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Massive fermionic corrections to the heavy quark potential through two loops
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A physically defined effective charge can incorporate quark masses analytically at the flavor thresholds.
Therefore, no matching conditions are required for the evolution of the strong coupling constant through these
thresholds. In this paper, we calculate the massive fermionic corrections to the heavy quark potential through
two loops. The calculation uses a mixed approach of analytical, computer-algebraic and numerical tools
including Monte Carlo integration of finite terms. Strong consistency checks are performed by ensuring the
proper cancellation of all non-local divergences by the appropriate counterterms and by comparing with the
massless limit. The size of the effect for ttgauge invariantfermionic part of a(g2 m?) relative to the
massless case at the charm and bottom flavor thresholds is found to be of order 33%.
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PACS numbefs): 12.39.Pn, 11.10.Hi, 12.38.Bx

I. INTRODUCTION quarks,m the mass of “light” quarks contributing through
loop effects andl'® the generators of the gauge group. It is
In analogy to quantum electrodynamics, the heavy quarithen convenient to define the effective charggqg? m?) as
potential has been of interest in QCD from very early on
[1-6] as a model for the physical definition of the strong
coupling constanf7]. Since it represents a potentially mea- V(g2,m?)=—
surable quantity and gives naturally rise to a physical effec- q
tive chargeay, [7], it is very interesting to study the QCD
flavor thresholds in such a systdi®] as the fermionic cor- in momentum space. The fact@; is the value of the Ca-
rections are separately gauge invariant. simir operatofT?T? in the fundamental representation of the
__In the minimal subtractio(MS) and the modified MS external sources and factors out to all orders in perturbation
(MS) schemes, the running of the coupling constant, by contheory. As one is free to choose the representation of the
struction, does not know about masses of quarks and singxternal particles, we obtain the static gluino potential by
the couplings are nonphysical, the Appelquist-Carazf6he adopting the adjoint representation.
decoupling theorem is not applicable. One has to turn to The massless case was recently calculated in R6€f
effective descriptions which match theories withmassless and in this paper, we will give all the two loop fermionic
flavors onto a theory wittm—1 massless and one massive contributions toa, (g2, m?) for all perturbative values of the
flavor at the “heavy” quark thresholfl0—12. In this way, = momentum transfeqzzqﬁ—q2= —g2>0 and for arbitrary
the dependence on the dimensional regularization mass paalues of the fermion mass. In this context we are only
rameteru is reduced to next to leading order effects by giv-interested in the two loop contributions to the potential in the
ing up the analyticity of the coupling at the flavor threshold effective Schrdinger equation for the heavy particles. This
[13-18. implies, for instance, that not always the whole diagram con-
While this procedure of matching conditions and effectivetributes to the potential as certain parts can already be repro-
descriptions is certainly workable, from a theoretical stand-duced by the exponentiation of lower order diagrams. The
point it would be advantageous to have a physical couplingiecessity for this subtlety has its origin in the exponential
constant definition which is analytic at thresholds. In addi-present in Eq(1). For a detailed discussion, see Ref].
tion, as a physical observable, the total derivative with re- It is also important to note that the results of massive two
spect to the renormalization scakevanishes. Such a system loop integrals presented in this work are also relevant for the
is given by identifying the ground state energy of therelated problem of quark threshold production. For this ap-
vacuum expectation value of the Wilson loop as the potentiaplication, though, it would be necessary to treat also the oc-
V between a static quark-antiquark pair in a color singletcurring imaginary parts of the integrals numerically as pole
state[1,4,19: terms will contribute for timelike momentum transfers at the
production thresholdy?>=4m?. A promising approach for
]|0> this treatment might be the recently suggested Taylor expan-
sion of integrands around thresho]@1] by determining
(1) large and small scales in the problem. The heavy quark ap-
proximation eliminates the possibility of timelike momentum
where r denotes the relative distance between the heavyransfers in this work so that we do not need to worry about
pole terms numerically. Nevertheless, we also list the contri-
butions needed in this case for all integrals.
*Present address: University of Durham, Durham, UK. The paper is outlined as follows:
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In Sec. Il we list all the occurring two loop contributions v
explicitly in the Feynman gauge and with the usage of heavy
quark effective Feynman rules for the external sources. In a
Sec. lll the unrenormalized results for the two loop correc-
tions are given in terms of two loop scalar integrals, for
which explicit expressions are listed in Appendix B. Section
IV contains all the required counterterms in the MS- a b
renormalization scheme and it is shown that all nonlocal di-
vergences cancel. The renormalization constants obtained are ¢,y
given explicitly and checked with the known results. Section
V contains numerical results which demonstrate that the FIG. 1. The Feynman rules for heavy quark effective theory
massless limit is obtained correctly and display the effect ofised in this work for the source propagator and the source gluon
including the mass terms for the charm and bottom flavoiertex. For anti sources one has to make the replacement v.
thresholds. In Sec. VI we make concluding remarks and inThei-¢ prescription is the same as for the usual fermion propaga-
dicate future lines of work with the presented results. Appentor-

