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We show that the Sudakov factor from the resummation of double logarithms ln(s/kT
2) contained in the

distribution functions is responsible for thekT smearing mechanism employed in the next-to-leading-order
QCD (aas

2) calculations of direct photon production.s is the center-of-mass energy, andkT the transverse
momentum carried by a parton in a colliding hadron. This factor exhibits the appropriates-dependent Gaussian
width in kT , such that our predictions are in good agreement with experimental data.
@S0556-2821~98!07519-5#

PACS number~s!: 12.38.Cy, 12.38.Bx, 13.60.Hb

I. INTRODUCTION

It was pointed out some time ago@1# that the global QCD
analysis of the direct photon production processes from both
fixed-target and collider experiments@2–9# has led to a
puzzle: Most data sets show a steeperpT distribution than the
next-to-leading-order~NLO! QCD (aas

2) predictions,pT be-
ing the transverse momentum of the direct photon. This be-
havior cannot be explained by either global fits with new
parton distribution functions or improved photon fragmenta-
tion functions. To resolve the puzzle, a Gaussian type broad-
ening of the transverse momentumkT carried by initial-state
partons in colliding hadrons has been introduced@1#. This
smearing function enhances the low end region of the spec-
trum in pT more than the high end, such that the QCD pre-
dictions have a steeper distribution. The recent publication of
the E706 direct photon data set@10# has confirmed the evi-
dence for thekT effect. However, the physical origin of this
effect and of its center-of-mass-energy dependent Gaussian
width has not been understood yet.

In this paper we shall propose the mechanism that is re-
sponsible for thekT-smearing effect in direct photon produc-
tion. It has been mentioned that thekT effect is likely due to
multiple gluon emissions@1#. It has also been observed that
large double logarithms ln2(s/kT

2) are generated from gluon
emissions,s being the center-of-mass energy, when the
transverse degrees of freedom of partons are taken into ac-
count@11#. The parton momentakT then flow into the direct
photon, and make up the momentumpT . The idea of asso-
ciating kT to a parton has been explained in@12#. The large
logarithms are absorbed into parton distribution functions,
and their all-order summation leads to a Sudakov factor,
which describes the perturbative distribution of the partons
in kT for different s. Since the Sudakov factor gives strong
suppression at largekT , it resembles a Gaussian function
with s-dependent width. These characteristics are qualita-
tively consistent with those of the smearing effect mentioned
above. We shall demonstrate quantitatively that the inclusion
of the Sudakov factor indeed modifies the NLO QCD (aas

2)
predictions in the desired way, and the data of direct photon
production can be explained.

Because of the transverse degrees of freedom of the par-
tons, the resummation of double logarithms should be per-
formed in the impact parameterb space@11,13#, which is
conjugate tokT . Hence, it is ln2(sb2) that are resummed.
After deriving the Sudakov factor, we Fourier transform it
back to thekT space, and convolute it with the naive NLO
factorization formula for direct photon production. Note that
an analytical expression of the transformed Sudakov factor
does not exist, and must be obtained numerically. However,
to make its smearing effect transparent, the Sudakov factor is
parametrized by a Gaussian function exp(2G2b2/4) with the
width G, which corresponds to exp(2kT

2/G2) in the kT space.
We find that thes dependence ofG is consistent with that
employed in@1#, implying the success of our analysis.

In Sec. II we apply the Collins-Soper-Sterman resumma-
tion technique@13# to direct photon production from hadron
collisions, and present the explicit expression of the Sudakov
factor. In Sec. III the Sudakov factor is parametrized as a
Gaussian function, and thes dependence of its width is ex-
amined. The numerical results are compared with the data of
direct photon production. Section IV is the conclusion.

