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We investigate the connection between relativistic potential models for quark-antiquark bound states and the
nonrelativistic models that have been used successfully to fit and predict the spectra of relativistic systems, as
in the work of Martin. We use Martin’s operator inequalityAp21m2<(p21M21m2)/2M to motivate the
approximation of the relativistic kinetic energy terms in the spinless Salpeter equation by expressions of the
nonrelativistic formM1e1p2/2M for each quark. To investigate the validity of the resulting approximation

numerically, we generate energy spectra forqq̄ mesons composed of two light or two heavy quarks using the

spinless Salpeter equation with the linear-plus-Coulomb potential typical of phenomenological fits toqq̄ data,
and then fit the lowest few states of each type using the effective Schro¨dinger description with the same

potential. We find good fits to the lowest four calculatedcc̄ and the lowest threess̄states either takingM fixed
at the valueMq5A^p2&1mq

2 that minimizes the Martin bound, or allowingMq to vary in the fit. The energies

of the lowest fewcs̄ states are then predicted with similar accuracy. The reasons for the success of the
nonrelativistic approximation are identified, and explain the success of Martin’s nonrelativistic predictions for
the spectra of relativistic light-heavy mesons. However, we note that the agreement between the nonrelativistic
and relativistic wave functions is not good, a point of potential concern for the calculation of transition matrix
elements.@S0556-2821~98!00823-6#

PACS number~s!: 12.39.Pn, 14.40.2n

I. INTRODUCTION

The development of potential models to describe
the energy spectra of mesonic and baryonic systems has
proved extremely successful. Phenomenological models that
use a simple relativistic kinetic energy term and a scalar
potential that incorporates the linear confinement and
the short-distance color-Coulomb interaction suggested
by QCD give good descriptions of the observed spectra of
both heavy- and light-quark mesons and baryons@1–5#.
Moreover, Duncan, Eichten, and Thacker@6# have
demonstrated a nontrivial connection between the relativistic
potential models and rigorous numerical results from lattice
QCD, showing that both the spectrum and the lattice wave
functions for light-quark mesons are reproduced very well
when the lattice potential is used in the relativistic wave
equation

@Ap21m1
21Ap21m2

21V~r !#c~r !5Ec~r !. ~1!

This equation, the spinless Salpeter equation, can be derived
as a limit of the full Salpeter equation in which the
‘‘small-small’’ components of the Salpeter wave function
are neglected and spin effects are averaged out as discussed,
for example, in @3#. In the expression abovep is the
momentum of either quark in the center-of-momentum

frame, m1 and m2 are the quark masses, andV(r ) is the
effective potential between the quarks.

We will be concerned here with the description of me-
sonic systems described as quark-antiquark bound statesqQ̄,
where the quarksq and Q may be the same or different.
We assume that these systems can be described by the
spinless Salpeter equation as demonstrated in@6#, and will
takeV(r ) as the linear-plus-Coulomb potential used in much
phenomenological work. This also gives a good approxima-
tion to the lattice potential. For heavy quarks, the kinetic
terms in Eq. ~1! can be expanded in inverse powers of
the quark mass to obtain the usual nonrelativistic Schro¨-
dinger Hamiltonian. This gives successful descriptions of
the bb̄ andcc̄ states@7#, even though the latter are close to
being relativistic. More surprisingly, Martin@8,9# showed
that a nonrelativistic model based on a power-law potential
could be extended to include the clearly relativisticss̄states,
and was able using that model to predict successfully
the masses of a number of then unmeasured light-heavy
states@10#.

Although numerical methods have been developed which
allow one to treat a relativistic kinetic term as easily as a
nonrelativistic term@3,11–13#, it is important to understand
why an ostensibly nonrelativistic treatment works and allows
useful predictions to be made for relativistic systems as in
the work of Martin and others. In this paper, we explore this
problem theoretically, and develop a nonrelativistic approxi-
mation to the Hamiltonian in Eq.~1! based on an effective-
mass expansion of the kinetic energy terms. We then study
the accuracy of this approximation in reproducing the energy
spectra and wave functions of relativisticqQ̄ bound states by
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using the corresponding Schro¨dinger equation to fit ‘‘data’’
obtained by solving the spinless Salpeter equation. We find
that it is possible to fit the energy spectra for the low-lying
energy levels to within a few MeV for both heavy-heavy
‘‘ cc̄’’ and light-light ‘‘ ss̄’’ states. We are then able, using
the nonrelativistic description, to predict the energies of the
low-lying cs̄ states to within 11 MeV. The effective quark
massM found in the fits is considerably larger than either the
input quark massm or the natural effective massA^p2&1m2

expected from various arguments@14,10#. However, we can
also obtain quite good fits to the relativisticcc̄ andss̄ spec-
tra, and good absolute predictions for thecs̄ energies, using
M5A^p2&1m2.

