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String baryonic model “triangle”: Hypocycloidal solutions and the Regge trajectories
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The considered model of baryon consists of three pointlike mdgsesks bounded pairwise by relativistic
strings forming a curvilinear triangle. Classic analytic solutions for this model corresponding to a planar
uniform rotation about the system center of mass are found and investigated. These solutions describe a
rotating curve composed of segments of a hypocycloid. The curve is a curvilinear triangle or a more compli-
cated configuration with a set of internal massless points moving at the speed of light. Different topological
types of these motions are classified in connection with different forms of hypocycloids in zero quark mass
limit. An application of these solutions to the description of baryon states on Regge trajectories is considered.
[S0556-282198)01521-5

PACS numbd(s): 12.40.Yx, 12.40.Nn

INTRODUCTION a straight relativistic string with massive enfis—3]. The
latter class of motions was a base of applying this model

The string baryon model “triangle” is genetically con- [3,8] and the relativistic tube modgl1] to the description of
nected with the meson model of relativistic string with mas-meson Regge trajectories.
sive ends[1,2]. The latter model including two pointlike  In this paper rotational motions in the baryonic model
massive quarks bounded by a relativistic string gives thetriangle” and their applications are investigated. In Sec. |
possibility of describing the meson orbitally excited states orfguations of evolution and conditions on the quark trajecto-
the Regge trajectorigs]. ries are deduced from the action of the system. In Sec. Il

On the basis of this meson model, string models of barysolutions of these equations corresponding to rotational mo-
ons, were suggested in some varia@s7]. These variants tions of the systeniquarks and the string of hypocycloidal
differ from each Other in the type of Spatia' junction of threeform) are described and classified. In Sec. Il the pOSS|b|I|ty
pointlike quarks by relativistic stringga) the first quark is Of & description of the baryon states on Regge trajectories by
bounded with the second and the second quark with the thirdhese solutions is discussed. . _
(b) the “three-string” model or Y configuration with three ~ The string solutions obtained here in Sec. Il are applicable
strings from three quarks joined in the fourth massless point}ot only to the particle physics, but to various branches of
(c) the quark-diquark model, and) the “triangle” model. string or M-brane theory. In particular, the massive points
The first variant was investigated qualitative[#], the  Placed on the strin¢the number of these points is arbitrary
“three-string” [4—6] and mesonlike quark-diquark models could be regarded as O-branes.
[7,8] in a more detailed way. Note that the rotational solutions of the considered type

In the present paper the “triangle” model of the baryon also take place for a closed massless string. Such a string has
[9]is under consideration. In this model three material pointg form of a rotating hypocycloid with singular points moving
(quarks are pairwise connected by three relativistic stringsat the speed of light.
forming a curvilinear triangle in space at each instant of
time. If tensions of these three strings are equal, such an
object could be regarded as a closed string carrying three
pointlike masses. From the point of view of describing quark Let us consider the baryon model “triangle” as a closed
strong interaction in the orbitally excited baryon this modelrelativistic string with tensiony carrying three pointlike
looks rather natural in comparison with three others. Somenassesn,,m,,m;. The action of this system 9]
arguments in favor of the “triangle” baryon model in com-

I. MODEL AND EQUATIONS

parison with the Y configuration are given by Cornwdl0] o 3

. . 7'2 0'3 T

in the QSD W|Isonlloop oper:itor app,r,oac_h. . . S= _f y /__gdUJrE m; /V?i (r)tdr. (1)
The transformation of the “meson” string with massive Tl oo(7) i=1

ends or the three-string model of baryon to the model “tri-
angle” results in some additional difficulties. In particular, a Cou) CND . . .
stri?]g world surface in this model has discontinrijities of de_Heregz)_(ZX ?~(XX')? is a determinant of induced m_etrlc
rivatives on quark trajectories; a parametrization with thes@n @ sting world surface”=X#(z,0), u=0,1,..., in
trajectories as coordinate curves does not exist in general arfjdimensional Minkowski space with signature,—,—,...
spacelike coordinate lines are not closed in general. Xt=g, X, X'#=49,X*, the speed of light in these units
In the present paper these difficulties are overcome anet 1, (7,0) e A=A;UAUA;, VE=(d/d7) X[ 7,09(7)] is
classic analytic solutions are found for a set of motions—a tangent vector to théth quark trajectory with an inner
uniform planar rotations of the system. This kind of motion equation o= o(7), 1=0,1,2,3 (Fig. 1). The equationso
is an analogue and generalization of well known rotations of=oy(7) ando = o3(7) define the trajectory of the same third
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FIG. 1. Domain of integration in Eq1).
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aL

i=1,2,3. 4
For the third quarki(=3) in the first two summands we are
to put o=o0p(7), and in the third we pur=o03(7*) in
accordance with the closure conditi®). From the physical

quark. It is connected with the fact that the string is closedyoint of view Egs.(4) are the second Newtonian law for the

and may be rewritten in the common form
Xt r,00(T)]= XA 7%, 03(7%)]. 2

Note that the parametetsand7* in these two parametri-

zations of one curv€?) are not equal in general. This means

that coordinate curves=const on the world surface are not
closed—the beginning of this curve at= oy does not coin-
cide spatially with its end atr=03. The equalityr=7*
may be obtained only by a special choice ofnd o, for
example,r=t=X".

The parametrization of the world surfagé(r,o) is con-
tinuous inA, but on the linesr;( 7) its derivativedexcept for
tangentialV/* and (d/d7)V¥] have discontinuities in general.
Nevertheless, by a local choice of parameteasid o we can

obtain the induced metricds?=X2d72+2(XX')drdo
+ X'?do? continuous on these lines. The actidn is invari-

material pointsm;, moduli of the applied tension forces
equal toy.

