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We argue that, at a moderately large momentum transfer2t&10 GeV2, hadronic form factors and wide-
angle Compton scattering amplitudes are dominated by a mechanism corresponding to the overlap of soft wave
functions. We show that the soft contribution in both cases can be described in terms of the same universal
nonforward parton densities~ND’s! F(x;t), which are the simplest hybrids of the usual parton densities and
hadronic form factors. We propose a simple model for ND’s possessing required reduction properties. Our
model easily reproduces the observed magnitude and the dipolet dependence of the proton form factorF1

p(t)
in the region 1 GeV2,2t,10 GeV2. Our results for the wide-angle Compton scattering cross section follow
the angular dependence of existing data and are rather close to the data in magnitude.
@S0556-2821~98!01321-6#

PACS number~s!: 13.60.Fz, 12.38.Bx, 13.60.Le

I. INTRODUCTION

Compton scattering in its various versions provides a
unique tool for studying hadronic structure. The Compton
amplitude probes the hadrons through a coupling of two
electromagnetic currents and in this aspect it can be consid-
ered as a generalization of hadronic form factors. In QCD,
the photons interact with the quarks of a hadron through a
vertex which, in the lowest approximation, has a pointlike
structure. However, in the soft regime, strong interactions
produce large corrections uncalculable within the perturba-
tive QCD framework. To take advantage of the basic point-
like structure of the photon-quark coupling and the
asymptotic freedom feature of QCD, one should choose a
specific kinematics in which the behavior of the relevant am-
plitude is dominated by short~or, more precisely, lightlike!
distances. The general feature of all such types of kinematics
is the presence of a large momentum transfer. For Compton
amplitudes@see Fig. 1~a!#, there are several situations when
large momentum transfer induces dominance of configura-
tions involving lightlike distances:~i! both photons are far
off-shell and have equal spacelike virtuality: virtual forward
Compton amplitude, its imaginary part determines structure
functions of deep inelastic scattering~DIS!; ~ii ! initial photon
is highly virtual, the final one is real and the momentum
transfer to the hadron is small: deeply virtual Compton scat-
tering ~DVCS! amplitude;~iii ! both photons are real but the
momentum transfer is large: wide-angle Compton scattering
~WACS! amplitude, the study of which is the ultimate goal
of the present paper.

Our main statement is that at accessible momentum trans-
fers utu&10 GeV2, the WACS amplitude is dominated by
handbag diagrams@Figs. 1~b!,1~c!#, just like in DIS and
DVCS. In the most general case, the nonperturbative part of
the handbag contribution is described by nonforward double
distributions~DD’s! F(x,y;t),G(x,y;t), etc., which can be

related to the usual parton densitiesf (x), D f (x) and nucleon
form factors such asF1(t),GA(t). Among the arguments of
DD’s, x is the fraction of the initial hadron momentum car-
ried by the active parton andy is the fraction of the momen-
tum transferr . The description of the WACS amplitude sim-
plifies when one can neglect they dependence of the hard
part and integrate out they dependence of the double distri-
butions. In that case, the long-distance dynamics is described
by nonforward parton densities~ND’s! F(x;t),G(x;t), etc.
The latter can be interpreted as the usual parton densities
f (x) supplemented by a form factor typet dependence. We
propose a simple model for the relevant ND’s which both
satisfies the relation betweenF(x;t) and usual parton densi-
ties f (x) and produces a good description of theF1(t) form
factor up tot;210 GeV2. We use this model to calculate
the WACS amplitude and obtain results which are rather
close to existing data.

II. VIRTUAL COMPTON AMPLITUDES

The forward virtual Compton amplitude whose imaginary
part gives structure functions of deep inelastic scattering
~see, e.g., Ref.@1#! is the classic example of a light cone
dominated Compton amplitude. In this case, the ‘‘final’’
photon has momentumq85q coinciding with that of the
initial one. The momentap,p8 of the initial and final hadrons
also coincide. The total c.m. energy of the photon-hadron
systems5(p1q)2 should be above the resonance region,
and the Bjorken ratioxB j5Q2/2(pq) is finite. The light cone
dominance is secured by high virtuality of the photons:
2q2[Q2*1 GeV2. In the large-Q2 limit, the leading con-
tribution in the lowestas order is given by handbag dia-
grams in which the perturbatively calculable hard quark
propagator is convoluted with parton distribution functions
f a(x) (a5u,d,s, . . . ) which describe and parametrize non-
perturbative information about the hadronic structure.

The condition that both photons are highly virtual may be
relaxed by taking a real photon in the final state. Keeping the
momentum transfert[(p2p8)2 to the hadron as small as
possible, one arrives at kinematics of the deeply virtual
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Compton scattering the importance of which was recently
emphasized by Ji@2# ~see also Ref.@3#!. Having large virtu-
ality Q2 of the initial photon is sufficient to guarantee that in
the Bjorken limit the leading power contributions in 1/Q2 are
generated by the strongest light cone singularities@4–7#,
with the handbag diagrams being the starting point of theas
expansion. The most important contribution to the DVCS
amplitude is given by a convolution of a hard quark propa-
gator and a nonperturbative function describing long-
distance dynamics, which in the most general case is given
by nonforward double distributionsF(x,y;t),G(x,y;t), . . .
@3,5#.

The DD’s are rather complicated functions. They specify
the fractionsxp and yr of the initial hadron momentump
and the momentum transferr[p2p8 carried by the active
parton: k;xp1yr. The DD’s vanish outside the triangle
region 0<x1y<1 @3,5#. In addition tox and y, they also
depend on the invariant momentum transfert5(p82p)2. In
some limiting cases, the double distributions reduce to sim-
pler and already known functions. Forr 50, the matrix ele-
ments coincide with the forward ones defining the usual par-
ton densities. This results in the following ‘‘reduction
relations’’ @3,5#:

E
0

12x

Fa~x,y;t50!dy5 f a~x!. ~1!

