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A physically defined effective charge can incorporate quark masses analytically at the flavor thresholds.
Therefore, no matching conditions are required for the evolution of the strong coupling constant through these
thresholds. In this paper, we calculate the massive fermionic corrections to the heavy quark potential through
two loops. The calculation uses a mixed approach of analytical, computer-algebraic and numerical tools
including Monte Carlo integration of finite terms. Strong consistency checks are performed by ensuring the
proper cancellation of all non-local divergences by the appropriate counterterms and by comparing with the
massless limit. The size of the effect for the~gauge invariant! fermionic part ofaV(q2,m2) relative to the
massless case at the charm and bottom flavor thresholds is found to be of order 33%.
@S0556-2821~98!07321-4#

PACS number~s!: 12.39.Pn, 11.10.Hi, 12.38.Bx

I. INTRODUCTION

In analogy to quantum electrodynamics, the heavy quark
potential has been of interest in QCD from very early on
@1–6# as a model for the physical definition of the strong
coupling constant@7#. Since it represents a potentially mea-
surable quantity and gives naturally rise to a physical effec-
tive chargeaV @7#, it is very interesting to study the QCD
flavor thresholds in such a system@8# as the fermionic cor-
rections are separately gauge invariant.

In the minimal subtraction~MS! and the modified MS
(MS) schemes, the running of the coupling constant, by con-
struction, does not know about masses of quarks and since
the couplings are nonphysical, the Appelquist-Carazzone@9#
decoupling theorem is not applicable. One has to turn to
effective descriptions which match theories withm massless
flavors onto a theory withm21 massless and one massive
flavor at the ‘‘heavy’’ quark threshold@10–12#. In this way,
the dependence on the dimensional regularization mass pa-
rameterm is reduced to next to leading order effects by giv-
ing up the analyticity of the coupling at the flavor threshold
@13–18#.

While this procedure of matching conditions and effective
descriptions is certainly workable, from a theoretical stand-
point it would be advantageous to have a physical coupling
constant definition which is analytic at thresholds. In addi-
tion, as a physical observable, the total derivative with re-
spect to the renormalization scalem vanishes. Such a system
is given by identifying the ground state energy of the
vacuum expectation value of the Wilson loop as the potential
V between a static quark-antiquark pair in a color singlet
state@1,4,19#:

V~r ,m2!52 lim
t→`

1

i t
log^0uTrH P expS R dxmAa

mTaD J u0&

~1!

where r denotes the relative distance between the heavy

quarks,m the mass of ‘‘light’’ quarks contributing through
loop effects andTa the generators of the gauge group. It is
then convenient to define the effective chargeaV(q2,m2) as

V~q2,m2![2
4pCFaV~q2,m2!

q2 ~2!

in momentum space. The factorCF is the value of the Ca-
simir operatorTaTa in the fundamental representation of the
external sources and factors out to all orders in perturbation
theory. As one is free to choose the representation of the
external particles, we obtain the static gluino potential by
adopting the adjoint representation.

The massless case was recently calculated in Ref.@20#
and in this paper, we will give all the two loop fermionic
contributions toaV(q2,m2) for all perturbative values of the
momentum transferq2[q0

22q252q2.0 and for arbitrary
values of the fermion massm. In this context we are only
interested in the two loop contributions to the potential in the
effective Schro¨dinger equation for the heavy particles. This
implies, for instance, that not always the whole diagram con-
tributes to the potential as certain parts can already be repro-
duced by the exponentiation of lower order diagrams. The
necessity for this subtlety has its origin in the exponential
present in Eq.~1!. For a detailed discussion, see Ref.@4#.

It is also important to note that the results of massive two
loop integrals presented in this work are also relevant for the
related problem of quark threshold production. For this ap-
plication, though, it would be necessary to treat also the oc-
curring imaginary parts of the integrals numerically as pole
terms will contribute for timelike momentum transfers at the
production thresholdq254m2. A promising approach for
this treatment might be the recently suggested Taylor expan-
sion of integrands around threshold@21# by determining
large and small scales in the problem. The heavy quark ap-
proximation eliminates the possibility of timelike momentum
transfers in this work so that we do not need to worry about
pole terms numerically. Nevertheless, we also list the contri-
butions needed in this case for all integrals.

The paper is outlined as follows:*Present address: University of Durham, Durham, UK.
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In Sec. II we list all the occurring two loop contributions
explicitly in the Feynman gauge and with the usage of heavy
quark effective Feynman rules for the external sources. In
Sec. III the unrenormalized results for the two loop correc-
tions are given in terms of two loop scalar integrals, for
which explicit expressions are listed in Appendix B. Section
IV contains all the required counterterms in the MS-
renormalization scheme and it is shown that all nonlocal di-
vergences cancel. The renormalization constants obtained are
given explicitly and checked with the known results. Section
V contains numerical results which demonstrate that the
massless limit is obtained correctly and display the effect of
including the mass terms for the charm and bottom flavor
thresholds. In Sec. VI we make concluding remarks and in-
dicate future lines of work with the presented results. Appen-
dix A, finally, lists all the reductions from tensor to scalar
integrals needed for the results displayed in Sec. III.

II. THE TWO LOOP CORRECTIONS

In this section we present the non-Abelian contributions
to the heavy quark potential that constitute the new results of
this work. They are depicted in Fig. 2. The QED like dia-
grams, which need to be modified by their respective color
factors, have been known for a long time@22# and can also
be found in Refs.@17,23–25# for instance. They are given
here as well because we would like to be able to separate
non-Abelian and Abelian contributions to the potential. It has
been observed before@17# that their respective threshold be-
havior can be quite different. These diagrams, together with
effectively ‘‘one loop’’ diagrams are given in Fig. 3. The
weighted sum of all the graphs shown, modulo terms already
generated by the exponentiation of the lower order Born and
the one loop vacuum polarization diagram, give the complete

gauge invariant fermionic corrections to the heavy quark po-
tential at two loops in the Feynman gauge. The choice of this
gauge simplifies the calculation because the decomposition
into scalar two loop integrals is easier and it also reduces the
three gluon vertex correction graph to zero in the heavy
quark effective theory. Below we list all contributions at the
two loop level. The abbreviations stand forgse[gluon self
energy, vc[vertex correction, cl[crossed ladder and
olvc[one loop vertex correction.In the heavy quark limit
we use the source gluon vertex and source propagator Feyn-
man rules of heavy quark effective theory@26,27# which are
given in Fig. 1.

With these, and takingvm[(1,0,0,0) andq050 for the
purely spacelike momentum transferq, the two loop dia-
grams of Figs. 2 and 3 read in the Feynman gauge~summed
over the external color degrees of freedom and including a
symmetry factor of12 for the first three amplitudes!:

Mgse1
[

2 ig6m2e

q4

CFCATF

4
da,0db,0E dnk

~2p!n E dnl

~2p!n F Tr$gd~ ł 2k”1m!gg~ ł 1q”1m!ga~ ł 1m!%

~~ l 1q!22m2!~ l 22m2!~~ l 2k!22m2!~k1q!2k2

3~~q2k!ggd,b1~2k22q!dgg,b1~2k1q!bgd,g!G ~3!

Mgse2
[

2 ig6m2e

q4

CFCATF

2
da,0db,0E dnk

~2p!n E dnl

~2p!n F Tr$gg~ ł 2k”1m!gd~ ł 1m!%

~ l 22m2!~~ l 2k!22m2!~k1q!2k4

3~~22q2k!ggs,a1~2k1q!sgg,a1~2k1q!ags,g!~~q2k!sgd,b1~22q2k!dgs,b1~2k1q!bgd,s!G ~4!

Mgse3
[

2 ig6m2e

q4

CFCATF

2
da,0db,0E dnk

~2p!n E dnl

~2p!n FTr$gg~ ł 2k”1m!gd~ ł 1m!%

~ l 22m2!~~ l 2k!22m2!k4

3~gg,bga,d22gg,dga,b1gg,agd,b!G ~5!

Mgse4
[

2 ig6m2e

q4 S CF
22

CFCA

2 DTFda,0db,0E dnk

~2p!n E dnl

~2p!n

3F Tr$ga~ ł 1q”1m!gg~k”1q”1m!gb~k”1m!gg~ ł 1m!%

~~ l 1q!22m2!~ l 22m2!~ l 2k!2~~k1q!22m2!~k22m2!G ~6!

FIG. 1. The Feynman rules for heavy quark effective theory
used in this work for the source propagator and the source gluon
vertex. For anti sources one has to make the replacementv→2v.
The i -« prescription is the same as for the usual fermion propaga-
tor.
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Mgse5
[

2 ig6m2e

q4 CF
2TFda,0db,0E dnk

~2p!n E dnl

~2p!n FTr$ga~k”1q”1m!gb~k”1m!gg~ ł 1m!gg~k”1m!%

~ l 22m2!~ l 2k!2~~k1q!22m2!~k22m2!2 G ~7!

Mvc1
[

ig6m2e

q2

CFCATF

2
da,0db,0dg,0E dnk

~2p!n E dnl

~2p!n

Tr$gg~ ł 2k”1m!ga~ ł 1q”1m!gb~ ł 1m!%

~~ l 1q!22m2!~ l 22m2!~~ l 2k!22m2!~k1q!2k2k0
~8!

