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The considered model of baryon consists of three pointlike masses~quarks! bounded pairwise by relativistic
strings forming a curvilinear triangle. Classic analytic solutions for this model corresponding to a planar
uniform rotation about the system center of mass are found and investigated. These solutions describe a
rotating curve composed of segments of a hypocycloid. The curve is a curvilinear triangle or a more compli-
cated configuration with a set of internal massless points moving at the speed of light. Different topological
types of these motions are classified in connection with different forms of hypocycloids in zero quark mass
limit. An application of these solutions to the description of baryon states on Regge trajectories is considered.
@S0556-2821~98!01521-5#

PACS number~s!: 12.40.Yx, 12.40.Nn

INTRODUCTION

The string baryon model ‘‘triangle’’ is genetically con-
nected with the meson model of relativistic string with mas-
sive ends@1,2#. The latter model including two pointlike
massive quarks bounded by a relativistic string gives the
possibility of describing the meson orbitally excited states on
the Regge trajectories@3#.

On the basis of this meson model, string models of bary-
ons, were suggested in some variants@4–7#. These variants
differ from each other in the type of spatial junction of three
pointlike quarks by relativistic strings:~a! the first quark is
bounded with the second and the second quark with the third,
~b! the ‘‘three-string’’ model or Y configuration with three
strings from three quarks joined in the fourth massless point,
~c! the quark-diquark model, and~d! the ‘‘triangle’’ model.
The first variant was investigated qualitatively@4#, the
‘‘three-string’’ @4–6# and mesonlike quark-diquark models
@7,8# in a more detailed way.

In the present paper the ‘‘triangle’’ model of the baryon
@9# is under consideration. In this model three material points
~quarks! are pairwise connected by three relativistic strings
forming a curvilinear triangle in space at each instant of
time. If tensions of these three strings are equal, such an
object could be regarded as a closed string carrying three
pointlike masses. From the point of view of describing quark
strong interaction in the orbitally excited baryon this model
looks rather natural in comparison with three others. Some
arguments in favor of the ‘‘triangle’’ baryon model in com-
parison with the Y configuration are given by Cornwall@10#
in the QSD Wilson loop operator approach.

The transformation of the ‘‘meson’’ string with massive
ends or the three-string model of baryon to the model ‘‘tri-
angle’’ results in some additional difficulties. In particular, a
string world surface in this model has discontinuities of de-
rivatives on quark trajectories; a parametrization with these
trajectories as coordinate curves does not exist in general and
spacelike coordinate lines are not closed in general.

In the present paper these difficulties are overcome and
classic analytic solutions are found for a set of motions—
uniform planar rotations of the system. This kind of motion
is an analogue and generalization of well known rotations of

a straight relativistic string with massive ends@1–3#. The
latter class of motions was a base of applying this model
@3,8# and the relativistic tube model@11# to the description of
meson Regge trajectories.

In this paper rotational motions in the baryonic model
‘‘triangle’’ and their applications are investigated. In Sec. I
equations of evolution and conditions on the quark trajecto-
ries are deduced from the action of the system. In Sec. II
solutions of these equations corresponding to rotational mo-
tions of the system~quarks and the string of hypocycloidal
form! are described and classified. In Sec. III the possibility
of a description of the baryon states on Regge trajectories by
these solutions is discussed.

The string solutions obtained here in Sec. II are applicable
not only to the particle physics, but to various branches of
string or M -brane theory. In particular, the massive points
placed on the string~the number of these points is arbitrary!
could be regarded as 0-branes.

Note that the rotational solutions of the considered type
also take place for a closed massless string. Such a string has
a form of a rotating hypocycloid with singular points moving
at the speed of light.

I. MODEL AND EQUATIONS

Let us consider the baryon model ‘‘triangle’’ as a closed
relativistic string with tensiong carrying three pointlike
massesm1 ,m2 ,m3 . The action of this system is@9#

S52E
t1

t2H gE
s0~t!

s3~t!
A2gds1(

i 51

3

miAVi
2~t!J dt. ~1!

Hereg5Ẋ2X822(ẊX8)2 is a determinant of induced metric
on a string world surfacexm5Xm(t,s), m50,1,. . . , in
d-dimensional Minkowski space with signature1,2,2,...;
Ẋm5]t Xm, X8m5]sXm, the speed of light in these unitsc
51, (t,s)PD5D1øD2øD3 , Vi

m5(d/dt)Xm@t,s i(t)# is
a tangent vector to thei th quark trajectory with an inner
equation s5s i(t), i 50,1,2,3 ~Fig. 1!. The equationss
5s0(t) ands5s3(t) define the trajectory of the same third
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quark. It is connected with the fact that the string is closed
and may be rewritten in the common form

Xm@t,s0~t!#5Xm@t* ,s3~t* !#. ~2!

Note that the parameterst andt* in these two parametri-
zations of one curve~2! are not equal in general. This means
that coordinate curvest5const on the world surface are not
closed—the beginning of this curve ats5s0 does not coin-
cide spatially with its end ats5s3 . The equalityt5t*
may be obtained only by a special choice oft and s, for
example,t5t[X0.

The parametrization of the world surfaceXm(t,s) is con-
tinuous inD, but on the liness i(t) its derivatives@except for
tangentialVi

m and (d/dt)Vi
m# have discontinuities in general.

Nevertheless, by a local choice of parameterst ands we can
obtain the induced metricds25Ẋ2dt 212(ẊX8)dtds
1X82ds2 continuous on these lines. The action~1! is invari-
ant with respect to an arbitrary nondegenerate reparametriza-
tion t5t( t̃,s̃), s5s( t̃,s̃).

The equations of motion and the boundary conditions on
the quark trajectories in this model are deduced by variation
and minimization of action~1!. This procedure is partially
similar to that for the model of relativistic string with mas-
sive ends@2# and results in the same equations of motion

]

]t

]L

]Ẋm
1

]

]s

]L

]X8m
50, ~t,s!PD, L[A2g. ~3!