We study theqq̄ wave functions in detail, and find quali-
tative agreement between the relativistic and nonrelativistic
functions in the regions in which both are large provided the
effective quark mass is used as a parameter in the fitting
procedure. However, systematic differences are evident, and
the nonrelativistic wave functions can be seriously in error
locally, a problem that can limit the usefulness of the ap-
proximate wave functions in calculations of such quantities
as transition matrix elements.

In the next section, we develop the theory of the nonrel-
ativistic approximation. We then outline the numerical tech-
niques used to determine the energy spectra and wave func-
tions, and discuss the results of the heavy and light fits and
the light-heavy predictions in Sec. III, and summarize our
conclusions in Sec. IV.

II. THEORETICAL BACKGROUND

Our objective is to approximate the relativistic potential
model defined by the spinless Salpeter equation using a non-
relativistic Schro¨dinger description. Since only a small num-
ber of low-lying heavy- and light-quark bound states are ac-
tually known experimentally, an approximation will be
successful for practical purposes if it reproduces the wave
functions and the energy spectra for those limited sets of
states. We will suppose that the potentialV(r ) is known and
is kept fixed.1 This requires that our approximation for the
kinetic energy terms in Eq.~1! be accurate in some average
sense for the low-lying states in both the heavy- and light-
quark systems.

Our nonrelativistic approximation to the kinetic terms is
suggested by Martin’s@9# operator bound

Ap21m2<
M

2
1

p2

2M
1

m2

2M
, ~2!

valid for an arbitrary massM. The right hand side of this
equation has the form of a nonrelativistic kinetic energy op-
erator with an effective massM, plus an additive constant
that shifts the total energy. GivenM, the equality in Eq.~2!
holds in momentum space at the momentump0

5AM22m2. The curves defined by the two sides of the
inequality are tangent at that point, suggesting thatM be
defined in terms ofm and the point of tangencyp0 by

M25m21p0
2 . ~3!

Because the Martin bound is an operator relation, the
inequality in Eq.~2! holds for expectation values in single
states, and for averages of expectation values over
sets of states for arbitrary values ofM or p0 . The special
choice p0

25^p2& puts the point of equality in Eq.~2!
at the average value ofp2 for the state or set of states
under consideration. We would expect this choice forp0

2

to yield a reasonably accurate nonrelativistic approximation
for the relativistic kinetic energy, a point noted in different
contexts by other authors@7,14,15,10#. More important
theoretically, the corresponding effective mass
M5A^p2&1m2 minimizes the average value of the
right hand side of Eq.~2!, so gives a least upper bound for
the average of the relativistic kinetic energies when the
average is calculated using the actual eigenfunctions for the
relativistic problem. Using this value forM we obtain the
relation

Ap21m2<M1
p2

2M
2

^p2&
2M

, M5A^p2&1m2. ~4!

The physical content of this result can be illustrated
through a direct expansion of the square root operator. The
standard expansion

Ap21m25m1
p2

2m
2

p4

8m3
1••• ~5!

in powers ofp2/m2 may be reliable for heavy-quark systems,
but fails for light-quark systems. A possible solution to this
problem is to consider an expansion about a fixed momen-
tum p0

2 ,

Ap21m25Ap22p0
21M25M1

p22p0
2

2M
2

~p22p0
2!2

8M3
1•••

~6!

