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Decay constants of heavy-light mesons in Bakamjian-Thomas heavy quark models
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In the quark models of the Bakamjian-Thomas type that yield covariance and Isgur-Wise scaling of form
factors in the heavy quark limit we compute the decay constHfitsand f(l’,‘g of S and P-wave mesons
composed of heavy and light quarks. Lorentz invariance of the decay constants and heavy quark limit scaling
JMf=const is obtained, and it is shown that this class of models satisfies the sum rules involving decay
constants and Isgur-Wise functions recently formulated by us in the heavy quark limit of QCD. Moreover, the
model also satisfies selection rules of the tff3=0, which must hold in this limit. We discuss different
Ansdze for the dynamics of the mass operator at rest. For nonrelativistic kinetic engrgizm, the decay
constants are finite even if the potenti&{r) has a Coulomb part. For the relativistic forgp?+m?, the
Swave decay constants diverge if there is a Coulomb singularity. Using phenomenological models of the
spectrum with relativistic kinetic energy and a regularized short-distance @adfrey-Isgur model or Rich-
ardson potential of Colangekt al) that yieldp?=1 for the elastic Isgur-Wise function, we compute the decay
constants in the heavy quark limit and obtéj= 300 MeV, of the same order although slightly smaller than
in the static limit of lattice QCD. We find the decay constantsD3t™ with j=% of the same order of
magnitude. The convergence of the heavy quark limit sum rules is also studied.
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PACS numbds): 12.39.Hg, 13.20-v

I. INTRODUCTION Il. DECAY CONSTANTS IN THE BT SCHEME:
HEAVY QUARK SCALING

In a recent papdrl] we have shown that quark models of ~We want to compute in the model the decay constants of
hadrons with a fixed number of constituents, based on th&esonsQq, whereQ andq are a heavy and a light quark,
Bakamjian-ThomagBT) formalism [2], yield form factors defined by
that are covariant and satisfy Isgur-Wid#/) scaling[3] in

— Q _
the heavy mass limit for one of the quarks. In this class of (P(0 )(U)|Afz |O>_NfPNUW
models a lower bound is predicted for the slope of the heavy _ 40
meson elastic IW functiop®> 2. Moreover, the model sat- (V(1N)(w,8)Vy |0>:NfVNSZ’ @

isfies the Bjorken-Isgur-Wise sum rulé], which relates the
slope of the IW func_tlon to th@-wave form fgc_tors-l,z(w), corresponding bound stattMp or M=My,), and simi-
T35(W) at zero recoil5]. We have also explicitly computed larly

the P-wave meson wave functions and the corresponding

for S states, wherdN=1/\/20° and M is the mass of the

inelastic IW functions[6] within the model, and we have <1/20+(v)|VCIQ|O>:Nf(l/z)\/mvlu,

made a numerical study g in a wide class of models of .

the meson spectrurteach of them characterized by Am- <1’21*(u,s)|AZQ|O)=Ng(l’z)\/Ms; ,

satzfor the mass operatd, i.e., the dynamics of the system

at resy [7], and a phenomenological stu@] of the elastic (321* (1,£)| A9 0)=Ng¥? Me* , ©

and inelastic IW functions and the correspondifigydw for . a

B—D, D*, D** lv. for P states. The spin of the light degrees of freedom com-
The purpose of the present paper is to study the decaines with orbital angular momentum adding to total con-

constants of heavy mesons within the same approach. servedj=1/2,3/2, indicated in the preceding equations. The

model satisfies the heavy quark limit relatiofvge use the
phase convention for states of RES))

fp: fV: f, (3)
*Email address: morenas@clermont.in2p3.fr gt2=—f12  gGR=q, (4)
TEmail address: leyaouan@gqcd.th.u-psud.fr
*Email address: oliver@qcd.th.u-psud.fr In terms of the internal wave function, i.e., the eigenfunction
SEmail address: pene@qcd.th.u-psud.fr of the mass operatoM which commutes with the global
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Poincaregeneratord1], we get[the superscriptn) means
any radial excitatioh for Swave mesons:

WO = Nova

d 1
(2p2)3 —5 V(P2 v) (P2 v+my) oM (ky),

(5

where the wave functions at rest of @nesons are given by

i
04y 5,(ka) =~ (0%)s, 5, (K2),

dp
(n) 2_
and, forP wave mesons,
dp, 1 p v
M= \/7 f 2 2
1/2 \/_ (277)3 p2 Po- U+m2
X¢1?2(k2)[(p2~v)2—m2], (7)

where the wave function at rest of nesons is given bj5]

EpJ

N
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[
N AL BRG]

dp p2 .
f @7 3 [ eRPIP=1 ®

In these expressions,

p2=Bykz, 9

whereB,, is the boost operator. The expressidasand (7)
are Lorentz invariant since, due to thatational invariance
of M(ky), ¢{M(k,), they are functions of?=1. One can
take simply the rest frame=(1,0).