But to derive boundary conditions in the model ‘‘triangle’’
we are to take into account the discontinuities ofẊm,X8m on
the liness5s i(t). Thereby the term

E E DF ]

]t S ]L

]Ẋm
dXmD 1

]

]s S ]L

]X8m dXmD Gdt ds

in dS@Xm# transformed using the Green’s formula equals the
sum of three curvilinear integrals of internal boundary values
along the borders of the domainsD1 , D2 , D3 and, therefore,
in the following boundary conditions:

mi

d

dt

Vim

uVi u
2gF ]L

]X8m
2

]L

]Ẋm
s i8~t!GU

s5s i10

1gF ]L

]X8m
2

]L

]Ẋm
s i8GU

s5s i20

50, i 51,2,3. ~4!

For the third quark (i 53) in the first two summands we are
to put s5s0(t), and in the third we puts5s3(t* ) in
accordance with the closure condition~2!. From the physical
point of view Eqs.~4! are the second Newtonian law for the
material pointsmi , moduli of the applied tension forces
equal tog.

Let the induced metric on the world surface be confor-
mally flat, i.e., conditions of orthonormality be tied:

Ẋ21X8250, ~ẊX8!50. ~5!

These equalities inD may always be obtained by the rep-
arametrizationt5t( t̃,s̃), s5s( t̃,s̃) „new coordinate lines
t̃6s̃5const on the world sheet are integral curves of equa-
tions Ẋ2dt1@(ẊX8)6L#ds50…. We use the same notation
for t ands below and suppose that equalities~5! are satis-
fied. Under conditions~5! the equations of motion~3! be-
come linear

Ẍm2X9m50, ~6!

Equations~5! and ~6! are invariant with respect to rep-
arametrizationst6s5 f 6( t̃6s̃) @2#. Choosing these two
arbitrary functionsf 6 one can fix two~of four! functions
s i(t), for example, in the form

s1~t!50, s2~t!5p. ~7!

The boundary equations~4! on these lines under condi-
tions ~5! and ~7! take the form

mi

d

dt

Ẋm~t,s i !

@Ẋ2~t,s i !#
1/2

2gX8m~t,s i10!1gX8m~t,s i20!

50, i 51,2. ~8!

Reparametrizations of the mentioned type with
f 1(h)5 f 2(h)5h1f(h), f(h12p)5f(h), uf8(h)u
,1 @12# preserving the form of equations~7! do not permit
us to fix s35const~or s05const! for all t in general.

Thus choosingt and s one can not fix three functions
s0(t), s3(t), andt* (t) for an arbitrary motion in a con-
venient form. The necessity of determinating these functions
from initial data essentially sophisticates the initial-
boundary-value problem for the model ‘‘triangle’’ in com-
parison with the string model of a meson@13#. In the present
paper the functionss0(t), s3(t), and t* (t) are defined
from properties of symmetry for a class of uniform planar
rotations of the system.

FIG. 1. Domain of integration in Eq.~1!.
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II. ROTATIONAL MOTIONS

Let the closed string with three material points uniformly
rotate~preserving its form in time! in a planexy around the
origin of coordinates. The quark trajectories in
(211)-dimensional Minkowski space are the screw lines.
For this motion one can choose on the world surface a pa-
rametrization with screw liness5const and with an uniform
growth of t along these lines. In these coordinates on the
quark trajectories

s i~t!5const,

i 50,1,2,3,

uVi u5AẊ2us5s i
5Ci5const,

i 51,2,3. ~9!

All four functionss i(t) are fixed simultaneously,s1 ands2
are in the form~7! nonlimiting a generality.

Let coordinate curvest5const be orthogonal trajectories
to the specified liness5const and conditions~5! be satis-
fied. These linest5const ~do not coincide with sectionst
5const! are not closed, but a connection betweent andt*
in the closure condition~2! is very simple:t* 5t1const. It
is a consequence of the symmetry of this motion that the
world surface in Minkowski space coincide with itself after a
rotation about thet5x0 axis with simultaneous translation
along this axis.

Under these circumstances and conditions~5!, ~9! the
third Eq. ~4! takes the form

m3C3
21Ẍm~t,s0!2gX8m~t,s010!1gX8m~t* ,s320!

50, t* 5t1const. ~10!

A solution of the string oscillatory equation~6! satisfying the
conditions~5!, ~7!–~9! may be found by the Fourier method:
Xm5(kek

muk(s)Tk(t). The functionsuk(s) andTk(t) with
the samek as a consequence of Eq.~6! are linear functions or
harmonics with the same frequencyv. Taking into account
the above described properties of the rotational motion and
its parametrization one can find the Fourier series forXm in
(211) Minkowski space~with the unique frequencyv! in
the form

Xm5$t01at1bs;u~s!cosvt2ũ~s!sin vt;u~s!sin vt

1ũ~s!cosvt%. ~11!

The functionsu(s) andũ(s) are continuous in@s0 ,s3#,
may have discontinuities of derivatives ats50, s5p and in
the segments@s i 21 ,s i # are

u~s!5H A0cosvs1B0sin vs, sP@s0,0#,

A1cosvs1B1sin vs, sP@0,p#,

A2cosvs1B2sin vs, sP@p,s3#;

ũ~s!5Ãicosvs1B̃isin vs, sP@s i ,s i 11#. ~12!

Let the functionsemu(s)T(t) and emũ(s)T(t) ~with T
5cosvt or T5sinvt! satisfy the boundary conditions~8!
independently. With the continuity conditions ats50 and
s5p this results in four equations both foru and ũ which
may be presented in the form solved with respect toA1[A

andB1[B ~the same formulas expressÃi ,B̃i by Ã1[Ã and
B̃1[B̃!:

A05A, B05h1A1B,

A25~11h2c1s1!A1h2s1
2B,

B252h2c1
2A1~12h2c1s1!B. ~13!

Herec15cospv, s15sinpv, hi5vmi /(gCi).
Under relations~13! solution ~11!–~12! satisfies condi-

tions ~8!. Substitution Eqs.~11!, ~12! into the second of the
orthonormality conditions~5! results in three equations:

AiB̃i2ÃiBi5ab/v2, i 50,1,2. ~14!