dix A, finally, lists all the reductions from tensor to scalar

x

Y

1+
T¢5a,b

.
b N

y <

2'g(Tc)a,b v

integrals needed for the results displayed in Sec. Ill. gauge invariant fermionic corrections to the heavy quark po-
tential at two loops in the Feynman gauge. The choice of this
[l. THE TWO LOOP CORRECTIONS gauge simplifies the calculation because the decomposition

In this section we present the non-Abelian contributions™© scalar two loop integrals is easier and it also reduces the

to the heavy quark potential that constitute the new results Otpree gluon_vertex correction gra_\ph to Z€ro in the heavy
this work. They are depicted in Fig. 2. The QED like dia- quark effective theory. Belo_vv we list all contributions at the
grams, which need to be modified by their respective colof¥0 100p level. The abbreviations stand fgse=gluon self
factors, have been known for a long tirf@2] and can also €nergy, Vesvertex correction, ecrossed ladder and

be found in Refs[17,23—25 for instance. They are given olvc=one loop vertex correctiorin the heavy quark limit
here as well because we would like to be able to separat®&e use the source gluon vertex and source propagator Feyn-
non-Abelian and Abelian contributions to the potential. It hasman rules of heavy quark effective thed6,27 which are
been observed befofd7] that their respective threshold be- given in Fig. 1.

havior can be quite different. These diagrams, together with With these, and taking ,=(1,0,0,0) andq,=0 for the
effectively “one loop” diagrams are given in Fig. 3. The purely spacelike momentum transfgr the two loop dia-
weighted sum of all the graphs shown, modulo terms alreadgrams of Figs. 2 and 3 read in the Feynman gaisgenmed
generated by the exponentiation of the lower order Born aneéver the external color degrees of freedom and including a
the one loop vacuum polarization diagram, give the completsymmetry factor of for the first three amplitudes

_ —ig%u?® CeCaTE 500550 d"k dnl T y2(t—k+m)y?(H+ g+ m)y,(t+m)}
Mose™ g7 3 @m" | @ (a7 =m) (7= ) (1= k= m?) (k+ )22
><((q—k)yg,s,,ﬁ(—k—2q)5gy,ﬁ+(2k+q)ﬁga,7)} 3
—ig®u?€ CLCAT d"k d"l Tr{y"(t—k+m)y°(t+m
MgseZE 94//« Fla F5a,053,0 _ _ , {Z( , )72( )}2 .
q 2 (2m) 2m)" [(17=m?)((1—k)*—m?)(k+q)“k
X((—29—K),95,a T (—k+0) 50, o+ (2k+0) 190, ,) ((A—K) s 5T (— 20— K) 594, T (2K+ Q) s05,5) | (D
_ —ig®u®€ CLCAT 50055 Of d"k f d"l [ Tr{y"(t—k+m)y°(t+m)}
Mose= ¢ 2 2o" ) 2o | P=md)(1—K)2—m)K*
X(g'y,ﬁga,ﬁ_297,5ga,ﬁ+g%ag§,ﬁ)} (5)
- _iQG,LLZE 2 CFCA .0 0 dnk dnl
Mgse4= q4 (CF_ 2 )TF5 ' 5'8’ (27T)n (277)“