Let us give a brief outline of the calculation. Within the
model[1], the internal wave function in motion of &wave
meson with center-of-mass momentiin(n denotes the ra-
dial excitation is given in terms of

WL (P—pa.py)= qu 5 > .H [Di(R) s/ Poray (ko). (10)
{s} -
Where<p(”) (k2) is the internal wave function at rest Eg), andR; are the Wigner rotations:
Ri=B,§ileijki. 11
ThegQ to vacuum matrix element of a current, e.g= qvy,vsQ, reads
Os,s,(P—P2,P2) =(013|P— P25y ;p2Sz) =[Us (P—P2) 1 Y%7, ¥5Us,(P2).- (12
The matrix element of interest to us,
dp;
(0]A#|P™) = N, f @ {2} Os,6,(P=P2,p2) WL (P=p2,P2), (13
can be written, after some algebra, using EG9)—(12),
dpz %p; \/—G
0|A#| P f — eM(k
<|| >\/_( 0|12\/—i p2 (k2)
1 1+9° +9° -1 —1p-1
XE Tr( 5 Bp. 'y “Bp, 5 By, szjBszkl szijl , (14)

and since the projector (1y°)/2 commutes with the Wigner rotatiori$1), one can rewrite

(0laP) = . [ s

2m)°

Epj my [ 1+'}/0 1+’y0
\/ \/ \/ oM (k —Tr »B,B B,'B,—— B, 'B, '},
0I 12 \/— pl p2 2) Y ky 2 uT o k; Pu

(15
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whereu= (p;+p,)/V(p1+ p,)?. Using the identities

1440 m,+ 1+ 1+4° 1+ m, +
BB, oL Bl P . By BB, = LB (16
2 V2my(kg+my) 2 2 ' 2 \2my(k§+my)
one obtains
\/— dp, 1
(O|A#[PM) = —— f i (P2, P)TI (M o) (1+6) (Mg + 1) T M (), 17
with k?=B_*p? and
F(p,,P)=v2 \/— \/— \/_ (18
2 _0_\/k +my VKS+m,’
Finally, in the heavy mass lim[tl],
0
p ki _
u—v, m—ll—>v, m—1—>1 kg—>(BU lp2)0=p2-v, (19)
one obtains
1 dp2 1 pz'U
O|A*|PM f N T y“(my+ o) (1+8) o™ (K,), 20
< | | > \/_ (277)3 p2 p2 U+m2 [7( 2 pZ)( )]QD ( 2) ( )

wherek,=B, 'p, and ¢("(k,) depends ork3=(p,-v)?—m3 because of rotational invariance.

Thus the integrand20) must be proportional to*, yielding Eq.(5) for the decay constant. This expression exhibits the
expected heavy quark limit scaling. Moreover, varying the current, one can easily show refatidhs also worth noticing
that expressiori5) becomes the well-known nonrelativistic expressiehif we assume that the light quark is also nonrela-
tivistic.

Let us give some details of the calculation of E(®.and the corresponding relatiof¥). Mutatis mutandis, we consider
the matrix element0|V#|0*) with the 0" wave functions given by Eqg8). After some algebra, the matrix element
equivalent to Eq(15) is, in the present case,

dp Spd Vo fmg my
OV = VNG | 2 \J T T 55 o Vs etttk
P2

Mo i=12 /p; P1

+'y0

1 “ -1 -1 1+45° —1p-1
X5 T 7 vsBB, —5 B Bu(okz)B, 1B, —— B, !By . (21)

2

Using Eqs.(16) and taking the limit(19), we obtain

N 1 dp, 1 p,-
R (zijsp—g#cp&% ke) THl = 7 (M + ) (1+6)(— 8B+ o) (1=H)], (22
27 m;

and using the fact that this expression must be proportional‘tove obtain expressiof¥), scaling invariant in the heavy
quark limit. Moreover, varying the current and considering instead the matrix elgijeit|1;,,,), one can easily verify the
first relation of Egs(4).