Mvc2
[

ig6m2e

q2

CFCATF

2
da,0db,0dg,0E dnk

~2p!n E dnl

~2p!n F Tr$ga~ ł 2k”1m!gn~ ł 1m!%

~ l 22m2!~~ l 2k!22m2!~k1q!2k4k0

3~~q2k!bgn,g1~2k22q!ngb,g1~2k1q!ggn,b!G ~9!

Mvc3
[

ig6m2e

q2

CFCATF

2
da,0db,0E dnk

~2p!n E dnl

~2p!n

Tr$ga~ ł 2k”1m!gb~ ł 1m!%

~ l 22m2!~~ l 2k!22m2!k4~k01 i«!2 ~10!

FIG. 2. The non-Abelian Feynman diagrams contributing to the massive fermionic corrections to the heavy quark potential at the two
loop level. The first two rows contain diagrams with a typical non-Abelian topology. Double lines denote the heavy quarks, single lines the
‘‘light’’ quarks. Color and Lorentz indices are suppressed in the first graph. The notation for the remaining digrams is analogous. The last
line includes the infrared divergent ‘‘Abelian’’ Feynman diagrams. While the topology of these three diagrams is the same as in QED, they
contribute to the potential only in the non-Abelian theory due to color factorsCFCA . In addition, although each diagram is infrared
divergent, their sum is infrared finite.
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Mcl[2 ig6m2e
CFCATF

2
da,0db,0E dnk

~2p!n E dnl

~2p!n

Tr$ga~ ł 2k”1m!gb~ ł 1m!%

~ l 22m2!~~ l 2k!22m2!k4~k1q!2~k01 i«!2 ~11!

Molvc[
ig6m2e

q4

CFCATF

2
da,0db,0E dnl

~2p!n

Tr$ga~ ł 2q”1m!gb~ ł 1m!%

~ l 22m2!~~ l 2q!22m2!
E dnk

~2p!n

1

k2~k01 i«!2 . ~12!

It should be noted that in our case there is no need for an
i -« prescription in the denominators of Eqs.~3! through~9!
as the spacelike nature of the physical momentum transfer
only leads to purely real integrals and no unambiguous pole
terms occur in the denominators of those diagrams. This fea-
ture also simplifies the Monte Carlo integration of the finite
parts of the contributing graphs. The three graphs~10!, ~11!
and ~12! display infrared divergences which cancel in the
sum. The one loop vertex correction graphMolvc vanishes
in dimensional regularization, however, is needed to ensure
the proper cancellation of infrared divergences.

The color factors given are not always the full color fac-
tors. Only those contributing to the potential are listed. The
Casimir invariants@28# for a general SU(N) group are de-
fined by

CA[N, CF[
N221

2N
. ~13!

Furthermore, Tr$TaTb%[TFda,b5 1
2 da,b. The color factor

forMvc1
includes the sum of the graph shown in Fig. 2 plus

the term stemming from the fermion momenta reversed con-
tribution. Only the sum is proportional toCA , the other
terms vanish according to Furry’s theorem, as is the case in
QED. For QCD, the crossed ladder diagrams do contribute as
they contain a color factor proportional toCF

22 CFCA/2,
whereas the straight ladder graph has a color factor propor-
tional toCF

2 only. This will be expounded on in Sec. III A. In
QED, the sum of all vertex, ladder and crossed ladder Feyn-
man diagrams is equivalent to the iteration of the potential in
the Schro¨dinger theory.aVQED

and the effective coupling
@29# differ, therefore, only at three loops due to light by light
scattering contributions.

III. UNRENORMALIZED RESULTS

The two loop integrals needed for the expressions of Eqs.
~3! through ~9! are treated in separate ways in this work
depending on whether or not they contain two or more inter-
nal fermion lines. In the former case we integrate the fermion
loop first as will be explained below. For the vertex correc-
tion contributionMvc1

we integrate the fermion loop ana-
lytically as well with all the Lorentz indices projected to zero
and then proceed with additional Feynman parameters for
the remaining loop integration.

The two point functionsMgse1
, Mgse4

andMgse5
are

treated in a completely different manner as the above tech-
niques would now be too cumbersome. We project the com-
plicated tensor structure onto scalar quantities as described

below and then proceed with an algebraic reduction into sca-
lar two loop integrals. This reduction is programmed in
FORM @30# and details are presented in Appendix A. The
resulting scalar integrals are then evaluated by employing
standard Feynman parameter techniques and explicit results
are listed in Appendix B. Overall results for the various am-
plitudes are obtained by expanding the n-dimensional results
arounde50 with MAPLE. It is important to notice, given the
complexity of the calculation, that the translation intoFOR-

TRAN code was also performed byMAPLE, thus dramatically
reducing the chance of accidental mistakes. The evaluation
of finite parts is done with the Monte Carlo integratorVEGAS

@31#.
For the two point functions we use the following decom-

position into transverse (t) and longitudinal (l ) components:

Pa,b~q![S ga,b2
qaqb

q2 DP t~q2!1
qaqb

q2 P l~q2! ~14!

from which it follows that inn542e dimensions

P t~q2!5
1

n21 S ga,b2
qaqb

q2 DPa,b~q! ~15!

P l~q2!5
qaqb

q2 Pa,b~q!. ~16!

FIG. 3. The infrared finite Feynman diagrams with an Abelian
topology~upper line! contributing to the massive fermionic correc-
tions to the heavy quark potential at the two loop level plus dia-
grams consisting of one loop insertions with non-Abelian terms
~lower line!.

MICHAEL MELLES PHYSICAL REVIEW D 58 114004

114004-4



With this notation and the heavy quark effective Feynman rules depicted in Fig. 1 we arrive at

Mgsei
[

g2CF

q4 da,0db,0Pa,b
i ~q!, i 5$1,...,5%. ~17!

The result of the decomposition for the transverse component of the gluon self energy graphMgse1
, using the relations

given in Appendix A, reads

P t
15

ig4CATF

4~n21! F S n
8

3
2

20

3 D ~A2B1282m2T12835!1~4n210!T2351~824n!A2B121S n
8

3
2

14

3 DT135

116S q22q2
n

2
2m2DT12351q2~4n26!T23451q2~2n24!B12B4528q2m2T1234518A2B45

1
m2

q2 H S n
8

3
2

20

3 D S m2T128351T28352A2B1281
1

m2 A2
2D116T2352S n

8

3
1

28

3 DT135J
1

1

n21 H 2n
2

3
m2T128351nT2352n

7

3
T13524nA2B451n

2

3
A2B12828m2T234524m2T235514T135

1q2~4m2T234551~422n!A2C4552nT2345!1
1

q2 S 4m2~T1352T235!1n
2

3
~m4T128352m2T1351m2T2835

2m2A2B1281A2
2! D J G . ~18!

It is also useful to examine them→0 limit of the above expression as this case was calculated in Ref.@19# and can serve
a valuable test for the above expression. By inspecting the occurring integrals we find the massless limit to correspond to

P tm→0

1 5
ig4CATF

4~n21! F S n
8

3
2

n

n21

7

3
2

14

3
1

4

n21DT135116S q22q2
n

2DT12351q2~2n24!B12B451q2S 4n262
n

n21DT2345G .
~19!

These terms are also, as expected, the only ones contributing to the gluon wave function renormalization constant. In other
words, all divergent parts of the two and one loop integrals which vanish in the massless limit in the expression~18! add up
to zero identically. This in itself is an important check of the overall expression. In the heavy quark limit we can neglect the
timelike component of the four momentum transferq, i.e. q050 as was already mentioned before. This means that we do not
need the longitudinal component ofMgse1

, however, we list it here for completeness:

P l
15

ig4CATF

4 S S n
8

3
2

20

3 D S m2T128352A2B1281
1

2
T135D12T23528A2B4522q2T2345

1
m2

q2 H S n
8

3
2

20

3 D S A2B1282
1

m2 A2
22T28352m2T12835D1S n

8

3
1

28

3 DT135216T235J
1

1

n21 Fn
2

3
m2T128352nT2351n

7

3
T13514nA2B452n

2

3
A2B12818m2T234514m2T235524T135

1q2~nT234512nA2C45524m2T2345524A2C455!1
1

q2 H 4m2~T2352T135!

2n
2

3
~m4T128352m2T1351m2T28352m2A2B1281A2

2!J G D . ~20!