Let the induced metric on the world surface be confor-
mally flat, i.e., conditions of orthonormality be tied:

X2+X'2=0, (XX')=0. (5)

These equalities i\ may always be obtained by the rep-
arametrizationr= 7(7, o), o=o(7,o) (new coordinate lines
"7+ =const on the world sheet are integral curves of equa-
tions X2d7+[(XX') = L]do=0). We use the same notation
for 7 and o below and suppose that equaliti€s) are satis-
fied. Under conditiong5) the equations of motiori3) be-
come linear

Xk—X"#=0, ®)

Equations(5) and (6) are invariant with respect to rep-

ant with respect to an arbitrary nondegenerate reparametrizalametrizationsr*o=f. (r* ) [2]. Choosing these two

tion 7= 7(7,0), o=0o(7,0).

The equations of motion and the boundary conditions o
the quark trajectories in this model are deduced by variation

and minimization of actior(1). This procedure is partially
similar to that for the model of relativistic string with mas-
sive endqd2] and results in the same equations of motion

J dL

AT gXH

J JL
do IX'*

=0, (ro)ed, L=vV-g. (3

But to derive boundary conditions in the model “triangle”

we are to take into account the discontinuitiesx#f X’ “ on
the lineso=o(7). Thereby the term

[ 22 ] 22

Jar IXH IX'H drdo

5X“)

n

arbitrary functionsf.. one can fix two(of four) functions
oi(7), for example, in the form
o1(7)=0, (7)

The boundary equation&) on these lines under condi-
tions (5) and(7) take the form

oy(T)=.

d X’U'(T,O'i)

m— ——— = yX'*(7,0i+0)+ yX'*(7,0;—0
IdT[).(Z(T,O-i)]l/Z Y (7,0 )ty (7,0 )

=0, i=1,2. ()
Reparametrizations of the mentioned type with
fo(m=f_(N=n+td(n), S(nt2m)=¢(n), [¢'(n)|

<1 [12] preserving the form of equatiorig) do not permit
us to fix o3= const(or op=cons} for all 7in general.

Thus choosingr and o one can not fix three functions
oo(7), o3(7), and 7 (7) for an arbitrary motion in a con-
venient form. The necessity of determinating these functions
from initial data essentially sophisticates the initial-
boundary-value problem for the model “triangle” in com-

in 69 X*] transformed using the Green’s formula equals theparison with the string model of a mesfi8]. In the present
sum of three curvilinear integrals of internal boundary valuepaper the functionsry(7), o3(7), and 7*(7) are defined

along the borders of the domaids, A,, A; and, therefore,
in the following boundary conditions:

from properties of symmetry for a class of uniform planar
rotations of the system.
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Il. ROTATIONAL MOTIONS U(o)=Acoswo+B;sinwo, oeloi,oi41]. (12

Let the closed string with three material points uniformly -
rotate(preserving its form in timein a planexy around the Let the functionse“u(o)T(7) ande“u(o)T(7) (with T
origin  of coordinates. The quark trajectories in =COSwT or T=sinw7) satisfy the boundary condition)
(2+1)-dimensional Minkowski space are the screw lines.independently. With the continuity conditions at=0 and
For this motion one can choose on the world surface a pas= = this results in four equations both farandu which
rametrization with screw lines=const and with an uniform may be presented in the form solved with respecite=A

growth of 7 along these lines. In these coordinates on theng B,=B (the same formulas expre§$,~Bi by 'Alzﬁ and

quark trajectories B,=B):
oi(7)=const, A,=A, By=h;A+B,
i=0,1,2,3, A,=(1+h,cy8.)A+h,s2B,
|Vi|= \/?|U:Ui=ci=const, B,=—h,c2A+(1—h,c;s,)B. (13

Herec,=cosmw, S;=Ssin 7w, hj=wom;/(yC;).

Under relations(13) solution (11)—(12) satisfies condi-
tions (8). Substitution Eqs(11), (12) into the second of the
orthonormality conditiong5) results in three equations:

i=1,2,3. 9

All four functions o(7) are fixed simultaneouslyr; ando,
are in the form(7) nonlimiting a generality.
Let coordinate curves=const be orthogonal trajectories = % 2
e . . . AB,—AB,=ab/w*, i=0,1,2. 14
to the specified linesr=const and condition$5) be satis- L @ (14

fied. These lines= ConSt(dO not COin(?ide with sectiont But among Eqs(14) On|y one is independenL for examp'e,
=cons} are not closed, but a connection betweeand 7*  wiith i=1. If it is satisfied and the relatiord3) take place
in the closure conditiori2) is very simple:7* =7+const. It then the two other condition&ld) are satisfied too. Also

is a consequence of the symmetry of this motion that theybstitution(11), (12) into the first condition(5) results in
world surface in Minkowski space coincide with itself after aAi2+Biz+~Aiz+~Bi2:(az+ b?)/w?—three independent equa-

. _ 0 . - . .
rotation about theé=x" axis with simultaneous translation tions. Transform this system taking into account HAs) in

along this axis. : . )
. . he foll lent form:
Under these circumstances and conditigbs (9) the the following equivalent form

third Eq. (4) takes the form A2+ B2+ A%+ B2=(a2+b?)/w? (15)

MsCy X¥(7,000) = YX'#(7,070+ 0) +yX (7%, 05 0) hy(A2+A2)+ 2(AB+AB) =0, (16)
=0, 7*=r+const. (10 - -

N (AZ+A%)=\,(B%+B?). (17

A solution of the string oscillatory equatidf) satisfying the )
conditions(5), (7)—(9) may be found by the Fourier method: Herez N=(hihy—2)cys;+hy(1-2¢;)—hyef  and A,
Xt=3efu (o) Te(7). The functionau (o) andT,(7) with =hysi—2¢;s;.

