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In the quark models of the Bakamjian-Thomas type that yield covariance and Isgur-Wise scaling of form
factors in the heavy quark limit we compute the decay constantsf (n) and f 1/2

(n) of S- and P-wave mesons
composed of heavy and light quarks. Lorentz invariance of the decay constants and heavy quark limit scaling
AM f 5const is obtained, and it is shown that this class of models satisfies the sum rules involving decay
constants and Isgur-Wise functions recently formulated by us in the heavy quark limit of QCD. Moreover, the
model also satisfies selection rules of the typef 3/2

(n)50, which must hold in this limit. We discuss different
Ansätze for the dynamics of the mass operator at rest. For nonrelativistic kinetic energiesp2/2m, the decay
constants are finite even if the potentialV(r ) has a Coulomb part. For the relativistic formAp21m2, the
S-wave decay constants diverge if there is a Coulomb singularity. Using phenomenological models of the
spectrum with relativistic kinetic energy and a regularized short-distance part~Godfrey-Isgur model or Rich-
ardson potential of Colangeloet al.! that yieldr2>1 for the elastic Isgur-Wise function, we compute the decay
constants in the heavy quark limit and obtainf B>300 MeV, of the same order although slightly smaller than
in the static limit of lattice QCD. We find the decay constants ofD** with j 5 1

2 of the same order of
magnitude. The convergence of the heavy quark limit sum rules is also studied.
@S0556-2821~98!04919-4#

PACS number~s!: 12.39.Hg, 13.20.2v

I. INTRODUCTION

In a recent paper@1# we have shown that quark models of
hadrons with a fixed number of constituents, based on the
Bakamjian-Thomas~BT! formalism @2#, yield form factors
that are covariant and satisfy Isgur-Wise~IW! scaling@3# in
the heavy mass limit for one of the quarks. In this class of
models a lower bound is predicted for the slope of the heavy
meson elastic IW functionr2. 3

4 . Moreover, the model sat-
isfies the Bjorken-Isgur-Wise sum rule@4#, which relates the
slope of the IW function to theP-wave form factorst1/2(w),
t3/2(w) at zero recoil@5#. We have also explicitly computed
the P-wave meson wave functions and the corresponding
inelastic IW functions@6# within the model, and we have
made a numerical study ofr2 in a wide class of models of
the meson spectrum~each of them characterized by anAn-
satzfor the mass operatorM, i.e., the dynamics of the system
at rest! @7#, and a phenomenological study@8# of the elastic
and inelastic IW functions and the correspondingdG/dw for
B→D, D* , D** ln.

The purpose of the present paper is to study the decay
constants of heavy mesons within the same approach.

II. DECAY CONSTANTS IN THE BT SCHEME:
HEAVY QUARK SCALING

We want to compute in the model the decay constants of
mesonsQq̄, whereQ and q are a heavy and a light quark,
defined by

^P~02!~v !uAm
qQu0&5N fPAMvm ,

^V~12!~v,«!uVm
qQu0&5N fVAM«m* , ~1!

for S states, whereN51/A2v0 and M is the mass of the
corresponding bound state (M5M P or M5MV), and simi-
larly

^1/201~v !uVm
qQu0&5N f ~1/2!AMvm ,

^1/211~v,«!uAm
qQu0&5Ng~1/2!AM«m* ,

^3/211~v,«!uAm
qQu0&5Ng~3/2!AM«m* , ~2!

for P states. The spin of the light degrees of freedom com-
bines with orbital angular momentum adding to total con-
servedj 51/2,3/2, indicated in the preceding equations. The
model satisfies the heavy quark limit relations~we use the
phase convention for states of Ref.@6#!

f P5 f V5 f , ~3!

g~1/2!52 f ~1/2!, g~3/2!50. ~4!

In terms of the internal wave function, i.e., the eigenfunction
of the mass operatorM which commutes with the global
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Poincare´ generators@1#, we get @the superscript~n! means
any radial excitation#, for S-wave mesons:

AM f ~n!5ANc&

3E dp2

~2p!3

1

p2
0 A~p2•v !~p2•v1m2!w~n!~k2!,

~5!

where the wave functions at rest of 02 mesons are given by

ws1 ,s2

~n! ~k2!5
i

&
~s2!s1 ,s2

w~n!~k2!,

E dp

~2p!3 uw~n!~p!u251, ~6!

and, forP wave mesons,

AM f 1/2
~n!5A2

3
ANcE dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

3w1/2
~n!~k2!@~p2•v !22m2

2#, ~7!

where the wave function at rest of 01 mesons is given by@5#

ws1 ,s2

~n! ~k2!52
i

A6
@~s•k2!s2#s1 ,s2

w1/2
~n!~k2!,

E dp

~2p!3

p2

3
uw1/2

~n!~p!u251. ~8!