(6)

Ty (t+d+m)y (K+d+m)yg(k+m)y"(H+m)}
(T @)*=m?)(17=m?) (1= k) *((k+q)*— m?) (k*~m?)
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FIG. 2. The non-Abelian Feynman diagrams contributing to the massive fermionic corrections to the heavy quark potential at the two
loop level. The first two rows contain diagrams with a typical non-Abelian topology. Double lines denote the heavy quarks, single lines the
“light” quarks. Color and Lorentz indices are suppressed in the first graph. The notation for the remaining digrams is analogous. The last
line includes the infrared divergent “Abelian” Feynman diagrams. While the topology of these three diagrams is the same as in QED, they
contribute to the potential only in the non-Abelian theory due to color fadBy€,. In addition, although each diagram is infrared
divergent, their sum is infrared finite.

_ gt L o sof 0K d"l [T ya(K+d+m)ys(k+m)y, (t+m)y"(k+m)}
Masy=—gt—CHTe 9| 05 | s | e i a7 0T “
M :igﬁ,uZECFCAT,:aa‘OSB]O(S%O d"k d"l Tr{y, (t—k+m)y,(t+d+m)yz(t+m)}

e g2 2 m" ) @m" ((1+q)*=m?)(17=m?)((1 —k)?—m?)(k+q)*k%k, ®
g% CeCaTe o o d'k dnl Ty, (t—k+m)y,(t+m)}
Mue,= == =5 0" o | e P (P md (k) Kk

X((q=K)g9,,,+(—k=20),95,,+(2k+0),9, p) 9

_ ig%u2€ CLCATE 60(1085’0[ d"k d"l Tr{ya(t—Kk+m) yg(t+m)} 10
ves™ g2 2 m)" ) @2m" (12—=m?)((I-k)?—m?)k*(ky+ie)?
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6 2CECATe oo d'k [ Tl TH{ ot — Kt m) yg(t+ m)}
Ma=—igopi =50 | R | Gy B (- 0T mP kT @)P(ke T 15)? 1y
%2 CeCaTe o o AT Tr{ya(i- )
M= S e ey | ey e (12

It should be noted that in our case there is no need for abelow and then proceed with an algebraic reduction into sca-
i-& prescription in the denominators of Ed8) through(9)  lar two loop integrals. This reduction is programmed in
as the spacelike nature of the physical momentum transfetorm [30] and details are presented in Appendix A. The
only leads to purely real integrals and no unambiguous poleesulting scalar integrals are then evaluated by employing
terms occur in the denominators of those diagrams. This feastandard Feynman parameter techniques and explicit results
ture also simplifies the Monte Carlo integration of the finiteare listed in Appendix B. Overall results for the various am-
parts of the contributing graphs. The three grafi®, (11)  plitudes are obtained by expanding the n-dimensional results
and (12) display infrared divergences which cancel in thearounde=0 with MAPLE. It is important to notice, given the
sum. The one loop vertex correction grapht,,. vanishes complexity of the calculation, that the translation irfoR-
in dimensional regularization, however, is needed to ensurérRAN code was also performed apLE, thus dramatically
the proper cancellation of infrared divergences. reducing the chance of accidental mistakes. The evaluation

The color factors given are not always the full color fac- of finite parts is done with the Monte Carlo integrat@GAs
tors. Only those contributing to the potential are listed. The31].