the same as a consequence of H§) are linear functions or Expression(1l) is a solution of the given problem if the
harmonics with the same frequenay Taking into account last necessary condition®) and (10) are satisfied. Denote
the above described properties of the rotational motion and ¢/« as the constant in E¢10):

its parametrization one can find the Fourier seriesXtrin

(Zfl) Minkowski space(with the unique frequencw) in ™=1-0lo, 0=(03~0o)wbla=Dwbla. (18

the form The expression fop results from the substitution of°

u _ ~ ) _ _ =ty+ar+bo into the closure conditiof?). The angled has
Xk={to+ar+boiu(o)coswr—u(o)sin wT;u(a)SiN T the following geometrical sense is the phase shift on a
screw trajectory of the third quark between the beginriatg

+u(o)cos wr}. 1D o=0g) and the endat o=03) of an unclosed coordinate
. ~ . ) line 7= const.
The functionsu(o) andu(o) are continuous ifiog,o3], Substitute Eqs(11)—(13), (18) into the closure(2) and

may have discontinuities of derivatives@t 0, o= 7 and in

the segmentfo;_;,0;] are boundary conditiong10) with x=1,2. Values ofu,u and

their derivatives at-= o, and o3 express througih,B,A,B
ACoswa+Bgsin wa, aelo,0], by Egs. (13), for example,u(o3) =[coswoz—hyC sin w(os
— ) JA+[sin waz—hys sin w(o3— ) |B.

Equating similar terms with cosr and sinwr in the four
As,coswo+Bysinwao, oelmoz]; Egs. (2), (10) with u=1,2 we obtain eight homogeneous

u(o)=4 Acoswo+B;sinwo, oe[0,7],

114009-3
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equations with respect té&,B,A,B which reduce to four
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2C050:G]_+62+G3_G:|_62G3. (22)

pairs of coinciding ones. For the sake of simplicity and ex-

plication of its intrinsic structure we write this homogeneous

system with the matrix notation
Mia=M,B8, Mza=M,8. (19

Here

and matrices
M= (h1So—Co)l +(C—h3CyS,) U,
Mo,=—spl —(s—h,5;:S,)U,
M3z=[(1—hsh3)sp+(h;+hsz)c]l
+(s+hyc.co)U,
M= (h3so—Co)l +(C—h3s:C,)U

are linear combinations of the identity mattixand the ma-
trix

cosf siné
U:U(a):(—sina cos@)'
The coefficients are
Cci=CO0swd;, s=sinwd;; c=c0Swoj3, S=SiNwos;
di=0ji1—0i: do=—0g, di=m,

d2:0'3_’7T; D:O'3_O'0:d0+d1+d2.

Taking into account the mutual commutability g, one
can excludex or 8 from the systen{19)

Ma=0, MpB=0, (20
M=M;M,;—M,Mz=1+U%-FU=(2 cos#—F)U [an
equality 1 +U?(#)=2 cosé-U is used. The parameteiF
may be transformed to the simple form

F=2 COSwD—Z h;sin wD+2 hih;s;sin o(d; _,+d;)
i 1<j

- h1h2h3513230: Gl+ G2+ G3_ GleGs
through the following notation:

hiSi_]_Si_Sin w(di_1+ dl)
Gi: .

Si+1 @)

The notation here is cyclically equivalentt; ,;=d;,
S 13=S;, Gj;3=G;, for exampled;=dg, S,=S;.

Homogeneous system20) have a desirable nontrivial
solution if and only if deM=(2 cosé—F)?=0, i.e.,

Under condition(22) the matrixM =0 and an arbitrary
nonzero columna or B is its eigenvector. It is connected
with the rotational symmetry of the problem. So one can

choose an optional pak andA, B andB, or A andB and
determine two other constants from EG9) [under condi-
tion (22) two systemg19) are equivalenit in particular,

A=—-K(h;A+2B), B=K(2HA+h,;B), (23
where
S051(G,G3— 1 1+h3K?
K= 0 1( 263 ) _ 12 (24)
2s,sin 0 4K

Values (23) must obey conditiong14)—(17) descending
from the orthonormality condition§s). Substitution of Eq.
(23) in Egs. (16) and (17) after transformations results in
relations

Gi+1—G; _ sin w(dj-1—d;1)
GGi+1—1 Si '

i=1,2,3. (29

One of these equation$= 2) is a consequence of E(L6),
the second of17), and the third of the previous two.

Substitution of Eq(23) in Egs.(14) and(15) after trans-
formations taking into account Eq4.8), (21)—(25) results in
two equations which may be written in the form

a’=2KD w30 Y(HA?+h;AB+B?), (26)

Dwf 2K
D?w?+ 6 1+(4+hi)K?

(27)

with K from Eq. (24).

The latter equation determines a set of acceptable fre-
guenciesw if the parameterss;, d;, and 6 are given. All
these parameters defining a rotational motion of the model
(except for translations and a scale fagtre related by the
system of nonlinear equatiofi2l), (22), (24), (25), and(27).