Integrating properly weighted sums of quark and antiquark
DD’s over x one obtains the Dirac form factor

(
a

eaE
0

1

dxE
0

12x

@Fa~x,y;t !2Fā~x,y;t !#dy5F1~ t !,

~2!

whereea is the electric charge of the ‘‘a’’ quark. Just like for
form factors, one should take into account extra double dis-
tributions Ka(x,y;t) corresponding to a hadron helicity flip
in the nonforward matrix element@2#. These distributions are
related to the Pauli form factorF2(t): one should just sub-
stitute Fa,ā by Ka,ā and F1 by F2 in Eq. ~2!. A common
element of these reduction formulas is an integration overy.
Hence, it is convenient to introduce intermediate functions

F a~x;t !5E
0

12x

Fa~x,y;t !dy,

K a~x;t !5E
0

12x

Ka~x,y;t !dy. ~3!

They satisfy the reduction formulas

F a~x;t50!5 f a~x!,

(
a

eaE
0

1

@F a~x;t !2F ā~x;t !#dx5F1~ t !, ~4!

(
a

eaE
0

1

@K a~x;t !2K ā~x;t !#dx5F2~ t !, ~5!

which show that these functions are the simplest hybrids of
the usual parton densities and form factors. For this reason,
we call themnonforward parton densities. Note that the
t50 limit of the ‘‘magnetic’’ ND’s exists: K a(x;t50)
[ka(x). In particular, the integral

(
a

eaE
0

1

@ka~x!2kā~x!#dx5kp ~6!

gives the anomalous magnetic moment of the proton. Knowl-
edge of thex moment ofka(x)’s is needed to determine the
contribution of the quark orbital angular momentum to the
proton spin@2#. Since theK-type DD’s are always accompa-
nied by ther m5pm2pm8 factor, they are invisible in deep
inelastic scattering and other inclusive processes related to
strictly forward r 50 matrix elements.

There are also parton-helicity sensitive double distribu-
tions Ga(x,y;t) and Pa(x,y;t). The first one reduces to the
usual spin-dependent densitiesD f a(x) in the r 50 limit and
gives the axial form factorFA(t) after x,y integration. The
second one is related to the pseudoscalar form factorFP(t).

In the DVCS kinematics,utu is assumed to be small com-
pared toQ2, and for this reason thet andmp

2 dependence of
the short-distance amplitude in Refs.@2–5# was neglected.1

This is equivalent to approximating the active parton mo-

1One should not think that such a dependence is necessarily a
higher twist effect: the lowest twist contribution has a calculable
dependence ont and mp

2 analogous to the Nachtmann-Georgi-
PolitzerO(mp

2/Q2) target mass corrections in DIS@8,9#.

FIG. 1. ~a! General Compton amplitude,~b! s-channel handbag diagram, and~c! u-channel handbag diagram.
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mentum k by its plus component alone:k→xp11yr1.
Treatingz[r 1/p1 as an external parameter and using the
total fractionX[x1zy as an independent variable, one ar-
rives at an alternative description of the DVCS scaling limit
in terms of the nonforward parton distributions2 @10,5#
~NFPD’s! Fz(X;t). They are related to double distributions
by

F z
a,ā~X;t !5E

0

min$X/z,X̄/ z̄%
Fa,ā~X2zy,y;t !dy. ~7!

In a similar way, one can incorporate the relevant double

distributions to define also ‘‘magnetic’’K z
a,ā(X;t) and

parton-helicity sensitive nonforward distributionsG z
a,ā(X;t)

andP z
a,ā(X;t) @2,14,15#. In addition to the usual parton mo-

mentum fraction variableX and the invariant momentum
transfert, the NFPD’s also depend on the skewedness pa-
rameter z5r 1/p1 specifying the longitudinal momentum
asymmetry of the nonforward matrix element. This asymme-
try appears because it is impossible to convert a highly vir-
tual initial photon into a real final photon without a longitu-
dinal momentum transfer. In general, one can use different
pairs of vectors to specifiy the longitudinal direction:
(p,q), (p,q8) or (P,q) with P5(p1p8)/2, etc., resulting
in different t-dependent expressions forz. However, in the
~formal! scaling limit t→0, mp

2→0 all these expressions for
the skewedness parameterz coincide with the Bjorken ratio
xB j5Q2/2(pq) @3,5#.

III. MODELING ND’S

Our final goal in the present paper is to get an estimate of
the handbag contributions for the large-t real Compton scat-

tering. Since the initial photon in that case is also real:Q2

50 ~and hencexB j50), it is natural to expect that the non-
perturbative functions which appear in WACS correspond to
the z50 limit of the nonforward parton distributions3

F z
a(x;t). It is easy to see from Eqs.~3!,~7! that in this limit

the NFPD’s reduce to the nonforward parton densities
F a(x;t) introduced above:

Fz50
a ~x;t !5F a~x;t !. ~8!

The simplification is that ND’s depend on ‘‘only two’’ vari-
ablesx andt, with this dependence constrained by reduction
formulas~4!,~5!. Furthermore, it is possible to give an inter-
pretation of nonforward densities in terms of the light-cone
wave functions. Consider for simplicity a two-body bound
state whose lowest Fock component is described by a light
cone wave functionC(x,k'). Choosing a frame where the
momentum transferr is purely transverser 5r' , we can
write the two-body contribution into the form factor@Fig.
2~a!# as @16#

F ~ tb!~ t !5E
0

1

dxE C* ~x,k'1 x̄r'!C~x,k'!
d2k'

16p3 , ~9!

where x̄[12x. Comparing this expression with the reduc-
tion formula ~4!, we conclude@see Fig. 2~b!# that

F ~ tb!~x,t !5E C* ~x,k'1 x̄r'!C~x,k'!
d2k'

16p3 ~10!

is the two-body contribution into the nonforward parton den-
sity F(x,t). Assuming a Gaussian dependence on the trans-
verse momentumk' ~see Ref.@16#!

