian densityuq

12 in
the gaugeAa

150. Explicitly we have

uq
1252c1†@a'

•~ i ]'1gA'!1g0m#

3
1

i ]1 @a'
•~ i ]'1gA'!1g0m#c1. ~6.1!

Thus we have the fermion kinetic energy contribution given
by

uq~ f ree!
12 52c1†@2~]'!21m2#c1 ~6.2!

and the interaction-dependent part given by

uq~ int !
12 52gc1†Fa'

•A'
1

i ]1 ~a'
• i ]'1g0m!

1~a'
• i ]'1g0m!

1

i ]1a'
•A'Gc1

12g2c1†a'
•A'

1

i ]1 a'
•A'c1. ~6.3!

Note that the fermion kinetic energy constitutes only a part
of the total contribution from fermions. Any theoretical esti-
mate of the fermionic part of the longitudinal structure func-
tion necessarily has to involve off-diagonal contributions
from Fock states differing in the number of gluons by 1 and
2.

It is important to emphasize the difference between equal-
time and light-front Hamiltonians in the context of our cal-
culations. The equal-time Hamiltonian contains the scalar
density term (c̄c) accompanying the quark massm. In con-
trast, the quark mass appears quadratically in the free part of
the light-front Hamiltonian. Recently the question of the par-
tition of hadron masses in QCD has been addressed by Ji
@18# in the context of the equal-time Hamiltonian and in
terms of twist two and twist three observables. In his analy-
sis, the extraction of the fraction of the hadron mass carried
by the fermion constituents is not straightforward because of
the presence of the scalar density term. The hadron expecta-
tion value of the strange quark scalar density remains un-
known ~experimentally!. Our analysis, however, shows that
the twist four longitudinal structure function, once extracted
experimentally, directly yields the fraction of the hadron
mass carried by fermionic constituents.

VII. DISCUSSION AND CONCLUSIONS

To gain physical intuition on the twist four longitudinal
structure function and to understand the occurrence of qua-
dratic divergences and the associated renormalization issues,
we have studied the twist four longitudinal structure function
in an approach based on Fock space expansion methods in
light-front field theory. We have identified the integral of 1/x
times the twist four part of the fermionic contribution to the
longitudinal structure function as the hadron matrix element
of the fermionic part of the light-front QCD Hamiltonian
density in the light-front gauge apart from an overall con-
stant. We have tested this relation to orderg2 in QCD per-
turbation theory for both dressed quark and gluon targets.
Our result shows that quadratic and logarithmic divergences
in the twist four longitudinal structure function are directly
related to mass corrections in the light-front theory.

By investigating the mixing of operators in the flavor sin-
glet channel, we have recently derived@12# a new sum rule
which involves the invariant mass of the hadron. The validity

FIG. 1. Fermionic contributions to the structure functionsF2(x)
and FL

t54/x for the ground state meson in the ’t Hooft model for
two different values ofm, the quark mass:~a! m55, s54.96. ~b!
m51, s50.70. The parameters appearing in the wave function is
determined by a variational calculation. We have setCfg

2/p51.
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of the sum rule has been explicitly checked in two-
dimensional QCD~’t Hooft model!. To get a qualitative pic-
ture of the twist four structure function we have computed
numerically bothF2 and FL structure functions in the ’t
Hooft model using the ground state wave function calculated
using a variational ansatz.

We have also discussed the implication of our results for
the problem of breakup of hadron masses in QCD in terms of
fermionic and bosonic constituents. We have emphasized the
differences between equal-time and light-front formulations
relevant for this study.

Our results indicate that the experiments to measure the
twist four longitudinal structure function reveal the fraction
of the hadron mass carried by the charged parton compo-
nents. Thus these experiments play a complementary role to
the longitudinal momentum and helicity distribution infor-
mation obtained at the twist two level. It is of interest to
investigate the feasibility of the direct measurement of the
twist four gluon structure function in high energy experi-
ments. Recent work of Qiu and co-workers has shown that
semi-inclusive single jet production in deep inelastic scatter-
ing @19# and direct photon production in hadron nucleus scat-
tering @20# provide direct measurement of twist four gluon
matrix elements.

On the theoretical side we note that some significant
progress has been made recently in the bound state problem
in light-front QCD @21# based on similarity renormalization
group method. In the near future, we plan to undertake a
nonperturbative calculation~utilizing Fock space expansion
and Hamiltonian renormalization techniques! of the longitu-
dinal structure function for a mesonlike bound state. Such a
calculation will undoubtedly help to check the validity of
current phenomenological models@6# based on simple as-
sumptions@22# employed in analyzing the data.

Another important problem is the scale evolution of the
twist four structure function which is far more complicated
than the twist two case. Recently we have provided a physi-
cal picture of scale evolution of theF2 structure function of
a composite system in terms of multiparton wave functions
in momentum space@23#. We plan to carry out a similar
analysis of the twist four longitudinal structure function, elu-
cidating all possible scale dependences and their physical
interpretation.
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APPENDIX: SUMMARY OF NOTATION
AND CONVENTIONS

The hadron tensor relevant to unpolarized electron-hadron
deep inelastic scattering is given by

Wmn5S 2gmn1
qmqn

q2 DW1~x,Q2!

1S Pm2
P•q

q2 qmD S Pn2
P•q

q2 qnDW2~x,Q2!.

~A1!

The dimensionless functions

FL~x,Q2!52F2W11S M22
~P•q!2

q2 DW2G , ~A2!

and

F2~x,Q2!5nW2~x,Q2! ~A3!

are the unpolarized structure functions.
We have defined2Q25q25q1q22(q')2.
The light-front coordinates are defined byx65x06x3.
The constraint equation for the fermion field, which fol-

lows from the Dirac equation, inA150 gauge is given by

c2~z!5
1

4i E dy2e~z22y2!

3@a'
•~ i ]'1gA'!1g0m#c1~y2!, ~A4!

where the antisymmetric step function

e~x2!52
i

p
PE dv

v
e~ i /2!vx2

. ~A5!
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