Casimir invariantd 28] for a general SU{) group are de- For the two point functions we use the following decom-
fined by position into transverse) and longitudinal ) components:
N%-1
CAEN, CFEW (13)

Ha,ﬁ<q>z(gw— q“—?’;)quw L M(ed) (4
Furthermore, TfT3TP}=T:6*=26%P. The color factor q q

for M, includes the sum of the graph shown in Fig. 2 plusg.om which it follows that inn=4— e dimensions

the term stemming from the fermion momenta reversed con-

tribution. Only the sum is proportional t€,, the other 5 1 qeqf

terms vanish according to Furry’s theorem, as is the case in (%)= n—1 gef- 92 )Ha,B(Q) (19
QED. For QCD, the crossed ladder diagrams do contribute as

they contain a color factor proportional 1@%— CeC,A/2, q°q?

whereas the straight ladder graph has a color factor propor- II,(g%)=—11, Aa). (16)
tional toC2 only. This will be expounded on in Sec. Il A. In q

QED, the sum of all vertex, ladder and crossed ladder Feyn-,. goos: 2vp:

man diagrams is equivalent to the iteration of the potential in
the Schrdinger theOW-anED and the effective coupling

[29] differ, therefore, only at three loops due to light by light

scattering contributions. OOGTOTese

- ‘ -
b e

Il. UNRENORMALIZED RESULTS

The two loop integrals needed for the expressions of Eqs
(3) through (9) are treated in separate ways in this work Ypgh:
depending on whether or not they contain two or more inter- B i
E

nal fermion lines. In the former case we integrate the fermion
loop first as will be explained below. For the vertex correc-
tion contribution/\/lvCl we integrate the fermion loop ana- 3

Iytically as well with all the Lorentz indices projected to zero
and then proceed with additional Feynman parameters for

the remaining I_oop Inte_gratlon. FIG. 3. The infrared finite Feynman diagrams with an Abelian

The two point functionsMgse, Mgse, aNd Myse, @r€ 1555100y (upper ling contributing to the massive fermionic correc-
treated in a completely different manner as the above techions to the heavy quark potential at the two loop level plus dia-
niques would now be too cumbersome. We project the comgrams consisting of one loop insertions with non-Abelian terms
plicated tensor structure onto scalar quantities as describegtbwer line).
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With this notation and the heavy quark effective Feynman rules depicted in Fig. 1 we arrive at

Mo = L5F sogsory i=
954= g7 Lp(@), 1={1,..5. 17

The result of the decomposition for the transverse component of the gluon self energy/\g@plh using the relations
given in Appendix A, reads

. 19%CaTE[( 8 20 5 8 14
1T “an-1|\"37 3 (AgB1z =M Tyz55) + (4N =10 Togst (8= 4N)AsB1ot+ | N3 — =/ Tizs
+16 q2—q22—m2 T1o3st G%(4N—6)Togust 42(2n—4)B1oBys— 8G°M?T 345+ 8A,B
> 1235170 23457 Q4 12B45—0( 12345 2B45
m’ ([ 8 20| , 1, 8 28
1 2 ) 7 2 ) )
+ m _n§m T12/35+ nT235_ n§T135_4nAzB45+ngAzBlz/_Bm T2345_4m T2355+ 4T135

AmP(Tias— T +E 4T 1035~ MPT s+ M2T
M*(T 135~ T235) n3(m 12735~ M7 11357 M~ 1 5135

1
+02(AM?T g3455+ (4= 2N)AC 55— NTpz49) + P

—m?A,B +A§)) ’ } . (18
It is also useful to examine them— 0 limit of the above expression as this case was calculated in R#fand can serve

a valuable test for the above expression. By inspecting the occurring integrals we find the massless limit to correspond to

1 :ig4CATF
tm-0  4(n—1)

n
4n - 6_ m) T2345 .
(19

(8 n 7 14 n

4
n3-n-13 3% m) Tiast 16( 9°-q? 2) T1o35+0%(2n—4)B1Bys+q°

These terms are also, as expected, the only ones contributing to the gluon wave function renormalization constant. In other
words, all divergent parts of the two and one loop integrals which vanish in the massless limit in the exgi®sioll up
to zero identically. This in itself is an important check of the overall expression. In the heavy quark limit we can neglect the
timelike component of the four momentum trangferi.e. qo=0 as was already mentioned before. This means that we do not
need the longitudinal component Mgsel, however, we list it here for completeness:

ig*CAT 8 20
-5 ()