C~x,k'!5F~x!e2k'
2 /2xx̄l2

, ~11!

we get
2Other terminology, ‘‘off-forward’’ @2#, ‘‘nondiagonal’’ @11#, and

‘‘off-diagonal’’ @12,13#, is also used in the literature. Off-forward
parton distributions introduced by Ji in his pioneering papers on
DVCS @2,4# are equivalent though not identical to the nonforward
ones, while ‘‘nondiagonal’’ and ‘‘off-diagonal’’ distributions essen-
tially coincide with NFPD’s, see Ref.@5# for details.

3Provided that one can neglect thet dependence of the hard part,
see a footnote above and discussion in Sec. VI.

FIG. 2. ~a! Structure of the effective two-body contribution to form factor in the light cone formalism.~b! Form factor as anx integral
of nonforward parton densities.
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F ~ tb!~x,t !5 f ~ tb!~x!ex̄t/4xl2
, ~12!

where

f ~ tb!~x!5
xx̄l2

16p2
F2~x!5F ~ tb!~x,t50! ~13!

is the two-body part of the relevant parton density. Within
the light-cone approach, to get the total result for either usual
f (x) or nonforward parton densitiesF(x,t), one should add
the contributions due to higher Fock components. By no
means are these contributions small, e.g., the valenced̄u
contribution into the normalization of thep1 form factor at
t50 is less than 25%@16#. In the absence of a formalism
providing explicit expressions for an infinite tower of light-
cone wave functions we choose to treat Eq.~12! as a guide
for fixing interplay between thet andx dependences of ND’s
and propose to model them by

F a~x,t !5 f a~x!ex̄t/4xl2
5

f a~x!

pxx̄l2

3E e2„k'
2

1~k'1 x̄r'!2
…/2xx̄l2

d2k' . ~14!

The functionsf a(x) here are the usual parton densities as-
sumed to be taken from existing parametrizations such as
Glück-Reya-Vogt ~GRV!, Martin-Roberts-Stirling~MRS!,
CTEQ, etc. In thet50 limit ~recall thatt is negative! this
model, by construction, satisfies the first of reduction formu-
las ~4!. Within the Gaussian ansatz~14!, the basic scalel
specifies the average transverse momentum carried by the
quarks. In particular, for valence quarks

^k'
2 &a5

l2

Na
E

0

1

xx̄f a
val~x!dx, ~15!

whereNu52, Nd51 are the numbers of valencea quarks in
the proton.

To fix the magnitude ofl, we use the second reduction
formula in ~4! relatingF a(x,t)’s to the F1(t) form factor.
To this end, we take the following simple expressions for the
valence distributions:

f u
val~x!51.89x20.4~12x!3.5~116x!, ~16!

f d
val~x!50.54x20.6~12x!4.2~118x!. ~17!

They closely reproduce the relevant curves given by the
GRV parametrization@17# at a low normalization pointQ2

;1 GeV2. The best agreement between our model

F1
soft~ t !5E

0

1

@euf u
val~x!1edf d

val~x!#ex̄t/4xl2
dx ~18!

and experimental data@18# in the moderately larget region
1 GeV2,utu,10 GeV2 is reached forl250.7 GeV2 ~see
Fig. 3!. This value gives a reasonable magnitude

^k'
2 &u5~290 MeV!2, ^k'

2 &d5~250 MeV!2 ~19!

for the average transverse momentum of the valenceu andd
quarks in the proton.

Similarly, building a model for the parton helicity sensi-
tive ND’s G a(x,t) one can take theirt50 shape from exist-
ing parametrizations for spin-dependent parton distributions
D f a(x) and then fix the relevantl parameter by fitting the
GA(t) form factor. The case of hadron spin-flip distributions
K a(x,t) andP a(x;t) is more complicated since the distribu-
tions ka(x), pa(x) are unknown.

At t50, our model by construction gives a correct nor-
malizationF1

p(t50)51 for the form factor. However, if one
would try to find the derivative (d/dt)F1

p(t) at t50 by ex-

panding the exponential exp@x̄t/xl2# into the Taylor series
under the integral~18!, one would get a divergent expres-
sion. An analogous problem is well known in applications of
QCD sum rules to form factors at smallt @19–22#. The di-
vergence is related to the long-distance propagation of mass-
less quarks in thet channel. Formally, this is revealed by
singularities starting att50. However, F1

p(t) should not
have singularities for timeliket up to 4mp

2 , with the
r-meson peak att5mr

2;0.6 GeV2 being the most promi-
nent feature of thet-channel spectrum. Technically, the sin-
gularities of the original expression are singled out into bilo-
cal correlators@23# which are substituted by their realistic
version with correct spectral properties~usually the simplest
model with r and r8 terms is used!. An important point is
that such a modification is needed only when one calculates
form factors in the small-t region: for 2t*1 GeV2, the
correction terms should vanish faster than any power of 1/t
@21#. In our case, the maximum deviation of the curve for
F1

p(t) given by Eq.~18! from the experimental data in the

FIG. 3. RatioF1
p(t)/D(t) of theF1

p(t) form factor to the dipole
fit D(t)51/(12t/0.71 GeV2)2. Curve is based on Eqs.~16!–~18!
with l250.7 GeV2. Experimental data are taken from Ref.@18#.
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small-t region2t&1 GeV2 is 15%. Hence, if one is willing
to tolerate such an inaccuracy, one can use our model start-
ing with t50.