The resultg®?=0, which must hold in the heavy quark linfil0], deserves a few details. The matrix element to be
considered i§m denotes the polarization of the staté andn the radial excitation

etz m= N [ 3P N3P T F\fp\f

1+ 'yO
5 UzBpl iY%y5y%y 75Bp2

(0]v¥|0™)=

X Tr[

[D(Rz)][tp(”)(kz m)]1D'(Ry]{, (23
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where the wave function is, for the] =2 stateq6],

V. MORENAS et al. PHYSICAL REVIEW D 58 114019
i
o (Ko, m)=—=¢&m. T205(k,), (24)

2 i
72 \[gkz_%(kzxﬂ')

wheree™ is a unit vector and the rotational invariant functiqaﬁ,‘%(kz) is normalized according to Eg€8). The equivalent
expression to Eq(21) will be

d 3 Ks)
(O] A#] 155, m) = \/—J p2 p] \/_ / 2%03/2( 2

Mo i= 12 py pl [

i
\[ K+ — % (kyX o)

We need to compute the expresnge(m)-[\/§k2+(i/\/€)(k2>< 0')]BJ1 in the heavy quark limit. After some algebra, one
B = [— &yt £8P 0) ™ py], (26)

gets
\/7 k2+ (kzx 0')
0 G
Wheresl()m) is the axial meson polarization in the heavy quark limit. Using Eg8) in the limit (19), we obtain, finally,

\/N—c 1 dp, 1 VP2-v (Ky)
8v3 V200 J (2m)3pd \Jpy- v+ m, a2t
XTr{y*(My+ po) (L+8)[ — WPy + 476 (pa-v) —el™ - pa](1+9)}. (27)

This expression is covariant and satisfies heavy quark scaling. In the rest frame, particulanmin@ tone gets, because of
rotational invariance obs(k»),

0

2

1+
X Tr[ Y*BiBy, —5— ém>

kaBul} : (25)

B.&M™-

(O|A#|1g5,m)=

W 1 dk, 1 kS

0|A?13,,P=0,m=0)= =5 (k K3)2+ (k¥)2]+2(k3)?}=0. 28
<| |3/2 > \/5\/2—00 (Zw)Bkgmg’alz 2){ [(k2)“+(k3)“] ( )} (28)
|
Therefore the second relation of Edd), g®?=0, fol- | ,,=Av,0,+Bg,,,
lows. The vanishing 0§®? can be seen also from the fol-
lowing covariant argument. Contracting E@Q7) with the l=C (32)
four-vector ¢™, we see thag®? is proportional to the
integral whereA,B,Care constants. Contractirg, with g,,, it fol-
lows that
g<3/2>~f e 1 _VP2v k)
2m*pY Jpyv+m, 07 4B+A=m2C (33)

X [3(85)'“) : p2)2_ (U : p2)2+ mg] (29) and therefore
Two t f int | :
wo types of integrals appear g(3’2)~4B+A—m§C=O. (34)
o gpz 1 Npav k 30
my (277)3 p_g m @3/2( 2)p2#p2w ( ) 1. SUM RULES
Let us now show that the QCD heavy quark limit sum
I_f dp, 1 +pyv (k,) 31 rules[10]
@m0 B8 Jog o rm, o
X(w)=2, —57 €M(w)=1, 35
From covariance it follows that (W) ; fo &7 (W) (35
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£ 1 tions. We need’ different fromP in order to demonstrate
To W)= Aol 7(172)(W)=§ (36)  the sum rules(35) and (36) for any value of the scaling
" variablew.
are satisfied within the present BT scheme. __ To obtain the sum rul¢35) for Swaves, the simplest way
In order to prove Bjorken sum rule, in Rd&] we used 'S to takeP’ =0 for the intermediate states and choose the
the completeness relation fiked P that holds in the BT C””er)tSOZQ’VVQ andO=qy*ysQ" with 1 =0, whereQ
formalism for the internal wave functions. We proceed heré2ndQ" are heavy quarkg.g.,b andc) andqis a light quark.