But among Eqs.~14! only one is independent, for example,
with i 51. If it is satisfied and the relations~13! take place
then the two other conditions~14! are satisfied too. Also
substitution~11!, ~12! into the first condition~5! results in
Ai

21Bi
21Ãi

21B̃i
25(a21b2)/v2—three independent equa-

tions. Transform this system taking into account Eqs.~13! in
the following equivalent form:

A21B21Ã21B̃25~a21b2!/v2, ~15!

h1~A21Ã2!12~AB1ÃB̃!50, ~16!

l1~A21Ã2!5l2~B21B̃2!. ~17!

Here l15(h1h222)c1s11h1(122c1)2h2c1
2 and l2

5h2s1
222c1s1 .

Expression~11! is a solution of the given problem if the
last necessary conditions~2! and ~10! are satisfied. Denote
2u/v as the constant in Eq.~10!:

t* 5t2u/v, u5~s32s0!vb/a5Dvb/a. ~18!

The expression foru results from the substitution ofX0

5t01at1bs into the closure condition~2!. The angleu has
the following geometrical sense:u is the phase shift on a
screw trajectory of the third quark between the beginning~at
s5s0! and the end~at s5s3! of an unclosed coordinate
line t5const.

Substitute Eqs.~11!–~13!, ~18! into the closure~2! and
boundary conditions~10! with m51,2. Values ofu,ũ and
their derivatives ats5s0 ands3 express throughA,B,Ã,B̃
by Eqs. ~13!, for example,u(s3)5@cosvs32h2c sinv(s3
2p)#A1@sinvs32h2s sinv(s32p)#B.

Equating similar terms with cosvt and sinvt in the four
Eqs. ~2!, ~10! with m51,2 we obtain eight homogeneous
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equations with respect toA,B,Ã,B̃ which reduce to four
pairs of coinciding ones. For the sake of simplicity and ex-
plication of its intrinsic structure we write this homogeneous
system with the matrix notation

M1a5M2b, M3a5M4b. ~19!

Here

a5S A

ÃD , b5S B

B̃D
and matrices

M15~h1s02c0!I 1~c2h2c1s2!U,

M252s0I 2~s2h2s1s2!U,

M35@~12h1h3!s01~h11h3!c0#I

1~s1h2c1c2!U,

M45~h3s02c0!I 1~c2h2s1c2!U

are linear combinations of the identity matrixI and the ma-
trix

U5U~u!5S cosu sin u

2sin u cosu D .

The coefficients are

ci5cosvdi , si5sin vdi ; c5cosvs3 , s5sin vs3 ;

di5s i 112s i : d052s0 , d15p,

d25s32p; D5s32s05d01d11d2 .

Taking into account the mutual commutability ofMk one
can excludea or b from the system~19!

Ma50, Mb50, ~20!

M5M1M42M2M35I 1U22FU5(2 cosu2F)U @an
equality I 1U2(u)52 cosu•U is used#. The parameterF
may be transformed to the simple form

F52 cosvD2(
i

hisin vD1(
i , j

hihjsisin v~di 211dj !

2h1h2h3s1s2s05G11G21G32G1G2G3

through the following notation:

Gi5
hisi 21si2sin v~di 211di !

si 11
. ~21!

The notation here is cyclically equivalent:di 13[di ,
si 13[si , Gi 13[Gi , for example,d3[d0 , s4[s1 .

Homogeneous systems~20! have a desirable nontrivial
solution if and only if detM5(2 cosu2F)250, i.e.,

2 cosu5G11G21G32G1G2G3 . ~22!

Under condition~22! the matrix M50 and an arbitrary
nonzero columna or b is its eigenvector. It is connected
with the rotational symmetry of the problem. So one can
choose an optional pairA and Ã, B and B̃, or A andB and
determine two other constants from Eq.~19! @under condi-
tion ~22! two systems~19! are equivalent#, in particular,

Ã52K~h1A12B!, B̃5K~2HA1h1B!, ~23!

where

K5
s0s1~G2G321!

2s2sin u
, H5

11h1
2K2

4K2 . ~24!

Values ~23! must obey conditions~14!–~17! descending
from the orthonormality conditions~5!. Substitution of Eq.
~23! in Eqs. ~16! and ~17! after transformations results in
relations

Gi 112Gi

GiGi 1121
5

sin v~di 212di 11!

si
, i 51,2,3. ~25!

One of these equations (i 52) is a consequence of Eq.~16!,
the second of~17!, and the third of the previous two.

Substitution of Eq.~23! in Eqs.~14! and ~15! after trans-
formations taking into account Eqs.~18!, ~21!–~25! results in
two equations which may be written in the form

a252KDv3u21~HA21h1AB1B2!, ~26!

Dvu

D2v21u2 5
2K

11~41h1
2!K2 ~27!

with K from Eq. ~24!.
The latter equation determines a set of acceptable fre-

quenciesv if the parametersGi , di , and u are given. All
these parameters defining a rotational motion of the model
~except for translations and a scale factor! are related by the
system of nonlinear equations~21!, ~22!, ~24!, ~25!, and~27!.

The simplest way to construct solutions of the considered
problem is to start with fixing three parametersG1 ,G2 ,G3 as
initial data. In the next step we determine the angleu by Eq.
~22!. The result of this procedure is not unique—for every
triplet Gi one can find a countable set of valuesu5u j 1

.

Further, the lengthsdi are defined from Eqs.~25! by the
following two steps~the valued15p was already chosen!:

d5d02d25
1

v F ~21! j 2arcsins
G22G1

G1G221
1p j 2G ,

d05
1

v Farctan
sin v~d1p!

cosv~d1p!2~G12G3!/~G1G321!