IV. SOFT VS HARD CONTRIBUTIONS
TO FORM FACTORS

Our curve is within 5% from the data points@18# for
1 GeV2&2t&6 GeV2 and does not deviate from them by
more than 10% up to 9 GeV2. Modeling thet dependence
by a more complicated formula~e.g., assuming a slower de-
crease at larget and/or choosing differentl ’s for u and d
quarks and/or splitting ND’s into several components with
different l ’s, etc.! or changing the shape of parton densities
f a(x) one can improve the quality of the fit and extend
agreement with the data to highert. Such a fine-tuning is not
our goal here. We just want to emphasize that a reasonable
description of theF1(t) data in a wide region 1 GeV2,utu
,10 GeV2 was obtained by fixing just a single parameterl
reflecting the proton size. Moreover, we could fixl from the
requirement that̂k'

2 &;(300 MeV)2 and present our curve
for F1(t) as a successful prediction of the model. We inter-
pret this success as evidence that the model correctly catches
the gross features of the underlying physics.

Since our model implies a Gaussian dependence on the
transverse momentum, it includes only what is usually re-
ferred to as an overlap of soft wave functions. It completely
neglects effects due to hard perturbative QCD~PQCD! gluon
exchanges generating the power-lawO@(as /p)2/t2# tail of
the nonforward densities at larget. It is worth pointing out
here that though we take nonforward densitiesF a(x,t) with
an exponential dependence ont, theF1(t) form factor in our
model has a power-law asymptoticsF1

soft(t);(24l2/t)n11

dictated by the (12x)n behavior of the parton densities forx
close to 1. This connection arises because the integral~18!

over x is dominated at larget by the regionx̄;4l2/utu. In
other words, the large-t behavior ofF1(t) in our model is
governed by the Feynman mechanism@1#. One should real-
ize, however, that the relevant scale 4l252.8 GeV2 is
rather large. For this reason, whenutu,10 GeV2, it is pre-
mature to rely on asymptotic estimates for the soft contribu-
tion. Indeed, with n53.5, the asymptotic estimate is
F1

soft(t);t24.5, in apparent contradiction with the ability of
our curve to follow the dipole behavior. The resolution of
this paradox is very simple: the maxima of nonforward den-
sitiesF a(x,t) for utu&10 GeV2 are at rather lowx values
x&0.5.4 Hence, thex-integrals producingF1

soft(t) are not
dominated by thex;1 region yet and the asymptotic esti-
mates are not applicable: the functional dependence of
F1

soft(t) in our model is much more complicated than a
simple power of 1/t.

The fact that our model closely reproduces the experimen-
tally observed dipole like behavior of the proton form factor
is a clear demonstration that such a behavior has nothing to

do with the quark counting rulesF1
p(t);1/t2 @24,25# valid

for the asymptotic behavior of the hard gluon exchange con-
tributions. Our explanation of the observed magnitude and
the t dependence ofF1(t) by a purely soft contribution is in
strong contrast with that of the hard PQCD approach to this
problem. Of course, there is no doubt that in the formal
asymptotic limit utu→`, the dominant contribution to the
F1(t) form factor in QCD is given by diagrams involving
two hard gluon exchanges, with nonperturbative dynamics
described by distribution amplitudes~DA’s! wp(x1 ,x2 ,x3),
wp(y1 ,y2 ,y3) of the initial and final protons@26,27#. How-
ever, attempting to describe the data at accessiblet by hard
contributions only, one is forced to make several unrealistic
assumptions.

The crucial element is the use of humpy DA’s similar to
those proposed by Chernyak and Zhitnitsky@28,27# ~CZ!.
The usual claim is that these DA’s are backed by QCD sum
rule calculations of their lowest moments. However, as we
argued in Ref.@29#, a straightforward version of the QCD
sum rule approach in this case is unreliable because of poor
convergence of the underlying operator product expansion
~OPE!. In the analysis of the QCD sum rules for the mo-
ments of the pion distribution amplitude performed in Refs.
@29,30#, the contribution of exploding higher terms of the
OPE~neglected in the CZ approach! was modeled by nonlo-
cal condensates. The resulting QCD sum rule produces the
pion DA close to the asymptotic one. The statement that the
pion DA is close to its asymptotic form even at a low nor-
malization point is also supported by a lattice calculation of
the second moment of the pion DA@31#, by QCD sum rule
estimate of the magnitude ofwp(x) at the middle point
x51/2 @32#, by the analysis of QCD sum rules for the non-
diagonal correlator@33,34#, by calculation of the pion DA in
the chiral soliton model@35#, and by a direct QCD sum rule
calculation of the large-Q2 behavior of theg* gp0 form fac-
tor @36#. Furthermore, within the light-cone QCD sum rule
approach one can relate the pion DA to the pion parton den-
sities @37# known experimentally. According to the analysis
performed in Ref.@38#, existing data favor the asymptotic
shape. Finally, the humpy pion DA advocated in Ref.@39,27#
is now ruled out by recent experimental data@40# on the
g* gp0 form factor. The data are fully consistent with the
next-to-leading PQCD prediction calculated using the
asymptotic DA@41–43#.

Since the structure of OPE in the pion and nucleon cases
is very similar, we see no reason to expect a significant de-
viation of the nucleon DA from its asymptotic form. In par-
ticular, evidence against humpy nucleon DA’s is provided by
a lattice calculation@44# which does not indicate any signifi-
cant asymmetry. One may argue that the proton DA must be
asymmetric to reflect the fact that theu quarks carry on av-
erage a larger fraction of the proton momentum than thed
quarks. As shown in Ref.@45#, to accomodate this observa-
tion one needs only a moderate shift of the DA maximum
from the center pointx15x25x351/3. Such a shift does not
produce a drastic enhancement of the hard contribution pro-
vided by the humpy DA’s. However, with the asymptotic
DA, the leading twist hard contribution completely fails to
describe the data: it gives zero for the proton magnetic form4See also the discussion in Sec. VI below.
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factor and a wrong-sign~positive! contribution for the neu-
tron magnetic form factor, with the absolute magnitude of
the latter being two orders of magnitude below the data@46#.