The simplest way to construct solutions of the considered
problem is to start with fixing three paramet&sg,G,,G; as
initial data. In the next step we determine the angjley Eq.
(22). The result of this procedure is not unique—for every
triplet G; one can find a countable set of valués 0;,-

Further, the lengthsl; are defined from Eqgs(25) by the
following two steps(the valued,= 7 was already chosen

=dg 2—;( ) arcsmsm o],
g 1 sin w(6+ )
0= | A s (64 7)—(G;— G2)/(G,Ga—1)
+7Tj3 y

114009-4
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FIG. 2. The simple states with various rotational rates for the FIG. 4. The simple states for the system with=4, m,=2,

system with equal masses, = m,=m;=1. m;=3.

andd,=dy— 6 with arbitrary integerj,,j;. Substitution of 0 o

G, d;, 6, andK into Eq.(27) results in a countable set of y=—u(o)sin = o+Uu(a)cos=a, (28)
frequenciesw. The latter equation is solved numerically by D D

the secant methofl4]. After a choice of the amplitudea

and B one can determine the valudsB,a,b, correspond- in particular, for two sides of the “triangle” A=0)
ingly, by Egs.(23), (26), (18) and through Eq912)—(13—

the world surfacg11). u=B sinwo, U=BK(h; sin w|o|-2 coswa),
To investigate the constructed world surface one can con-
sider its section=ty=const as a “photograph” of the string ogelog,m].

position at time moment,,. These section&urvilinear tri-
angles are shown in Fig. 2-5. There are some different The curve(28) is composed of three segments of a hypo-
curves placed in each figure by a choice of the amplitudeycloid joined at nonzero angles in three poifttse quark
factor B. Without limiting generalityA=0 is supposed in positions. Hypocycloid is the curve drawing by a point of a
these examples—a transition to another “gauge” w#h circle (with radiusr) that is rolling in another fixed circle
#0 does not change the form of such a curve, but onlywith larger radiusk [15]. In the cas€28) a relation of these
rotates it. radii

A parametrization of these curves is

R/r=2/(1—|b|/a)=2/(1—|6/(Dw)|) (29)

0 -
X= U(O’)COSBO'+ u(o)sin Do
is irrational in general.

25

| ROSBN
f‘ : @D

N
T

(=]
T

a5 . . ! . .
A5 A 05 0 05 1 15
15 : .
. . 3 2 A 0 1 2 3
FIG. 3. The simple states for the system with=3, my,=m;
=1. FIG. 5. The exotic states with various configurations.
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Differentiating Eqs(28) results in the following fact: the TABLE I. Some values of parameters for Fig. 2.
curve (28) (for its smooth segmentss the hypocycloid if : _ _
and only if the parameters of the curve are bounded by Edfig. 2 inner middle outer
(27).
. . . G 1.05 1.6 1.95
The curves in Figs. 2-5 rotate in they plane at the
. . . 0} 0.102 0.451 0.791
angular velocity) = w/a wherea is determined by E¢26); mo—1 0 0.087 1211 047
thr rks move at 1 ' ' '
ee quarks move at speeds m,=1 v 0.183 0.689 0.953
0Si—1si(Gi—1Gi+1_l) m3:1 E 3.157 6.904 46.50
vi= 5 =123, (30 J 0.011 1.679 125.6
@DS; 1SN B/B, 10 1 0.18

along circles with radiR;=v;/Q=av;/w.

A free choice of the mentioned integer parameters.ayre of determinating all other parameters in the solution

J1.02.]3.1 results in a very large number of different motions (1 1y is simplifi d f th
of the system distinguishing from each other by their topo—(z d)zfd?:mﬁ I[g]a as a consequence of the symmliy

logical structure. A motion or state of the system we will

denominate “simple” if the position of the stringsectiont (Figs. 3, 4 the mentioned procedure needs some comple-

=cons) is a curv!llnear tr_langle with smooth sidefigs. ment. The given quark masses are connected with the other
2-4). In the opposite case if there are some singular maSSIG?J%rameters of the system by the expressions
points on the sides of the “triangle” we will denominate the

state “exotic” (Fig. 5. These singular points move at the y y

speed of light. m,=—C;h;j=—hjay1—v?. (32
The motion of the system is simple if its parameters sat- @ @

isfy the following conditions:

In the case with different masseg given as initial data

The values of the parameters for the rotational states in

lo|<m, |wld<w, G>1, i=1,2,3 Figs. 3 and 4 were calculated as follows: a valugsgfwas
' e T Y chosen as a measure of rotational réie andG; were taken
G+ G+ Gy— G1G,G3> — 2. @1 2 tentative at the first step of the iteration. After realization

of the mentioned procedure of determination &fd;, w,

In particular, if two quark masses are equal, for example€tc.. the masses (32) [or relations m;/m;
m,=m; (Fig. 3), the conditions(31) for G; take the form = (hi/h1)\(1—v{)/(1-v7), i=2,3] were found and com-
G;>1, 1<G,=G3<1+2/G; and in a symmetric case pared with the given values. The two-dimensional secant
m; = m,=m; (Fig. 2 the limitation(31) for the simple states Method[14] was applied in this iterative process.
is 1<G1=G,=G3<2. The simple states in Figs. 2—4 demonstrate the following
The dependence of a form of the curvilinear triangle on itsasymptotics in nonrelativistic and ultrarelativistic limits. If
rotational speed is shown in Figs. 2—4 for the case of simpléhe quark velocities; , the system enerdy, the momentum
motion of the system with fixed quark masses. In each J, and the values» and ¢ decrease, the curvilinear triangle
figure the “photographs” of the same system in various ro-tends to a rectilinear triangle. A form of the latter depends on
tational states are placed, the higher the quark speeds, tHee answer to the question: is the triangle inequality for the
larger the size of the curvilinear triangle. The dependencéuark masses, ,m,,m; satisfied?
Ri(v;) for m;/y=const is too sharp so the smallésinen If this inequality is satisfied, i.e., each of the quark masses
triangles in Fig. 2—4 are magnified, and the largest are dim; is less then a sum of two othe(Bigs. 2 and #in the
minished in comparison with the natural sig@eatural is in  nonrelativistic limiting case the parametessé, v;, R; tend
this casem, / y= cons} through homothetic multiplication by to 0, Gi—1+0 for all i=1,2,3; the triangle tends to the
a scale factoB/B,,. For the middle curveg=1 is taken.  rectilinear one, and lengths of its sidgs (between théth
The speed of rotation could be measured by anyone of thandjth quark in this limit are proportional to the associated
parameters;, w, Q, 6, G;, the energyE, the angular mo- d; and opposite quark masses:
mentum J (Sec. ), etc. In the symmetric case
m,=m,=m; (Fig. 2 which is considered in Ref9] for the lio_las_lag di_dp do
simple states the following parameters are eq@l=G, d, d, do’ my m; my’
=G3=G, d;=dy,=d3=m, v;=v,=v3=v. Some rounded
values of these and other paramei@nsparticular, the mini-  If one of these masses is larger then a sum of two others, for
mal v, and maximab , quark speeds in the case of different example,m;>m,+mjs (Fig. 3), in the low energy limit
m;, the scale factor8/B,) for the simple motions in Fig. —0 the obtuse angle at the corner with the largest mass
2—4 are presented in Tables | and II. tends tos and the triangle tends to a rectilinear segment.
In the symmetric case; =m,=m; (Fig. 2) a value of the  This limit is attained with6=0, R;=0, v;=0, G,=G;3=1
parametelG in the interval(1,2) is taken as the measure of +0, and nonzero values af, v,, vs, G;>1. These limiting
rotational rate, the corresponding valueséodnd w are de- values are connected by the equations resulting from Egs.
termined from Eqs(22) and(27). The above described pro- (21), (24)—(27), (30), (32):