II. FACTORIZATION AND RESUMMATION

In this section we derive the factorization formula for di-
rect photon production

h~p1!1h~p2!→g~pT!1X, ~1!

in the collision of the hadronsh, and resum the involved
large double logarithms into a Sudakov factor. The hadron
momenta are assigned asp15(p1

1,0,0T) and p2

5(0,p2
2 ,0T) with p1

15p2
25As/2. pT is the transverse mo-

mentum of the direct photon that is measured. The tree-level
diagrams are shown in Figs. 1~a! and 1~b!, in which both
quarks and gluons out of the hadrons contribute. The partons
carry the momentaj i pi1k iT , wherej i , i 51,2, are the lon-
gitudinal momentum fractions andk iT are the transverse mo-
menta.

We then consider higher-order corrections to Fig. 1~a!
from Figs. 1~c!–1~h!. The discussion for Fig. 1~b! is similar.
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Figure 1~c!, the self-energy correction to a parton, and Fig.
1~d!, the loop correction with a real gluon connecting the two
partons from the same hadron, contain both collinear diver-
gences from the loop momentuml parallel to pi and soft
divergences from smalll . Since the soft divergences cancel
asymptotically as shown in@11#, the double logarithmic cor-
rections are mainly collinear. Therefore, Figs. 1~c! and 1~d!
are absorbed into a distribution functionf associated with
the hadroni . In most of kinematic regions the self-energy
correction to the outgoing jet in Fig. 1~e! does not give col-
linear divergences. Because of the cancellation of soft diver-
gences, Fig. 1~e! is absorbed into a hard scattering amplitude
H, which corresponds to the parton-level differential cross
sectionds/dpT . Similarly, other radiative corrections to the
box diagram are also infrared finite and grouped intoH.

The absorption of the irreducible diagram in Fig. 1~f! is
more delicate. It contains collinear divergences froml paral-
lel to pi and soft divergences. Forl parallel top1 , we re-
place the parton line in hadron 2 by an eikonal line in the
direction n5v25p2 /As/2 on the light cone, and factorize
the gluon into the distribution function of hadron 1 from the
full scattering amplitude. The replacement by an eikonal line
holds for both quarks and gluons as verified in@14#. The
treatment of the gluon withl parallel top2 is the same, but
the direction of the eikonal line isn5v15p1 /As/2. The
factorization of the vertex-correction diagrams in Figs. 1~g!
and 1~h! is similar to that of Fig. 1~f!. In the leading region
with the loop momentuml parallel topi , they are assigned
to the corresponding distribution functions. Certainly, soft
divergences in the above diagrams cancel asymptotically. At
last, whenl is hard, Figs. 1~c!–1~h! are grouped into the hard
scattering amplitudeH defined above.

The eikonal lines on the light cone introduced above, col-
lecting collinear gluons, are essential for the factorization of

irreducible diagrams in Figs. 1~e!–1~h!, and for the gauge
invariance of the parton distribution functions. However, to
implement the resummation technique, we allow the gauge
vector n to vary away from the light cone (n2Þ0) tempo-
rarily. It will be shown that the Sudakov factor turns out to
be n-independent. After completing the resummation,n is
brought back to the light cone, and the gauge invariance of
the parton distribution functions is restored. That is, the ar-
bitrary n appears only at the intermediate stage of the for-
malism and as an auxiliary tool of the resummation.

When the transverse degrees of freedom of the partons are
taken into account, the factorization must be performed in
theb space, which is conjugate tokT @11#. Hence, we arrive
at the general factorization picture for direct photon produc-
tion shown in Fig. 2, and the corresponding formula

ds~s,pT!

dpT
5E dj1dj2E d2b

~2p!2

3f̃~j1 ,p1 ,b,m!f̃~j2 ,p2 ,b,m!

3H̃~j1 ,j2 ,s,b,m!exp~ ipT•b!, ~2!

m being a renormalization and factorization scale. We have
assumed the singleb dependence in the above expression in
order to compare our formalism with the naivekT smearing
employed in the literature. A rigorous factorization formula
for direct photon production from hadron collisions will be
presented elsewhere.