Furthermore, as emphasized in Refs.@47,48#, the whole
strategy of getting enhancements from the humpy DA’s is
based on an implicit assumption that one may use the per-
turbative expressionsS(k); k̂/k2, D(k);1/k2 for quark and
gluon propagators up to very small virtualitiesk2

&(300 MeV)2. It is worth recalling now why CZ-type
DA’s give an enhanced contribution. Since quarks in the
proton carry only a fraction of the proton momentum, the
characteristic virtualities;xiyj t of ‘‘hard’’ quarks and glu-
ons inside the short-distance subprocess are smaller than the
total momentum transfert. For a symmetric distribution, one
would expect that̂xi&;1/3. With the humpy DA’s, the av-
eragexi for one of theu quarks is close to 1, and the domi-
nant contribution comes from configurations in which this
quark is active. Then fractionsxi related to passive quarks
are rather small. It is precisely the small magnitude of the
;xiyj t denominators of quark and gluon propagators which
produces the enhancement in the case of the CZ-type DA’s.
Hence, to get large hard contributions, it is absolutely neces-
sary to assume that the perturbative expressionsS(k)
; k̂/k2, D(k);1/k2 for quark and gluon propagators may be
trusted up to very small virtualities.

An instructive illustration of possible modifications due to
finite size or transverse momentum effects is given by the
light-cone calculation of theg* gp0 amplitude @16,42# in
which hard propagator of amasslessquark is convoluted
with the two-body wave functionC(x,k'). Assuming a
Gaussian dependenceC(x,k');exp@2k'

2/2xx̄s# on trans-
verse momentum, one can easily calculate thek' integral to
see that the PQCD propagator factor 1/xQ2 is substituted by
the combination (12exp@2xQ2/2x̄s#)/xQ2 which mono-
tonically tends to a finite limit 1/2s as x→0. Hence, the
effective virtuality is always larger than 2s. The suppression
of low virtualities has a simple explanation: propagation of
quarks and gluons in the transverse direction is restricted by
the finite size of the hadron. Numerically, 2s'1.35 GeV2

in that case. However, even a milder modification of the
‘‘hard’’ propagators by effective quark and gluon masses
1/k2→1/(k22M2) with M2;0.1 GeV2 or model inclusion
of transverse momentum effects strongly reduces the magni-
tude of hard contributions@49#, especially when the CZ type
DA’s are used. For these reasons, a scenario with humpy

DA’s and bare;1/xiyj t propagators~which amounts to ig-
noring finite-size effects! considerably overestimates the size
of hard contributions.

The relative smallness of hard contributions can be easily
understood within the QCD sum rule context. The soft con-
tribution is dual to the lowest-order diagram while the gluon
exchange terms appear in diagrams having a higher order in
as which results in the usualas /p;1/10 suppression factor
per each extra loop. In particular, theas /p suppression fac-
tor is clearly visible in the expression for the hard contribu-
tion to the pion form factor@50–53#

Fp
hard~Q2!uwp5w

p
as5

8pasf p
2

Q2
52S as

p D s0

Q2
. ~20!

Here, the combinations054p2f p
2 '0.67 GeV2;mr

2 is what
is usually called the ‘‘typical hadronic scale’’ in the case of
the pion. At asymptotically highQ2, theO(as /p) suppres-
sion of the hard terms is more than compensated by their
slower decrease withQ2. However, such a compensation
does not occur in the subasymptotic region where the soft
contributions, as we have seen, may have the same effective
power behavior as that predicted by the asymptotic quark
counting rules for the hard contributions. In Ref.@54#, both
the soft contribution and theO(as) corrections for the pion
form factor were calculated together within a QCD sum rule
inspired approach. The ratio of theO(as) terms to the soft
contribution was shown to be in full agreement with the
expectation based on theas /p per loop suppression.

V. COMPTON SCATTERING AMPLITUDE
AT LARGE MOMENTUM TRANSFER

With both photons real, it is not sufficient to have large
photon energy to ensure short-distance dominance: the large-
s, small-t region is strongly affected by Regge contributions.
Hence, having largeutu*1 GeV2 is a necessary condition
for revealing short-distance dynamics.

Consider the Compton scattering amplitude for large val-
ues ofs, u, andt. According to a general rule~see, e.g., Ref.
@5#, and references therein!, to find possible mechanisms
generating power-law contributions in the asymptotic limit
s;2u;2t;Q2 (Q here is just a characteristic scale!, we
should look for subgraphs whose contraction into point or
removal from the diagram kills its dependence on large vari-

FIG. 4. Some configurations responsible for power-law asymptotic contributions for the WACS amplitude.
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ables. Contracted subgraphs correspond to short-distance
~SD! or hard regime while the removed ones to the infrared
~IR! or soft regime. Some possibilities are shown in Fig. 4.

The power counting estimate for each SD subgraph is
given by

AH~Q!;Q42N2S i t i, ~21!

whereN is the number of the external photon lines of the
hard subgraphH and t i is the twist of itsi th external parton
line (t51 for quarks and physical gluons andt50 for lon-
gitudinal gluons!.