A good check on the consistency of the employed decomposition is given by the absence of infrared divergences. None of
the two point amplitudes in this work is infrared divergent to begin with, however, in intermediate steps of the calculation
those do occur. An example is given above by the two integralsT2355 and T23455 for which only the combinationq2T23455
2T2355 is infrared finite and this is how they enter into Eqs.~18! and~20!. The functionA2C455 only seems to have an infrared
divergence, however, in dimensional regularization it can actually be written as an ultraviolet divergence. This is done in
Appendix B.
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For the two diagrams that have an Abelian topology, Eqs.~6! and~7!, we also give explicit results as usually only their sum
is given in the literature@17,32#. Here, however, we need both contributions separately due to the different color factors. In
addition, Abelian and non-Abelian terms are separately gauge invariant and might display a different threshold behavior@17#.
We find:

P t
45

ig4S CF2
CA

2 DTF

~n21! F S n
8

3
2

16

3 D ~A2B1282m2T12835!1$q2@~4n28!q21~3228n!m2#232m4%T12345
A

1~8n216!~T2352A2B12!132S q22q2
n

2
2m2DT12351S 4n22n

76

3
1

104

3 DT135

1@q2~18n22n2228!116m2#B12B121
1

q2 S 8

3
n~m4T128352m2T1351m2T28352m2A2B1281A2

2!

116m2~T2352T135!2
16

3
~m4T128352m2T1351m2T28352m2A2B1281A2

2! D G ~21!

and for the longitudinal component:

P l
45 ig4S CF2

CA

2 DTFF S n
8

3
2

16

3 D S m2T128351
1

2
T1352A2B128D

1
1

q2 S 16

3
~m4T128352m2T1351m2T28352m2A2B1281A2

2!

116m2~T1352T235!2
8

3
n~m4T128352m2T1351m2T28352m2A2B1281A2

2! D G . ~22!

Similarly, for Eq. ~7! we get the following result:

P t
55

ig4CFTF

~n21! F S n22n
16

3
1

20

3 D ~A2B1282m2T12835!216m2T12351~~1628n!q2m2232m4!T12235

1~n224n14!~q2T128352T283512A2B222A2B2281q2A2C122822q2A2C122!2S n22
14

3
n1

16

3 DT135

1m2~8n216!~T22352A2C122!2
1

q2 S 4

3
n~m4T128352m2T1351m2T28352m2A2B1281A2

2!

18m2~T2352T135!2
8

3
~m4T128352m2T1351m2T28352m2A2B1281A2

2! D G ~23!

and for the longitudinal component:

P l
552 ig4CFTFF S n

4

3
2

8

3D S m2T128351
1

2
T1352A2B128D

1
1

q2 S 8

3
~m4T128352m2T1351m2T28352m2A2B1281A2

2!

18m2~T1352T235!2
4

3
n~m4T128352m2T1351m2T28352m2A2B1281A2

2! D G . ~24!

It can easily be seen that both parts of the two functions in Eqs.~21! and~23! multiplying 1/q2 are identical up to a minus
sign when Eq.~23! is multiplied by the multiplicity factor 2. This is required by the gauge structure of the gluon propagator.
Also their longitudinal parts add up to zero for the terms proportional toCF only. This just checks the well known properties
of the Abelian theory. It does not hold for theCA parts of Eqs.~18! and ~21! as they would get modified by the additional
diagrams. These, however, were calculated in this work without the above reduction scheme as follows:

We use the result of the integrated fermion loop which reads~omitting color and coupling constant factors! @33#:
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pm,n~k,m![meE dnl

~2p!n

Tr$gm~ ł 2k”1m!gn~ ł 1m!%

~ l 22m2!~~ l 2k!22m2!
[~k2gm,n2kmkn!p~k2,m2! ~25!

with

p~k2,m2!5
i ~2 !n/2he/2

~4p!2 GS e

2D E
0

1

dx
8x~12x!

S k2

m2 x~12x!21D e/2 ~26!

whereh is given in Eq.~B5!. For completeness, we also list the sum of the gluon and ghost contributions in the Feynman
gauge@34,35# to the gluon propagator:

pm,n~q![~q2gm,n2qmqn!p~q2!5~q2gm,n2qmqn!

i ze/2GS e

2DGS 22
e

2D 2S 52
3e

2 D
8p2G~42e!S 12

e

2D ~27!

wherez is given in Eq.~B5!. Now we get the following result forMgse2
:

P t
25

2 ig4CATFme

2~n21!
E dnkp~k2,m2!

~2p!n
H 3n2

7

2

~k1q!2 1

n212
1

n

k2 1q2

3n2
7

2

~k1q!2k2 1S n2
3

2D S 1

q2 2
k2

q2~k1q!2 1q2
k212kq

~k1q!2k4D J
~28!

P l
25

2 ig4CATFme

2 E dnkp~k2,m2!

~2p!n
H n1

1

n
2

3

2

k2 1
1

~k1q!2 1

3

2
2n

q2 2
q2

2~k1q!2k2 1S n2
3

2D k2

q2~k1q!2
J ~29!

and similarly forMgse3
:

P t
35

2 ig4CATFme

2~n21!
E dnk

~2p!n p~k2,m2!H 6n22n21
2

n
26

k2
J ~30!

P l
35

2 ig4CATFme

2 E dnk

~2p!n p~k2,m2!H 422n2
2

n

k2
J . ~31!

All the necessary integrals are given in Appendix B. For the vertex correction graphs we arrive at the following represen-
tations:

Mvc1
5

ig6CFCATFhe

2~4p!4q2 E
0

1

dxE
0

1

dyE
0

1

duE
0

1

dvxuF2
B~12u!e/2 21G~e!

2a21 e/2S 2q2

m2 S 2
s2

a2 1
r

a D1
12u

a D e

2
~a1nb!~12u!e/2G~e!

2a31 e/2S 2q2

m2 S 2
s2

a2 1
r

a D1
12u

a D e 1
c~12u!e/2G~11e!

a31 e/2S 2q2

m2 S 2
s2

a2 1
r

a D1
12u

a D 11eG ~32!

wheres is given by Eq.~B46!, r by Eq. ~B47! anda by Eq. ~B5!. The remaining abbreviations read:
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B[224~12x!181e~12~12x!24! ~33!

a[216x~12x!2 ~34!

b[12x~12x!2 ~35!

c[~8212x!1
q2

m2 Fs2

a2 12x~12x!218~12x!x~12y!

212~12x!x2~12y!214~x2~12y!22x~12y!!

22~12~12y!x~12x!228~12x!x~12y!

14x~12x!!
s

aG . ~36!

The heavy quark effective theory~HQET! Feynman rules
of Fig. 1 project all three Lorentz indices to zero forMvc1

.
The completely antisymmetric nature of the three gluon ver-
tex then implies that there is no divergence coming out of the
internal fermion loop. Although Eq.~32! appears to possess a
double pole, the 1/(12u) ‘‘divergence’’ is actually finite
when integrated over all Feynman parameters. We checked
this directly withVEGAS @31# and it indeed gives a well con-
verged numerical answer. As forMvc2

, we integrate out the
fermion loop as before, which yields:

Mvc2
5

2 ig6CFCATFme

2q2

3E dnk

~4p!n p~k2,m2!F2
k212kq

~k1q!2k4 1
1

2~n21!

3S 1

~k1q!2k2 1
1

2 S k212kq

~k1q!2k4 1
1

q2k2

2
1

q2~k1q!2D D G . ~37!

All the integrals left are given in Appendix B.

A. Infrared cancellations

In this section we turn to diagrams which give integrals
already present in an Abelian theory, however, which do not
contribute in QED due to a cancellation that fails in the case
of QCD. The reason is as follows: The color factors for the
ladder diagrams are proportional toCF

2 for the straight and
CF

22 CACF/2 for the crossed ladder graph. The same struc-
ture is also present in graphs Eqs.~10! and ~12!. In the sum
of all four occurring ladder diagrams with one fermion loop
plusMvc3

andMolvc , all terms proportional toCF
2 give a

contribution that is equal to the product of the one loop fer-
mion graph with the Born contribution. This is an explicit
example of the aforementioned exponentiation that occurs on
the level of the potential. In an Abelian theory one thus has
to omit these contributions.

On the other hand, in QCD, we need to calculate the
crossed ladder terms and keep only the2 CACF/2 part of the
above color factors.

From direct inspection it is furthermore obvious that these
diagrams contain infrared~IR! divergent terms which have to
cancel in the potential. It has been shown in Refs.@4, 19# that
the sum ofMcl1Mvc3

1Molvc is IR-finite. This require-
ment poses a strong check on the calculation and necessitates
the calculation of the IR-divergent parts of a diagram that
vanishes in dimensional regularization (Molvc), i.e. when
UV- and IR-divergences are not separated.

The presence of the square of the heavy quark propagator
complicates the calculation of the crossed ladder diagram
considerably as it makes the analytical separation of the
double and single pole terms extremely difficult. We there-
fore found it most convenient to introduce a gluon massl as
an IR-regulator. This allows us to explicitly differentiate be-
tween UV- and IR-divergences and provides a strong nu-
merical check on the sum of all IR-divergent contributions.
In this case we get the following integral representations for
the unrenormalized and IR-regulated amplitudes:

Mcl5
ig6CFCATFme

2 E dnk

~4p!n

3
p~k2,m2!~k22k0

2!

~k01 i«!2~k22l21 i«!2~~k1q!22l21 i«!

~38!

Mvc3
5

2 ig6CFCATFme

2q2 E dnk

~4p!n

3
p~k2,m2!~k22k0

2!

~k01 i«!2~k22l21 i«!2 ~39!

Molvc5
2 ig6CFCATFme

2q4 p~q2,m2!