In the axial gaugen•A50 the eikonal line disappears,
and only Figs. 1~c! and 1~d! give double logarithmic correc-
tions to the distribution functions@11#. We demonstrate how
to resum the double logarithms from Figs. 1~c! and 1~d! by
considering only the hadron 1. The resummation for the had-
ron 2 is the same. The essential step in the resummation is to
derive a differential equationp1

1df̃/dp1
15Cf̃ @11#, where

the coefficient functionC contains only single logarithms,
and can be treated by renormalization group~RG! methods.
In the axial gaugen goes into the gluon propagator,
(2 i / l 2)Nmn( l ), with

Nmn~ l !5gmn2
nml n1nnl m

n• l
1n2

l ml n

~n• l !2
. ~3!

FIG. 1. ~a! and~b! Lowest-order diagrams of direct photon pro-
duction.~c!–~h! O(as) corrections to~a!.

FIG. 2. Factorization of direct photon production from hadron
collisions.
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Because of the scale invariance ofNmn in n, f̃ must depend
on p1 ~or s) through the ratio (p1•n)2/n2, implying that the
differential operatord/dp1

1 can be replaced byd/dn using a
chain rule,

p1
1

d

dp1
1 f̃52

n2

v1•n
v1a

d

dna
f̃. ~4!

The operatord/dna applying toNmn gives

2
n2

v1•n
v1a

d

dna
Nmn5 v̂a~Nmal n1Nanl m!, ~5!

with the special vertex

v̂a5
n2v1a

v1•nn• l
. ~6!

The momentuml m( l n) appearing at the end of the differen-
tiated gluon line is contracted with a vertex the gluon at-
taches, which is then replaced by the special vertex. The
contraction ofl m hints the application of the Ward identity.
Summing all the diagrams with different differentiated glu-
ons, the special vertex moves to the outer end of the parton
line due to the Ward identity. We obtain the derivative

p1
1

d

dp1
1 f̃52f̃8, ~7!

described by Fig. 3~a!, where the square in the new function
f̃8 represents the special vertexv̂a . The coefficient 2 comes
from the equality of the two new functions with the special
vertex on either of the two parton lines.

The collinear region of the loop momentuml is now not
important because of the factor 1/(n• l ) in v̂a with nonvan-

ishing n2. Therefore, the leading regions ofl are soft and
hard, in which the subdiagram containing the special vertex
can be factorized fromf̃8 into a functionK and a function
G, respectively. The remaining part is the original distribu-
tion function f̃. The differential equation is then expressed
as

p1
1

d

dp1
1

f̃52@K„bm,as~m!…1G„p1
1/m,as~m!…#f̃, ~8!

with the general diagrams ofK and G shown in Fig. 3~b!.
The sumK1G is exactly the coefficient functionC men-
tioned above. It has been made explicit thatK contains the
single small scale 1/b andG contains the single large scale
p1

1 .
The O(as) contributions toK from Fig. 3~c! and to G

from Fig. 3~d! are given by

K5 ig2CmeE d42el

~2p!42e F 1

l 2
12p id~ l 2!ei lT•bG

3
v̂mv1n

v1• l
Nmn2dK, ~9!

G5 ig2CmeE d42el

~2p!42e
v̂mS p” 11 l”

~p11 l !2
gn2

v1n

v1• l D Nmn

l 2
2dG,

~10!

dK and dG being the corresponding additive counterterms.
The color factorC is CF(54/3) if the parton is a quark, and
Nc(53) if the parton is a gluon@14#. The factorei lT•b in Eq.
~9!, which is associated with the second diagram~real gluon
emission! in Fig. 3~d! @11,13#, rendersK free of infrared
poles. That is, 1/b serves as an infrared cutoff of the loop
integral. Note thatK vanishes in the asymptotic regionb
→0, reflecting the soft cancellation as stated before. The
second term in Eq.~10!, as a soft subtraction, ensures that
the momentum flow inG is hard.

A straightforward calculation of Eqs.~9! and ~10! gives
the pole termsdK52dG. For details of the calculation,
refer to @11#. SinceK and G contain only single soft and
ultraviolet logarithms, respectively, they are treated by RG
methods:

m
d

dm
K52lK52m

d

dm
G. ~11!