The perturbative estimate for an IR contribution is given
by

AS~Q!&Q2S j t j , ~22!

where summation is over the external lines of the soft sub-
graph S. The infrared regime corresponds to the Feynman
mechanism. However, we should keep in mind that the per-
turbative estimate implies a pointlike coupling of three
quarks to the proton field while in real life the proton wave
function is much softer. In particular, the perturbative esti-
mate of the IR regime for the proton form factor gives
F(Q2)&Q24, allowing for 1/Q4 behavior in principle. To
get such an asymptotic behavior from our ND models, we
should assume thatf (x);12x for x close to 1. More real-
istic functions dictate a faster decrease ofF(Q2) in the
asymptoticQ→` limit. This is not surprising as the IR re-
gime is essentially nonperturbative and theQ dependence of
the soft contributions should be better taken from a reason-
able model rather than from perturbation theory. Again,
since accessibleQ’s are far from being asymptotic, the ‘‘ob-

served’’ power behavior of the soft contribution in this re-
gion may strongly differ from the asymptotic powers given
by the Feynman mechanism.

The simplest contributions for the WACS amplitude are
given by thes- and u-channel handbag diagrams, Fig. 5~a!,
5~b!. They correspond to a combined SD-IR regime of Fig.
4a: the dependence ons ~or u) is killed by contracting into
point the quark line connecting the photon vertices while the
t dependence is killed by removal of a soft subgraphS. The
SD regime in this case givesAH(s);s0 behavior. The non-
perturbative part is given by the proton nonforward DD’s
which determine thet dependence of the total contribution.
Another O(s0) configuration is shown in Fig. 5~c!. In this
case, a hard gluon propagator is convoluted with the proton
and photon DD’s. Similarly to the usual photon structure
functions, the photon DD’s can be divided into the perturba-
tive and the nonperturbative part. The latter corresponds to
hadronic component of the real photon while the first one to
a direct pointlike quark-photon coupling. It can be treated as
a part of the one-loop correction to the handbag diagram@see
Fig. 5~d!# and is accompanied by theas /p suppression fac-
tor. The hadronic component of the photon DD’s has also an
extra form factor type suppression;m2/t.

Just like in the form factor case, the contribution domi-
nating in the formal asymptotic limits,utu,uuu→`, is given
by diagrams corresponding to the pure SD regime, see Fig.
4~d!. The hard subraphH involves two hard gluon exchanges
which results in suppression by a factor (as /p)2;1/100 ab-
sent in the handbag term. The total contribution of all hard
configurations was calculated by Farrar and Zhang@55# and
then recalculated by Kronfeld and Nizˇić @56#. Again, a suf-
ficiently large contribution is only obtained if one uses
humpy DA’s and 1/k2 propagators with no finite-size effects

FIG. 5. Terms havingO(s0) behavior for larges.

FIG. 6. Configurations involving double and single gluon exchange.
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included. Even with such propagators, the WACS amplitude
calculated assuming the asymptotic DA is negligibly small
@57# compared to existing data. Our arguments concerning
the reliability of CZ enhancements for form factors can be
applied to the wide-angle Compton scattering without any
changes. For these reasons, we ignore the hard contributions
to the WACS amplitude as negligibly small.

Another type of configuration containing hard gluon ex-
change corresponds to the version of the combined SD-IR
regime shown in Fig. 4~c!. In particular, they include dia-
grams such as Fig. 6~b! and also diagrams with photons
coupled to different quarks@‘‘cat’s ears,’’ Fig. 6~c!#. Such
contributions have both higher order and higher twist. This
brings in theas /p factor and an extra 1/s suppression. The
latter is partially compensated by a slower falloff of the four-

quark DD’s with t since only one valence quark should
change its momentum.

VI. MODEL FOR WIDE-ANGLE COMPTON SCATTERING
AMPLITUDE

In this paper, we neglect all the suppressed terms and deal
only with the handbag contributions, Figs. 5~a!, 5~b!, in
which the highly virtual quark propagator connecting the
photon vertices is convoluted with nonforward proton DD’s
parametrizing the overlap of soft wave functions. Since the
basic scale 4l2 characterizing thet dependence of DD’s in
our model is 2.8 GeV2, while existing data are all at mo-
mentum transferst below 5 GeV2, we deal with the region
where the asymptotic estimate~Feynman mechanism! for the
overlap contribution is not working yet. In the coordinate
representation, the sum of two handbag contributions to the
Compton amplitude can be written as

Mmn~p,p8;q,q8!5(
a

ea
2E e2 i ~Qz!^p8u@c̄a~z/2!gmSc~z!gnca~2z/2!1c̄a~2z/2!gnSc~2z!gmca~z/2!#up&d4z, ~23!

where Q5(q1q8)/2 and Sc(z)5 i ẑ/2p2(z2)2 is the hard quark propagator~throughout, we use the ‘‘hat notation’’ẑ
[zaga). The summation over the twist-0 longitudinal gluons adds the usual gauge link between thec̄, c fields which we do
not write down explicitly@gauge link disappears, e.g., in the Fock-Schwinger gaugezaAa(z)50#. Because of the symmetry of
the problem, it is convenient to useP5(p1p8)/2 ~see Ref.@2#! and r 5p2p8 as the basic momenta. Applying the Fiertz
transformation and introducing the double distributions by

^p8uc̄a~2z/2!ẑca~z/2!up&5ū~p8!ẑu~p!E
0

1

dxE
2 x̄/2

x̄/2
@e2 i ~kz!F̃a~x,ỹ;t !2ei ~kz!F̃ ā~x,ỹ;t !#dỹ

1
1

4mp
ū~p8!~ ẑr̂ 2 r̂ ẑ!u~p!E

0

1

dxE
2 x̄/2

x̄/2
@e2 i ~kz!K̃a~x,ỹ;t !2ei ~kz!K̃ ā~x,ỹ;t !#dỹ1O~z2! terms ~24!