In these expressions,

p25Bvk2 , ~9!

whereBv is the boost operator. The expressions~5! and ~7!
are Lorentz invariant since, due to therotational invariance
of w (n)(k2), w1/2

(n)(k2), they are functions ofv251. One can
take simply the rest framev5(1,0).

Let us give a brief outline of the calculation. Within the
model@1#, the internal wave function in motion of anS-wave
meson with center-of-mass momentumP ~n denotes the ra-
dial excitation! is given in terms of

Cs1s2

~n! ~P2p2 ,p2!5ASpj
0

M0
)

i 51,2

Aki
0

Api
0 (

$si8%
)

i 51,2
@Di~Ri !#sisi8

ws
18s

28
~n!

~k2!, ~10!

wherews1s2

(n) (k2) is the internal wave function at rest Eq.~5!, andRi are the Wigner rotations:

Ri5Bpi

21BSpj
Bki

. ~11!

The q̄Q to vacuum matrix element of a current, e.g.,J5q̄gmg5Q, reads

Os1s2
~P2p2 ,p2!5^0uJuP2p2s1 ;p2s2&5@us1

~P2p2!# tig2g0gmg5us2
~p2!. ~12!

The matrix element of interest to us,

^0uAmuP~n!&5ANcE dp2

~2p!3 (
$si %

Os1s2
~P2p2 ,p2!Cs2s1

~n! ~P2p2 ,p2!, ~13!

can be written, after some algebra, using Eqs.~10!–~12!,

^0uAmuP~n!&5ANcE dp2

~2p!3 ASpj
0

M0
)

i 51,2

Aki
0

Api
0 Am1

p1
0 Am2

p2
0 w~n!~k2!

3
1

&
TrH 11g0

2
Bp1

21gmBp2

11g0

2
Bp2

21BSpj
Bk2

Bk1

21BSpj

21 Bp1J , ~14!

and since the projector (11g0)/2 commutes with the Wigner rotations~11!, one can rewrite

^0uAmuP~n!&5ANcE dp2

~2p!3 ASpj
0

M0
)

i 51,2

Aki
0

Api
0 Am1

p1
0 Am2

p2
0 w~n!~k2!

1

&
TrH gmBuBk2

11g0

2
Bu

21Bu

11g0

2
Bk1

21Bu
21J ,

~15!
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whereu5(p11p2)/A(p11p2)2. Using the identities

BuBk2

11g0

2
Bu

215
m21p” 2

A2m2~k2
01m2!

11u”

2
, Bu

11g0

2
Bk1

21Bu
215

11u”

2

m11p” 1

A2m1~k1
01m1!

, ~16!

one obtains

^0uAmuP~n!&5
ANc

8 E dp2

~2p!3

1

p2
0 F~p2 ,P!Tr@gm~m21p” 2!~11u” !~m11p” 1!#w~n!~k2!, ~17!

with k25Bu
21p2 and

F~p2 ,P!5&
Au0

p1
0

Ak1
0

Ak1
01m1

Ak2
0

Ak2
01m2

. ~18!

Finally, in the heavy mass limit@1#,

u→v,
p1

m1
→v,

k1
0

m1
→1, k2

0→~Bv
21p2!05p2•v, ~19!

one obtains

^0uAmuP~n!&5
1

A2v0

ANc

2&
E dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

, Tr@gm~m21p” 2!~11v” !#w~n!~k2!, ~20!

wherek25Bv
21p2 andw (n)(k2) depends onk2

25(p2•v)22m2
2 because of rotational invariance.

Thus the integrand~20! must be proportional tovm, yielding Eq.~5! for the decay constant. This expression exhibits the
expected heavy quark limit scaling. Moreover, varying the current, one can easily show relations~3!. It is also worth noticing
that expression~5! becomes the well-known nonrelativistic expression@9# if we assume that the light quark is also nonrela-
tivistic.