3E dnk

~4p!n

1

~k01 i«!2~k22l21 i«!
. ~40!

For the contributions of graphs~38! and~39! in which the
k0

2 terms in the numerator cancel the heavy quark propagator,
no gluon mass regulator in needed. The sum of these
k0-independent parts ofMcl andMvc3

are separately IR-
finite and indeed proportional to the integral~B55! in Appen-
dix B. We therefore restrict ourselves to a discussion of the
k0-dependent contributions only. In these integrals thei -«
prescription is crucial in order to arrive at the correct location
of poles and branch cuts in the complexk0-plane. The pres-
ence of the fermion mass brings about a complicated integral
over a general power, which in turn leads to a branch cut in
the upper half of the plane. After integrating overk0 in such
a fashion one is left with an Euclidean integral over (n
21)-dimensions. More details and complete results are
given in Appendix B 1.

IV. RENORMALIZATION

In Fig. 4 we list the relevant counterterms for the two loop
diagrams of Fig. 2 and Fig. 3. The counterterms themselves
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contain nonlocal contributions, i.e. nonpolynomial in the mo-
mentum transferq, that have to cancel the nonlocal terms
from the original amplitudes. The construction of the local
wave function renormalization constants provides a powerful
test of the correctness of the results presented both in Sec. III
and the appendices as they must combine successfully to
arrive at the required local double and single pole terms. It
might be helpful to expound on the general treatment of
masses within the corresponding integrals and counterterms
in the MS-renormalization scheme@36,28#. In the counter-
term approach, their contribution is restricted to finite
changes through the counterterms as the wave function
renormalization constants are independent of the fermion
masses. In other words, all pole terms that contain masses
represent nonlocal infinities which must cancel in the sum of

graphs contributing to the overall field strength renormaliza-
tion. There is therefore no difference in the formal treatment
of the mass parameter in graph~7! and any other graph. This
is another way of saying that the parameters of a MS-
renormalized theory are not physical. Rather, they are related
to measurable qualities by a perturbative series in the physi-
cal parameters.

We begin by presenting the results for the counterterms
corresponding to Fig. 4. All two point counterterms corre-
spond to the transverse parts of the gluon self energy contri-
bution only, as these are the only relevant ones for this work.
The graphMgse1

has two counterterms, one stemming from
the fermion loop divergence (Pct1 f

) and one from the loop
around the three gluon vertex (Pct1g

). They are given in the
MS-renormalization scheme:

FIG. 4. The two loop counterterms corresponding to the diagrams in Figs. 2 and 3. Adding these contributions to the original graphs
removes all nonlocal functions from the occurring pole terms. The only exception arem2/e terms in the two point functions which only
cancel in the sum of all two point diagrams as explained in the text. The fact that the tadpole diagram has no counterterm is already
indicative of this cancellation.
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Pct1 f
5

28ig4CATF

3~4p!4e E
0

1

dxF ~826n!
n

2 S n

2
m2GS 211

e

2D S 2
q2

m2 x~12x! D 12e/2

2q2x2GS e

2D S 2
q2

m2 x~12x! D 2e/2D
2~4n26!S m2

2
GS 211

e

2D S 2
q2

m2 x~12x! D 12e/2

2q2x2GS e

2D S 2
q2

m2 x~12x! D 2e/2D
1S q2~2212n!x1q2~5n25!GS e

2D S 2
q2

m2 x~12x! D 2e/2D G he/2

n21
~41!

Pct1g
5

6ig4CATF

~4p!4e E
0

1

dxF ~4n212!S 2
n

2
m2GS 211

e

2D S 2
q2

m2 x~12x!11D 12e/2

1q2x2GS e

2D S 2
q2

m2 x~12x!11D 2e/2D2~4n24!~m21q2x!GS e

2D S 2
q2

m2 x~12x!11D 2e/2

24m2GS 211
e

2D S 2
q2

m2 x~12x!11D 12e/2

2q2x2GS e

2D S 2
q2

m2 x~12x!11D 2e/2G he/2

n21
. ~42!

For the counterterm forMgse2
we find

Pct2
5

4ig4CATFq2ze/2

3~4p!4e~n21!
S S 7

2
23nD GS e

2DG2S 12
e

2D
G~22e!

1S n2
3

2D GS 11
e

2DGS 12
e

2DGS 2
e

2D
G~12e!

D ~43!

whereh andz are defined in Appendix B. ForMgse3
there is

no counterterm as the subdivergence is independent of the
mass which means that in dimensional regularization all the
remaining integrals vanish.

The pole terms for the respective terms, expanded up to
O(e0), thus read

@P t
11Pct1 f

1Pct1g
#O~e0!52

ig4CATFq2

~4p!4

3S 1

9e2 1
163

108e
2

3m2

q2e D ~44!

@P t
21Pct2

#O~e0!52
ig4CATFq2

~4p!4

3S 2
44

9e2 1
25

27e
1

15m2

q2e D ~45!

@P t
3#O~e0!5

ig4CATF18m2

~4p!4e
. ~46!

These equations contain no nonlocal terms other than the
m2/e terms, which then have to vanish in the sum of all
contributions to the non-Abelian part of the gluon wave
function renormalization constant. Because of the very in-
volved nature of the occurring nonlocal terms, this is already

powerful evidence of the correct evaluation of both the two
loop integrals as well as the decomposition of graphMgse1

.
Multiplying each graph with its respective multiplicity we
find in the MS-scheme:

$4@P t
11Pct1 f

1Pct1g
#12@P t

21Pct2
#1@P t

3#%O~e0!

5
ig4CATFq2

~4p!4 S 28

3e2 2
71

9e D . ~47!

This is completely local and thus demonstrates that the
renormalization has been carried out properly and that the
integrals given are correct. In order to further check this term
we need the pole term from the ‘‘overlapping’’ Abelian two
point diagram from Eq.~6! @which in QCD develops a color
factor proportional to (CF2 1

2 CA)# in order to get the fermi-
onic part of the overall gluon wave function renormalization
constantZ3 . The counterterm forMgse4

reads

Pct4
52

8ig4

e~4p!2 S CF2
CA

2 DTFq2p~q2,m2! ~48!

and gives in agreement with@37#:

$@P t
41Pct4

#%O~e0!5

ig4S CF2
CA

2 DTFq2

~4p!4 S 16

3e2 2
52

9e D .

~49!

Adding Eqs.~47! and theCA term of Eq.~49! gives the
correct non-Abelian fermionic part of the gluon wave func-
tion renormalization constant@~times 1/iq2) see Ref.@35# for
example# in the Feynman gauge:

Z3 f ermionic

CA 5
g4CATF

~4p!4 S 20

3e2 2
5

e D . ~50!
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This testifies to the overall correctness of both the decom-
positions used as well as all the integrals listed in the appen-
dices.

For completeness we also give the counterterm for
Mgse5

, which in the MS-scheme must be treated in the same

way as the graphs before. All divergent terms proportional to
m2 cancel the corresponding nonlocal infinities in Eq.~23!:

Pct5
52

4ig4CFTF

e~n21!~4p!2 @n~12m2B2212q2B12

24A2212q2m2C122!1~24q2m2248m4!C122

224m2B222~4q2116m2!B1218A2# ~51!

with

$@P t
51Pct5

#%O~e0!5
ig4CFTFq2

~4p!4 S 2
8

3e2 1
8

9e D . ~52!

It is an important difference to the massless case that the
counterterms~48! ~rather itsCF part! and~51! are not related
by a simple minus sign as implied by the Ward identity.
There is an additional constant term 4m which gives new
contributions. For the purely Abelian fermionic part of the
gluon wave function renormalization constant in the Feyn-
man gauge we find in agreement with Ref.@35#:

Z3 f ermionic

CF 5
g4CFTF

~4p!4 S 2
4

e D . ~53!

The cancellation of the higher order~double! pole is a
characteristic feature in QED that holds to all orders@38#.

ForMvc1
we do not need to remove nonlocal terms as the

fermion loop is finite due to the projection of all three Lor-
entz indices to zero. It is easy to check this by calculating all
divergent pieces after the integration of the fermion loop. All
that is left is the divergence from the remaining integral
which has to be subtracted in the usual MS-fashion. This is
indicated in Fig. 4. The explicit pole term is given by:

@Mvc1#O~e0!5
ig6CFCATF

~4p!4q2 S 2
1

e D ~54!

in agreement with the massless case@39#. In the case of
Mvc2

we do have nonlocal terms, and the counterterm reads:

Mvc2ct
5

4ig6CFCATFhe/2

3~4p!4q2e E
0

1

dvS 2
nvG~e/2!

2S 2q2

m2 v~12v ! D e/2

1
~11v !G~1e/2!

S 2q2

m2 v~12v ! D e/2

GS e

2D
2~n21!S 2q2

m2 v~12v ! D e/2

1

nvGS e

2D
8~n21!S 2q2

m2 v~12v ! D e/2

2

~11v !GS 11
e

2D
4~n21!S 2q2

m2 v~12v ! D e/2D . ~55!