~we use here the shorthand notationk[xP1 ỹr ) and similarly for the parton helicity sensitive operators

^p8uc̄a~2z/2!ẑg5ca~z/2!up&5ū~p8!ẑg5u~p!E
0

1

dxE
2 x̄/2

x̄/2
@e2 i ~kz!G̃a~x,ỹ;t !1ei ~kz!G̃ā~x,ỹ;t !#dỹ

1
~rz!

mp
ū~p8!g5u~p!E

0

1

dxE
2 x̄/2

x̄/2
@e2 i ~kz!P̃a~x,ỹ;t !1ei ~kz!P̃ā~x,ỹ;t !#dỹ1O~z2! terms, ~25!

we arrive at a leading-twist QCD parton picture with the
tilded DD’s serving as functions describing the long-distance
dynamics. The new DD’sF̃a(x,ỹ;t), etc., are related to the
original DD’s Fa(x,y;t) discussed in Section II by the shift
y5 ỹ1 x̄/2. Therefore, integratingF̃(x,ỹ;t) over ỹ one ob-
tains the same nonforward densitiesF(x;t). The hard quark
propagators for thes andu channel handbag diagrams in this
picture look similar to

xP̂1 ỹr̂ 1Q̂

~xP1 ỹr 1Q!2
5

xP̂1 ỹr̂ 1Q̂

xs̃2~ x̄2/42 ỹ2!t1x2mp
2

and

xP̂1 ỹr̂ 2Q̂

~xP1 ỹr 2Q!2
5

xP̂1 ỹ r̂ 2Q̂

xũ2~ x̄2/42 ỹ2!t1x2mp
2

, ~26!

respectively. We denotes̃52(pq)5s2m2 and ũ5

22(pq8)5u2m2. Since DD’s are even functions ofỹ @58#,
the ỹr̂ terms in the numerators can be dropped. It is legiti-
mate to keepO(mp

2) andO(t) terms in the denominators: the
dependence of hard propagators on target parametersmp

2 and
t can be calculated exactly because of the effect analogous to
the j-scaling in DIS@9# ~see also Ref.@36#!. Note that thet
correction to hard propagators disappears in the large-t limit
dominated by thex;1 integration. Thet corrections are the

A. V. RADYUSHKIN PHYSICAL REVIEW D 58 114008

114008-8



largest fory50. At this value and forx51/2 andt5u ~c.m.
angle of 90°), thet term in the denominator of the most
important second propagator is only 1/8 of theu term. This
ratio increases to 1/3 forx51/3. However, at nonzeroỹ val-
ues, thet corrections are smaller. Hence, thet corrections in
the denominators of hard propagators can produce 10–20 %
effects and should be included in a complete analysis. In the
present paper, we consider a simplified approximation in
which these terms are neglected and hard propagators are
given by the ỹ-independent expressions (xP̂1Q̂)/xs̃ and
(xP̂1Q̂)/xũ. As a result, theỹ integration acts only on the
DD’s F̃(x,ỹ;t) and converts them into nonforward densities
F(x,t). The latter would appear then through two types of
integrals

E
0

1

F a~x,t !dx[F1
a~ t ! and E

0

1

F a~x,t !
dx

x
[R1

a~ t !,

~27!

and similarly forK,G,P. The functionsF1
a(t) are the flavor

components of the usualF1(t) form factor whileR1
a(t) are

the flavor components of a new form factor specific to the
wide-angle Compton scattering. In the formal asymptotic
limit utu→`, the x integrals forF1

a(t) and R1
a(t) are both

dominated in our model by thex;1 region: the large-t be-
havior of these functions is governed by the Feynman
mechanism and their ratio tends to 1 asutu increases@see Fig.
7~a!#. However, due to large value of the effective scale
4l252.8 GeV2, the accessible momentum transferst
&5 GeV2 are very far from being asymptotic.

In Fig. 7~b! we plot F u(x;t) and F u(x;t)/x at t5
22.5 GeV2. It is clear that the relevant integrals are domi-
nated by rather smallx values x&0.5 which results in a
strong enhancement ofR1

u(t) compared toF1
u(t) for utu

&5 GeV2. Note also that thêp8u•••xP̂•••up& matrix ele-
ments can produce onlyt as a large variable while

^p8u•••Q̂•••up& gives s. As a result, the enhanced form
factorsR1

a(t) are accompanied by extras/t enhancement fac-
tors compared to theF1

a(t) terms. In the cross section, these
enhancements are squared, i.e., the contributions due to the
nonenhanced form factorsF1

a(t) are always accompanied by
t2/s2 factors which are smaller than 1/4 for c.m. angles be-
low 90°. Because of double suppression, we neglectF1

a(t)
terms in the present simplified approach.

The contribution due to theK functions appears through
the flavor componentsF2

a(t) of the F2(t) form factor and
their enhanced analoguesR2

a(t). The major part of contribu-
tions due to theK-type ND’s appears in the combination
R1

2(t)2(t/4mp
2)R2

2(t). Experimentally, F2(t)/F1(t)
'1 GeV2/utu. SinceR2 /F2;R1 /F1;1/̂ x&, R2(t) is simi-
larly suppressed compared toR1(t), and we neglect contri-
butions due to theR2

a(t) form factors. We also neglect here
the terms with another spin-flip distributionP related to the
pseudoscalar form factorGP(t) which is dominated byt-
channel pion exchange. Our calculations show that the con-
tribution due to the parton helicity sensitive densitiesG a is
suppressed by the factort2/2s2 compared to that due to the
F a densities. This factor only reaches 1/8 for the c.m. angle
of 90°, and hence theG a contributions are not very signifi-
cant numerically. For simplicity, we approximateG a(x,t) by
F a(x,t). After all these approximations, the WACS cross
section is given by the product

ds

dt
'

2pa2

s̃2 F ~pq!