v;—0. (33

114009-6
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TABLE Il. Some values of parameters for Fig. 3 and Fig. 4.

Fig. 3:m;=3,1,1 Fig. 4m;=4,2,3,
inner middle outer inner middle outer
Gy 1.61 2.3 2.7 1.15 1.7 2.2
G, 1.002 1.31 1.68 1.041 1.312 1.69
1) 0.168 0.387 0.77 0.143 0.386 0.752
0 0.053 1.063 2.46 0.139 0.923 2.328
d, 6.25 4.38 3.392 3.955 3.493 3.222
U1 0.025 0.433 0.908 0.145 0.497 0.909
Vo 0.503 0.768 0.969 0.354 0.711 0.954
E 6.025 10.28 70.77 9.832 16.38 95.61
J 0.218 3.13 289.0 0.231 7.005 520.0
B/B, 1.7 1 1/5 5 1 1/7
v,=81, d,=dy+d,, Gl=1+2d2wsoslsz‘1, X#=B{ty+ 37+ 0;sin o cos7+3 cosc sin 7;sin o sin 7
m, c2s, my —3Coso CcosT}. (37)

U3=9Sp, _:d2w5051+ S5. (34)

ms cis, Mg _ _ _ _
A section of this surfacé=const is the hypocycloi35).
If v, andv; become less then the limiting valuésl), the Let us consider a situation where the condition of *“sim-
heaviest quark occupies a position at the rotational centeplicity” (31) are not satisfied. Such a motion was denomi-
and the string rotates as the rectilinear segment. It lookaated as exotic. Its world surface has peculiaritgs- X'?
similar to the string mesonic model with two light quarks, =0 on the world lines of singular pointgusps of the hy-
bounded by two relativistic stringgletails in Sec. Ilfwitha  pocycloid (28) which move at the speed of light.
supplement—the heavy quark at rest. There are many types of exotic motion differing from
In the ultrarelativistic limitv;— 1 for the simple states the each other by the number and positions of these peculiarities.
valuesd, andd, tend tod, =7, |o|—-1—-0,|6|]—7—0,and Some examples are shown in Fig. 5. One must differ the
the curvilinear triangle tends to a hypocycloid with three arcspeculiar pointscusps on these curves from the quark posi-
(deltoid) tions. At the point of quark position two segments of the
string are joined at a nonzero angle. For each curve 1-5 in

x=B(25inEa—sinfa Fig. 5 the first quark i_s si_tuated at the Iowes; point, two

3 37/ others are along the string in the counterclockwise direction.
The number of the curve is in the center of rotation. Curve
2 4 1 in Fig. 5 represents the simplest exotic state with one pe-

y=- B( 2Cosgo+ COS§") ' culiar point(in this example between the first and the second
quark. The chosen values of parameters for this state are
oel—m2m]. 35 G1=02,G,=-0.4, G3=-0.2, w=1.23, §=1.78[¢ and
o were determined by Eq$22), (27) after a choice of the

The form of the limiting curve(35) does not depend on discrete parametejs andl]. The quark masses for the curve

the (fixed) valuesm; ,m,,m;. So one can deduce Eq85) 1: m;=3.04, m,=2.59, m3=3.36, if y=1.

by the simplest way in the symmetric casg=m,=mj;. In Other values of5; ,j;,| result in other types of curvilinear
this case the ultrarelativistic limit;—1 corresponds to a “triangles.” The pentagonal line 2G,;=0.2, G,=0.1, G4
limit G;=G—2-0. Substitution of expressions=1- 4, =0.5, #=5.12 and the starlike curve 85,=1.9, G,=G3

G=2-g? with infinitesimalss, g into Egs.(24), (27) results  =1.7, w=1.37, #=1.67) both contain two singularities and
in the limiting relation5=limy_.o759(g®+m26°)"*. The  represent two different topological configurations of the
root limy_,omé/g=3 of this square equation corresponds tostring. In points of self-intersection different parts of the
the desirable physical casg;>0. The following terms of string with the action1) do not interact.

expansionw and ¢ in Eq. (27) are Curves 4—6 in Fig. 5 describe a system with equal masses
m;=m,=m; and equalG;. These curves contain three sin-
3 15 gular points with various arrangements—in symmetric lines