Let us give some details of the calculation of Eqs.~6! and the corresponding relations~4!. Mutatis mutandis, we consider
the matrix element̂ 0uVmu01& with the 01 wave functions given by Eqs.~8!. After some algebra, the matrix element
equivalent to Eq.~15! is, in the present case,

^0uVmu01&5ANcE dp2

~2p!3 ASpj
0

M0
)

i 51,2

Aki
0

Api
0 Am1

p1
0 Am2

p2
0 w1/2)

~n! ~k2!

3
1

A6
TrH gmg5BuBk2

11g0

2
Bu

21Bu~s•k2!Bu
21Bu

11g0

2
Bk1

21Bu
21J . ~21!

Using Eqs.~16! and taking the limit~19!, we obtain

^0uVmu01&5
ANc

4A6

1

A2v0 E dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

w1/2
~n!~k2!Tr@2gm~m21p” 2!~11v” !~2v” p” 21p2•v !~12v” !#, ~22!

and using the fact that this expression must be proportional tovm, we obtain expression~7!, scaling invariant in the heavy
quark limit. Moreover, varying the current and considering instead the matrix element^0uAmu11/2

1 &, one can easily verify the
first relation of Eqs.~4!.

The resultg(3/2)50, which must hold in the heavy quark limit@10#, deserves a few details. The matrix element to be
considered is~m denotes the polarization of the state 11 andn the radial excitation!

^0uAmu13/2
1 ,m&5ANcE dp2

~2p!3 ASpj
0

M0
)

i 51,2

Aki
0

Api
0 Am1

p1
0 Am2

p2
0

3TrH S 11g0

2
s2Bp1

21ig0g5g0gmg5Bp2

11g0

2 D @D~R2!#@w~n!~k2 ,m!# t@Dt~R1!#J , ~23!
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where the wave function is, for the 11 j 5 3
2 states@6#,

ws1 ,s2

~n! ~k2 ,m!5
i

A2
e~m!

•FA2

3
k22

i

A6
~k23s!Gs2w3/2

~n!~k2!, ~24!

wheree(m) is a unit vector and the rotational invariant functionw3/2
(n)(k2) is normalized according to Eqs.~8!. The equivalent

expression to Eq.~21! will be

^0uAmu13/2
1 ,m&5ANcE dp2

~2p!3 ASpj
0

M0
)

i 51,2

Aki
0

Api
0 Am1

p1
0 Am2

p2
0

w3/2
~n!~k2!

A2

3TrH gmBuBk2

11g0

2
e~m!

•FA2

3
k21

i

A6
~k23s!G 11g0

2
Bk1

21Bu
21J . ~25!

We need to compute the expressionBue(m)
•@A3

2 k21( i /A6)(k23s)#Bu
21 in the heavy quark limit. After some algebra, one

gets

Bue~m!
•FA2

3
k21

i

A6
~k23s!GBu

21→
1

A6
@2«” v

~m!p” 21«” v
~m!v” ~p2•v !2«v

~m!
•p2#, ~26!

where«v
(m) is the axial meson polarization in the heavy quark limit. Using Eqs.~16! in the limit ~19!, we obtain, finally,

^0uAmu13/2
1 ,m&5

ANc

8A3

1

A2v0 E dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

w3/2~k2!

3Tr$gm~m21p” 2!~11v” !@2«” v
~m!p” 21«” v

~m!v” ~p2•v !2«v
~m!

•p2#~11v” !%. ~27!

This expression is covariant and satisfies heavy quark scaling. In the rest frame, particularizing tom50, one gets, because of
rotational invariance ofw3/2(k2),

^0uAzu13/2
1 ,P50,m50&5

ANc

A3

1

A2v0 E dk2

~2p!3

1

k2
0

Ak2
0

Ak2
01m2

w3/2~k2!$2@~k2
x!21~k2

y!2#12~k2
z!2%50. ~28!

Therefore the second relation of Eqs.~4!, g(3/2)50, fol-
lows. The vanishing ofg(3/2) can be seen also from the fol-
lowing covariant argument. Contracting Eq.~27! with the
four-vector «v

(m) , we see thatg(3/2) is proportional to the
integral

g~3/2!;E dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

w3/2~k2!

3@3~«v
~m!

•p2!22~v•p2!21m2
2#. ~29!

Two types of integrals appear:

I mn5E dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

w3/2~k2!p2mp2n , ~30!

I 5E dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

w3/2~k2!. ~31!