1p j 3G ,
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and d25d02d with arbitrary integerj 2 , j 3 . Substitution of
Gi , di , u, andK into Eq. ~27! results in a countable set of
frequenciesv. The latter equation is solved numerically by
the secant method@14#. After a choice of the amplitudesA
and B one can determine the valuesÃ,B̃,a,b, correspond-
ingly, by Eqs.~23!, ~26!, ~18! and through Eqs.~12!–~13!—
the world surface~11!.

To investigate the constructed world surface one can con-
sider its sectiont5t05const as a ‘‘photograph’’ of the string
position at time momentt0 . These sections~curvilinear tri-
angles! are shown in Fig. 2–5. There are some different
curves placed in each figure by a choice of the amplitude
factor B. Without limiting generalityA50 is supposed in
these examples—a transition to another ‘‘gauge’’ withA
Þ0 does not change the form of such a curve, but only
rotates it.

A parametrization of these curves is

x5u~s!cos
u

D
s1ũ~s!sin

u

D
s,

y52u~s!sin
u

D
s1ũ~s!cos

u

D
s, ~28!

in particular, for two sides of the ‘‘triangle’’ (A50)

u5B sin vs, ũ5BK~h1 sin vusu22 cosvs!,

sP@s0 ,p#.

The curve~28! is composed of three segments of a hypo-
cycloid joined at nonzero angles in three points~the quark
positions!. Hypocycloid is the curve drawing by a point of a
circle ~with radius r ! that is rolling in another fixed circle
with larger radiusR @15#. In the case~28! a relation of these
radii

R/r 52/~12ubu/a!52/„12uu/~Dv!u… ~29!

is irrational in general.

FIG. 2. The simple states with various rotational rates for the
system with equal massesm15m25m351.

FIG. 3. The simple states for the system withm153, m25m3

51.

FIG. 4. The simple states for the system withm154, m252,
m353.

FIG. 5. The exotic states with various configurations.
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Differentiating Eqs.~28! results in the following fact: the
curve ~28! ~for its smooth segments! is the hypocycloid if
and only if the parameters of the curve are bounded by Eq.
~27!.

The curves in Figs. 2–5 rotate in thexy plane at the
angular velocityV5v/a wherea is determined by Eq.~26!;
three quarks move at speeds

v i5Ausi 21si~Gi 21Gi 1121!

vDsi 11sin u
, i 51,2,3, ~30!

along circles with radiiRi5v i /V5av i /v.
A free choice of the mentioned integer parameters

j 1 , j 2 , j 3 ,l results in a very large number of different motions
of the system distinguishing from each other by their topo-
logical structure. A motion or state of the system we will
denominate ‘‘simple’’ if the position of the string~sectiont
5const! is a curvilinear triangle with smooth sides~Figs.
2–4!. In the opposite case if there are some singular massless
points on the sides of the ‘‘triangle’’ we will denominate the
state ‘‘exotic’’ ~Fig. 5!. These singular points move at the
speed of light.

The motion of the system is simple if its parameters sat-
isfy the following conditions:

uuu,p, uvudi,p, Gi.1, i 51,2,3,

G11G21G32G1G2G3.22. ~31!

In particular, if two quark masses are equal, for example,
m25m3 ~Fig. 3!, the conditions~31! for Gi take the form
G1.1, 1,G25G3,112/G1 and in a symmetric case
m15m25m3 ~Fig. 2! the limitation~31! for the simple states
is 1,G15G25G3,2.

The dependence of a form of the curvilinear triangle on its
rotational speed is shown in Figs. 2–4 for the case of simple
motion of the system with fixed quark massesmi . In each
figure the ‘‘photographs’’ of the same system in various ro-
tational states are placed, the higher the quark speeds, the
larger the size of the curvilinear triangle. The dependence
Ri(v i) for mi /g5const is too sharp so the smallest~inner!
triangles in Fig. 2–4 are magnified, and the largest are di-
minished in comparison with the natural size~natural is in
this casemi /g5const! through homothetic multiplication by
a scale factorB/Bn . For the middle curvesg51 is taken.

The speed of rotation could be measured by anyone of the
parametersv i , v, V, u, Gi , the energyE, the angular mo-
mentum J ~Sec. III!, etc. In the symmetric case
m15m25m3 ~Fig. 2! which is considered in Ref.@9# for the
simple states the following parameters are equal:G15G2
5G35G, d15d25d35p, v15v25v35v. Some rounded
values of these and other parameters~in particular, the mini-
mal v1 and maximalv2 quark speeds in the case of different
mi , the scale factorsB/Bn! for the simple motions in Fig.
2–4 are presented in Tables I and II.

In the symmetric casem15m25m3 ~Fig. 2! a value of the
parameterG in the interval~1,2! is taken as the measure of
rotational rate, the corresponding values ofu andv are de-
termined from Eqs.~22! and~27!. The above described pro-

cedure of determinating all other parameters in the solution
~11! is simplified as a consequence of the symmetryd1
5d25d35p @9#.

In the case with different massesmi given as initial data
~Figs. 3, 4! the mentioned procedure needs some comple-
ment. The given quark masses are connected with the other
parameters of the system by the expressions

mi5
g

v
Cihi5

g

v
hiaA12v i

2. ~32!

The values of the parameters for the rotational states in
Figs. 3 and 4 were calculated as follows: a value ofG1 was
chosen as a measure of rotational rate,G2 andG3 were taken
as tentative at the first step of the iteration. After realization
of the mentioned procedure of determination ofu, di , v,
etc., the masses ~32! @or relations mi /m1

5(hi /h1)A(12v i
2)/(12v1

2), i 52,3# were found and com-
pared with the given values. The two-dimensional secant
method@14# was applied in this iterative process.

The simple states in Figs. 2–4 demonstrate the following
asymptotics in nonrelativistic and ultrarelativistic limits. If
the quark velocitiesv i , the system energyE, the momentum
J, and the valuesv andu decrease, the curvilinear triangle
tends to a rectilinear triangle. A form of the latter depends on
the answer to the question: is the triangle inequality for the
quark massesm1 ,m2 ,m3 satisfied?