11— g+t g8 —— - . 2
w=1 Wg+ 8779 , 0=7-3g, g—+0. (39 4 and 6 these cusps alternate with quark positions. The sym-

o _ o metric curvilinear hexagon 4 corresponds®@=G=0, 6
Substitution of Eq(36) in Egs.(22) and(13) results in lim-  =57/2 »=1.35; line 6 with self-intersectionsG= —1,

iting expressions atg—+0 (in the caseA=0) u(o)  #=m, w=1.27. Curve 5 has 1 cusp between the second and
=B sino, u(o)=—3B coso, o[ —m,27], and the world  the third, and two cusps between the third and the first quark.
surface(11): This state corresponds t¢=5.31, w=0.12; equal values
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G;=1.5, m;=0.4, but differentdy=17.77 andd,=9.44. casen=5 both possible valuek=1 andk=3 are shown
These topological configurations of the exotic states magurve 4 (6,4;1,1,3, curve 5 (6,4;0,1,2, and curve 6
be classified by investigation of the massless-~0 or ul-  (6,2;1,1,).
trarelativisticv;— 1 limit. In this limit for the exotic states In the cas&k=0 (it is possible for evem) the exotic state
Egs.(22)—(27), Eq. (30) results in the expressions has the form of a uniformly rotating rectilinear string that is
o[d folded. The simplest of these states 2, k=0 is the case of
. |0 . . n the coincidence of two quark®ne ofd; equals 0. In this
n!TO T 1+ni, n!_'TO hi=0, ml_'TOZK_ K’ state the model “triangle” practically reduces to the quark-
' ' ' diquark one with the quark and diquark connected by a
where double string with tension{2 This rectilinear segment is the
particular case of the hypocycloid witR/r =2.
|w|D 0 If n=4, k=0 the quarks and the massless peculiarities

n= lim ——=n;+n,+n3+3, k=Ilm —. (38
aa a

o o X2=0 are situated at the fold points. In this case in 8d)
i — i —

b=6=0, U(o)=u(c)const. These states have analogues in

Heren, is the number of singular points between the firstthe meson string model with massive ends. A solufibl

and second quarky, between the second and third angl

between the third and firsk is an integer. Xt={a7;Buy(o)cosw,7;Bu,(c)cosw,7} (41
Substitution of these expressions into Eg3) with A

=0 results in the following limiting form of the world sur-

face for all parts of the string as a generalization of €7):

describes a rotation of am— 1 times folded rectilinear open
string. Hereu, (o) =cosw,0— anilsin wpo, oe[0,7], Q;

= ymi‘l\/ﬁlgzgfconst andw,, is thenth positive root of
X#=B{nr+kok sino cost the transcendental equation tam=(Q,+Q,)w/(w*—Q;Qy).

+n coso sin 7;k sin o sin 7—n coso cos 7}.
lIl. ENERGY AND ANGULAR MOMENTUM

(39) OF ROTATIONAL STATES
Here 0 e[0,7n], the integer parameter88) n andk are In this section the possibility of the application of the
restricted by the conditions considered solutions for a description of baryon states on
_ Regge trajectories is briefly discussed. The Regge trajectory
n=2, |klsn—2, n—k is even. (400 includes states of baryons with the same quark composition

and almost the same set of quantum numbers. This trajectory

- . is linear dependen(without a satisfactory theoretical expla-
Note that world surface89) describe motions of a closed nation between the square of mass or rest energy of the

massless relati\_/is'tic string. Expressi@) is a ;plution of particle M2=E2 and its spin or angular momentu J
Eqg. (6) and satisfies the orthonormality conditiof® and = a'E%+ ayg.

the closure conditiork¥(r,0)=X*(r—mk,mn) with n=2 Let us find a connection between the eneEggnd angu-
andk restricted by Eq(40). _ lar momentumJ of the rotational stat¢11) of the baryonic

A sectiont=const of world surface39) is a closed hy- el “triangle” on the classic level. The same problem for
pocycloid with rational relation of the two radii the string model of the meson is solved in Ré&s8].

In accordance with Ref§2,3] consider new parameters
t,o on the world surface, wherte= X° is time, ando is the
[compare with Eq(29)]. If |k|=n—2, this relation equals formir parameter. The3 LagrangEZn in_actiét) is A=
and the curve has no self-intersectiongkifcn—4, the hy- =7/, /L(Xi,X;), do— 27 miV1-Xi(t,07), where L
pocycloid is starlike. The singular points of these hypocyc—:[(zy )2+§2(1_§2)]1/2, Z:atz X =0.X, and X
loids move at the speed of light. Topological types of rota-:{x(t (‘r’) Y(t ‘;)} is ta two-dimensionat(TZD)gvector' the
tional motions of the considered system may be eXha“Stivel¥calar,pro,duc,t is Euclidean. '

classified by pointing out a set of the mentioned integer pa- In coordinates. o the orthonormality conditionss) are
rameters f,k;n,,n,,n3) which are connected by E¢38) o y )

and satisfy the inequalitie&0). not satlsfied, so_t_he_canoni_cal momenturﬁ_(t,cr)

The states of the system differing from each other only by=8A / X, = — Y[ (X X,)X, — XEXJ/L + 37_ 1M X (1
changingk to —k should be interpreted as the same topo——Yf)‘l’2 8(o— o) is nonlinear with respect t¥; .
logical type. This results from the fact that replacemengof  The energy of the systemE=fZ3(YtE)dcr—A
by — 6 in Egs.(18)—(28) changes only the bypass direction 0

For the simple state@1) n=3, |k|=1.

