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Origin of the ky smearing in direct photon production
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We show that the Sudakov factor from the resummation of double Iogarithrdk%)ncontained in the
distribution functions is responsible for thg smearing mechanism employed in the next-to-leading-order
QCD (aag) calculations of direct photon productios.is the center-of-mass energy, akd the transverse
momentum carried by a parton in a colliding hadron. This factor exhibits the appropdaigendent Gaussian
width in kg, such that our predictions are in good agreement with experimental data.
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[. INTRODUCTION Because of the transverse degrees of freedom of the par-
tons, the resummation of double logarithms should be per-
It was pointed out some time adjb] that the global QCD formed in the impact parametér space[11,13, which is
analysis of the direct photon production processes from botbonjugate tok;. Hence, it is IA(s¥) that are resummed.
fixed-target and collider experimen{2-9] has led to a After deriving the Sudakov factor, we Fourier transform it
puzzle: Most data sets show a steepgdistribution than the  pack to thek; space, and convolute it with the naive NLO
next-to-leading-ordefNLO) QCD (aa?) predictionspr be-  factorization formula for direct photon production. Note that
ing the transverse momentum of the direct photon. This bean analytical expression of the transformed Sudakov factor
havior cannot be explained by either global fits with newdoes not exist, and must be obtained numerically. However,
parton distribution functions or improved photon fragmenta-to make its smearing effect transparent, the Sudakov factor is
tion functions. To resolve the puzzle, a Gaussian type broatharametrized by a Gaussian function expgb?4) with the
ening of the transverse momentuky carried by initial-state  width I", which corresponds to ex’pk-zr/I‘z) in the ky space.
partons in colliding hadrons has been introdu¢l This e find that thes dependence oF is consistent with that
smearing function enhances the low end region of the spe@mployed in[1], implying the success of our analysis.
trum in pr more than the high end, such that the QCD pre- |n Sec. Il we apply the Collins-Soper-Sterman resumma-
dictions have a steeper distribution. The recent publication ofion technique13] to direct photon production from hadron
the E706 direct photon data det0] has confirmed the evi- collisions, and present the explicit expression of the Sudakov
dence for thek; effect. However, the physical origin of this factor. In Sec. Ill the Sudakov factor is parametrized as a
effect and of its center-of-mass-energy dependent GaussiaSaussian function, and treedependence of its width is ex-
width has not been understood yet. amined. The numerical results are compared with the data of

In this paper we shall propose the mechanism that is regirect photon production. Section IV is the conclusion.
sponsible for thé&-smearing effect in direct photon produc-

tion. It has been mentioned that the effect is likely due to
multiple gluon emission§l]. It has also been observed that
large double logarithms f(g/k?) are generated from gluon In this section we derive the factorization formula for di-
emissions,s being the center-of-mass energy, when therect photon production

transverse degrees of freedom of partons are taken into ac-

count[11]. The parton moment; then flow into the direct h(p1) +h(p2)— y(pr) +X, (1)
photon, and make up the momentys. The idea of asso-

ciating ky to a parton has been explained[it2]. The large in the collision of the hadron, and resum the involved
logarithms are absorbed into parton distribution functionsjarge double logarithms into a Sudakov factor. The hadron
and their all-order summation leads to a Sudakov factormomenta are assigned a,=(p;,00;) and p,
which describes the perturbative distribution of the partons=(0,p, ,0) with p; =p, = Js/2. py is the transverse mo-

in kg for differents. Since the Sudakov factor gives strong mentum of the direct photon that is measured. The tree-level
suppression at largky, it resembles a Gaussian function diagrams are shown in Figs(dl and ib), in which both
with s-dependent width. These characteristics are qualitaguarks and gluons out of the hadrons contribute. The partons
tively consistent with those of the smearing effect mentionedtarry the momentd, p; + k;r, whereé;,i=1,2, are the lon-
above. We shall demonstrate quantitatively that the inclusiogitudinal momentum fractions arg; are the transverse mo-

of the Sudakov factor indeed modifies the NLO QCixf)  menta.

predictions in the desired way, and the data of direct photon We then consider higher-order corrections to Figa) 1
production can be explained. from Figs. 1c)—1(h). The discussion for Fig.(b) is similar.