1Possible differences between the effective potentialsV(r )
for the heavy- and light-quark systems are outside our concern.
However, we note that the potential is often varied in making
phenomenological fits to data on different systems. This
eases the problem of fitting the heavy- and light-quark systems
together.
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whereM5Am21p0
2. The expansion will give a good aver-

age approximation to the relativistic kinetic energy provided
the relevant values ofp2 are concentrated nearp0

2 with
^(p22p0

2)2&!M4.2 The numerator in this ratio has its mini-
mum value forp0

25^p2&. A comparison of Eqs.~2! and ~6!
shows that the net effect of all the terms in Eq.~6! beyond
the simple nonrelativistic resultM1p2/2M is to decrease the
kinetic energy. Note that the ‘‘relativistic correction’’
2(p22p0

2)2/8M3 to the kinetic energy operator in Eq.~6!
does not have the standard form2p4/8M3, and would be
expected to be much smaller in magnitude forp0

2 close to
^p2&.

To remove the strict inequality in Eq.~2! in the following
discussion, we will allow for an energy shifte8 that includes
the average contribution of the ‘‘relativistic corrections’’ in
Eq. ~6!, taken as constant, and will use a nonrelativistic ap-
proximation to the relativistic kinetic energy operator of the
form

Ap21m2'M1
p2

2M
1

1

2
e, ~7!

where

e52
^p2&
M

1e8'2
^p2&
M

2
^~p22^p2&!2&

4M3
1•••. ~8!

The content of this approximation is best illustrated in
momentum space. In Fig. 1, we compare a model relativistic
operator with m50.5 GeV, ^p2&53.75 GeV2, and M
52 GeV with the nonrelativistic approximation in Eq.~4!.
The curves corresponding to the relativistic and nonrelativ-
istic expressions are tangent atp25^p2&.

For all other momenta, the nonrelativistic approximation
lies above the actual relativistic kinetic energy, as expected
from the Martin bound. To improve the agreement between
the operators for momenta away from the point of tangency,

we can add a negative shifte8 to the nonrelativistic approxi-
mation as suggested above and shown in Fig. 1. Because of
the negative curvature of the relativistic kinetic energy, it is
also advantageous to increase the value ofM relative to
A^p2&1m2 to move the point of tangency outward and re-
duce the slope of the nonrelativistic curve. This will be seen
in our numerical results. The quality of the resulting approxi-
mation is evident in Fig. 2, in which we compare the exact
and approximate kinetic energies for thecc̄ system over the
region in which the wave function for the second excitedcc̄
state is large. The products of the kinetic energy operators
with the squares of the momentum-space wave functions for
the Salpeter and Schro¨dinger equations are compared in Fig.
3. The details and interpretation of the fit are discussed in
Sec. III B.

III. NUMERICAL INVESTIGATION
OF THE NONRELATIVISTIC APPROXIMATION

In this section, we will explore the accuracy of the non-
relativistic approximations derived above in the case of the
cc̄, ss̄, and cs̄ systems by comparing the results for the
energy spectra and wave functions obtained by solving the
corresponding Salpeter and Schro¨dinger equations. The rela-
tivistic kinetic energy operators will be approximated as in
Eq. ~7!, so that, for example,

Hc52Ap21mc
21V~r !'2Mc1ec1

p2

Mc
1V~r ! ~9!

2Basdevant and Boukraa@14# consider the approximation obtained
by including only the linear term inp22^p2& in the expansion. A
very different approximation which leads to a smaller effective
massM 85M /2 was proposed in@7# and @16# and studied in more
detail by Lucha, Scho¨berl, and Moser@17#. This approximation was
obtained from the inequalitŷA(p21m2)&<M[A^p2&1m2 for
matrix elements by treating the right hand side as the expectation
value of the operator (p21m2)/M , thus introducing a kinetic term
of nonrelativistic type. However, this construction does not give an
operator inequality. The result and the expression in Eq.~4! agree at
the point p25^p2&, but Martin’s approximation is tangent to the
curve E5Ap21m2 while the foregoing approximation has twice
the slope as a function ofp2. The construction is also not unique.
For example, the optimum Martin bound is obtained by rewriting
the right hand side of the inequality asM /21M /2 and replacing
only the secondM by (p21m2)/M . The key point is that the Martin
bound holds for allp as an operator relation, and can be minimized
in expectation values by the choice ofM above. The effective mass
M 8 obtained in@7,16,17# is substantially too small as will be seen in
Sec. III B.