From covariance it follows that

I mn5Avmvn1Bgmn ,

I 5C, ~32!

whereA,B,Care constants. ContractingI mn with gmn it fol-
lows that

4B1A5m2
2C ~33!

and therefore

g~3/2!;4B1A2m2
2C50. ~34!

III. SUM RULES

Let us now show that the QCD heavy quark limit sum
rules @10#

X~w![(
n

f ~n!

f ~0! j~n!~w!51, ~35!
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T1/2~w![(
n

f 1/2
~n!

f ~0! t1/2
~n!~w!5

1

2
~36!

are satisfied within the present BT scheme.
In order to prove Bjorken sum rule, in Ref.@5# we used

the completeness relation atfixed P that holds in the BT
formalism for the internal wave functions. We proceed here
in the same way. We need to compute expressions of the
form

(
n

^0uÕuP8,n&^P8,nuOuP,0&, ~37!

where^0uÕuP8,n& and^P8,nuOuP,0& will be related, respec-
tively, to the decay constants and to the Isgur-Wise func-

tions. We needP8 different fromP in order to demonstrate
the sum rules~35! and ~36! for any value of the scaling
variablew.

To obtain the sum rule~35! for Swaves, the simplest way
is to takeP850 for the intermediate states and choose the
currentsO5Q̄8gnQ andÕ5q̄gmg5Q8 with m50, whereQ
andQ8 are heavy quarks~e.g.,b andc! andq is a light quark.
Then only the 02 intermediate states contribute, because the
11 states do not atP850, since then the time component of
the polarization«0

(m)50. Alternatively, to obtain the sum
rule ~36! for P waves, we will take P850 and O
5Q̄8gng5Q, andÕ5q̄gmQ8 with m50. Then only the 01

intermediate states contribute, since the 12 do not at P8
50.

We start from the completeness relation at fixedP8:

(
n

Cs
19 ,s

29
~n!

~P82p29 ,p29!C
s
18s

28

~n!
* ~P82p28 ,p28!5ds

18s
19
ds

28s
29
~2p!3d~p282p29!. ~38!

We need the matrix elements

^P8,nuOuP,0&5E dp2

~2p!3 E dp28

~2p!3 (
$si %

(
$si8%

C
s
18s

28

n~P8!
* ~p18 ,p28!Os

18s1
~p18 ,p1!Cs1s2

0~P!~p1 ,p2!~2p!3d~p22p28!ds
28s2

, ~39!

^0uÕuP,n&5ANcE dp2

~2p!3 (
$si %

Õs1s2
~p1 ,p2!Cs2s1

n~P!~p1 ,p2!, ~40!

related, respectively, to the IW functions and decay constants. In these expressions,

O~p18 ,p1!5
Am1m18

Ap1
0p18

0

11g0

2
Bp

18
21

OBp1

11g0

2
, ~41!

Õ~P82p2 ,p2!5Am1

p18
0 Am2

p2
0

11g0

2
s2Bp

18
21

ig0g5ÕBp2

11g0

2
, ~42!

and hereO andÕ are the Dirac matrices of the corresponding currents. After some algebra we obtain, using the completeness
relation ~38!,

(
n

^0uÕuP8,n&^P8,nuOuP,0&5ANcE dp2

~2p!3 (
$si %

(
s18

Õs
18s2

~P82p2 ,p2!Os
18s1

~P82p2 ,P2p2!Cs1s2

~0! ~P2p2 ,p2!, ~43!

where the ground state wave function is given by@1#

Cs1s2

~0! ~P2p2 ,p2!5ASpj
0

M0
)

i 51,2

Aki
0

Api
0 (

$si8%

@D~R1!#s1s
18
@D~R2!#s2s

28
ws

18s
28

~0!
~k2!

5ASpj
0

M0
)

i 51,2

Aki
0

Api
0 @D~R1!w~0!~k2!Dt~R2!#s1s2

, ~44!

and using Eqs.~6!, in an obvious notation,
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(
n

^0uÕuP8,n&^P8,nuOuP,0&5ANcE dp2

~2p!3 ASpj
0

M0
)

i 51,2

Aki
0

Api
0

i

A2
w~0!~k2!