If this inequality is satisfied, i.e., each of the quark masses
mi is less then a sum of two others~Figs. 2 and 4! in the
nonrelativistic limiting case the parametersv, u, v i , Ri tend
to 0, Gi→110 for all i 51,2,3; the triangle tends to the
rectilinear one, and lengths of its sidesl i j ~between thei th
and j th quark! in this limit are proportional to the associated
di and opposite quark masses:

l 12

d1
5

l 23

d2
5

l 31

d0
,

d1

m3
5

d2

m1
5

d0

m2
, v i→0. ~33!

If one of these masses is larger then a sum of two others, for
example,m1.m21m3 ~Fig. 3!, in the low energy limitu
→0 the obtuse angle at the corner with the largest massm1
tends top and the triangle tends to a rectilinear segment.
This limit is attained withu50, R150, v150, G25G351
10, and nonzero values ofv, v2 , v3 , G1.1. These limiting
values are connected by the equations resulting from Eqs.
~21!, ~24!–~27!, ~30!, ~32!:

TABLE I. Some values of parameters for Fig. 2.

Fig. 2 inner middle outer

G 1.05 1.6 1.95
v 0.102 0.451 0.791

m151 u 0.087 1.211 2.47
m251 v 0.183 0.689 0.953
m351 E 3.157 6.904 46.50

J 0.011 1.679 125.6
B/Bn 10 1 0.18
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v25s1 , d25d01d1 , G15112d2vs0s1s2
21 ,

v35s0 ,
m2

m3
5

c1
2s0

c0
2s1

,
m1

m3
5d2vs0s11s2 . ~34!

If v2 andv3 become less then the limiting values~34!, the
heaviest quark occupies a position at the rotational center
and the string rotates as the rectilinear segment. It looks
similar to the string mesonic model with two light quarks,
bounded by two relativistic strings~details in Sec. III! with a
supplement—the heavy quark at rest.

In the ultrarelativistic limitv i→1 for the simple states the
valuesd0 andd2 tend tod15p, uvu→120, uuu→p20, and
the curvilinear triangle tends to a hypocycloid with three arcs
~deltoid!

x5BS 2 sin
2

3
s2sin

4

3
s D ,

y52BS 2 cos
2

3
s1cos

4

3
s D ,

sP@2p,2p#. ~35!

The form of the limiting curve~35! does not depend on
the ~fixed! valuesm1 ,m2 ,m3 . So one can deduce Eqs.~35!
by the simplest way in the symmetric casem15m25m3 . In
this case the ultrarelativistic limitv i→1 corresponds to a
limit Gi5G→220. Substitution of expressionsv512d,
G522g2 with infinitesimalsd, g into Eqs.~24!, ~27! results
in the limiting relation 3

10 5 limg→0pdg(g21p2d2)21. The
root limg→0pd/g53 of this square equation corresponds to
the desirable physical casemi.0. The following terms of
expansionv andu in Eq. ~27! are

v.12
3

p
g1

15

8p
g3, u.p23g, g→10. ~36!

Substitution of Eq.~36! in Eqs.~22! and~13! results in lim-
iting expressions atg→10 ~in the caseA50! u(s)
5B sins, ũ(s)523B coss, sP@2p,2p#, and the world
surface~11!:

Xm5B$t013t1s;sin s cost13 coss sin t;sin s sin t

23 coss cost%. ~37!

A section of this surfacet5const is the hypocycloid~35!.
Let us consider a situation where the condition of ‘‘sim-

plicity’’ ~31! are not satisfied. Such a motion was denomi-
nated as exotic. Its world surface has peculiaritiesẊ25X82

50 on the world lines of singular points~cusps! of the hy-
pocycloid ~28! which move at the speed of light.

There are many types of exotic motion differing from
each other by the number and positions of these peculiarities.
Some examples are shown in Fig. 5. One must differ the
peculiar points~cusps! on these curves from the quark posi-
tions. At the point of quark position two segments of the
string are joined at a nonzero angle. For each curve 1–5 in
Fig. 5 the first quark is situated at the lowest point, two
others are along the string in the counterclockwise direction.

The number of the curve is in the center of rotation. Curve
1 in Fig. 5 represents the simplest exotic state with one pe-
culiar point~in this example between the first and the second
quark!. The chosen values of parameters for this state are
G150.2, G2520.4, G3520.2, v.1.23, u.1.78 @u and
v were determined by Eqs.~22!, ~27! after a choice of the
discrete parametersj i andl #. The quark masses for the curve
1: m1.3.04, m2.2.59, m3.3.36, if g51.

Other values ofGi , j i ,l result in other types of curvilinear
‘‘triangles.’’ The pentagonal line 2~G150.2, G250.1, G3
50.5, u.5.12! and the starlike curve 3~G151.9, G25G3
51.7, v.1.37, u.1.67! both contain two singularities and
represent two different topological configurations of the
string. In points of self-intersection different parts of the
string with the action~1! do not interact.

Curves 4–6 in Fig. 5 describe a system with equal masses
m15m25m3 and equalGi . These curves contain three sin-
gular points with various arrangements—in symmetric lines
4 and 6 these cusps alternate with quark positions. The sym-
metric curvilinear hexagon 4 corresponds toGi5G50, u
55p/2, v.1.35; line 6 with self-intersections—G521,
u5p, v.1.27. Curve 5 has 1 cusp between the second and
the third, and two cusps between the third and the first quark.
This state corresponds tou.5.31, v.0.12; equal values

TABLE II. Some values of parameters for Fig. 3 and Fig. 4.