in the same way. We need to compute expressions of th&hen only the O intermediate states contribute, because the
form 1" states do not @’ =0, since then the time component of

the polarizations{”=0. Alternatively, to obtain the sum
rule (36) for P_waves, we will takeP’'=0 and O
=Q'y"ysQ, andO=qy*Q’ with x=0. Then only the 0
_ intermediate states contribute, since the do not atP’
where(0|O|P’,n) and({P’,n|O|P,0) will be related, respec- =0.

tively, to the decay constants and to the Isgur-Wise func- We start from the completeness relation at fix&d

2. (0[O[P",n)(P",n[O|P,0), (37

’ ”n " ( )* ! ! ! ! ”
> ‘I’(sg),sg(P —py.PpW (P —P5.P2) = 8551 8s1(2m) > 5(p5— P3). (38)

n $15, 272

We need the matrix elements

S, S

’ dp2 dpé (P, v ’ !
(P'.n|O|P,0)= J @t | @a? {2}{2} WG " (P1,P3)Osis, (P1 PO WSS (P1.P2)(2m)°3(P2—P7) By, (39)
i Si

~ dp, ~
(0[o|P,n)= VN, f @ {2} O 6,(P1.P2) W oe (P1,P2), (40)

related, respectively, to the IW functions and decay constants. In these expressions,

ymimy 1+49° 1+ 4°

O(p1.p1) = W 5 By OBy, ——

~ , ml m21+ 'yo —1. 0 ~ 1+ ’yo
O(P'—p2,p2) = Vp_io \/p_(z)T 2B, 17 ¥s0Bp, —5—, (42

and hereD andO are the Dirac matrices of the corresponding currents. After some algebra we obtain, using the completeness
relation (38),

(41)

> (0|O|P’,n)(P’",n|O

dp ~
PO-WN.| 5oty 3 S Oy (P~ P2.pa) O (P P2, P—po) WL (P=py ), (43
{si} s:'L

where the ground state wave function is given[by

Spf o VK
VEL(P=p2.p)= Vgt 11 -5 2 [D(Ry)Is5[D(Ro) s gypys (o)

0 i=12 Vpj (s}
3.p; vki
=Vt 1“5 DRk DRy s o, “9
0 i=12 /p;

and using Eqgs(6), in an obvious notation,
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’ ’ 2pJ '0 i (0)
3 (OBIP (e 00RO =N 5P e IT, Yo 75 ¢tk
X THOYP' —p,,p2) O(P' —p,,P—p,)D(Ry) 0D (Ry)], (45)

where the matriceR; are given by Eq(11).
To isolate the O states, we take, as argued above:

0 dpz Ep] mlml my (o)
2<0|A |0,n)(0,n|V*|P,0)= Ff vy AL, J—\/ o0 \/ \/ (k)

t 1+'y 1+y0

XTr 5 B,yyB

1+9° 1. 0 1+ 9°
[ 5 O-ZBp:'lI’prz 5

}D(Rl)UZDt(RZ)] :
(46)

Using o5(By)'o,=B, %, a2(v) o=y, B[(1+9%)/2]B, *=3(1+p/m), the fact that; (1+9°) commutes with rota-
tions, and the relations

my,+ P10 m,+ ¥
B,B,B, * _— fl ., BB B l=——— O'Z’Z , 47)
v2my(ky+my) 2 vV2my(k3+m,)

one obtains, after some algebra, in the heavy quark limit{m,v,k{—m,), for the right-hand sidéRHS) of Eq. (46),

dp, 1

1 1 1
\/N—c \/W \/U—,Gf (217_)3_0 \/_\/—2 (O) kz)Tr —(1+y°)y 2 (1+V5)B Blekle

s | N
¢ J40%70 2070 (2m) pz ps- v+m2\/—
XTr{(1+ %) y"(1+8)(my+ po)}
_ 1 1 Nf(o)( ov 1/) (48)
a5 200 e
On the other hand, the LHS of E(6) reads
2. (0lA%0,n)0,n|V"|P,0)= == W WZ M EM (W) (g% +u ), (49)

and therefore the sum rul@5) follows. .
_ The sum rule for the® states, Eq(36), follows straightforwardly in similar manner by takif =0 andO=Q’ y"ysQ,
O=qy*Q’ with =0, since then only the Dintermediate states contribute, as pointed out above. However, to illustrate the
methods of calculation in the BT formalism, we will now verify the sum r{86) from the general expressions ftﬁ‘}% and
#M(w), without appealing to any particular frame.