FIG. 1. We show the relation between the relativistic kinetic
energy operator and the nonrelativistic approximation given by the
Martin bound, Eq.~2!. The effective massM and the quark massm
are related byM25m21^p2&. The values used areM52 GeV and
m50.5 GeV which give the local equality atp253.75 GeV2. We
also plot the nonrelativistic approximation in Eq.~7! with an energy
shift e/2521.1 GeV instead of the shift2^p2&/2M520.94 GeV
given by the optimum Martin bound. The agreement between the
two expressions is improved at low and high momenta by the extra
shift e8520.16 GeV defined in Eq.~8!.
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for charmonium. We will take a standard linear-plus-
Coulomb form forV(r ),

V~r !5Ar2
B

r
, ~10!

with A50.203 GeV2 and B50.437. These values corre-
spond to the potential parameters used by Fulcher for fits to
the charmonium system@4#. We will concentrate on theL

50 states, and will consider the possibility of varyingM as
well as that of keepingM fixed at the value M
5A^p2&1m2 determined by a relativistic calculation of
^p2&. The best values ofM and e in the Schro¨dinger equa-
tion, or of e alone, will be determined by making a least
squares fit to the relativistic ‘‘data’’ calculated using the Sal-
peter equation.

A. Numerical methods

We have calculated the relativistic energy spectra and
wave functions using now-standard numerical methods de-
veloped elsewhere@11–13#. We first construct matrix repre-
sentations for the potentialV(r ) and the positive operators
Ei

25p21mi
252¹ i

21mi
2 in a suitable orthonormal basis of

angular momentum eigenstates. The matrixEi
2 can be diago-

nalized by an orthogonal transformationU, Ei
25UL iU

21.
The eigenvalues are necessarily positive. The square-root op-
erator Ei5Ap21mi

2 is then defined asUL i
1/2U21 where

L i
1/2 is the diagonal matrix of the square roots of the eigen-

values@11,12#. With a finite basis, this construction reduces
the solution of the Salpeter equation to the matrix eigenvalue
problem

~E11E21V2E!Rl50, ~11!

where Rl is the column-vector representation of the radial
wave functions in the given basis for orbital angular momen-
tum l. This equation can be solved by standard methods.

As shown by Fulcher@13#, the matrix elements needed in
this construction can be calculated analytically using basis
wave functions

c l ,m
n ~rW !5Xn,l~r !Yl ,m~ r̂ ! ~12!

with the angular dependence given by the spherical harmon-
ics Yl ,m and the radial wave functionXn,l(r ) given by

Xn,l~r !5b3/2~2br ! le22brLn
2l 12~2br !. ~13!

Hereb is a length scale parameter andLn
2l 12 is the associ-

ated Laguerre polynomial@18#. This set has been investi-
gated by several authors@2,4,11–13,19#. We find that a ma-
trix size of 20320 is sufficient to produce stable eigenvalues
and wave functions for the low-lying energy eigenstates. The
same basis functions can be used to solve the Schro¨dinger
equation as a matrix problem.

In various figures which appear later we will use the ra-
dial wave functions un,l(r )5rRn,l(r ), where cn,l ,m(r )
5Rn,l(r )Yl

m( r̂ ) with Yl
m a spherical harmonic. The radial

probability density for the quarks is justuun,l(r )u2. We will
also use the corresponding momentum-space wave functions
fn,l(p)5pFn,l(p) with c̃n,l ,m(p)5(2 i ) lFn,l(p)Yl

m( p̂).
The radial probability density in momentum space is then
ufn,l(p)u2. The functionsun,l(r ) andfn,l(p) are related by
the Fourier-Bessel transform

fn,l~p!5S 2

p D 1/2E
0

`

dr pr j l~pr !un,l~r !, ~14!

FIG. 2. We plot the relativistic and the approximate nonrelativ-
istic kinetic energy operators with the square of the second excited

state wave function for thecc̄ system of Sec. III B superposed to
show the approximate agreement of those operators in the region in
which the wave function is large. M51861 MeV, e
521009 MeV, andmc51320 MeV.

FIG. 3. We compare the relativistic momentum-space kinetic

energy density for the second excited state of thecc̄ system of Sec.
III B with the density obtained using the nonrelativistic approxima-
tion in Eq. ~7! with M51861 MeV ande521009 MeV.
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where j l is the standard spherical Bessel function.
Finally, to determine the best values ofM ande, we mini-

mize the function

(
k51

N

~ER,k2ENR,k!
2 ~15!

for the N lowest energy levels, varyingM ande in the non-
relativistic Schro¨dinger equation with the calculated relativ-
istic energiesER,k held fixed.