Fig. 3: mi53,1,1 Fig. 4:mi54,2,3,

inner middle outer inner middle outer
G1 1.61 2.3 2.7 1.15 1.7 2.2
G2 1.002 1.31 1.68 1.041 1.312 1.69
v 0.168 0.387 0.77 0.143 0.386 0.752
u 0.053 1.063 2.46 0.139 0.923 2.328
d2 6.25 4.38 3.392 3.955 3.493 3.222
v1 0.025 0.433 0.908 0.145 0.497 0.909
v2 0.503 0.768 0.969 0.354 0.711 0.954
E 6.025 10.28 70.77 9.832 16.38 95.61
J 0.218 3.13 289.0 0.231 7.005 520.0
B/Bn 1.7 1 1/5 5 1 1/7
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Gi51.5, mi.0.4, but differentd0.17.7p andd2.9.4p.
These topological configurations of the exotic states may

be classified by investigation of the masslessmi→0 or ul-
trarelativisticv i→1 limit. In this limit for the exotic states
Eqs.~22!–~27!, Eq. ~30! results in the expressions

lim
mi→0

uvudi

p
511ni , lim

mi→0
hi50, lim

mi→0
2K5

n

k
,

where

n5 lim
mi→0

uvuD
p

5n11n21n313, k5 lim
mi→0

u

p
. ~38!

Here n1 is the number of singular points between the first
and second quark,n2 between the second and third andn3
between the third and first.k is an integer.

Substitution of these expressions into Eq.~23! with A
50 results in the following limiting form of the world sur-
face for all parts of the string as a generalization of Eq.~37!:

Xm5B$nt1ks;k sin s cost

1n coss sin t;k sin s sin t2n coss cost%.

~39!

Here sP@0,pn#, the integer parameters~38! n and k are
restricted by the conditions

n>2, uku<n22, n2k is even. ~40!

For the simple states~31! n53, uku51.
Note that world surfaces~39! describe motions of a closed

massless relativistic string. Expression~39! is a solution of
Eq. ~6! and satisfies the orthonormality conditions~5! and
the closure conditionXm(t,0)5Xm(t2pk,pn) with n>2
andk restricted by Eq.~40!.

A section t5const of world surface~39! is a closed hy-
pocycloid with rational relation of the two radii

R/r 52n/~n2uku!

@compare with Eq.~29!#. If uku5n22, this relation equalsn
and the curve has no self-intersections. Ifuku<n24, the hy-
pocycloid is starlike. The singular points of these hypocyc-
loids move at the speed of light. Topological types of rota-
tional motions of the considered system may be exhaustively
classified by pointing out a set of the mentioned integer pa-
rameters (n,k;n1 ,n2 ,n3) which are connected by Eq.~38!
and satisfy the inequalities~40!.

The states of the system differing from each other only by
changingk to 2k should be interpreted as the same topo-
logical type. This results from the fact that replacement ofu
by 2u in Eqs.~18!–~28! changes only the bypass direction
of the curvilinear ‘‘triangle.’’

In these terms the classification of rotational states in
Figs. 2–5 looks as follows: simple motions in Figs. 2–4 have
the type ~3,1;0,0,0!; exotic states in Fig. 5, curve 1
~4,2;1,0,0!, curve 2 ~5,3;1,0,1!, curve 3 ~5,1;1,0,1! ~for the

casen55 both possible valuesk51 andk53 are shown!,
curve 4 ~6,4;1,1,1!, curve 5 ~6,4;0,1,2!, and curve 6
~6,2;1,1,1!.

In the casek50 ~it is possible for evenn! the exotic state
has the form of a uniformly rotating rectilinear string that is
folded. The simplest of these statesn52, k50 is the case of
the coincidence of two quarks~one of di equals 0!. In this
state the model ‘‘triangle’’ practically reduces to the quark-
diquark one with the quark and diquark connected by a
double string with tension 2g. This rectilinear segment is the
particular case of the hypocycloid withR/r 52.

If n>4, k50 the quarks and the massless peculiarities
Ẋ250 are situated at the fold points. In this case in Eq.~11!

b5u50, ũ(s)5u(s)const. These states have analogues in
the meson string model with massive ends. A solution@16#

Xm5$at;Bun~s!cosvnt;Bun~s!cosvnt% ~41!

describes a rotation of ann21 times folded rectilinear open
string. Hereun(s)5cosvns2vnQ1

21sinvns, sP@0,p#, Qi

5gmi
21AẊ2us5s i

5const andvn is thenth positive root of

the transcendental equation tanpv5(Q11Q2)v/(v22Q1Q2).

III. ENERGY AND ANGULAR MOMENTUM
OF ROTATIONAL STATES

In this section the possibility of the application of the
considered solutions for a description of baryon states on
Regge trajectories is briefly discussed. The Regge trajectory
includes states of baryons with the same quark composition
and almost the same set of quantum numbers. This trajectory
is linear dependent~without a satisfactory theoretical expla-
nation! between the square of mass or rest energy of the
particle M25E2 and its spin or angular momentumJ: J
5a8E21a0 .

Let us find a connection between the energyE and angu-
lar momentumJ of the rotational state~11! of the baryonic
model ‘‘triangle’’ on the classic level. The same problem for
the string model of the meson is solved in Refs.@3,8#.

In accordance with Refs.@2,3# consider new parameters
t,s on the world surface, wheret5X0 is time, ands is the
former parameter. The Lagrangian in action~1! is L5

2g*s0

s3L(X̄t ,X̄s),ds2( i 51
3 miA12X̄t

2(t,s i), where L

5@(X̄tX̄s)21X̄s
2(12X̄t

2)#1/2, X̄t5] tX̄, X̄s5]sX̄, and X̄
5$X(t,s),Y(t,s)% is a two-dimensional~2D! vector; the
scalar product is Euclidean.

In coordinatest,s the orthonormality conditions~5! are
not satisfied, so the canonical momentumP̄(t,s)
5dL / dX̄t 5 2 g@(X̄t X̄s)X̄s 2 X̄s

2X̄t#/L 1 ( i 5 1
3 mi X̄ t (1

2X̄t
2)21/2 d(s2s i) is nonlinear with respect toX̄t .

The energy of the systemE5*s0

s3(X̄tP̄)ds2L

5g*s0

s3L21X̄s
2ds1( i 51

3 mi /A12v i
2 has the form

E5gD
a22b2

a
1(

i 51

3
mi

A12v i
2

, ~42!
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where v i
25X̄t

2(t,s i). The following expressions resulting

from Eqs. ~11!–~17! were used in the calculations:X̄s
2

5(a22b2)(12X̄t
2)5(a22b2)b21(X̄tX̄s)5(a22b2)a21L.