We want to evaluate the expression

TyAw)f@= 2 fRrHw). (50)

From the explicit expression@) for f{7) and 7{/}(w) from Ref.[6],
1 dp; 1 V(pz-v")(p3-v)
(W) = 3,70
23 ) (2m)7 py (py-v+my)(py-v’ +my)

><(|0é-v’)(|0é~v+mz)—(pé-v)(|oé~v+sz)+(1—W)m§
1—w

e M(ky)* o O(Kj)

; (51
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with
kz=B, ‘Pz, k3=B,'ps. (52
The computation of the surfb0) leads to the expression
M/, r\%x . (N) 2 1 ’

E P12(K2) ™ @15(p2) =67 02k/2 8(|pa| — k3D, (53

n P2K2
where the RHS follows from Ref6]. One can then perform the integration oy®r that amounts to replacing aﬂg by
(p3-v). Realizing then that

(P2-v")(Pa-v+Mp) = (P3-v)(Py-v+WMp) +(L—w)m3 psv'—w(ps-v)
=kp? —1+ — , (54)
1-w (Py v —my)(1—w)

one gets

2N, dp; 1 V(py-v') Ps-v—W(py-v')
Ttwt© =23 el =1- N | i i e B
2 2

The second term involves the integral energies shows that the spectrum by itself does not constrain
the form of this kinetic energy. Interestingly, we have shown
j dp; 1 V(pzv') in Ref.[7] that quark models of form factors in the BT for-
(2m)3 p_éo Vph-v'+my) malism show a clear preference for the relativistic form of
(56) the kinetic energy, since they give a slope of the elastic IW
function p?=1, while models with a nonrelativistic kinetic
whereC is some constant, because of covariance. Insertingnergy give a larger, phenomenologically unacceptable
the RHS of Eq.(56) into Eqg. (55), we see that the second yg|ye.
term of the RHS of Eq(55) vanishes fow+# 1, and then the We list here a number of phenomenological quark models
sum rule (36) follows. For w=1, one can choos&  of the hadron spectrum that we will use, specifying their
=(v°V), v'=(10) and make an expansion oiv(-1)"' interesting features.
for v—0. Then the second term on the RHS of E§5) (1) Isgur-Scora-Grinstein-Wise(ISGW) spectroscopic
vanishes from rotational invariance. The same method almodel[11] (to be distinguished from the ISGW nonrelativ-
lows one also to obtain the sum rul@5) along similar lines. istic model of form factors nonrelativistic kinetic energy
k2/2m; with linear plus Coulomb potential.

IV. NUMERICAL RESULTS (2) Veseli-Dunietz(VD) model[12]: relativistic kinetic
energy \/kzi +m2i with linear plus Coulomb potential. The
Coulomb part is not regularized.

(3) Godfrey-Isgur(Gl) model [13]: relativistic kinetic
energy\/kzi + mzi with linear plus a regularized short-distance

M=K{ki}H+V{ri.pi}), (57)  part. This scheme also incorporates the fine structure of the
potential.

and one obtains covariance of the form factors and IW scal- (4) Richardson potential with relativistic kinetic energy,
ing with only the very general assumption of the rotationalas used by Colangelo, Nardulli, and Pietr¢@NP) [14].
invariance ofM. We are going now to give the results for the This model exhibits the asymptotic freedom behavior at
decay constants for variousnsaze of the operatoM, not  short distances, but the Coulomb singulafigarithmically
only various forms for the potential({r;,p;}), but also for  corrected is regularized by a cut at small
the kinetic energyK({k;}), which can be taken to be of the  These models are solved numerically using a harmonic
nonrelativistic k2/2m; or relativistic \k?+m? forms. We oscillator basis. In Table | we give the masses and decay
choose such models in order to emphasize the physics igonstants of the states=0,1=0 or 1 as a function oN 4
volved in the decay constants, sensitive to the short-distanda the different modelsNo, means the number of radial
part of the potential and to the scaling behavior of the kineticexcitations included in the truncated basis, the ground state
energy(quadratic or linear irk). Of course, any scheme that Gaussian plus up tbl,,, radially excitated harmonic oscil-
we adopt should give a reasonable fit of the whole mesofator wave functionsN,,,,+1 is then the dimension of the
spectrum. The success of quark models in the description dfuncated Hilbert space. In Table Il we give the decay con-
the spectrum with either nonrelativistic or relativistic kinetic stants of a number of radial excitations in the Gl model.