1
n 3 3 M?T 1035~ AgBay + §T135 +2T 235~ 8A2B4s— 207 T a5

+m2
P
q

1
+n—1

8 20 1, , 8 28
N3~ 3 AzBlz'_WAz_Tzfss_m Tioas| + ng*g T135— 16T 35

2 7 2
n3 M2T 35— NTogst N §T135+ 4nA,B,s—n §A2|312, +8M?T g5t 4M?T p355— 4T 135

1
+0%(NToz45+ 2NAC 455~ 4M?T 3455~ 4A,C 456) + ?+ Am?(T 35— T139)

) . (20

2
—nNn § ( m4T12/ 35 m2T135+ m2T2/35_ mzAzBlzl + A%)}

A good check on the consistency of the employed decomposition is given by the absence of infrared divergences. None of
the two point amplitudes in this work is infrared divergent to begin with, however, in intermediate steps of the calculation
those do occur. An example is given above by the two intedFalss and Tz455 for which only the combinatiom®T 53455
—T,355is infrared finite and this is how they enter into E¢K8) and(20). The functionA,C 455 only seems to have an infrared
divergence, however, in dimensional regularization it can actually be written as an ultraviolet divergence. This is done in
Appendix B.
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For the two diagrams that have an Abelian topology, Egjsand(7), we also give explicit results as usually only their sum
is given in the literaturg¢17,32. Here, however, we need both contributions separately due to the different color factors. In
addition, Abelian and non-Abelian terms are separately gauge invariant and might display a different threshold [défjavior
We find:

) C
|g4(CF—7A)TF

8 16
II{= n—1) <n3 )(AZBH’ M?T1235) +{0°[ (4n—8) G2+ (32— 8n)m?] — 32m*} 1345
, LN, , 76 104
+(8n—16)(Ty3s— AsB15)+320 q°—q E—m Tio35t+ | 4N —n§+T 135

4 2 2 2 2
(M T 10 35— M T35+ M T35~ M AyB 1o +A%)

1/(8
+[g?(18n—2n2—28)+ 16m?]B,B,+ 7 3"

} (21)

2 16 2 2 2 2
+16m=(T 35— T139) — ?(m T1235— M T35+ M T35~ M AB 1 +A%)

and for the longitudinal component:

, Ca 8 16 1
H _|g CF 7 TF n§_ 3 m T12r35+ 2T135 AZBlZ’
16
+ qz (m T35~ MPTya5+ M2 Ty 35— M?AyB 1 +AY)
8
+16M2(T 35— Toss) — 3 N(M T 135~ M?T 135+ M?T 35— M2A,B 1y + AJ) (22
Similarly, for Eq.(7) we get the following result:
4
ig*CeTe 16 20
?:W nz_n§+ 3 (A;B1p — M?T135) — 16M?T 1935+ (16— 8n)g°m? — 32m*) Ty 5035
2 2 2 2 , 14 16
+(N°=4n+4)(q° T35~ Toragst 2ABop— AsBoy +4°AyC 100 —29°A5C10) — | N 3Nt 3 Tiss
) 1 4
+mM*(8n—16)(T 235~ A2C120) — n(m T35~ MPTya5+ M?Tyi 35— M?AgB1y +A2)
8
+8M*(Tozs— T139) — 5 (M T 135~ M?T g5+ M?T 35— M2A,B 1y +AJ) (23

and for the longitudinal component:

5_ o4 (A8 1
7=—ig*CeTe [ ng—5][ m "Tizast 5 T1as~ AzBrz
1
i 9 §(m4T12’35_ MZT g5+ M?T 135~ M?A,B 1 +A3)