3Tr@Õt~P82p2 ,p2!O~P82p2 ,P2p2!D~R1!s2Dt~R2!#, ~45!

where the matricesRi are given by Eq.~11!.
To isolate the 02 states, we take, as argued above:

(
n

^0uA0u0,n&^0,nuVnuP,0&5ANcE dp2

~2p!3 ASpj
0

M0
)

i 51,2

Aki
0

Api
0 Am1m18

p1
0p18

0 Am1

p18
0 Am2

p2
0

i

A2
w~0!~k2!

3TrH F11g0

2
s2Bp

18
21

ig0Bp2

11g0

2 G tF11g0

2
Bp

18
21

g0gnBp1

11g0

2 GD~R1!s2Dt~R2!J .

~46!

Using s2(Bp) ts25Bp
21, s2(gm) ts25gm, Bp@(11g0)/2#Bp

215 1
2 (11p” /m), the fact that12 (11g0) commutes with rota-

tions, and the relations

BvBk1
Bv

215
m11p” 1v”

A2m1~k1
01m1!

, BvBk2

21Bv
215

m21v” p” 2

A2m2~k2
01m2!

, ~47!

one obtains, after some algebra, in the heavy quark limit (p1→m1v,k1
0→m1), for the right-hand side~RHS! of Eq. ~46!,

ANc

1

Av0v80

1

Av80 E dp2

~2p!3

1

p2
0 Am2Ak2

0 1

A2
w~0!~k2!TrH 1

2
~11g0!gn

1

2
~11v” !BvBk1

Bk2

21Bv
21J

5ANc

1

A4v0v80

1

A2v80 E dp2

~2p!3

1

p2
0

Ap2•v

Ap2•v1m2

1

A2
w~0!~k2!

1

2

3Tr$~11g0!gn~11v” !~m21p” 2!%

5
1

A4v0v80

1

A2v80
AM f ~0!~g0n1vn!. ~48!

On the other hand, the LHS of Eq.~46! reads

(
n

^0uA0u0,n&^0,nuVnuP,0&5
1

A4v0v80

1

A2v80 (
n

AM f P
~n!j~n!~w!~g0n1vn!, ~49!

and therefore the sum rule~35! follows.
The sum rule for theP states, Eq.~36!, follows straightforwardly in similar manner by takingP850 andO5Q̄8gng5Q,

Õ5q̄gmQ8 with m50, since then only the 01 intermediate states contribute, as pointed out above. However, to illustrate the
methods of calculation in the BT formalism, we will now verify the sum rule~36! from the general expressions forf 1/2

(n) and
t1/2

(n)(w), without appealing to any particular frame.
We want to evaluate the expression

T1/2~w! f ~0!5(
n

f 1/2
~n!t1/2

~n!~w!. ~50!

From the explicit expressions~7! for f 1/2
(n) andt1/2

(n)(w) from Ref. @6#,

t1/2
~n!~w!5

1

2A3
E dp28

~2p!3

1

p28
0

A~p28•v8!~p28•v !

A~p28•v1m2!~p28•v81m2!
w1/2

~n!~k28!* w~0!~k29!

3
~p28•v8!~p28•v1m2!2~p28•v !~p28•v1wm2!1~12w!m2

2

12w
, ~51!
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with

k285Bv
21p28 , k295Bv8

21p28 . ~52!

The computation of the sum~50! leads to the expression

(
n

w1/2
~n!~k28!* w1/2

~n!~p2!56p2
1

p2
2k28

2 d~ up2u2uk28u!, ~53!

where the RHS follows from Ref.@6#. One can then perform the integration overp2 that amounts to replacing allp2
0 by

(p28•v). Realizing then that

~p28•v8!~p28•v1m2!2~p28•v !~p28•v1wm2!1~12w!m2
2

12w
5k28

2S 211
p28•v82w~p28•v !

~p28•v2m2!~12w!
D , ~54!

one gets

2T1/2~w! f ~0!52(
n

f 1/2
~n!t1/2

~n!~w!5 f ~0!2A2Nc

p E dp28

~2p!3

1

p28
0

A~p28•v8!

A~p28•v81m2!
w~0!~k29!

p28•v2w~p28•v8!

12w
. ~55!

The second term involves the integral

E dp28

~2p!3

1

p28
0

A~p28•v8!

A~p28•v81m2!
w~0!~k29!pm8 5Cvm8 ,

~56!

whereC is some constant, because of covariance. Inserting
the RHS of Eq.~56! into Eq. ~55!, we see that the second
term of the RHS of Eq.~55! vanishes forwÞ1, and then the
sum rule ~36! follows. For w51, one can choosev
5(v0,v), v85(1,0) and make an expansion of (w21)21

for v→0. Then the second term on the RHS of Eq.~55!
vanishes from rotational invariance. The same method al-
lows one also to obtain the sum rule~35! along similar lines.