The parametersD,a,b5au/(Dv), and v i are defined by
Eqs.~18!, ~26!, and~30!.

The angular momentumJ5*s0

s3(XPy2Y Px)ds of the

state~11! is calculated in a similar way:

J5
a

2v S E2(
i 51

3

miA12v i
2D . ~43!

The latter relation betweenE, J, and the angular frequency
V5v/a has almost the same form as in the string model of
a meson@3#.

Expressions~42! and ~43! set an implicit nonlinear con-
nection betweenE andJ of the considered system. A form of
this connection depends on the topological type
(n,k;n1 ,n2 ,n3) of the state of the system.

In Fig. 6 the results of the numerical calculation the de-
pendenceJ on E2 are shown for various states of the systems
with fixed m25m350.3, g53/(16p). Such a choice ofg
approximately corresponds to the experimental value
a8.1 GeV22. One can suppose conditionally thatE2 in Fig.
6 is measured in GeV2 andJ in units \.

Curves 1, 2, 3, and 4 describe the simple motions of the
system correspondingly withm150.05, m150.3, m150.6,
and m151. Curve 5 is the exotic state of the symmetric
system with equal massesm15m25m350.3 and with topo-
logical type of this state~6,2;1,1,1! ~curve 6 in Fig. 5!.

The symbol T on curve 4 shows the point of transforma-
tion of the triangular configuration of this system withm1
51.m21m350.6 to the rectilinear configuration. This
point of transformation corresponds to the satisfying of Eqs.
~34!. A form of the curvilinear triangle in the vicinity of such
a point is shown in Fig. 3.

The analysis shows that in the nonrelativistic limit the
asymptotic behavior of the functionJ(E) depends on satis-

faction of the triangle inequality between three massesmi . If
each mass is less than the sum of two others, the limiting
relations~33! for the simple state take place, and energy~42!
of this state has the formE5( i 51

3 mi1
3
2 m1m2m3

21p2v2

1o(v2), where v is an infinitesimal. The considered
asymptotic relation in this case is

J.S 2

3D 3/2 Am1m2m3

g~m11m21m3! S E2(
i 51

3

mi D 3/2

, v i!1.

If one of the masses, for example,m1 , is larger then the
sum of two others~see Fig. 3 and curve 4 in Fig. 6!, then the
nonrelativistic asymptotic case describes a rotation of a rec-
tilinear double string with two massesm2 andm3 at the ends
and a massm1 at the rotational center. In this limit for the
simple state the following expression takes place:

J.S 2

3D 3/2 1

2g
A m2m3

m21m3
S E2(

i 51

3

mi D 3/2

, v i!1.

It looks similar to the formula in Ref.@3# for the string model
of a meson and may be deduced from solution~41!, but the
tension of the string equals 2g.

The exponent 3/2 is the same for both cases considered.
So graphs 1–4 in Fig. 6 have similar forms and curve 4 in
the vicinity of the transformation point is rather smooth.

In the opposite ultrarelativistic limitv i→1, E→`, J
→` the analysis of dependenceJ(E) includes substituting
limiting formulas ~38! and expressionsvdi5p(ni11)
2d i , u5pk(12du), A12v i

25« i with infinitesimals d i ,
du , « i @generalization of Eq.~36!# into Eqs.~22!–~30!, ~42!
and ~43!. Expansion in series in Eqs.~25!, ~27!, and ~30!
results in the following relations between the infinitesimals:

hi.2
An22k2

n
« i S 11

n222k2

2~n22k2!
« i

2D ,

d i

Ami1Ami 11

.
d j

Amj1Amj 11

.
n

An22k2

« i

Ami

,

(
i 51

3

d i.
2nm1

21/2

An22k2 S (i 51

3

mi
1/2D «1

1
nm1

23/2

~n22k2!3/2S n222k2

2
m1(

i 51

3

mi
1/2

2
n226k2

6 (
i 51

3

mi
3/2D «1

3 .

By substitution of these and analogous relations into Eqs.
~32!, ~42!, and~43! we obtain the ultrarelativistic asymptotic
dependence for a state with an arbitrary type (n,k;n1 ,n2 ,n3)

J.a8E21a1E1/2, v i→1, ~44!

where

FIG. 6. DependenceJ(E2) for the simple motions with various
mi ~1–4! and for the exotic state~5!.

STRING BARYONIC MODEL ‘‘TRIANGLE’’ : . . . PHYSICAL REVIEW D 58 114009

114009-9



a85
1

2pg

n

n22k2 , a152
&n~n22k2!23/4

3Apg
(
i 51

3

mi
3/2.

This is close to the standard linear formJ5a8E21a0 .
The slope coefficient in Eq.~44! differs from the Nambu

value for the mesonic modela851/(2pg) by the factor
n/(n22k2). This factor equals 3/8 for simple motions and
attains the maximal value 1/2~under admissiblen andk! for
‘‘quark-diquark’’ motions withn52, k50. The latter case
differs from the quark-diquark baryon model only by the
substitutiong→2g.

The ‘‘quark-diquark’’ state is preferable if we assume the
principle of minimal energy: the string system with givenJ
chooses the configuration with the minimal energy@7,8#.

The first summand in Eq.~42! that could be interpreted as
the ‘‘string energy’’ or ‘‘gluon energy’’ in the limitv i→1 or
« i→0 grows as« i

22 , but the last summands, ‘‘quark kinetic
energy’’ (mi /« i , grow as« i

21 . So in the ultrarelativistic
limit the ‘‘string energy’’ dominates, and the slope coeffi-
cient a8 in Eq. ~44! does not depend on quark massesmi .