2 4 2 2 2 2
+8m*(T135~ Tozs) — gn(m T1235= M T35t M T 35— MAB1y +AY) | | (24

It can easily be seen that both parts of the two functions in B4$.and(23) multiplying 1/9° are identical up to a minus
sign when Eq(23) is multiplied by the multiplicity factor 2. This is required by the gauge structure of the gluon propagator.
Also their longitudinal parts add up to zero for the terms proportion&gamnly. This just checks the well known properties
of the Abelian theory. It does not hold for ti&, parts of Eqs(18) and (21) as they would get modified by the additional
diagrams. These, however, were calculated in this work without the above reduction scheme as follows:

We use the result of the integrated fermion loop which readsitting color and coupling constant factpf83]:
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d"l Tr b—=k+m)y,(t+m)
Tuatkim=a | s A T =, ko) () (25
with
n/i2 __el2 1
m(k?,m? )—I( (3177)2 ( )J dx X a2 (26)
( —X(1—X)— 1)

where 7 is given in Eq.(B5). For completeness, we also list the sum of the gluon and ghost contributions in the Feynman
gauge[ 34,35 to the gluon propagator:

'E/ZFEFZ 625 e

B 2 2

) (27)

7, ) =(00,.,—0,9,) m(9*)=(a%0,.,—d,9,)

(A _€
877 (4— ) 1- 5

where{ is given in Eq.(B5). Now we get the following result foMgsez:

7 1 7
CigACATeus [ dkm(kgm?)| SNz Nt 8n—3 3/ 1 K2 , K2+2kq
2= j + +92 +In—z|| = +9?
! 2(n—1) (2m)" (k+0q)* k* (k+0)%k* 2]\ g’(k+0q)? (k+0a)*k*
(28
L1 3
sz—ig“CATF,uff d"km(k2,m?){ " ﬁ_§+ 1 +§_”_ @ . 3 K2 29
! 2 (2m)" k? (k+q)? >  2(k+q)%k? 2] g%(k+q)?
and similarly for Mg
6n—2n2+2—6
3_ _|g CATF,LL nk (k2 2) n (30)
t (n—1) o7 K2
4-2n-2
— n__
—ig*CATEu® d"k n
3= AF J(z Am(kEm?) | —7— | . (31)

All the necessary integrals are given in Appendix B. For the vertex correction graphs we arrive at the following represen-
tations:

ig8CECATEnS (1 (1 (1 [t B(1—u)? 1I'(e
Mvcl:—rgzj APl fdxf dyj duf doxu| — (2 ) 2 o 1-ue
(4m)"q 0 0 0 0 22+ €l2 —d _T P +_—u
m2 a2 o o
(a+nb)(1—u)“?T () c(1-u)?T'(1+e¢)
_ A2 2 1— e+ A2 2 1— T+ (32)
2a,3+6/2 q _O'_ B _U 3+ €/2 _q _O-_+£ +_U
m? 2 a @ m? 2 a

whereo is given by Eq.(B46), p by Eq.(B47) and « by Eqg. (B5). The remaining abbreviations read:
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=—241-x)+8+e€(12(1—x)—4) (33 From direct inspection it is furthermore obvious that these
diagrams contain infraredR) divergent terms which have to
=—16x(1—x)? (34  cancelin the potential. It has been shown in Refs19 that
the sum OfMCI+Muc3+M0|uc is IR-finite. This require-
b=12x(1-x)? (39 ment poses a strong check on the calculation and necessitates
the calculation of the IR-divergent parts of a diagram that

2
% 12x(1—x)2+ 8(1—x)x(1—y) vanishes in dimensional regularizatiol,,.), i.e. when

UV- and IR-divergences are not separated.