B. Results for heavy-quark systems

We will use thecc̄ system for our study of bound states of
two heavy quarks. We use the quark massmc51.320 GeV
and the linear-plus-Coulomb potential determined by Fulcher
@13# in his Salpeter-equation fit to the charmonium spectrum.
After calculating the exact Salpeter energy spectrum for
those parameters to obtain our ‘‘data,’’ we fit the four lowest
energy levels using a sequence of nonrelativistic approxima-
tions. Since it is frequently argued that thecc̄ is almost non-
relativistic, we consider the standard Schro¨dinger kinetic en-
ergy 2mc1p2/mc as well as the effective-mass
approximation discussed above. In the latter case, we take
Mc either as fixed at the valueA^p2&1mc

2 obtained using the
Salpeter value of̂p2& averaged over the states in question,
or allow Mc to vary along with the energy shiftec . Our
results are given in Table I.

We see from Table I that the Schro¨dinger approximation
is rather poor, with deviations of the fitted energies from the
exact values ranging from 47 MeV in the ground state to 173
MeV in the third excited state. The Schro¨dinger energies are
all too high, and increase much too rapidly for the excited
states, with a total change in the deviation of1119 MeV
over the states considered. The failure of the Schro¨dinger
approximation is not surprising given the rather large mean
momentum in the Salpetercc̄ states,^p2&51.021 GeV2,
where

^p2&5
1

4(
n51

4

^nup2un&. ~16!

This corresponds to a root-mean-square relativistic velocity
^v2&1/250.61 for the quarks, and the system is semirelativis-
tic.

The energies obtained using the approximation in Eq.~7!

with Mc5A^p2&1mc
2 are substantially better, with devia-

tions ranging from 218 MeV for the ground state to
121 MeV in the third excited state. Moreover, the approxi-
mate energies increase less rapidly than those for the Schro¨-
dinger approximation, with an excess increase of only 39
MeV relative to the Salpeter energies over the four states
shown. The overall fit is good. The improvement in the mean
energy is the result of including the energy shiftec . The
flattening of the deviations is the result of the larger value of
the effective mass, withMc51.662 GeV rather than the in-
put massmc51.320 GeV. The fitted value of the energy
shift, e52669 MeV, is close to, and larger in magnitude
than the average kinetic term2^p2&/Mc52614 MeV as
expected from Eq.~8!. The extra shift is associated with the
terms omitted in Eq.~4!.

Finally, if we allow Mc to vary along withe in the fitting
procedure, we obtain an excellent fit to the relativistic spec-
trum, with errors less than 3 MeV and a root-mean-squared
~rms! deviation of 2.12 MeV as shown in Table I. However,
Mc is now quite large, Mc51.861 GeV, while ec
521.009 GeV. The large value ofMc is needed to slow
the growth of the nonrelativistic kinetic energy with increas-
ing p, and improve its agreement with the relativistic kinetic
energy as remarked earlier. However, the resulting effective
mass is not directly related to the charm-quark massmc .

As shown in Fig. 3, the variable-M nonrelativistic ap-
proximation leads to a seemingly excellent result for the
kinetic-energy density. However, the relativistic and nonrel-
ativistic wave functions do not agree precisely even for this
fit as seen either in momentum space in Fig. 4, or in position
space in Fig. 5. Some quantities of interest such as leptonic
@20# and electromagnetic transition rates are sensitive to
these differences, and the nonrelativistic model must there-
fore be used with care.

The increase in the heights of successive peaks in the
nonrelativistic position-space wave function relative to the
relativistic wave function, can be understood on the basis of
the relativistic WKB approximation@21#.3 In particular, the
velocity of a nonrelativistic particle is larger semiclassically
than that of a relativistic particle in the region near the origin

3Numerical calculations show that the approximation is rather
good in this case.

TABLE I. Comparison of the exact Salpeter energy spectrum for the ‘‘cc̄’’ system of two heavy quarks
with the spectra obtained in various nonrelativistic approximations. The Schro¨dinger approximation involves
the kinetic energyp2/mc . The nonrelativistic~NR! approximation is defined in Eq.~7!, and is considered
both with the effective massMc fixed at the valueA^p2&1mc

2, and withMc allowed to vary.ec is the energy
shift defined in Eq.~8!.