Adding Eq. ~55! with the appropriate normalization and
color factors to the result given in Eq.~37! does indeed give

FIG. 5. The sum of thel2-dependent amplitudes and counter-
termsM cl

k01M vc3

k0 1Molvc1M clct

k0 1M vc3ct

k0 . Circles correspond

to a choice of q25210 GeV2 and m5mc , triangles to q25
2100 GeV2 andm5mc while the lower curve~squares! hasq25
2100 GeV2 andm5mb . The overall normalization neglects color
factors and the coupling strength. All data are obtained by using 106

evaluations per iteration withVEGAS and 100 iterations. The statis-
tical error is indicated and smaller than the symbols where invisible.
The sum for each of the displayed sets of parameters is clearly
independent of the IR-gluon mass regulatorl as expected.
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completely local double and single pole terms as required in
dimensional regularization after the subdivergences are sub-
tracted:

@Mvc2
1Mvc2ct

#O~e0!5
ig6CFCATF

~4p!4q2 S 1

e2 2
5

12e D . ~56!

It demonstrates that indeed all nonlocal divergences are
canceled and agrees furthermore with the pole terms ob-
tained in the massless analysis@39#. It should be noted that
all the integrals needed were already used in theMgse2

cal-
culation for which such a strong internal consistency check
was performed just above. All the required expansions above
were carried out with the help ofMAPLE in face of the com-

plexity involved. As mentioned before, also the translation
into FORTRAN was handled byMAPLE as to reduce possible
accidental errors.

At this point we need the counterterms of the IR-
divergent contributions,Mcl , Mvc3

andMolvc . As indi-

cated above and expressed in Eqs.~38!, ~39!, and~40!, these
were regulated by introducing a gluon mass regulator. The
remaining UV-divergences are treated as above in the con-
text of dimensional regularization. We therefore have to cal-
culate all counterterm contributions that occur for gluon
propagators with a gluon mass. Without such a dimensionful
quantity, only the crossed ladder diagram would yield a
counterterm in dimensional regularization. We again use the
gluon mass only fork0-dependent terms as explained in Sec.
III A. This is indicated below.

FIG. 6. A comparison of the six amplitudesMgse1
, Mgse2

, Mgse4
, Mgse5

, Mvc1
andMvc2

with the massless limit~dashed lines! @39#

in the MS-scheme. Solid circles correspond to a choice ofq2521.5 GeV2, open ones toq2524.5 GeV2. m50.31 GeV in each case. Each
graph begins to deviate from the massless limit only whenm2 is of the same order as2q2 as expected. These results were obtained after
106 evaluations per iteration and after 50 iterations. The statistical error is smaller than the size of the symbols and the normalization neglects
color factors and the coupling strength.
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The results are obtained in a similar way as for the corre-
sponding amplitudes, first integrating over the heavy quark
propagator in the complexk0-plane with a subsequential (n
21)-dimensional Euclidean integral remaining. The results
are obtained straightforwardly as there are only pole terms
and no branch cuts in the counterterm contributions. We find
for the gluon mass regulated terms:

M clct

k0 5

4ig6CFCATFhe/2GS 11
e

2D
e~4p!7/2GS 5

2Dm2

3E
0

1

dv
1

S 2q2

m2 v~12v !1
l2

m2D 11e/2 ~57!

M vc3ct

k0 52

8ig6CFCATFhe/2GS e

2D
3eq2~4p!7/2GS 3

2D S l2

m2D e/2 . ~58!

For completeness we also list the remaining counterterm
stemming from thek0-independent part ofMcl :

M clct

k 5

16ig6CFCATF4e/2he/2GS 11
e

2DGS 2
e

2D
3em2~4p!7/2GS 1

2
2

e

2D S 2q2

m2 D 11e/2 .

~59!

The gluon mass terms that occur in the expansion of the
original as well as the counterterms above in powers ofe in
the pole terms of dimensional regularization represent now
nonlocal divergences which have to cancel in the same way
as terms containingm2 or nonpolynomial functions ofq2.
The remaining IR-divergent pole terms are contained in the
form of logarithmic divergences inl. Figure 5 demonstrates
that in the sum of the IR-divergent amplitudes plus their
corresponding counterterms nol-dependence is left within
the statistical errors. For convenience, three sets of values for
q2 and m2 are displayed while the renormalization scalem
remains fixed. We have checked that it also holds for a va-
riety of other choices of parameters. Some need fewer evalu-
ations to converge while others need up to 107 per iteration.

It is perhaps interesting to note that the crossed ladder
diagram, naively only singly IR-divergent, actually possesses
a quadratic divergence in log(l) which cancels the~also un-
expected! quadratic divergence in the Abelian vertex correc-
tion term. The remaining UV-divergent pole terms in the
MS-scheme are found to be

@M cl
k01M clct

k0 #O~e0!50 ~60!

@M vc3

k0 1M vc3ct

k0 #O~e0!5
ig6CFCATF

~4p!4q2 S 2
16

3e2 1
80

9e D
~61!

@M cl
k 1M vc3

k 1M clct

k #O~e0!5
ig6CFCATF

~4p!4q2 S 2
16

3e2 1
16

9e D
~62!

which states that the counterterm in case ofM cl
k0 completely

remove all pole terms ine. It is also clear that all nonlocal
terms are removed by the appropriate counterterms as was
expected. In order to compare this with the results obtained
in the massless case one would need to differentiate between
eUV ande IR .

V. NUMERICAL RESULTS

At this point we have calculated all diagrams that contrib-
ute to the massive fermionic corrections to the heavy quark
potential that were previously unknown. In the previous sec-
tion we demonstrated that the counterterms successfully re-
move all nonlocal divergences and that the MS-subtraction
terms coincide with the massless limit. The complexity of
the explicit results given in the appendices raises some ques-
tions about how stable a numerical integration over up to
four Feynman parameters is withVEGAS as well as about the

FIG. 7. A comparison of the sum of amplitudesMcl1Mvc3

1Molvc plus their MS-counterterms with the massless limit
~dashed lines! @39#. Solid circles correspond to a choice ofq25
21.5 GeV2, open ones toq2524.5 GeV2. m50.031 GeV and
l251028 in each case. The sum begins to deviate from the mass-
less limit only whenm2 is of the same order as2q2 as was the case
for the other graphs. These results were obtained after 106 evalua-
tions per iteration and after 100 iterations. The statistical error is
smaller than the size of the symbols and the normalization neglects
color factors and the coupling strength.
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correctness of the finite terms of these expressions. An ideal
test is provided by the results obtained in Ref.@19# for the
massless limit.

Figure 6 contains the results of the IR-finite two loop
amplitudes from Figs. 2 and 3 in Sec. II. The tadpole dia-
gram vanishes trivially in that limit so that only the six
graphs shown remain. The sames choices forq2 and the
renormalization scalem were made in all six plots. Since the
results of Ref. @19# were calculated in the
MS-renormalization scheme, we use

mMS5A eg

4p
mMS. ~63!

It is clear from these results that deviations from the
massless limit only occur whenm2'2q2 or greater. This
was of course expected and the motivation for this calcula-
tion. A similar dependence is observed for the sum of the
three IR-divergent amplitudes from Fig. 2 in Sec. II. Here it
is impossible to compare on an amplitude by amplitude level
since a different IR-regulator was used. Only the sum of
infrared finite contributions can be compared at the two loop
level. We checked explicitly that by replacing log(l) with
1/e, only the double pole terms can be seen to be identical.

The single pole terms differ and so do the finite contribu-
tions for each amplitude. In the sum, however, the IR-
divergent pieces cancel~as demonstrated in Fig. 5!, and here

FIG. 8. The mass dependence ofaV at one~bottom! and two loops. The two loop case is displayed in terms of all Abelian terms~left!
and for all non-Abelian terms~proportional toCA). Triangles denotem25mc

25(1.5 GeV)2 and open circlesm25mb
25(4.5 GeV)2. The

massless case is also included~line!. All curves have the same value of the renormalization scalem50.031 GeV. It is clearly visible that
the flavor threshold behavior is quite similar in the three figures with an opposite tendency for low values of2q2 in the two loop case
though. The one loop corrections have an equal sign relative to the Abelian two loop corrections. The coupling constants are omitted. All
cases approach the massless limit whenm2/2q2 !1.
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we can find a meaningful comparison. Figure 7 demonstrates
that the correct massless limit is indeed recovered. The nu-
merical accuracy in terms of the statistical error from the
VEGAS Monte Carlo integration is actually included in the
figures. It is better than 1% though, and thus not visible on
the scale of the plots. The gluon mass regulated graphs were
evaluated over twice as many iterations~100! compared to
the graphs from Fig. 6 as the required cancellations are nu-
merically more unstable. In both cases the number of evalu-
ations per iteration is 106.

Figure 8 displays the sums of all non-Abelian as well as
the sum of all Abelian fermionic contributions to the heavy
quark potential. In addition we included the one loop correc-
tions ~bottom! in the MS-scheme~omitting coupling con-
stants! as given in Eq.~26!. The simple logarithmic behavior
of the massless one loop result is clearly visible and asymp-
totically approached by the massive curves. The sign of the
one loop correction is equal to the two loop Abelian result,
reflecting the fact that effectively for large momenta
b0

QED log (m/2q2)→@b0
QED log (m/2q2)#2 ~in the massless

case, withb0
QED52 2

3 ). The relative size of the mass effects
are comparable for the one and two loop corrections.