The presence of the square of the heavy quark propagator
—12A1—0XH(1-y)*+ 401 -y) = x(1-y)) complicates the calculation of the crossed ladder diagram
—2(12(1—y)X(1—x)2—8(1—x)x(1—Y) considerably as it makes the analytical separation of the
double and single pole terms extremely difficult. We there-
fore found it most convenient to introduce a gluon mass
an IR-regulator. This allows us to explicitly differentiate be-
tween UV- and IR-divergences and provides a strong nu-

The heavy quark effective theoflAQET) Feynman rules merical check on the sum of all IR-divergent contributions.
of Fig. 1 project all three Lorentz indices to zero 1, . In this case we get the following integral representations for
The completely antisymmetric nature of the three gluon verthe unrenormalized and IR-regulated amplitudes:
tex then implies that there is no divergence coming out of the L6 . n
internal fermion loop. Although Eq32) appears to possess a _9 CrCaTen d"k
double pole, the 1/(*u) “divergence” is actually finite c 2 (4m)"
when integrated over all Feynman parameters. We checked 2 o 2 12
this directly withvecas [31] and it indeed gives a well con- m(k"m7)(k"—ko)

q2
05(8_12)()+ W

+Ax(1-x)) ﬂ (36)

X - . .
verged numerical answer. As fov, , we integrate out the (kotie)?(k*=\+ie)*((k+q)*=\*+ig)
fermion loop as before, which yields: (39

—ig8CECATEu® —ig®CrCATEu d"k
Mye,= 22 Mye,= s 2A ia n
q 3 2q (4m)
d"k k2+ 2kq 1 k2 m2) k2_k2)
X | m(k?,m? [— + (k% mY) (k" kg
f ¢ (k+9)%k*  2(n—1) X kot i) 2(K2— N2+ 15)2 (39
1 1( k?+2kq 1 6
— —1g°CrCATrue
|t "2l g T e Moo= ot m(a2,m)
aera (@m)" (ko tie)2(K2—N2tis)"

All the integrals left are given in Appendix B. For the contributions of graph88) and(39) in which the

kg terms in the numerator cancel the heavy quark propagator,
no gluon mass regulator in needed. The sum of these
In this section we turn to diagrams which give integralsko-independent parts oM, and M, ., are separately IR-
already present in an Abelian theory, however, which do notinite and indeed proportional to the integ(BE5) in Appen-
contribute in QED due to a cancellation that fails in the casejix B. We therefore restrict ourselves to a discussion of the
of QCD. The reason is as follows: The color factors for thek,.dependent contributions only. In these integrals ithe
ladder diagrams are proportional @ for the straight and prescription is crucial in order to arrive at the correct location
CE— CACg/2 for the crossed ladder graph. The same strucef poles and branch cuts in the complexplane. The pres-
ture is also present in graphs Eq$0) and(12). In the sum ence of the fermion mass brings about a complicated integral
of all four occurring ladder diagrams with one fermion loop over a general power, which in turn leads to a branch cut in
plus MUC3 and Mg, all terms proportional tcﬁﬁ give a  the upper half of the plane. After integrating owgrin such
contribution that is equal to the product of the one loop fer-2 fashion one is left with an Euclidean integral over (
mion graph with the Born contribution. This is an explicit —1)-dimensions. More details and complete results are
example of the aforementioned exponentiation that occurs ofiiven in Appendix B 1.
the level of the potential. In an Abelian theory one thus has

A. Infrared cancellations

to omit these contributions. IV. RENORMALIZATION

On the other hand, in QCD, we need to calculate the
crossed ladder terms and keep only th€ ,C/2 part of the In Fig. 4 we list the relevant counterterms for the two loop
above color factors. diagrams of Fig. 2 and Fig. 3. The counterterms themselves
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FIG. 4. The two loop counterterms corresponding to the diagrams in Figs. 2 and 3. Adding these contributions to the original graphs
removes all nonlocal functions from the occurring pole terms. The only exceptiom’eeterms in the two point functions which only
cancel in the sum of all two point diagrams as explained in the text. The fact that the tadpole diagram has no counterterm is already
indicative of this cancellation.