The anomalous dimension ofK, lK5mddK/dm, is given,
up to two loops, by@15#

lK5
as

p
C1S as

p D 2

CFCAS 67

36
2

p2

12D2
5

18
nf G , ~12!

with nf the number of quark flavors, andCA53 a color fac-
tor. In solving Eq.~11!, we make the scalem evolve to the
infrared cutoff 1/b in K and top1 in G. The RG solution of
K1G is written as

FIG. 3. ~a! The derivativep1
1df̃/dp1

1 in the axial gauge.~b!
General diagrams for the functionsK andG. ~c! The O(as) func-
tion K. ~d! The O(as) function G.
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K„bm,as~m!…1G„p1
1/m,as~m!…52E

1/b

p1 dm̄

m̄
lK„as~m̄ !….

~13!

Substituting Eq.~13! into ~8!, we obtain the solution

f̃~j1 ,p1 ,b,m!5 f ~j1p1
1 ,b!f̃~j1 ,b,m!

' f ~j1p1
1 ,b!f~j1 ,m!, ~14!

with the Sudakov factor

f ~j1p1
1 ,b!5expF22E

1/b

j1p1
1 dp

p E
1/b

p dm̄

m̄
lK„as~m̄ !…G .

~15!

We have set the lower bound of the variablep to 1/b, and
the upper bound toj1p1

1 . Note that Eq.~15! is defined only
for j1p1

1>1/b. For j1p1
1,1/b, we requiref to be equal to

unity. We also setf to 1 asf .1 @12#, which occurs in the
small b region. The radiative corrections in this short-
distance region should be absorbed into the hard scattering
amplitudeH, instead of into the distribution function, giving
its Sudakov evolution. The wave functionf(j1 ,m)
5*d2k1Tf(j1 ,k1T ,m) is the b→0 limit of the initial con-
dition f̃(j1 ,b,m) of the Sudakov evolution. This approxi-
mation is reasonable because of the strong suppression off
at largeb. Obviously,f is independent of the vectorn. Now
we maken approachv2 ~the light cone!, andf(j1 ,m) coin-
cides with the standard distribution function with the gauge
invariance.

The resummation for the distribution function of hadron 2
gives a similar Sudakov factor. Hence, the additional smear-
ing factor compared to the standard NLO QCD calculations
is given by

S̃~j1 ,j2 ,s,b!5 f ~j1p1
1 ,b! f ~j2p2

2 ,b!. ~16!

Transformation of Eq.~2! back to thekT space with Eqs.~14!
and ~16! inserted leads to

ds~s,pT!

dpT
5E dj1dj2E d2kTf~j1 ,pT8 !f~j2 ,pT8 !

3H~j1 ,j2 ,s,pT8 !S~j1 ,j2 ,s,kT!, ~17!

with the variablepT85upT2kTu. We have setm of f andH to
the characteristic scalepT8 of H. That is, the distribution
functionsf will evolve to pT8 according to the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi equation@16#, which further
incorporates the summation of the single logarithms lnpT8 .
Equation~17! is the factorization formula for direct photon
production with the singlekT approximation.

To be related to the analysis in@1#, we shall not work on
Eq. ~17!, but neglect thej dependence ofS, making the
approximationS(s,kT)'S(0.5,0.5,s,kT). It is reasonable to
assumej1 ,j2'0.5. Performing the integration overj1 and
j2 , Eq. ~17! reduces to

ds~s,pT!

dpT
5E d2kT

ds~s,pT8 !

dpT8
S~s,kT!, ~18!

where the differential cross section

ds~s,pT8 !

dpT8
5E dj1dj2f~j1 ,pT8 !f~j2 ,pT8 !

3H~j1 ,j2 ,s,pT8 !. ~19!

is identified as the standard NLO QCD predictions, and
S(s,kT) as the smearing function we shall investigate. Note
thatS for Figs. 1~a! and 1~b! are different, and thus Eq.~18!
in fact represents the sum over the two diagrams. While the
smearing function employed in@1# is the same for Figs. 1~a!
and 1~b!.