Il. FACTORIZATION AND RESUMMATION
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FIG. 2. Factorization of direct photon production from hadron
collisions.
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irreducible diagrams in Figs.(8—-1(h), and for the gauge
invariance of the parton distribution functions. However, to
implement the resummation technique, we allow the gauge
vectorn to vary away from the light conenf+0) tempo-
rarily. It will be shown that the Sudakov factor turns out to
be n-independent. After completing the resummationis
brought back to the light cone, and the gauge invariance of
® ® the parton distribution functions is restored. That is, the ar-

FIG. 1. (a) and(b) Lowest-order diagrams of direct photon pro- Pitrary n appears only at the intermediate stage of the for-
duction. (¢)—(h) O(ag) corrections to(a). malism and as an auxiliary tool of the resummation.

When the transverse degrees of freedom of the partons are
taken into account, the factorization must be performed in
the b space, which is conjugate g [11]. Hence, we arrive
r_at the general factorization picture for direct photon produc-
tion shown in Fig. 2, and the corresponding formula

(e) ®

}(
%

Figure Xc), the self-energy correction to a parton, and Fig.
1(d), the loop correction with a real gluon connecting the two
partons from the same hadron, contain both collinear dive
gences from the loop momentumparallel top; and soft

divergences from small Since the soft divergences cancel
asymptotically as shown iflL1], the double logarithmic cor- do(s,pr) d?b
rections are mainly collinear. Therefore, Figéc)land Xd) TZJ d§1d§2f P
are absorbed into a distribution functief associated with g (2m)

the hadroni. In most of kinematic regions the self-energy ~ ~
correction to the outgoing jet in Fig.(d) does not give col- X P(£1,P1.0, 1) b(&2,P2,b, 1)
linear divergences. Because of the cancellation of soft diver- XH(&,,&,8,b, w)expipr-b), )

gences, Fig. (e) is absorbed into a hard scattering amplitude

H, which corresponds to the parton-level differential cross ) o o

sectionda/dpy. Similarly, other radiative corrections to the # being a renormalization and factorization scale. We have

box diagram are also infrared finite and grouped irto assumed the single dependence in the above expression in
The absorption of the irreducible diagram in Figf)lis ~ order to compare our formalism with the naike smearing

more delicate. It contains collinear divergences floparal- ~ employed in the literature. A rigorous factorization formula

lel to p; and soft divergences. Fdrparallel top;, we re- for direct photon production from hadron collisions will be

place the parton line in hadron 2 by an eikonal line in thePresented elsewhere. _ o

direction n=v,=p,/+/s/2 on the light cone, and factorize !N the axial gaugen-A=0 the eikonal line disappears,

the gluon into the distribution function of hadron 1 from the @nd only Figs. fc) and 1d) give double logarithmic correc-

full scattering amplitude. The replacement by an eikonal lindions to the distribution functiongl1]. We demonstrate how

holds for both quarks and gluons as verified[I]. The (O resum the double logarithms from Figgciland Xd) by

treatment of the gluon with parallel top, is the same, but considering only the hadron 1. The resummation for the had-
the direction of the eikonal line iB=v,=p,/\S72. The ron 2 is the same. The essential step in the resummation is to

factorization of the vertex-correction diagrams in Figgy)1 derive a differential equatiop; dé/dp; =C¢ [11], where
and Xh) is similar to that of Fig. f). In the leading region the coefficient functionC contains only single logarithms,
with the loop momentunh parallel top; , they are assigned and can be treated by renormalization gr¢Rg) methods.
to the corresponding distribution functions. Certainly, softln the axial gaugen goes into the gluon propagator,
divergences in the above diagrams cancel asymptotically. At—i/1)N*"(l), with
last, when is hard, Figs. {c)—1(h) are grouped into the hard
scattering amplitudél defined above.

The eikonal lines on the light cone introduced above, col- NA7(]) = ghv—

n#lY+n*I# [#1Y
+n? .
lecting collinear gluons, are essential for the factorization of n-l (n-1)?

)
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FIG. 3. (a) The derivativep; d¢/dp; in the axial gauge(b)
General diagrams for the functiosandG. (c) The O(«g) func-
tion K. (d) The O(«y) function G.