R/r=2n/(n—1k|)

of the curvilinear “triangle.” = ﬂZf)L‘lYidﬁE?:lmi /N1-vi has the form
In these terms the classification of rotational states in
Figs. 2-5 looks as follows: simple motions in Figs. 2—4 have az—p2 3 m:
the type (3,1;0,0,0; exotic states in Fig. 5, curve 1 E=9D > —'2 (42
(4,2;1,0,0, curve 2(5,3;1,0,, curve 3(5,1;1,0,2 (for the a =1 J1-v;
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faction of the triangle inequality between three massgsif
each mass is less than the sum of two others, the limiting
relations(33) for the simple state take place and ene(r@b

of this state has the fornkE= 23 1M+ 3mym,mg 1l w?
+0(w?), where w is an |nf|n|te3|mal The considered
asymptotic relation in this case is

. (E 3/2 /m1m2m3 ( =

3 ’y(m1+ m2+ m3)

3 3/2
_2 mi) , Ui<1.

If one of the masses, for exampi®; , is larger then the
sum of two othergsee Fig. 3 and curve 4 in Fig),&hen the
nonrelativistic asymptotic case describes a rotation of a rec-
tilinear double string with two masses, andm; at the ends
and a massn, at the rotational center. In this limit for the
simple state the following expression takes place:

3/2 1 [ m2m3
2y N my+mg
where vZ=XZ(t,;). The following expressions resultmg It looks similar to the formula in Ref3] for the string model
from Egs. (11)—(17) were used in the calculations?  of a.mescf)nhand may be dIEd;CGd from solutiét), but the
(a2 2V (1 X2 — (a2 h2\h—1(Y X Y= (a2_h2)5-1 tension of the string equalsy.
Th(: pa?a)rrgiteé), a’éa: a 5()§w)sxé>r(]é)vi (:re geiiiedl_.by The exponent 3/2 is the same f.or both cases considergd.
Egs.(18), (26), and (30). So graphs 1-4in Fig. 6 havg S|m|I§1r forms and curve 4 in
The angular momentund= [“3(XP,—Y P)do of the the vicinity of the transformation point is rather smooth.
oo Y X In the opposite ultrarelativistic limiv;—1, E—o, J
state(11) is calculated in a similar way: —o the analysis of dependend¢E) includes substituting
3 limiting formulas (38) and expressionswd;=(n;+1)
—i(E—E m \/1_—0|2) 4y 9 0=mk(1=5,), VI=v?=¢, with infinitesimals 5,
[0 i=1 Sy, €; [generalization of Eq(36)] into Egs.(22)—(30), (42)
and (43). Expansion in series in Eq$25), (27), and (30)
The latter relation betweeh, J, and the angular frequency results in the following relations between the infinitesimals:
()= w/a has almost the same form as in the string model of
a mesor{3]. n’—k?
Expressiong42) and (43) set an implicit nonlinear con- hj=2 n_ i 1+
nection betweek andJ of the considered system. A form of
this connection depends on the topological type 5 5,
(n,k;n1,n5,n3) of the state of the system.

n Ej
In Fig. 6 the results of the numerical calculation the de-/m;+m., \/—+ NGO N Jmi’

pendencd on E2 are shown for various states of the systems

m; (1-4) and for the exotic statés). J=

3

FIG. 6. Dependencd(E?) for the simple motions with various 2 3 32
E - 2 mi , Uj < 1

i=1

n-2k*
2(n?—k3)°

with fixed m,=m3;=0.3, y=3/(167). Such a choice ofy 3 2nm1‘1’2 3

approximately corresponds to the experimental value > 6= T( > mil’z)gl

a'=1 GeV 2 One can suppose conditionally tHzt in Fig. =1 Vne—ke\i=1

6 is measured in GédandJ in units#. A2 (o2 3
Curves 1, 2, 3, and 4 describe the simple motions of the +— 1 , 3/2( mlz m/2

system correspondingly witm;=0.05, m;=0.3, m;=0.6, (n“—=k*%) 2 =

and m;=1. Curve 5 is the exotic state of the symmetric
system with equal masses; =m,=my=0.3 and with topo-
logical type of this staté€6,2;1,1,3 (curve 6 in Fig. 3.

The symbol T on curve 4 shows the point of transforma-
tion of the triangular configuration of this system witiy By substitution of these and analogous relations into Egs.
=1>m,+m;=0.6 to the rectilinear configuration. This (32), (42), and(43) we obtain the ultrarelativistic asymptotic
point of transformation corresponds to the satisfying of Eqsdependence for a state with an arbitrary typek{n,,n,,ns)

(34). A form of the curvilinear triangle in the vicinity of such
a point is shown in Fig. 3. J=a'E?+ o EY? -1, (44)

The analysis shows that in the nonrelativistic limit the

asymptotic behavior of the functiah(E) depends on satis- where

3
k2 E m3/2)
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1 n \/in(nz— kz)_3/4 3 TABLE lll. Effective quark mass predictions.
’ 3/2
X = —5 1.9, (1:_—2 m:".
2myn®-k*' °F 3oy o1 J 1/2 5/2 92

This is close to the standard linear fodw o’ E2+ ay. Particle n.p N(1680) N(2220)

The slope coefficient in Eq44) differs from the Nambu  Mud 0.138:0.015 0.105-0.03 0.11-0.02
valug fog the mesonic mode&’=1/(27r7) by the factor  paricle A A(1815 A(2350
n/(n“—k<). This factor equals 3/8 for simple motions and
attains the maximal value 1/2inder admissibla andk) for ~ ms 0.41+0.03 0.345:0.07 0.35-0.055
“quark-diquark” motions withn=2, k=0. The latter case mg 0.34+0.035 0.26-0.07 0.270.06
differs from the quark-diquark baryon model only by the

substitutiony— 2. ) )
The “quark-diquark” state is preferable if we assume theto be found only from a consecutive quantum theory of this
principle of minimal energy: the string system with givén Paryon model that has not yet been constructed.
chooses the configuration with the minimal enef@8]. In the examplgs below the spin correction was not made.
The first summand in Eq42) that could be interpreted as 1€ results of using Eq45) for estimating quark masses on
the “string energy” or “gluon energy” in the limi;—1 or examples of_ two Regge trgectone{snucleomc and for
£;—0 grows as; 2, but the last summands, “quark kinetic strangeA particles are shown in Table Ill. Masses afand
energy” =m;/e;, grow aSSi’l. So in the ultrarelativistic d qua}rks are assumed 1o be equ.al. HBT@d. and'ms are
limit the “string energy” dominates, and the slope coeffi- effective quark masses measured in G8Vs in units (_)fﬁ.
cienta’ in Eq. (44) does not depend on quark masses The valuesmg were calculated under the assumption that