~pq8!
1

~pq8!

~pq! GR1
2~ t !, ~28!

of the Klein-Nishina cross section@in which we dropped
O(m2) andO(m4) terms# and the square of theR1(t) form
factor

R1~ t !5(
a

ea
2@R1

a~ t !1R1
ā~ t !#. ~29!

In our model,R1(t) is given by

R1~ t !5E
0

1

@eu
2f u

val~x!1ed
2f d

val~x!12~eu
21ed

21es
2! f sea~x!#

3ex̄t/4xl2 dx

x
. ~30!

We included here the sea distributions assuming that they are
all equal f sea(x)5 f u,d,s

sea (x)5 f ū,d̄,s̄(x) and using a simplified
parametrization

f sea~x!50.5x20.75~12x!7 ~31!

which accurately reproduces the GRV formula forQ2

;1 GeV2. Due to suppression of the small-x region by the

FIG. 7. ~a! Ratio R1
u(t)/F1

u(t) and ~b! FunctionsF u(x;t) ~solid line! andF u(x;t)/x ~dashed line! at t522.5 GeV2.
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exponential exp@x̄t/4xl2#, the sea quark contribution is rather
small (;10%) even for2t;1 GeV2 and is invisible for
2t*3 GeV2.

Comparison with existing data@59# is shown in Fig. 8.
Our curves follow the data pattern but are systematically
lower by a factor of 2, with disagreement becoming more
pronounced as the scattering angle increases. Since we ne-
glected several terms each capable of producing up to a 20%
correction in the amplitude, we consider the agreement be-
tween our curves and the data as encouraging. The most
important corrections which should be included in a more
detailed investigation are thet corrections in the denomina-
tors of hard propagators and contributions due to the ‘‘non-
leading’’ K,G,P nonforward densities. The latter, as noted
above, are usually accompanied byt/s and t/u factors, i.e.,
their contribution becomes more significant at larger angles.
The t correction in the most important hard propagator term
1/@xũ2( x̄2/42 ỹ2)t1x2mp

2# also enhances the amplitude at
large angles.

The angular dependence of our results for the combina-
tion s6(ds/dt) is shown in Fig. 9. All the curves for initial
photon ehergies 2, 3, 4, 5, and 6 GeV intersect each other at
uc.m.;60°. This is in good agreement with experimental data
of Ref. @59# where the differential cross section at fixed cm
angles was fitted by powers ofs: ds/dt;s2n(u) with
nexp(60°)55.960.3. Our curves~see Fig. 10! correspond to
nsoft(60°)'6.1 andnsoft(90°)'6.7 which also agrees with
the experimental resultnexp(90°)57.160.4.

This can be compared with the scaling behavior of the
asymptotic hard contribution: modulo logarithms contained
in the as factors, they have a universal angle-independent
powernhard(u)56. For uc.m.5105°, the experimental result
based on just two data points isnexp(105°)56.261.4, while
our model givesnsoft(105°)'7.0. Clearly, better data are
needed to draw any conclusions here.

VII. SUMMARY AND CONCLUSIONS

In this paper, we introduced nonforward parton densities
F(x;t) which are the simplest hybrids of the usual parton
densities and hadronic form factors. We proposed a simple
model for the quark ND’sF a(x;t) which, in thet→0 limit,
reproduces the standard parametrizations for the usual parton
densities and gives a reasonable description of existing data
on the F1

p(t) form factor in a wide range 1 GeV2&2t
&10 GeV2 of momentum transfer. The crucial observation
is that though our model includes only the soft contribution,
the form factor is dominated at accessible energies by rather

FIG. 8. WACS cross section versust: comparison of results
based on Eq.~28! with experimental data.

FIG. 9. Angular dependence of the combinations6(ds/dt).

FIG. 10. s dependence of the differential cross sectionds/dt for
u560° ~dotted line!, u590° ~dashed line!, and u5105° ~solid
line!.
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small momentum fractionsx;0.5 and asymptotic estimates
for soft contributions~corresponding to Feynman mecha-
nism, i.e., dominance of thex;1 region! are not working
yet. We gave arguments that the wide-angle Compton scat-
tering amplitude in the samet region is dominated by two
handbag diagrams. We also found that the largest term con-
tains the same ND’sF(x;t) which determine the behavior of
F1

p(t). However, due to the extra 1/x factor and small value
of ^x&, the WACS amplitude gets a strong enhancement
bringing our predictions close to existing experimental data.
Still, there remains a systematic difference by a factor of 2
between our results and the data.

On the experimental side, data of higher quality are
needed. They are expected from a future experiment at Jef-
ferson Lab@60#, in which better statistical accuracy is ex-
pected and several new ideas will be used to control the
systematic errors.

On the theoretical side, a more detailed approach is
needed which would take into account all nonforward densi-
ties. A more complete analysis should also include calculable
t and mp

2 dependences of the hard quark propagators and
terms which are not enhanced by the 1/^x& factors. It should
be emphasized that keeping thet terms in the denominators
of hard propagators requires a major change in the whole
approach: it would be no longer possible to get a simplified

description in terms of the nonforward densitiesF(x;t). One
should deal then with double distributionsF̃(x,ỹ;t) in all
their complexity and construct a model for their profile in the
ỹ direction. This observation also demonstrates that the
double distributionsF(x,y;t) are the primary objects for
analyzing nonforward matrix elements of light cone opera-
tors. They are more fundamental than their reductions such
as nonforward, off-forward, etc., distributions which work
only when the hard part of the relevant amplitude depends on
a particular linear combinationx1yz of its two argumentsx
and y. A more detailed discussion of double distributions
will be given in a forthcoming publication@61#.
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