Because of the scale invarianceMf” in n, ¢ must depend
on p; (or s) through the ratio §, - n)?/n?, implying that the
differential operatod/dp; can be replaced bg/dn using a
chain rule,

d n? d -

dp? (b:_vl.nvlad_na ¢. 4)

Py

The operatod/dn, applying toN#” gives

n2
1%
vi-n ladna

NAY =0 (NHAIPHNIR), (5)

with the special vertex

~ nzl)la
VUV, .
“ vy-nn-l

(6)
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ishing n?. Therefore, the leading regions bfare soft and
hard, in which the subdiagram containing the special vertex
can be factorized frong’ into a functionK and a function

G, respectively. The remaining part is the original distribu-
tion function ¢. The differential equation is then expressed
as

d -~ -
pfdp+ $=2[K(bu, (1)) +G(py I, (1)), (8)
1

with the general diagrams & and G shown in Fig. &b).
The sumK+ G is exactly the coefficient functio@ men-
tioned above. It has been made explicit tKatontains the
single small scale b/and G contains the single large scale
Py -

The O(ag) contributions toK from Fig. 3c) and to G
from Fig. 3d) are given by

db=e |1 .
K=igzc,uff {—+2m5(|2)e"rb

(2m)4 €| 12
o 2L v s 9
Ul'l
44 byl vy, | NAY
G=ig?C Ef v - — -G,
T amre " pr 27 vat | 12
(10

6K and G being the corresponding additive counterterms.
The color factorC is Cg(=4/3) if the parton is a quark, and
N.(=3) if the parton is a gluofil4]. The factore''T"? in Eq.
(9), which is associated with the second diagraeal gluon
emission in Fig. 3(d) [11,13, rendersK free of infrared
poles. That is, 1 serves as an infrared cutoff of the loop
integral. Note thatK vanishes in the asymptotic regidn
—0, reflecting the soft cancellation as stated before. The
second term in Eq(10), as a soft subtraction, ensures that
the momentum flow irG is hard.

A straightforward calculation of Eq$9) and (10) gives
the pole termssK= —6G. For details of the calculation,

The momentuni®(1”) appearing at the end of the differen- yefer to[11]. SinceK and G contain only single soft and

tiated gluon line is contracted with a vertex the gluon at-;jrayiolet logarithms, respectively, they are treated by RG
taches, which is then replaced by the special vertex. Thg,ethods:

contraction ofl# hints the application of the Ward identity.
Summing all the diagrams with different differentiated glu-

ons, the special vertex moves to the outer end of the parton M@KZ —Ak= —MaG- (13)

line due to the Ward identity. We obtain the derivative
Sy P (7)
P1 dp; ’

described by Fig. @), where the square in the new function
@' represents the special vertégg. The coefficient 2 comes

The anomalous dimension &, A= udéK/du, is given,
up to two loops, by 15]

2 5

ag as

=—(CH4+|—
M=—C

(67 2

from the equality of the two new functions with the special with n; the number of quark flavors, ariti=3 a color fac-

vertex on either of the two parton lines.
The collinear region of the loop momentunis now not

important because of the factor /() in v, with nonvan-

tor. In solving Eq.(11), we make the scalg evolve to the
infrared cutoff 1b in K and top* in G. The RG solution of
K+ G is written as
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+ d_ o
K(bpss e 1)+ Gy /e 1)) = — Jl‘; %M(as(p«))-
(19

Substituting Eq(13) into (8), we obtain the solution

D(€1,p1,b,m)=F(&1p7 D) B(&1,b,p)

with the Sudakov factor
+d du _
f<§1pr,b>=exp[—2 f s CP [ :“masw»l.
1 PJww pu
(15

We have set the lower bound of the variapl¢o 1b, and
the upper bound t&;p; . Note that Eq(15) is defined only
for £&,p; =1/b. For &,p; <1/b, we requiref to be equal to
unity. We also sef to 1 asf>1 [12], which occurs in the
small b region. The radiative corrections in this short-
distance region should be absorbed into the hard scatteri
amplitudeH, instead of into the distribution function, giving
its Sudakov evolution. The wave functiorb(&q,u)

= [d?ky7d (&1, KeT, ) is theb—0 limit of the initial con-

dition $(&;,b,u) of the Sudakov evolution. This approxi-

mation is reasonable because of the strong suppressibn of

at largeb. Obviously,f is independent of the vector. Now
we maken approactv, (the light cong, and¢(&;,u) coin-

cides with the standard distribution function with the gauge

invariance.
The resummation for the distribution function of hadron 2

gives a similar Sudakov factor. Hence, the additional smear-
ing factor compared to the standard NLO QCD calculations

is given by

S(é1,62,5,b)=f(£1p1 ,b)F(é2p; ,D). (16)
Transformation of Eq(2) back to thek; space with Eqs(14)
and(16) inserted leads to

do(s,pr)

P~ [ asde, | roienp e ph

XH(é:l152!S!p'})s(511§2asva)v (17)
with the variablept=|pr—ky|. We have set of ¢ andH to
the characteristic scalp; of H. That is, the distribution
functions ¢ will evolve to p; according to the Dokshitzer-
Gribov-Lipatov-Altarelli-Parisi equatiofl6], which further
incorporates the summation of the single logarithmgiin
Equation(17) is the factorization formula for direct photon
production with the singlé; approximation.