The coefficienta1 , otherwise, is determined by the com-
bination(mi

3/2. This fact gives the possibility of estimating
~in the model frameworks! the mentioned sum and quark
massesmi . This estimation will be accurate only for baryons
which satisfy two conditions: the quark motion is to be rela-
tivistic and close to classic~the model is classic with spinless
quarks!. The latter condition is equivalent to the standard
inequality J/\@1 and in particular, results from the com-
parison of typical sizes of the ‘‘triangle’’ system in the rela-
tivistic case@if E@miA12v i

2 in Eq. ~43!#

Ri5
a

v
v i.

2J

E
v i.3.95310214

J

\

1 GeV

E

v i

c
cm

with the corresponding length\/p.\/E. Furthermore, the
motion is relativistic if the quarks are not very heavy:mi
!M5E.

Express the combination(mi
3/2 from Eq. ~44!

(
i 51

3

mi
3/2.

3~n22k2!21/4

23/2Ap
S E3/22

J

a8AE
D . ~45!

It is natural to suppose that the states of the model are simple
~n53, k51! or ‘‘quark-diquark’’ ~n52, k50!. For these
two cases the mass estimations differ from each other by the
small factor.21/6.

The expression in the parentheses on the right-hand side
~RHS! of Eq. ~45! is a small difference of two large values.
So it is very sensitive to errors inJ and E. The simplest
quantum correction to these values due to quark spins im-
plies an additionS5( i 51

3 si ~quark spin projection! to the
classic angular momentum~43! and DE5DESS1DESO to
the energy~42!. The latter correction results from spin-spin
(DESS) and spin-orbit (DESO) interaction of quarks. The
valueDESO is supposed to be due to pure Thomas precession
of quark spins@8,17#, but there are some doubts as to the
form and the sign of this correction. A precise form ofDE is

to be found only from a consecutive quantum theory of this
baryon model that has not yet been constructed.

In the examples below the spin correction was not made.
The results of using Eq.~45! for estimating quark masses on
examples of two Regge trajectories~nucleonic and for
strangeL particles! are shown in Table III. Masses ofu and
d quarks are assumed to be equal. Heremud and ms are
effective quark masses measured in GeV;J is in units of\.
The valuesms were calculated under the assumption that
mud!ms , andms* under the assumptionmud.0.1 GeV.

The error ranges in determinatingmi are due to error ranges
in particle massesM which influence the valuea8. The
small difference between the results for the simple and
‘‘quark-diquark’’ configurations is also included in the error
ranges. Note that the considered model~and other mentioned
string models! is applicable only to the orbitally excited
baryon states~resonances! with J>5/2 and is not adequate
for p, n, andL particles.

We may conclude that quark masses calculated by Eq.
~45! are steady with growingJ. But the found valuesmud
.100 MeV andms.250 MeV ~larger than other data for
free quark masses@18# and less then the constituent masses
@8#! are preliminary and depend on the spin correction.

The necessity of the spin correction is demonstrated by
the following fact. For the Regge trajectory withD reso-
nances (S53/2) Eq.~45! results in small negative values of
(mi

3/2 ~error boxes include some positive range!. But with
substitutingJ21/2 instead ofJ the formula~45! gives the
steady valuemud.0.1 GeV for heavyD resonances.

With growing E andJ the influence of the unknownDE
on the valuesmi in Eq. ~45! diminishes, but too slowly—as
E21/2 or J21/4. So for the available baryon mass range 1–3
GeV the spin correction in Eq.~45! is required for a valid
estimation of the quark masses in the frameworks of the
considered model.

CONCLUSION

In the present paper a set of rotational motions of the
baryon model ‘‘triangle,’’ interesting from a geometric point
of view, were investigated on the classic level. The quanti-
zation in this model as in the string model of meson with
massive ends@2,12# encountered some problems connected
with the nonlinear form of the boundary conditions~8!.
Progress in this direction, for example, a description of quark
spins, will give the possibility of a precise model prediction
of the effective quark masses through comparison of calcu-

TABLE III. Effective quark mass predictions.

J 1/2 5/2 9/2

Particle n,p N(1680) N(2220)
mud 0.13860.015 0.10560.03 0.1160.02

Particle L L~1815! L~2350!

ms 0.4160.03 0.34560.07 0.3560.055
ms* 0.3460.035 0.2660.07 0.2760.06
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lated dependenceJ(E2) with the experimental Regge trajec-
tories. But the problem of quantization needs special re-
search which is beyond the present paper.

On the other hand, the slopea8 was finally determined by
Eq. ~44! on the classic level. It was mentioned that this co-
efficient in the baryonic model ‘‘triangle’’ differs from the
mesonic slopea851/(2pg) by a factor 1/2 for the ‘‘quark-
diquark’’ states and by a factor 3/8 for the simple states. The
experimental valuea8.1 GeV22 is approximately equal for
mesons and baryons. So an effective value of string tensiong
in the model ‘‘triangle’’ is to be about 1/2 or 3/8 of the
tension in the model of a meson. This is probably connected
with different energies of QCD interaction in the pairs:
quark-quark and quark-antiquark. For the sake of compari-
son note that in the three-string model@4–7# this factor
equals 2/3, i.e., the Regge slope in the ultrarelativistic limit
is a85 2

3 (2pg)21, and the effective string tension is to dif-
fer by the same factor from the mesonic one.

In the quark-diquark model and in the linear configuration
the Regge slopea851/(2pg) equals the mesonic one. So
these models explain the equality of valuesa8 for mesons

and baryons in a natural way~the rotational motions of these
models are mesonlike!. But this advantage is balanced on an
explicit dissymetry of the quarks in both models. Further-
more, the ‘‘triangle’’ and Y configurations unlike the two
others string baryon models are QSD motivated in the Wil-
son loop operator approach@10#.

For a description of baryons on the Regge trajectories the
‘‘quark-diquark’’ states and the simple states~Fig. 2–4! of
the model ‘‘triangle’’ were used. Under the assumption that
the energy of the orbitally excited string state for the given
angular momentumJ is minimal @7,8# these configurations
are preferable, and among them is the ‘‘quark-diquark’’ one.

The exotic states~Fig. 5! naturally emerging in this model
are probably too exotic for physical applications. Perhaps,
they have some connection with such undetected particles as
hybrids.
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