* 1 ~
The coefficientw, otherwise, is determined by the com- Myg<<Ms, andmg under the assumptiom,4=~0.1 GeV.

binationEm*?. This fact gives the possibility of estimating The error ranges in determinatimg are due to error ranges
(in the model frameworKsthe mentioned sum and quark in particle massed which influence the valuer’. The
massesn; . This estimation will be accurate only for baryons small difference between the results for the simple and
which satisfy two conditions: the quark motion is to be rela-“quark-diquark” configurations is also included in the error
tivistic and close to classithe model is classic with spinless ranges. Note that the considered mo@eid other mentioned
quarkg. The latter condition is equivalent to the standardstring model$ is applicable only to the orbitally excited

inequality J/A4>1 and in particular, results from the com- baryon stategresonanceswith J=5/2 and is not adequate
parison of typical sizes of the “triangle” system in the rela- for p, n, andA particles.

tivistic case[if E>m;y1—v{ in Eq. (43)] We may conclude that quark masses calculated by Eq.
(45) are steady with growing. But the found valuesn,q
a 2] _,J 1 GeVy; =100 MeV andmg=250 MeV (larger than other data for
Ri=_vi= gui=3.910 " ———cm free quark masse4.8] and less then the constituent masses
[8]) are preliminary and depend on the spin correction.
with the corresponding length/p=#/E. Furthermore, the The necessity of the spin correction is demonstrated by
motion is relativistic if the quarks are not very heavy;  the following fact. For the Regge trajectory with reso-
<M=E. nances $=3/2) Eq.(45) results in small negative values of
Express the combinatioBm®? from Eq. (44) >m¥? (error boxes include some positive rahgBut with

substitutingd— 1/2 instead of) the formula(45) gives the

3 steady valuem 4=0.1 GeV for heavyA resonances.

> me = ( 32 ) (45) With growing E andJ the influence of the unknowAE
=1 2%\ o’ JE on the valuesn; in Eqg. (45) diminishes, but too slowly—as

. , ~12.or 374 30 for the available baryon mass range 1-3
It is natural to su‘[‘apose thgt the ftates of the model are smpéev the spin correction in Eq45) is required for a valid
(n=3, k=1) or “quark-diquark” (n=2, k=0). For these  oqtimation of the quark masses in the frameworks of the
two cases the rP/glss estimations differ from each other by th@onsidered model.
small factor=2"".

The expression in the parentheses on the right-hand side
(RHS) of Eq. (45) is a small difference of two large values.
So it is very sensitive to errors id and E. The simplest In the present paper a set of rotational motions of the
quantum correction to these values due to quark spins imbaryon model “triangle,” interesting from a geometric point
plies an additionS=32_,s; (quark spin projectionto the  of view, were investigated on the classic level. The quanti-
classic angular momenturi#3d) and AE=AEgstAEgo to  zation in this model as in the string model of meson with
the energy(42). The latter correction results from spin-spin massive end$2,12] encountered some problems connected
(AEg9 and spin-orbit AEgp) interaction of quarks. The with the nonlinear form of the boundary conditiori8).
valueAEggis supposed to be due to pure Thomas precessioRrogress in this direction, for example, a description of quark
of quark sping[8,17], but there are some doubts as to thespins, will give the possibility of a precise model prediction
form and the sign of this correction. A precise formAdE is  of the effective quark masses through comparison of calcu-

3(n2_ k2) —-1/4

CONCLUSION
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lated dependenc#{ E?) with the experimental Regge trajec- and baryons in a natural waghe rotational motions of these
tories. But the problem of quantization needs special remodels are mesonlikeBut this advantage is balanced on an
search which is beyond the present paper. explicit dissymetry of the quarks in both models. Further-

On the other hand, the slop€ was finally determined by more, the “triangle” and Y configurations unlike the two
Eq. (44) on the classic level. It was mentioned that this co-others string baryon models are QSD motivated in the Wil-
efficient in the baryonic model “triangle” differs from the son loop operator approa¢hO].
mesonic slopex’ = 1/(27vy) by a factor 1/2 for the “quark- For a description of baryons on the Regge trajectories the
diquark” states and by a factor 3/8 for the simple states. Théquark-diquark” states and the simple statésg. 2—4 of
experimental valuex’ =1 GeV ? is approximately equal for the model “triangle” were used. Under the assumption that
mesons and baryons. So an effective value of string tengion the energy of the orbitally excited string state for the given
in the model “triangle” is to be about 1/2 or 3/8 of the angular momentund is minimal [7,8] these configurations
tension in the model of a meson. This is probably connecteare preferable, and among them is the “quark-diquark” one.
with different energies of QCD interaction in the pairs:  The exotic stategFig. 5 naturally emerging in this model
guark-quark and quark-antiquark. For the sake of compariare probably too exotic for physical applications. Perhaps,
son note that in the three-string mod@-7] this factor they have some connection with such undetected particles as
equals 2/3, i.e., the Regge slope in the ultrarelativistic limithybrids.
is a'=2(27y) "1, and the effective string tension is to dif-
fer by the same factor from the mesonic one. _ _ ACKNOWLEDGMENTS
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