¢ (Ky)p,=Cu,

As explained at length in Ref1], the dynamics in the BT
formalism depends on the form of the mass operdoat
P=0. This mass operator can be of any form

114019-7
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TABLE I. Decay constants oh=0, |=0 andn=0, |=1, j:% mesons for the various spectroscopic
models. The ISGW is nonrelativistic. In the VD, GI, and CNP models, the kinetic energy is relativistic. In the
VD model theSwave decay constants diverge due to the Coulomb singularity. In the Gl and CNP models the
Coulomb singularity is regularized and the decay constants are fiyitg.stands for the number of radial
excitations included in the truncated variational harmonic oscillator basis.

Mg MO-Mg  MEMg VMO WY
Model (GeV) Niax (GeV) (GeV) (GeVF?) (GeV*?)
ISGW [11] 10 10 0.0438 0.5467 0.422 0.235
10* 15 0.0436 0.5467 0.428 0.235
10 20 0.0435 0.5467 0.431 0.236
infinite finite finite
VD [12] 10* 10 0.119 0.620 1.36 0.603
10* 15 0.108 0.620 1.58 0.617
10 20 0.108 0.620 1.76 0.631
infinite infinite finite
Gl [13] 10 10 0.386 0.792 0.649 0.620
10 15 0.386 0.792 0.662 0.632
10 20 0.386 0.792 0.667 0.640
10 infinite finite finite
CNP[14] 10 10 0.389 0.859 0.747 0.669
10* 15 0.387 0.858 0.798 0.691
10* 20 0.386 0.858 0.828 0.704
infinite finite finite

Let us begin our discussion with the models with relativ- relativistic kinetic energy is not efficient enough in smooth-
istic kinetic energy. A first important remark to make is thating ther-space wave function. This divergence of the wave
dimensional analysis implies that a Hamiltonior mass function at the origin is the cause of the existence of a critical
operator in the BT formalisinwith kinetic energy of the ~coupling®" in this class of models: foa> o™ arises the
relativistic form /ki2+ mii and a Coulomb potential implies so-called phenomenon of a fall in the center. For a discus-
divergent wave functions at the origir(M(0) (or decay sion, see, for example, the paper by Hardekopf and Sucher
constantsf (W) for S waves. The reason for this behavior is [15]. On the contrary, the decay constants Rewave me-

that the kinetic and potential energies exhibit the same scafor > remain finite even in this case. A short-distance Cou-
) ) P 9 . omb part corrected by asymptotic freedom exhibits the same
ing properties at large momentum or small distances. Th

ﬁhenomenon, althougH™ diverges only logarithmically in
this latter case, instead of as a power in the former. These
TABLE II. Decay constants™ and f{} for the first radial general features are exhibited by the model of Veseli and
excitations off =0 andl=1, j= 3 mesons in the GI spectroscopic Dunietz[12], as shown in Table I, and have been underlined
model. The error in parentheses is estimated by comparing the nungyy these authors. In our Table I, the finite values obtained for
ber of radial excitations included in the truncated variational hal‘-Nf(O) using the singular model fo¥,.,=10, 15, or 20 are
monic oscillator basisN,,=20 and 10. Fom=5 the error be- just an artifact of the truncation method.
comes larger than 20%. The Gl mode[13], a model of the meson spectrum for all

o M qq, Qqg, andQQ systems, chooses a short-distance part with
i a fully regularized Coulomb singularity. Within this model it

i itati / /

Radial excitation (Gev) (Gev) is possible to compute both types of decay constéfitsand
n=0 0.672) 0.642) f"). In Table | we give the scaling-invariant quantities
n=1 0.734) 0.664) YMf©® and \Mf{) for S andP-waven=0 mesons, com-
n=2 0.765) 0.715) puted in the heavy quark limit.
n=3 0.789) 0.738) We have also made the calculation for the CNP model
n=4 0.8010 0.7611 (Richardson potential plus relativistic kinetic energ¥4].
n=>5 0.8117) 0.7717) In the case of a kinetic energy of the nonrelativistic form
n=6 0.8215) 0.79115) kZ/2m;, the Swave decay constants are finite even in the
n=7 0.8228) 0.7827) presence of a Coulomb singularity. This feature is exempli-
n=8 0.8325) 0.7925) fied by the ISGW11] model in Table I. Moreover, the decay
n=9 0.8040) 0.76(40) constants are smaller in this case than for the models of
n=10 0.8342) 0.7940) relativistic kinetic energy, another manifestation of the sin-

gular behavior of the latter.
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0.975 ¢