IV. NUMERICAL RESULTS

As explained at length in Ref.@1#, the dynamics in the BT
formalism depends on the form of the mass operatorM at
P50. This mass operator can be of any form

M5K~$k i%!1V~$r i ,pi%!, ~57!

and one obtains covariance of the form factors and IW scal-
ing with only the very general assumption of the rotational
invariance ofM. We are going now to give the results for the
decay constants for variousAnsätze of the operatorM, not
only various forms for the potentialV($r i ,pi%), but also for
the kinetic energyK($k i%), which can be taken to be of the
nonrelativistic k i

2/2mi or relativistic Ak i
21mi

2 forms. We
choose such models in order to emphasize the physics in-
volved in the decay constants, sensitive to the short-distance
part of the potential and to the scaling behavior of the kinetic
energy~quadratic or linear ink!. Of course, any scheme that
we adopt should give a reasonable fit of the whole meson
spectrum. The success of quark models in the description of
the spectrum with either nonrelativistic or relativistic kinetic

energies shows that the spectrum by itself does not constrain
the form of this kinetic energy. Interestingly, we have shown
in Ref. @7# that quark models of form factors in the BT for-
malism show a clear preference for the relativistic form of
the kinetic energy, since they give a slope of the elastic IW
function r2>1, while models with a nonrelativistic kinetic
energy give a larger, phenomenologically unacceptable
value.

We list here a number of phenomenological quark models
of the hadron spectrum that we will use, specifying their
interesting features.

~1! Isgur-Scora-Grinstein-Wise~ISGW! spectroscopic
model@11# ~to be distinguished from the ISGW nonrelativ-
istic model of form factors!: nonrelativistic kinetic energy
k i

2/2mi with linear plus Coulomb potential.
~2! Veseli-Dunietz~VD! model @12#: relativistic kinetic

energyAk i
21mi

2 with linear plus Coulomb potential. The
Coulomb part is not regularized.

~3! Godfrey-Isgur~GI! model @13#: relativistic kinetic
energyAk i

21mi
2 with linear plus a regularized short-distance

part. This scheme also incorporates the fine structure of the
potential.

~4! Richardson potential with relativistic kinetic energy,
as used by Colangelo, Nardulli, and Pietroni~CNP! @14#.
This model exhibits the asymptotic freedom behavior at
short distances, but the Coulomb singularity~logarithmically
corrected! is regularized by a cut at smallr.

These models are solved numerically using a harmonic
oscillator basis. In Table I we give the masses and decay
constants of the statesn50, l 50 or 1 as a function ofNmax
in the different models.Nmax means the number of radial
excitations included in the truncated basis, the ground state
Gaussian plus up toNmax radially excitated harmonic oscil-
lator wave functions:Nmax11 is then the dimension of the
truncated Hilbert space. In Table II we give the decay con-
stants of a number of radial excitations in the GI model.
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Let us begin our discussion with the models with relativ-
istic kinetic energy. A first important remark to make is that
dimensional analysis implies that a Hamiltonian~or mass
operator in the BT formalism! with kinetic energy of the
relativistic formAk i

21mi
2 and a Coulomb potential implies

divergent wave functions at the originC (n)(0) ~or decay
constantsf (n)) for S waves. The reason for this behavior is
that the kinetic and potential energies exhibit the same scal-
ing properties at large momentum or small distances. The

relativistic kinetic energy is not efficient enough in smooth-
ing the r-space wave function. This divergence of the wave
function at the origin is the cause of the existence of a critical
couplingacrit in this class of models: fora.acrit arises the
so-called phenomenon of a fall in the center. For a discus-
sion, see, for example, the paper by Hardekopf and Sucher
@15#. On the contrary, the decay constants forP-wave me-
sons remain finite even in this case. A short-distance Cou-
lomb part corrected by asymptotic freedom exhibits the same
phenomenon, althoughf (n) diverges only logarithmically in
this latter case, instead of as a power in the former. These
general features are exhibited by the model of Veseli and
Dunietz@12#, as shown in Table I, and have been underlined
by these authors. In our Table I, the finite values obtained for
AM f (0) using the singular model forNmax510, 15, or 20 are
just an artifact of the truncation method.