Model Mc ~MeV! ec ~MeV! E1 ~MeV! E2 ~MeV! E3 ~MeV! E4 ~MeV! DE rms ~MeV!

Salpeter 1320 — 3067 3668 4112 4486 —
Schrödinger 1320 0 3114 3755 4241 4659 119
NR, M fixed 1662 2669 3049 3660 4116 4507 14.5
NR, M free 1861 21009 3069 3667 4109 4488 2.12
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where the color-Coulomb potential is large, so the particle
spends less time in that region and its wave function is con-
sequently smaller. Correspondingly, its wave function is
larger near the outer turning point.

In Fig. 6 we show the effect of varying the massMc on
the wave function for the second excited state of thecc̄
system. The lower masses shown bracket the input value of
mc , while the highest mass is close to that obtained in the
variable-mass fit,Mc51.86 GeV. It is clear from the figure

that the wave functions are quite inaccurate for the lower
masses and are not especially good even for the large effec-
tive massA^p2&1mc

251.66 GeV or the mass 1.86 GeV ob-
tained in the variable-mass fit. The trends in the wave func-
tions discussed above are also clearly evident.

Finally, in Fig. 7 we compare the total energy densities
u* Hu for the second excited states for the Salpeter equation
and the optimal nonrelativistic approximation withMc
51.861 GeV. We note that the relativistic kinetic energy
operator in position space is nonlocal. Its action on the radial
wave functionun,l(r ) can be defined following Nickisch
et al. @11# in terms of the integral

FIG. 4. We compare the Salpeter momentum-space probability
densitiesuf(p)u2 for the ground state and second excited state of

the cc̄ system of Sec. III B with the densities obtained using the
nonrelativistic approximation for the kinetic energy given in Eq.~7!
with M51861 MeV ande521009 MeV.

FIG. 5. We compare the Salpeter position-space probability den-

sitiesuu(r )u2 for the ground state and second excited state of thecc̄
system of Sec. III B with the densities obtained using nonrelativistic
approximation for the kinetic energy given in Eq.~7! with M
51861 MeV ande521009 MeV.

FIG. 6. We show the effect of varying the massM in the non-
relativistic approximation for the kinetic energy operator, Eq.~7!,
on the quark radial probability densityuu(r )u2 for the second ex-

cited state of thecc̄ system of Sec. III B with a fixed energy shift
e521010 MeV. The best agreement of the wave functions is
achieved for the large effective massM'1.8 needed in fitting the
energy spectrum.

FIG. 7. Plot of the radial energy densityu* Hu for the second

excited state of thecc̄ system.
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Ap21m2un,l~r !5
m2

p E
0

`

dr8Gl~mr,mr8!

3F2
d2

dr82
1

l ~ l 11!

r 82
1m2Gun,l~r 8!.

~17!

The kernelsGl are defined in that reference. Forl 50,

G0~x,x8!5K0~ ux2x8u!2K0~x1x8!, ~18!

whereK0(z) is a hyperbolic Bessel function, and decreases
exponentially forz.1. This form makes it clear that the
relativistic kinetic term samples the wave function over a
range ofr of order 1/m. As a result, it is less sensitive to
local changes inun,l than the approximate nonrelativistic ki-
netic energy. The latter depends on the local curvature ofun,l
through the termp2/2M→2@d2/dr21 l ( l 11)/r 2#/2M . The
effect in the present case is a reduction in the relativistic
kinetic contribution tou* Hu at short distances where the
potential is strongly attractive andu varies rapidly, and an
increase at large distances. The result is a shift of the prob-
ability and Hamiltonian densitiesu* u and u* Hu toward
smaller radii, and a flattening of the distributions relative to
the nonrelativistic distribution. This is evident in Fig. 7.

C. Results for light-quark systems

Our results forss̄ system of two light quarks are given in
Table II. We have used a strange-quark massms
5364 MeV in these calculations following Fulcher@4#, but
have not introduced an extra overall shift in the potential for
the ss̄ system as he did, preferring to use the same potential
for the light- and heavy-quark systems so as to be able to
treat both systems simultaneously and predict thecs̄ spec-
trum. The results are actually rather insensitive toms be-
cause^p2&1/2'744 MeV@ms . The system is clearly rela-
tivistic, with an rms velocitŷ v2&1/250.90 for the quarks.