0.925

0.875

FIG. 1. Convergence of the heavy quark lirBitvave sum rulg35) in the GI model[13] for different values of the scaling variable
as one increasdy,.x, the number of radial levels included in the truncated variational harmonic oscillator basi©xTdnas represents
(Nmaxt 1)~ and theOy axis = m'°‘X(f(”)/f(°))5(”)(w) which the sum rule predicts to be equal to 1 fgy.—. The different lines correspond
tow=1.0, 1.1, 1.2,1.3, 1.4, 15 from up to down.

It is interesting to notice that in the heavy quark limit and are of the same order of magnitude as in the ground state.
for Niax=20 one gets, for the models with relativistic kinetic However, the error due to the truncation is largernais-
energy and regularized Coulomb singularity, creases.

Finally, let us study the convergence of the sum ry8s
and(36), which we have shown formally to hold, in models

Mf©=067 GeW? (Gl mode), that give finite resultgGl, CNP, and ISGW for which we
™ ( ) can compute the decay constafitd, {7} and the IW func-
0.83 GeV¥? (CNP mode), tions £M(w), 7{7}(w) [8]. The convergence of the Bjorken-

(58) Isgur-Wise sum rulé4] has been studied in R€®].
Let us define

YMf%=0.64 GeV¥? (GI mode), N )
(N) = —__ &)
0.70 GeV¥2 (CNP mode). XMw)= 2 oy £7w),
N (60)
Applying this asymptoticresult to theB meson, one obtains (N) fi2
Tiz(w)= Zo 1@ T172(W).
fz=300-350 MeV. (599 We compute the sums fod= Ny, in the different models

for various values ofv and see how they compare to the
RHS of the sum rule&35) and(36). Let us recall thalN .« is
the maximal number of radial excitations included in the
truncation methodthe dimension of the variational base is
Nmaxt1). We show the results for the Godfrey-lsgur model
in Figs. 1 and 2. Thex axis represents IN,,,+1). We
observe that these sums converge fairly well towards the
RHS of the sum rulegrespectively, 1 ang) as we increase
Nmax- For fixed N, we can ask how the partial sums
XN (w) and T (w) (N<Np.,) behave as a function o,

This value is not far away from, although slightly larger
than, the values obtained lattice QCD in the static limitto
which it should naturally be compared, which ranges be-
tween 220 and 290 MeY16]. However, one should keep in
mind that the lattice QCD result includes logarithmic correc-
tions absent in our phenomenological scheme.

It is worth noticing that we obtaln the same order of mag-
nitude for the decay constalh . This is phenomenologi- ™) T (N
cally important because, reasonlng within the fac'[orlzanode how fast X™%(w), Tyz(w) approach XTma?(w),
assumption, this means that teenissionof D** (0*) and Tl/zmaX)(W) when N increases Nl=0). Let us give the ex-
D** (1*,j=3) is expected to be important B decays. On ampleN,,,=20. The convergence is rather fast, but it de-
the contrary, the emission &** (j=32) will be suppressed. grades asw increases. Concerning thé¢ sum rule, forw
Table 1l shows that the decay constants of radial excitations=1 one has triviallyX(?)(1)=X(Nmad(1), because the ground
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0.36

FIG. 2. Convergence of the heavy quark lirBitvave sum rulg36) in the GI model[13] for different values of the scaling variable
as one increasdy,,.x, the number of radial levels included in the truncated variational harmonic oscillator basi©xTdnds represents
(Nt 1)™* and theOy axis =Nm2(f{1)/f(@) 7{7)(w), which the sum rule predicts to be equal ofor Ny—. The different lines
correspond tav=1.0, 1.1, 1.2, 1.3, 1.4, 1.5, from up to down.