To be related to the analysis fi], we shall not work on
Eq. (17), but neglect thef dependence of, making the
approximationS(s, k)~ S(0.5,0.5s,ky). It is reasonable to
assumet,,£,~0.5. Performing the integration ové; and
¢,, EQ.(17) reduces to
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do(s, do(s,p’
ﬂzj dsz(—pT)S(S,kT), (18)
dpr dpt
where the differential cross section
do(s,pr) , ,
— = f dédE,d(é1,ph) B(éa,p))
dpr
XH(§11§leap!|')' (19)

is identified as the standard NLO QCD predictions, and
S(s,ky) as the smearing function we shall investigate. Note
thatS for Figs. @) and Xb) are different, and thus E§18)

in fact represents the sum over the two diagrams. While the
smearing function employed [1] is the same for Figs.(&)

and 1b).

IIl. NUMERICAL ANALYSIS

Before proceeding with the numerical analysis of Eqg.

8), we examine the smearing effect of the Sudakov factor

It is known that the Gaussian smearing function
exp(—k3T?) employed in[1] for direct photon production
possesses thedependent widtl', which is summarized as

12 —

15

0.8 |

“ 0.6 [
0.4 |
Sy

FIG. 4. (a) Dependence of(1/s/2,b) onb (dashed lingand its
corresponding parametrizatigsolid line) for (1) Js=30 GeV, (2)
Js=600 GeV, and(3) s=1800 GeV associated witlia) the
quark distribution function an¢b) the gluon distribution function.
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FIG. 5. Compilation of direct photon experiments compared to the NLO QCD predictions using the CTEQ4M parton distributions.

<1l GeV for \s~30 GeV,

[~1-2 GeV for {s~30-100 GeV,

[~2-3 GeV for s~100-600 GeV,

I'~3-4 GeV for s~600-1800 GeV. (20)
That is,I" increases witts slightly. The predictions are very

sensitive to thes dependence df. Hence, it is nontrivial that

the experimental data can be explained by our formalism.

We demonstrate that the fact8(s,k;) exhibits the de-

sired behavior shown in E¢20). For simplicity, we param-
etrizef(£/s/2,b) as a Gaussian function exp['?b%/4) with
[2=c(&ys)", which is the Fourier transformation of
exp(—k-zr/l"z). The momentum fractiog will be set to 1/2 in
the numerical analysis below. The constantsndr are de-
termined from the best fit of the parametrizationftocon-
sidering the variation ofb between 0 and Ngcp
=5GeV !, and of \/s between 20 and 1800 GeV. The re-
sults arec=0.12 andr=0.60, if the parton is a quark, and
¢=0.09 andr=0.83, if the parton is a gluon. The decrease
of f(\/s/2,b) with b for different \/s and its corresponding
parametrization exp{cy/s'b?/4) from best fit are shown in
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FIG. 6. Compilation of direct photon experiments compared toktieesummed predictions using the CTEQ4M parton distributions.
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Fig. 4. The valueg =1 at smallb come from the truncation IV. CONCLUSION

of f>1 argued before. It is observed that thelependence In this paper we have identified the smearing, which is

._essential for the explanation of the direct photon production
'i:iata, as the Sudakov factor from the resummation of large
radiative corrections to the parton distribution functions. The
identification is confirmed by examining tisedependence of
the Gaussian widths of the parametrized Sudakov factors,
_ L2272 and the consistency of the improved predictions with the
S(s,kr)=exd —k/ (I +13)], (21) data. Compared to our analysis, the smearing employed in
[1] is very naive. The effects should depend on the type of

where the widthsF1(2)=c(\/§/2)r are associated with the Partons, and on the momentum fractions. A more accurate
hadron 12). We can certainly employ the exact Sudakov @nalysis even involves the recalculation of the hard scatter-
factor f, and convert it into thé; space numerically, when N9 amplitudes with the partons off shell byt andkar,
evaluating Eq(18). This approach is not followed here, sim- which are gsso'mated. with the hadron .1 and 2, respectively.
ply because we intend to make our analysis in full analogyPur formalism including the resummation at Idw can be
with that in [1]. In Fig. 5 we show the deviation generalized to other QCD processes. All these subjects will
(data—theory/theory of the NLO QCD predictions, obtained P€ Studied elsewhere.
using the CTEQ4M parton distributiorjd 7], from the ex-
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