The energies obtained with the effective massMs

5A^p2&1ms
2 are reasonably good on the average, but the

approximate energies again increase too fast relative to the
Salpeter spectrum. The fit obtained whenMs is allowed to
vary is excellent, with the energies differing from the Sal-
peter energies by less than 4 MeV for the three lowest states
considered. The fitted value ofMs has essentially no relation
to the input massms .

Unfortunately, the wave functions obtained in this case
are poor even for the best fit to the spectrum. We compare
the Salpeter and approximate energy densities in Fig. 8. The
differences are due mainly to differences in the wave func-
tions. Even the kinetic energy densities shows significant
pointwise disagreement in this case. The very significant flat-
tening of the relativistic energy densityu* Hu relative to the
nonrelativistic approximation seen in Fig. 7 is again the re-
sult of the nonlocality of the kinetic energy operator
Ap21m2 in position space. The nonlocality is now over a
distance;1/ms'2.7 GeV21 which is quite important on
the radial scale of the wave function. As implied by the
striking success of the nonrelativistic approximation in re-
producing the relativistic energy spectrum, the unwanted tilt
in the nonrelativistic energy density averages essentially to
zero in the expectation valuêH&. The accuracy of the ap-
proximation for the energies does not imply corresponding
accuracy for the wave functions or expectation values other
than ^H&.

D. Predictions for the light-heavy system

We consider finally the light-heavy system corresponding
to the relativistic Hamiltonian of Eq.~1! with m15mc and

TABLE II. Comparison of the exact Salpeter energy spectrum for the ‘‘ss̄’’ system of two light quarks
with the spectra obtained using the nonrelativistic~NR! approximation defined in Eq.~7!, taken either with
the effective massMs fixed at the valueA^p2&1ms

2 or allowed to vary.es is the energy shift defined in Eq.
~8!.

Model Ms ~MeV! es ~MeV! E1 ~MeV! E2 ~MeV! E3 ~MeV! DE rms ~MeV!

Salpeter 364 — 1531 2222 2744 —
NR, M fixed 828 2795 1503 2219 2775 24.2
NR, M free 989 21022 1533 2218 2746 2.83

FIG. 8. Plot of the radial energy densityu* Hu for the second

excited state of thess̄ system. The differences between the relativ-
istic and nonrelativistic cases result mostly from differences be-
tween the wave functions.
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m25ms corresponding to the masses used in the discussion
above. We use the nonrelativistic Hamiltonian

Hcs̄5Mc1Ms1
p2

2Mc
1

p2

2Ms
1

1

2
~ec1es!1V~r ! ~19!

obtained by replacing the square-root operators in Eq.~1! by
the approximation in Eq.~7!. The kinetic term is of the stan-
dard Schro¨dinger form with a reduced massM
5MsMc /(Ms1Mc) given in terms of the effective masses
rather than the quark masses. For the purpose of making
predictions, we will keep the energy shiftse i and the effec-
tive massesMi fixed at the values determined separately for
the heavy- and light-quark systems. These quantities would
all be expected to change somewhat in the light-heavy sys-
tem. For example, the massesMi5A^p2&1mi

2 that mini-
mize the Martin bound on the total kinetic energy change
because of the different value of^p2& in the light-heavy sys-
tem. The value of this quantity averaged over the three low-
est states iŝp2&cs̄50.835 GeV2, a value intermediate be-
tween the values ^p2&cc̄51.021 GeV2 and ^p2&ss̄
50.744 GeV2 obtained for the heavy- and light-quark sys-
tems. The energy shifts are given to leading approximation
by e i'2^p2&/Mi , so also change. However, the conditions
for minimizing the bound make the kinetic energy stationary
with respect to the massesMc and Ms . As a result, by the
Feynman-Hellman theorem@22#, there is no first-order
change in the energies for small changes in^p2&. More
physically, the original nonrelativistic approximations for the
kinetic energy operators are already good over a wide range
of momenta as shown in Fig. 4, so the effect of the changes
on the spectrum is not expected to be large.