III. NUMERICAL ANALYSIS

Before proceeding with the numerical analysis of Eq.
~18!, we examine the smearing effect of the Sudakov factor
S. It is known that the Gaussian smearing function
exp(2kT

2/G2) employed in@1# for direct photon production
possesses thes-dependent widthG, which is summarized as

FIG. 4. ~a! Dependence off (As/2,b) on b ~dashed line! and its
corresponding parametrization~solid line! for ~1! As530 GeV, ~2!
As5600 GeV, and~3! As51800 GeV associated with~a! the
quark distribution function and~b! the gluon distribution function.
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G<1 GeV for As;30 GeV,

G;1 – 2 GeV for As;30– 100 GeV,

G;2 – 3 GeV for As;100– 600 GeV,

G;3 – 4 GeV for As;600– 1800 GeV. ~20!

That is,G increases withs slightly. The predictions are very
sensitive to thes dependence ofG. Hence, it is nontrivial that
the experimental data can be explained by our formalism.

We demonstrate that the factorS(s,kT) exhibits the de-

sired behavior shown in Eq.~20!. For simplicity, we param-
etrize f (jAs/2,b) as a Gaussian function exp(2G2b2/4) with
G25c(jAs) r , which is the Fourier transformation of
exp(2kT

2/G2). The momentum fractionj will be set to 1/2 in
the numerical analysis below. The constantsc and r are de-
termined from the best fit of the parametrization tof , con-
sidering the variation of b between 0 and 1/LQCD

55 GeV21, and ofAs between 20 and 1800 GeV. The re-
sults arec50.12 andr 50.60, if the parton is a quark, and
c50.09 andr 50.83, if the parton is a gluon. The decrease
of f (As/2,b) with b for different As and its corresponding
parametrization exp(2cAsrb2/4) from best fit are shown in

FIG. 5. Compilation of direct photon experiments compared to the NLO QCD predictions using the CTEQ4M parton distributions.

FIG. 6. Compilation of direct photon experiments compared to thekT-resummed predictions using the CTEQ4M parton distributions.
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Fig. 4. The valuesf 51 at smallb come from the truncation
of f .1 argued before. It is observed that thes dependence
of the widthG is roughly in agreement with Eq.~20!.

We then compute the differential cross section of direct
photon production based on Eq.~18! with the parametrized
smearing function:

S~s,kT!5exp@2kT
2/~G1

21G2
2!#, ~21!

where the widthsG1(2)5c(As/2)r are associated with the
hadron 1~2!. We can certainly employ the exact Sudakov
factor f , and convert it into thekT space numerically, when
evaluating Eq.~18!. This approach is not followed here, sim-
ply because we intend to make our analysis in full analogy
with that in @1#. In Fig. 5 we show the deviation
~data2theory!/theory of the NLO QCD predictions, obtained
using the CTEQ4M parton distributions@17#, from the ex-
perimental data as a function ofxt52pT /As. Obviously, the
deviation is huge, especially at lowxt of each set of the data.
In Fig. 6 the theoretical predictions come from Eq.~18!
which includes thekT smearing in Eq.~21!. It is clear that a
significant improvement on the agreement between theory
and experiments is achieved.

IV. CONCLUSION

In this paper we have identified thekT smearing, which is
essential for the explanation of the direct photon production
data, as the Sudakov factor from the resummation of large
radiative corrections to the parton distribution functions. The
identification is confirmed by examining thes dependence of
the Gaussian widths of the parametrized Sudakov factors,
and the consistency of the improved predictions with the
data. Compared to our analysis, the smearing employed in
@1# is very naive. The effects should depend on the type of
partons, and on the momentum fractions. A more accurate
analysis even involves the recalculation of the hard scatter-
ing amplitudes with the partons off shell byk1T and k2T ,
which are associated with the hadron 1 and 2, respectively.
Our formalism including the resummation at lowkT can be
generalized to other QCD processes. All these subjects will
be studied elsewhere.
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