The massless two loop results can be seen to possess the
expected double logarithmic contributions. The massive two
loop results show an almost completely opposite behavior
for low values ofm2/2q2. At the flavor thresholds, though,
both contributions decrease the value obtained from the
massless case by the same~relative! order of magnitude. The
overall corrections are much larger in absolute terms for the
non-Abelian case, partially due to an extra factor ofCA ,
while in relative terms the Abelian corrections are bigger. In
the high energy regime both graphs show that the massless
limit is approached asymptotically.

The complete massive fermionic two loop contributions
to the heavy quark potential are presented in Fig. 9. It can be
seen that the overall curve is dominated by the non-Abelian
threshold behavior~partially due to the extra factor ofCA).
The ‘‘mc-graph’’ ~triangles! matches the massless case for
lower values of2q2 as mc

2!mb
2 . At the respective thresh-

olds we find roughly a 33% deviation relative to the massless
case. This could be very significant for applications where
quark masses are expected to play an important part. Further-
more, the physically defined effective chargeaV(q2,m2) in-
corporates quark masses naturally at the flavor thresholds
and is also analytic. Thus, there is no problem of evolving
the strong coupling constant through these thresholds and
one never needs to impose matching conditions. At high val-
ues ofq2 the theory becomes massless and reproduces the
leading logarithmic terms obtained by theb-function analy-
sis as these coefficients are scheme independent through two
loops in a massless theory.

The above analysis can also be helpful for the incorpora-
tion of massive fermions in lattice analyses as the heavy
quark potential is defined by the gauge invariant vacuum
expectation value of the Wilson loop in Eq.~1!. For a direct
application of the presented results, a recently proposed way
of incorporating quark flavor thresholds by relating the

‘‘natural’’ heavy quark potentialm-dependence to an effec-
tive continuous and smooth functionnF(2q2,m2) @8# seems
to be a promising candidate.

VI. CONCLUSIONS

We have calculated all the necessary integrals for the non-
Abelian massive fermionic corrections to the heavy quark
potential through two loops. They describe the analytic fla-
vor thresholds of the physical couplingaV(q2,m2). The new
results were obtained by using a mixed analytical, computer-
algebraic as well as numerical approach and strong consis-
tency checks were performed by observing that all nonlocal
divergences cancel by adding the appropriate counterterms.
In case of the complicated two point diagrams it is found that
the weighted sum of all diagrams gives the correct local
gluon wave function renormalization constant. The renor-
malization constants were given explicitly.

It was also checked that no spurious infrared divergences
were introduced by the implemented reduction scheme as
they are present in the intermediate steps of the calculation.
For the explicitly IR-divergent diagrams we proved that no
physical results depend on the introduction of the gluon mass
regulatorl. This is a consequence of the color singlet state
of the external heavy quark sources.

All physically interesting and gauge invariant finite parts
were integrated withVEGAS @31# and found to agree perfectly
with the massless results of Ref.@20# in that limit which

FIG. 9. The complete two loop mass dependence ofa Ṽ

[ aV
f 2 loop/g6 for m25mc

25(1.5 GeV)2 ~triangles! and m25mb
2

5(4.5 GeV)2 ~open circles!. The massless case is also included
~line!. In all three curves we usem50.031 GeV. The deviation
from the massless case at the flavor thresholds is of order of 33%
and is dominated by the new non-Abelian contributions.
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actually checks this part of the analysis in@19#. The differ-
ence to the massless case around the charm and bottom fla-
vor thresholds was found to be roughly 33%. The size of this
effect can have important consequences for processes in
which one cannot neglect these masses as well as for the
evolution of the strong coupling constant through analytic
flavor thresholds.
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APPENDIX A: DECOMPOSITION OF TWO LOOP
TENSOR INTEGRALS

For the gluon self energy graphsMgse1
, Mgse4

and

Mgse5
we chose to not do the fermion loop integral first, as

we did for all vacuum polarization insertions, but to decom-
pose the occurring tensor integrals into a linear combination
of scalar two loop integrals. The scalar integrals entering in
the expression given in Eq.~18! @or ~20!# will be treated in

detail in the next section together with all other integrals
needed in this work.

We work in n space-time dimensions,n542e, and for
the two loop integrals we use the following notation:

@1#[~ l 1q!22m2, @2#[ l 22m2,

@3#[~ l 2k!22m2, @4#[~k1q!2, @5#[k2.
~A1!

l denotes the loop momentum of the massive fermion
loop and k the remaining loop momentum. A primelike
@28#[ l 2 denotes the massless propagator with the same mo-
mentum as the unprimed. While there are different possible
technical approaches to our desired decomposition, such as
the one recently suggested in Ref.@40#, the general method
we use follows that of Ref.@32#. We also denote integrals
with squares of ‘‘denominator’’ terms in the numerator
‘‘ Y’’-integrals and pure two loop scalar integrals by ‘‘T. ’’

In the following we use various symmetries betweenY-
as well as betweenT-integrals. For instance

Y1345
2 5Y2345

1 , T1345T235. ~A2!

For two loop scalar integrals that are actually a product of
scalar one loop integrals we use the respective one loop no-
tation of Ref. @41#. All of the decompositions were pro-
grammed inFORM @30# and lead to the following relations for
Mgse1

:

Y2345
11 [E dnk

~2p!n E dnl

~2p!n

m2e~~ l 1q!22m2!2

~ l 22m2!~~ l 2k!22m2!~k1q!2k2

5q2~T2352T135!1
1

n21 Fn

6
~2m4T128351m2T1351m2A2B1282m2T28352A2

2!

2m2T1351m2T2351
n

4
q4T23451

n

2
q4A2C4552m2q4T234552q4A2C4551

n

6
m2q2T128351

7n

12
q2T135

2
n

4
q2T1351nq2A2B452

n

6
q2A2B12812m2q2T23451m2q2T23552q2T135G ~A3!

Y2345
1 [E dnk

~2p!n E dnl

~2p!n

m2e~~ l 1q!22m2!

~ l 22m2!~~ l 2k!22m2!~k1q!2k2

5A2B451
1

2
~T2352T1351q2T2345! ~A4!

Y1235
4 [E dnk

~2p!n E dnl

~2p!n

m2e~k1q!2

~~ l 1q!22m2!~ l 22m2!~~ l 2k!22m2!k2

5A2B121q2T12351
1

2
~T28351A2B2282A2B1282T1352q2A2C12281~m22q2!T12835! ~A5!

Y1245
3 [E dnk

~2p!n E dnl

~2p!n

m2e~~ l 2k!22m2!

~~ l 1q!22m2!~ l 22m2!~k1q!2k2 5A2B452
q2

2
B12B45 ~A6!
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Y234
1 [E dnk

~2p!n E dnl

~2p!n

m2e~~ l 1q!22m2!

~ l 22m2!~~ l 2k!22m2!~k1q!2

5
1

3
@A2

21m2~T28352A2B1282T1351m2T12835!1q2~T1351A2B1282m2T12835!# ~A7!

Y135
4 [E dnk

~2p!n E dnl

~2p!n

m2e~k1q!2

~~ l 1q!22m2!~~ l 2k!22m2!k2

5
1

3
~A2

21q2T135!2
2

3
@m2~T28352A2B1282T1351m2T12835!1q2~A2B1282m2T12835!# ~A8!

Y235
1 [E dnk

~2p!n E dnl

~2p!n

m2e~~ l 1q!22m2!

~ l 22m2!~~ l 2k!22m2!k2 5q2T235 ~A9!

Y245
1 [E dnk

~2p!n E dnl

~2p!n

m2e~~ l 1q!22m2!

~ l 22m2!~k1q!2k2 5q2A2B45. ~A10!

For the remaining two diagrams,Mgse4
andMgse5

, we
have slightly different denominators as is evident from Eqs.
~6! and ~7!. It is possible, though, to relate these to the con-
ventions given in Eq.~A1! with the exception of the finite
scalar integralT12345

A which is given in Eq.~B48!. ‘‘ A’’ de-
notes the fact that the topology of these diagrams is Abelian.
Below we list theY-functions we need for the required de-
composition with terms on the left-hand side having the de-
nominators of the original integrals and given in terms of
functions on the RHS which are using the conventions of Eq.
~A1!:

AY2345
1 5A2B121T2352T1351q2T12352Y1235

4 ~A11!

AY1245
3 52A2B121S 2m22

q2

2 DB12
2 ~A12!

AY2335
4 5T2351q2T2235 ~A13!

AY135
2 5AY234

5 5AY135
4 5AY234

1 5Y234
1 ~A14!

AY235
4 5q2T235 ~A15!

AY235
1 5q2T235 ~A16!

AY255
4 5A2

21q2A2B22. ~A17!