state saturates the sum, sing®(1)=0 (n>0). As one phenomenological description of the spectrum. The models
increasesv, one one needs to sum uphkb=3, 4, 5, 6, or 7, with relativistic kinetic energy, which yield a slope of the
respectively, forw=1.1, 1.2, 1.3, 1.4, or 1.5 to approach elastic IW functionp?=1 (as shown in Ref[7]), give finite
X(Nmad(w) at the 5% level. Concerning thig,, sum rule, one  decay constants if the Coulomb singularity of the potential is
needsN=3, 4, 5, 6, 7, or 8, respectively, fw=1.1, 1.2, regularized, as in the GI model. At tli®mass, one findég
1.3, 1.4, or 1.5 to approach,.m(w) at the 10% level. slightly larger than in the static limit of lattice QCD. The
For the CNP model and the nonrelativistic ISGW model,decay constants d** with j=3 are of the same order of
the convergences both N, and in N for fixed N4 are magnitude. Moreover, we have shown that heavy quark limit
not as good. For the case of the VD model, one gets finitSum rules involving decay constanis0] are satisfied by
f(lr;% and 7.(n)(W), but the convergence toward the RHS of thethese class of quark models of the Bakamjian-Thomas type,

sum rule(léZO) does not improve as one increadés,,. This and in the case of the Godfrey-Isgur model the convergence

results from the divergence of the denominaté® in Eqs.  ©f the sum rules is quite fast.
(35), (36) when N .
In conclusion, we have studied the decay constants of
heavy-light mesons in the heavy mass limit in a class of
models of Bakamjian and Thomas, with differérisazefor ACKNOWLEDGMENTS
the dynamics at rest, with nonrelativistic or relativistic ki-
netic energies. Each particular model gives an acceptable LPTHE is Laboratoire assoc&u CNRS URA D0063.

[1] A. Le Yaouanc, L. Oliver, O. Aee, and J.-C. Raynal, Phys. [6] V. Morénas, A. Le Yaouanc, L. Oliver, O. Re, and J.-C.

Lett. B 365 319(1996. Raynal, Phys. Lett. B86, 315(1996.

[2] B. Bakamijian and L. H. Thomas, Phys. R&2, 1300(1953. [7] V. Morénas, A. Le Yaouanc, L. Oliver, O. Re, and J.-C.

[3] N. Isgur and M. B. Wise, Phys. Lett. B37, 527 (1990. Raynal, Phys. Lett. BI08 357 (1997).

[4] J. D. Bjorken, presented at Les Rencontres de Physique de 1§8] V. Morénas, A. Le Yaouanc, L. Oliver, O. Re, and J.-C.
Vallée d’Aoste, La Thuile, SLAC Report No. SLAC-PUB- Raynal, Phys. Rev. [36, 5668(1997).
5278, 1990(unpublishedt N. Isgur and M. B. Wise, Phys. [9] A. Le Yaouanc, L. Oliver, O. Ree, and J.-C. RaynaHadron
Rev. D43, 819(199Y); J. D. Bjorken, I. Dunietz, and J. Taron, Transitions in the Quark Mode(Gordon and Breach, New
Nucl. Phys.B371, 111(1992. York, 1988, Sec. 2.1.3.

[5] A. Le Yaouanc, L. Oliver, O. Ae, and J.-C. Raynal, Phys. [10] A. Le Yaouanc, L. Oliver, O. Ree, and J.-C. Raynal, Phys.
Lett. B 386, 304 (1996. Lett. B 387, 582(1996.

114019-10



DECAY CONSTANTS OF HEAVY-LIGHT MESONSN . .. PHYSICAL REVIEW D 58 114019

[11] N. Isgur, D. Scora, B. Grinstein, and M. B. Wise, Phys. Rev. D G. Nardulli, and M. Pietroni, Phys. Rev. B, 3002(1991.

39, 799 (1989. [15] G. Hardekopf and J. Sucher, Phys. Rev3A 2020(1985.
[12] S. Veseli and I. Dunietz, Phys. Rev. %2, 6803(1996. [16] S. Aoki et al, Nucl. Phys. B(Proc. Supp). 53, 356(1997%); C.
[13] S. Godfrey and N. Isgur, Phys. Rev.32, 189(1985. Bernardet al, ibid. 53, 358(1997; G. M. de Divitiis, ibid. 53,
[14] J. L. Richardson, Phys. Let82B, 272 (1979; P. Colangelo, 362(1997.

114019-11