The GI model@13#, a model of the meson spectrum for all
qq̄, Qq̄, andQQ̄ systems, chooses a short-distance part with
a fully regularized Coulomb singularity. Within this model it
is possible to compute both types of decay constantsf (n) and
f 1/2

(n) . In Table I we give the scaling-invariant quantities
AM f (0) andAM f 1/2

(0) for S- andP-waven50 mesons, com-
puted in the heavy quark limit.

We have also made the calculation for the CNP model
~Richardson potential plus relativistic kinetic energy! @14#.

In the case of a kinetic energy of the nonrelativistic form
k i

2/2mi , the S-wave decay constants are finite even in the
presence of a Coulomb singularity. This feature is exempli-
fied by the ISGW@11# model in Table I. Moreover, the decay
constants are smaller in this case than for the models of
relativistic kinetic energy, another manifestation of the sin-
gular behavior of the latter.

TABLE I. Decay constants ofn50, l 50 andn50, l 51, j 5 1
2 mesons for the various spectroscopic

models. The ISGW is nonrelativistic. In the VD, GI, and CNP models, the kinetic energy is relativistic. In the
VD model theS-wave decay constants diverge due to the Coulomb singularity. In the GI and CNP models the
Coulomb singularity is regularized and the decay constants are finite.Nmax stands for the number of radial
excitations included in the truncated variational harmonic oscillator basis.

Model
MQ

~GeV! Nmax

M (0)-MQ

~GeV!
M1/2

(0)-MQ

~GeV!
AM f (0)

(GeV3/2)
AM f 1/2

(0)

(GeV3/2)

ISGW @11# 104 10 0.0438 0.5467 0.422 0.235
104 15 0.0436 0.5467 0.428 0.235
104 20 0.0435 0.5467 0.431 0.236

infinite finite finite
VD @12# 104 10 0.119 0.620 1.36 0.603

104 15 0.108 0.620 1.58 0.617
104 20 0.108 0.620 1.76 0.631

infinite infinite finite
GI @13# 104 10 0.386 0.792 0.649 0.620

104 15 0.386 0.792 0.662 0.632
104 20 0.386 0.792 0.667 0.640
104 infinite finite finite

CNP @14# 104 10 0.389 0.859 0.747 0.669
104 15 0.387 0.858 0.798 0.691
104 20 0.386 0.858 0.828 0.704

infinite finite finite

TABLE II. Decay constantsf (n) and f 1/2
(n) for the first radial

excitations ofl 50 andl 51, j 5 1
2 mesons in the GI spectroscopic

model. The error in parentheses is estimated by comparing the num-
ber of radial excitations included in the truncated variational har-
monic oscillator basis,Nmax520 and 10. Forn>5 the error be-
comes larger than 20%.

Radial excitation
AM f (n)

(GeV3/2)
AM f 1/2

(n)

(GeV3/2)

n50 0.67~2! 0.64~2!

n51 0.73~4! 0.66~4!

n52 0.76~5! 0.71~5!

n53 0.78~9! 0.73~8!

n54 0.80~10! 0.76~11!

n55 0.81~17! 0.77~17!

n56 0.82~15! 0.78~15!

n57 0.82~28! 0.78~27!

n58 0.83~25! 0.79~25!

n59 0.80~40! 0.76~40!

n510 0.83~42! 0.79~40!

V. MORÉNAS et al. PHYSICAL REVIEW D 58 114019

114019-8



It is interesting to notice that in the heavy quark limit and
for Nmax520 one gets, for the models with relativistic kinetic
energy and regularized Coulomb singularity,

AM f ~0!50.67 GeV3/2 ~GI model!,

0.83 GeV3/2 ~CNP model!,
~58!

AM f 1/2
~0!50.64 GeV3/2 ~GI model!,

0.70 GeV3/2 ~CNP model!.

Applying this asymptoticresult to theB meson, one obtains

f B>300– 350 MeV. ~59!

This value is not far away from, although slightly larger
than, the values obtained inlattice QCD in the static limit, to
which it should naturally be compared, which ranges be-
tween 220 and 290 MeV@16#. However, one should keep in
mind that the lattice QCD result includes logarithmic correc-
tions absent in our phenomenological scheme.