Our predictions for the Salpeter energy spectrum for the
light-heavy system are shown in Table III. If we use the
massesMi5A^p2& i1mi

2 with the values of̂ p2& i determined

for thecc̄ andss̄ systems, the energies of the four lowestcs̄
states are predicted to within 36 MeV as shown in the table.
We note that the ground state is predicted to lie at too low an
energy as a result of the large negative value of the energy
shift defined above. However, an examination of Tables I
and II shows that the predicted ground-state energies of the

cc̄ andss̄ systems are also too small. The usual fitting pro-
cedure adjusts the energy shift to minimize the deviations
between the theory and the input data over the set of states
considered. If we consider instead adjusting the energy shifts

ec andes to fit thecc̄ andss̄ground-state energies exactly, a
reasonable procedure phenomenologically, we predict the
normalized energies given in the third row in Table III. The
ground state is now predicted correctly. However, the ener-

gies of the excited statescs̄ increase too rapidly. This too

rapid increase was also present for thecc̄ andss̄ states. We

note in this connection that the energies of thecs̄ states are
very close to the average of the energies of the corresponding

cc̄ andss̄ states.
If we use instead the fitted values of the masses and en-

ergy shifts for the heavy- and light-quark systems, we predict

the energies of the lowest threecs̄ states to within 11 MeV
as shown in Table III. The largest difference occurs for the

second excited state. The fits to thecc̄ and ss̄ energies are
already excellent, and there is no reason in this case to renor-
malize the energy shifts. The closeness of the predictions to
the actual energies would be expected given the results ob-

tained for thecc̄ andss̄ systems. In particular, the nonrela-
tivistic approximations to the kinetic energy operators are
good in the regions in which the momentum-space wave

functions are large. However, the final position-spacecs̄
wave functions are again not accurate.

IV. CONCLUSIONS

We find that the apparent success of nonrelativistic mod-
els for relativistic systems can be understood in terms of an
approximation to the relativistic kinetic energy operator mo-
tivated by the Martin bound@9# in Eq. ~2!. Although the
physical content of the approximation can be understood in
terms of an expansion of the relativistic operator about a
mean momentum squaredp0

2 , given optimally from the
bound asp0

25^p2&, the series expansion is not necessary.
What is important is to obtain a good average representation
of the kinetic energy operator of Schro¨dinger form. We ob-
serve in this connection that the approximation can be im-
proved significantly by allowing an extra energy shift to
eliminate the inequality, and, if desired, also allowing the
effective massM to vary.

We have investigated the effectiveness of this procedure
in detail by using the nonrelativistic approximation to fit
‘‘data’’ obtained by solving the relativistic Salpeter equation
for the linear-plus-Coulomb potential used by Fulcher@13# in
fits to the charmonium spectrum. We find that the nonrela-
tivistic approximation for the kinetic energy operator in Eq.
~7! gives generally good descriptions of the Salpeter energy
spectra for thecc̄ and ss̄ systems, taken as examples of
bound states of heavy and light quark pairs. The results ob-
tained with the effective masses fixed at the values
A^p2&1m2 suggested by minimizing the Martin bound over
a set of states are good, but the excited state energies gener-

TABLE III. Comparison of the exact Salpeter energy spectrum

of the heavy-light ‘‘cs̄’’ system with the spectrum obtained using
the nonrelativistic approximation for the kinetic energy given in Eq.
~19! taken either with the effective massesMi fixed at the values
A^p2& i1mi

2 or allowed to vary. The normalized nonrelativistic
spectrum with the massesMi fixed is obtained by adjusting the

energy shifts to match the ground states of thecc̄ andss̄ systems
exactly.

Model E1 E2 E3

DE rms
~MeV!

Salpeter 2319 2957 3438 —
NR, M , e fixed 2296 2963 3474 24.9
Normalized 2319 2986 3497 38.0
NR, M free 2319 2961 3449 6.8
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ally increase too rapidly if the potential is kept fixed. The
results obtained whenM is allowed to vary in the fitting
procedure are accurate to a few MeV is all cases, a striking
result.

We believe that the theoretical understanding of the suc-
cess of the nonrelativistic effective-mass approximation de-
veloped here provides a justification for Martin’s nonrelativ-
istic treatment of heavy- and light-quark systems, and

explains the unexpected success of his predictions for the
masses of light-heavy systems@9,8,10#.
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