APPENDIX B: TWO-LOOP INTEGRALS

In this appendix we give the explicit results for all the
integrals needed in the calculation of the two loop fermionic
corrections to the heavy quark potential. These include all
the scalar two loop integrals occurring in the decomposition
of the gluon self energy graphMgse1

in Sec. III as well as

the remaining tensor integrals needed for the remaining con-
tributions. Since the potential between two infinitely heavy
color test charges represents a physical quantity, all integrals
presented are real due to the spacelike value of the physical
momentum transferq2,0. For this reason we found it con-
venient to adopt both analytical as well as numerical meth-
ods for the implementation intoFORTRAN. Wherever possible
we proceed with the integration of the remaining Feynman
parameter integrals and where this becomes too involved, we
integrate the remainder with the Monte Carlo integratorVE-

GAS @31#.
The notation is as follows.
The following Feynman parameter identities@42# are very

useful and were employed in all integrals in this work:

1

a1 . . . am
5G~m!E

0

1

du1 . . . E
0

1

dum21

u1
m22u2

m23 . . . um22

~a1u1 . . . um211a2u1 . . . um22~12um21!1 . . . 1am~12u1!!m ~B1!

1

aabb5
G~a1b!

G~a!G~b!
E

0

1

du
ua21~12u!b21

~au1b~12u!!a1b ~B2!

1

aabbcg5
G~a1b1g!

G~a!G~b!G~g!
E

0

1

duuE
0

1

dv
~uv !a21~u~12v !!b21~12u!g21

~auv1bu~12v !1c~12u!!a1b1g ~B3!

MASSIVE FERMIONIC CORRECTIONS TO THE HEAVY . . . PHYSICAL REVIEW D 58 114004

114004-17



1

aabbcgdd5
G~a1b1g1d!

G~a!G~b!G~g!G~d!
E

0

1

duu2E
0

1

dvvE
0

1

dw
~uvw!a21~uv~12w!!b21~u~12v !!g21~12u!d21

~auvw1buv~12w!1cu~12v !1d~12u!!a1b1g1d .

~B4!

We use the following abbreviations in addition:

h[
4pm2

m2 , z[
4pm2

2q2 , a[u1~12u!x~12x!, ã[u1~12u!~12x! ~B5!

D[
q2

m2 S u2~12v !2

a2 2
u~12v !

a D1
12u

a
~B6!

D̃[
q2

m2 S u2~12v !2

ã2
2

u~12v !

ã
D 1

1

ã
~B7!

D̃8[
q2

m2 S u2~12v !2

ã2
2

u~12v !

ã
D 1

12uv

ã
~B8!

wherem is the dimensional-regularization mass parameter@28#. All results are given in terms of their dependence one and
would have to be expanded with the factors given in the explicit results of Sec. III up toO~e!. The results in this paper were
obtained by employingMAPLE to do the required expansion and are too cumbersome for explicit presentation.

We start with results of the following simple scalar one and two loop functions:

A2[E dnl

~2p!n

me

~ l 22m2!
52

im2he/2GS 211
e

2D
16p2 ~B9!

B22[E dnl

~2p!n

me

~ l 22m2!2 5

ihe/2GS e

2D
16p2 ~B10!

B228[E dnl

~2p!n

me

~ l 22m2!l 2 5

ihe/2GS e

2D
16p2S 12

e

2D ~B11!

B128[E dnl

~2p!n

me

~~ l 1q!22m2!l 2 5E
0

1

dx

ihe/2GS e

2D
~4p!2S 2q2

m2 x~12x!1xD e/2 ~B12!

B12[E dnl

~2p!n

me

~~ l 1q!22m2!~ l 22m2!
5E

0

1

dx

ihe/2GS e

2D
~4p!2S 2q2

m2 x~12x!11D e/2 ~B13!

B45[E dnk

~2p!n

me

~k1q!2k2 5E
0

1

dx

ihe/2GS e

2D
~4p!2S 2q2

m2 x~12x! D e/25

i ze/2GS e

2DG2S 12
e

2D
~4p!2G~22e!

~B14!

C455[E dnk

~2p!n

me

~k1q!2k4 5

i ze/2GS 2
e

2DGS 12
e

2DGS 11
e

2D
q2~4p!2G~12e!

~B15!
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C122[E dnl

~2p!n

me

~~ l 1q!22m2!~ l 22m2!2 52E
0

1

dx

ixhe/2GS 11
e

2D
~4p!2m2S 2q2

m2 x~12x!11D 11e/2 ~B16!

C1228[E dnl

~2p!n

me

~~ l 1q!22m2!~ l 22m2!l 2 52E
0

1

dxE
0

1

dy

ihe/2GS 11
e

2D x2e/2

~4p!2m2S q2

m2 ~x~12y!2211y!11D 11e/2 ~B17!

A very useful integral for Eq.~B17! is given by

E
0

1

dxE
0

1

dy
1

$a@x~12y!2211y#11%
52

2

a
Aa224a tanh21SA a

a24D 2
a21

a
log~12a!. ~B18!

This integral is needed in order to analytically separate the divergent pieces sinceC1228 is multiplied byA2 in the solution
for Eq. ~6!.

T2835[E dnk

~2p!n E dnl

~2p!n

m2e

l 2~~ l 2k!22m2!k2 5

m2heGS e

2DG~211e!G2S 12
e

2D
~4p!4GS 22

e

2D ~B19!

T235[E dnk

~2p!n E dnl

~2p!n

m2e

~ l 22m2!~~ l 2k!22m2!k2 5

m2heG2S e

2DG~211e!GS 12
e

2D
~4p!4GS 22

e

2DG~e!

. ~B20!

The reason why the following integrals cannot be given in such a simple form is the presence of the external momentum
transferq in addition to the masses. In order to extract the infinite pieces from the next integralT135, we repeatedly use the
following propagator identity:

1

~ l 1q!22m2 5
1

l 22m2 2
2lq1q2

~ l 22m2!~~ l 1q!22m2!
. ~B21!

It then follows that

T135[E dnk

~2p!n E dnl

~2p!n

m2e

~~ l 1q!22m2!~~ l 2k!22m2!k2 5T2351Ta1Tb1Tc , ~B22!

with

Ta[2E dnk

~2p!n E dnl

~2p!n

m2e~2lq1q2!

~ l 22m2!2~~ l 2k!22m2!k2 5

q2heGS e

2DG~e!GS 12
e

2DGS 11
e

2D
~4p!4GS 22

e

2DG~11e!

~B23!

Tb[E dnk

~2p!n E dnl

~2p!n

m2e~2lq1q2!2

~ l 22m2!3~~ l 2k!22m2!k2

52

4q2heGS e

2DG~e!GS 12
e

2DGS 11
e

2D
n~4p!4GS 22

e

2DG~11e!

1

q2S 4

n
1

q2

m2DheGS e

2DG~11e!GS 12
e

2DGS 21
e

2D
2~4p!4GS 22

e

2DG~21e!

. ~B24!

In passing we note that
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T223552
1

q2 Ta . ~B25!

The last termTc has only a simple pole ine which is, however, buried in the Feynman parameter integration. This is a quite
common problem that arises because of theG-factors in Eqs.~B2! and~B3!. We take ‘‘u’’ to be that Feynman parameter and
for our purposes it suffices to write the following identity:

E
0

1

du~12u!e/2 21f ~u!5
2

e
f ~1!1E

0

1

du~12u!e/2 21~ f ~u!2 f ~1!!. ~B26!

The respective terms for

Tc[2E dnk

~2p!n E dnl

~2p!n

m2e~2lq1q2!3

~ l 22m2!3~~ l 1q!22m2!~~ l 2k!22m2!k2

are

f ~u![E
0

1

dxE
0

1

dv
q2heu3v2

2~4p!4xe/2ã41e/2

3S q4

m4

128
u3~12v !3

ã3
112

u2~12v !2

ã2
26

u~12v !

ã

D̃21e
G~21e!2

q2

m2

6212
u~12v !

ã

D̃11e
G~11e!D ~B27!

and thus

f ~1![E
0

1

dxE
0

1

dv
q2hev2

2~4p!4xe/2

3S q4

m4

128~12v !3112~12v !226~12v !

S 2
q2

m2 v~12v !11D 21e G~21e!2
q2

m2

6212~12v !

S 2
q2

m2 v~12v !11D 11e G~11e!D . ~B28!

Although this result forT135 is correct, it is numerically unstable in the massless limit because of terms of orderq2/m2

which have to cancel asm2→0. A way out of this calamity as well as a very good check on the correctness of our result for
this integral is to use the propagator identity~B21! for 1/(k1q)2 instead after shifting the loop momenta. This yields

T1355T2352q2T23452 K K 2kq

@2#@3#@4#@5#L L . ~B29!

The result forT2345 is given below and the last term in the equation can easily be found to be 2q2@u(12v)/a# times the
expressions for the scalar integral. This term just stems from the momentum shiftk→k82q@u(12v)/a#. Numerically, away
from the singularity atm50, both solutions agree.