It is worth noticing that we obtain the same order of mag-
nitude for the decay constantf 1/2

(0) . This is phenomenologi-
cally important because, reasoning within the factorization
assumption, this means that theemissionof D** (01) and
D** (11, j 5 1

2 ) is expected to be important inB decays. On
the contrary, the emission ofD** ( j 5 3

2 ) will be suppressed.
Table II shows that the decay constants of radial excitations

are of the same order of magnitude as in the ground state.
However, the error due to the truncation is larger asn in-
creases.

Finally, let us study the convergence of the sum rules~35!
and~36!, which we have shown formally to hold, in models
that give finite results~GI, CNP, and ISGW! for which we
can compute the decay constantsf (n), f 1/2

(n) and the IW func-
tions j (n)(w), t1/2

(n)(w) @8#. The convergence of the Bjorken-
Isgur-Wise sum rule@4# has been studied in Ref.@8#.

Let us define

X~N!~w!5 (
n50

N
f ~n!

f ~0! j~n!~w!,

~60!

T1/2
~N!~w!5 (

n50

N f 1/2
~n!

f ~0! t1/2
~n!~w!.

We compute the sums forN5Nmax in the different models
for various values ofw and see how they compare to the
RHS of the sum rules~35! and~36!. Let us recall thatNmax is
the maximal number of radial excitations included in the
truncation method~the dimension of the variational base is
Nmax11). We show the results for the Godfrey-Isgur model
in Figs. 1 and 2. TheOx axis represents 1/(Nmax11). We
observe that these sums converge fairly well towards the
RHS of the sum rules~respectively, 1 and12! as we increase
Nmax. For fixed Nmax we can ask how the partial sums
X(N)(w) andT1/2

(N)(w) (N<Nmax) behave as a function ofN,
i.e., how fast X(N)(w), T1/2

(N)(w) approach X(Nmax)(w),
T1/2

(Nmax)(w) when N increases (N>0). Let us give the ex-
ampleNmax520. The convergence is rather fast, but it de-
grades asw increases. Concerning theX sum rule, forw
51 one has triviallyX(0)(1)5X(Nmax)(1), because the ground

FIG. 1. Convergence of the heavy quark limitS-wave sum rule~35! in the GI model@13# for different values of the scaling variablew
as one increasesNmax, the number of radial levels included in the truncated variational harmonic oscillator basis. TheOx axis represents
(Nmax11)21 and theOy axis (n50

Nmax(f(n)/f(0))j(n)(w), which the sum rule predicts to be equal to 1 forNmax→`. The different lines correspond
to w51.0, 1.1, 1.2, 1.3, 1.4, 1.5, from up to down.
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state saturates the sum, sincej (n)(1)50 (n.0). As one
increasesw, one one needs to sum up toN53, 4, 5, 6, or 7,
respectively, forw51.1, 1.2, 1.3, 1.4, or 1.5 to approach
X(Nmax)(w) at the 5% level. Concerning theT1/2 sum rule, one
needsN53, 4, 5, 6, 7, or 8, respectively, forw51.1, 1.2,
1.3, 1.4, or 1.5 to approachT1/2

(Nmax)(w) at the 10% level.
For the CNP model and the nonrelativistic ISGW model,

the convergences both inNmax and in N for fixed Nmax are
not as good. For the case of the VD model, one gets finite
f 1/2

(n) andt1/2
(n)(w), but the convergence toward the RHS of the

sum rule~30! does not improve as one increasesNmax. This
results from the divergence of the denominatorf (0) in Eqs.
~35!, ~36! whenNmax→`.

In conclusion, we have studied the decay constants of
heavy-light mesons in the heavy mass limit in a class of
models of Bakamjian and Thomas, with differentAnsätzefor
the dynamics at rest, with nonrelativistic or relativistic ki-
netic energies. Each particular model gives an acceptable

phenomenological description of the spectrum. The models
with relativistic kinetic energy, which yield a slope of the
elastic IW functionr2>1 ~as shown in Ref.@7#!, give finite
decay constants if the Coulomb singularity of the potential is
regularized, as in the GI model. At theB mass, one findsf B
slightly larger than in the static limit of lattice QCD. The
decay constants ofD** with j 5 1

2 are of the same order of
magnitude. Moreover, we have shown that heavy quark limit
sum rules involving decay constants@10# are satisfied by
these class of quark models of the Bakamjian-Thomas type,
and in the case of the Godfrey-Isgur model the convergence
of the sum rules is quite fast.
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