In similar ways we treat the following more complicated integrals, always calling ‘‘u’’ the Feynman parameter that contains
an additional divergence iff (u)-terms are quoted. The desired value for the respective integrals are understood to follow from
an expansion ine of Eq. ~B26!. For

T2345[E dnk

~2p!n E dnl

~2p!n

m2e

~ l 22m2!~~ l 2k!22m2!~k1q!2k2 ~B30!

we get

f ~u![2E
0

1

dxE
0

1

dv
heG~e!u

~4p!4a21e/2De , f ~1![2E
0

1

dv
heG~e!

~4p!4S 2
q2

m2 v~12v ! D e . ~B31!

Similarly,
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T1235[E dnk

~2p!n E dnl

~2p!n

m2e

~~ l 1q!22m2!~ l 22m2!~~ l 2k!22m2!k2 ~B32!

with

f ~u![2E
0

1

dxE
0

1

dv
heG~e!u

~4p!4xe/2ã21e/2D̃e
, f ~1![2E

0

1

dxE
0

1

dv
heG~e!

~4p!4xe/2S 2
q2

m2
v~12v !11D e . ~B33!

For

T12835[E dnk

~2p!n E dnl

~2p!n

m2e

~~ l 1q!22m2!l 2~~ l 2k!22m2!k2 ~B34!

we find

f ~u![2E
0

1

dxE
0

1

dv
heG~e!u

~4p!4xe/2ã21e/2D̃8e
, f ~1![2E

0

1

dxE
0

1

dv
heG~e!

~4p!4xe/2S 2
q2

m2
v~12v !112v D e . ~B35!

The infrared finite integral

I 2455[2E dnk

~2p!n E dnl

~2p!n

m2e~k212kq!

~ l 22m2!~k1q!2k4 ~B36!

is a product of two one loop functions which are given by

A2[2

im2he/2GS 211
e

2D
~4p!2 ~B37!

I 455[2E
0

1

du
i ze/2

~4p!2 S n

2~u~12u!!e/2GS e

2D2
~12u!~11u!

~u~12u!!11e/2GS 11
e

2D D ~B38!

and in dimensional regularization we haveI 24555A2I 4555q2A2C455, whereA and C denote the respective one loop scalar
integrals. For the infrared finite combination

I 23455[q2T234552T235552E dnk

~2p!n E dnl

~2p!n

m2e~k212kq!

~ l 22m2!~~ l 2k!22m2!~k1q!2k4 ~B39!

we get two ‘‘f (u)’’ terms, distinguished below by capital~containing double pole terms! and lower case~with only simple
poles! letters:

F~u![E
0

1

dxE
0

1

dv
nheG~e!u2v

2~4p!4a31e/2De , F~1![E
0

1

dv
nheG~e!v

2~4p!4S 2
q2

m2 v~12v ! D e ~B40!

f ~u![E
0

1

dxE
0

1

dvA
heG~11e!u2v

~4p!4a31e/2D11e , f ~1![2E
0

1

dv
~11v !heG~11e!

~4p!4S 2
q2

m2 v~12v ! D e ~B41!

A[2
q2

m2 S u2~12v !2

a2 22
u~12v !

a D . ~B42!

For
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T12235[E dnk

~2p!n E dnl

~2p!n

m2e

~~ l 1q!22m2!~ l 22m2!2~~ l 2k!22m2!k2 ~B43!

we find

f ~u![E
0

1

dxE
0

1

dv
heG~11e!u2v

~4p!4xe/2ã31e/2D̃11e
, f ~1![E

0

1

dxE
0

1

dv
heG~11e!v

~4p!4xe/2S 2
q2

m2
v~12v !11D 11e . ~B44!

The completely finite integral

T12345[E dnk

~2p!n E dnl

~2p!n

m2e

~ l 22m2!~~ l 1q!22m2!~~ l 2k!22m2!~k1q!2k2

is given by

T123455E
0

1

dxE
0

1

dyE
0

1

duE
0

1

dv
heG~11e!

m2~4p!4

xu~12u!e/2

a31e/2S q2

m2 S s2

a2 2
r

a D1
ã

a
D 11e. ~B45!

e can of course be set to zero in the above expression and we use the following abbreviations:

s[u~12v !1~12u!~12y!x~12x! ~B46!

r[u~12v !1~12u!~x~12y!2x2~12y!2!. ~B47!

For the ‘‘Abelian’’ gluon self energy graphMgse4
we need another completely finite integral with five denominators,

namely

T12345
A [E dnk

~2p!n E dnl

~2p!n

m2e

~ l 22m2!~~ l 1q!22m2!~ l 2k!2~~k1q!22m2!~k22m2!
.

Here we find

T12345
A 5E

0

1

dxE
0

1

dyE
0

1

duE
0

1

dv
heG~11e!

m2~4p!4

xu~12u!e/2

a31e/2S q2

m2 S s2

a2 2
r

a D1
x~12u!

a D 11e . ~B48!

Again, we can safely sete to zero like above. The following integrals are needed for the diagrams where we integrated out
the fermion loop first, withp(k2,m2) taken from Eq.~26!:

E dnk

~2p!n

mep~k2,m2!

k2 5E
0

1

dxE
0

1

du
m2G~211e!x~12x!~12u!2e/2he

32p4a22e/2 ~B49!

E dnk

~2p!n

mep~k2,m2!

~k1q!2 5E
0

1

dxE
0

1

du

m2G~211e!x~12x!~12u!2e/2heS 2
q2

m2

ux~12x!

a
11D 12e

32p4a22e/2 ~B50!

E dnk

~2p!n

2kqmep~k2,m2!

~k1q!2 5E
0

1

dxE
0

1

du

2q2m2G~211e!x~12x!u~12u!2e/2heS 2
q2

m2

ux~12x!

a
11D 12e

16p4a32e/2 .

~B51!

Below we split again intof (u) and f (1) terms. For

E dnk

~2p!n

mep~k2,m2!

~k1q!2k2 ~B52!
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we find

f ~u!52E
0

1

dxE
0

1

dv
G~e!ux~12x!he

32p4a21e/2De ~B53!

f ~1!52E
0

1

dxE
0

1

dv
G~e!x~12x!he

32p4S 2q2v~12v !

m2 D e . ~B54!

For

E dnk

~2p!n

~k212kq!mep~k2,m2!

~k1q!2k4 ~B55!

there are two contributions corresponding to terms with double poles (F) and only single poles (f ):

F~u![2E
0

1

dxE
0

1

dv
G~e!nu2vx~12x!he

64p4a31e/2De ~B56!

F~1!52E
0

1

dxE
0

1

dv
G~e!nvx~12x!he

64p4S 2q2v~12v !

m2 D e ~B57!

f ~u![E
0

1

dxE
0

1

dv
q2G~11e!u2vx~12x!heS u2~12v !2

a2 22
u~12v !

a D
32m2p4a31e/2D11e ~B58!

f ~1!5E
0

1

dxE
0

1

dv
G~11e!~11v !x~12x!he

32p4S 2q2v~12v !

m2 D e . ~B59!

In the following we give details about the evaluation of the IR-divergent integrals of Sec. III A. The contributions containing
heavy quark propagator terms were regulated using a gluon mass regulator and lead to the following general integral overk0 :

I k0
[E

2`

` dk0

2p

1

~k01 i«!2~2k0
21k21M22 i«!b . ~B60!

The general power in integral~B60! leads to a branch cut along the real axis for all those values for whichk0
2>k21M2.

Including thei«-prescription as indicated in Eq.~B60!, we choose a path in the complex plane around the branch cut in the
upper half of the plane and find the following solution:

I k0
522i sin~bp!E

Ak21M2

` dk0

2p

1

k0
2u2k0

21k21M2ub

522i sin~bp!

G~12b!GS 1

2
1b D

2p3/2~k21M2!1/21b . ~B61!

The remaining Euclidean integral can then be performed easily. In the case of the crossed ladder diagramMcl we find in
this manner again a divergence which is hidden in Feynman parameters. This can be handled by splitting intof (u) and f (1)
terms as above. For

E dnk

~2p!n

mep~k2,m2!

~k01 i«!2~k22l21 i«!~~k1q!22l21 i«!
~B62!
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we find

f ~u!516 sinS e

2
p D GS 212

e

2DG~11e!GS 21
e

2Dhe

~4p!4pm2 E
0

1

dxE
0

1

dv
x~12x!u

a21e/2S D1
l2

m2 uD 11e ~B63!

f ~1!516 sinS e

2
p D GS 212

e

2DG~11e!GS 21
e

2Dhe

~4p!4pm2 E
0

1

dxE
0

1

dv
x~12x!

S 2q2

m2 v~12v !1
l2

m2D 11e .

~B64!

The vertex correction graphMvc3
and the integral occurring in the onle-loop verex correction termMolvc can be calculated

analogously. Here we have

E dnk

~2p!n

mep~k2,m2!

~k01 i«!2~k22l21 i«!
~B65!

with the corresponding solutions

f ~u!5216 sinS e

2
p D GS 2

e

2DG~e!GS 11
e

2Dhe

~4p!4pq2 E
0

1

dx
x~12x!

a11e/2S 12u1
l2

m2 uD e ~B66!

f ~1!52
8

3
sinS e

2
p D GS 2

e

2DG~e!GS 11
e

2Dhe

~4p!4pq2 S m2

l2 D e

. ~B67!
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