contain nonlocal contributions, i.e. nonpolynomial in the mo-graphs contributing to the overall field strength renormaliza-
mentum transfex, that have to cancel the nonlocal termstion. There is therefore no difference in the formal treatment
from the original amplitudes. The construction of the localof the mass parameter in graph and any other graph. This
wave function renormalization constants provides a powerfuls another way of saying that the parameters of a MS-
test of the correctness of the results presented both in Sec. fignormalized theory are not physical. Rather, they are related
and the appendices as they must combine successfully g measurable qualities by a perturbative series in the physi-
arrive at the required local double and single pole terms. I€8 parameters. _

might be helpful to expound on the general treatment of We begl_n by presenting the resu_lts for the counterterms
masses within the corresponding integrals and counterternﬁ:sorresmndlng to Fig. 4. All two point counterterms corre-
in the MS-renormalization schenj&6,28. In the counter- spond to the transverse parts of the gluon self energy contri-

term approach, their contribution is restricted to finitebunon only, as these are the only relevant ones for this work.

changes through the counterterms as the wave functio-rl;he graphMgs, has two counterterms, one stemming from

renormalization constants are independent of the fermiof'€ fermion loop divergencell, ) and one from the loop
masses. In other words, all pole terms that contain mass@sound the three gluon vertexlg, ). They are given in the
represent nonlocal infinities which must cancel in the sum oMS-renormalization scheme:
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2 2

- _ —8ig“CaTe J'ld g em ™[ Mmerl —1s &)~ 9 a ez 2p( € L el
0~ 3amte Jo x| (8— n)z >mT| — +§ _Wx( —X) —axT| 5 _m7x( —X)
2 € q2 1—-€l2 € q2 —€l2
_ _ Tl = Y L _ —a2x2r| — | = Lo _
(4n 6)( 5 ry—1+ 5 mzx(l x)) g°x F(2>( mzx(l x)) )
€ 2 —€l2 ,'75/2
20 _ 2(En_ S - _
+| g%(—2+2n)x+g?%(5n 5)I‘(2)( —2X(1-X) ) = (41)
6ig*CATE (1 n o, € q? 1=el2
Hmlg_m fo dx| (4n—12) —Em r —1+§ —WX(].—X)'F].
+ P = il 1-x)+1 - an—4)(m*+ gl = il 1-x)+1 -
9T 5 2 X(1=X) (4n—4)(m=+a™)T'| 3 2 X(1=X)
2 1—-¢€/2 2 —€l2 €2
—amer| —14 S =3 PRI A B U
4m F( 1+ > m2x(l x)+1) g°x F(2)< mzx(l X)+1 1 (42

For the counterterm fo we find

gse,

powerful evidence of the correct evaluation of both the two
loop integrals as well as the decomposition of grap}asel.

I € I2 1_5 Multiplying each graph with its respective multiplicity we
4ig*CATRq2C? | (7 2 2 find in the MS-scheme:
" 3(4m)%e(n—1) 773N T[(2—e) . ) ,
{4[11; +1ey, + Hctlg] +2[ I+ 1Ly, |+ [T T o)
€ € €
) F(l_i)r(_i) igiCaTeq? (28 71 .
*(”‘z) M- “3 T T @m* 132 9e) @7

wheren and{ are defined in Appendix B. Forlr/lgse,3 there is This is completely local and thus demonstrates that the
no counterterm as the subdivergence is independent of tf@normalization has been carried out properly and that the
mass which means that in dimensional regularization all théntegrals given are correct. In order to further check this term
remaining integrals vanish. we need the pole term from the “overlapping” Abelian two
The pole terms for the respective terms, expanded up tgoint diagram from Eq(6) [which in QCD develops a color
O(€%, thus read factor proportional to Ce— 3C,)] in order to get the fermi-
onic part of the overall gluon wave function renormalization
igCaTeq? constaniZs. The counterterm folM g, reads

[T1{+ Iy, + Hctlg]O(eO): RS

1 163 3m? __ 8ig® (c CA)T a?m(q%m?) (48
- e 2 T g(am2 |\ CF o | 'F ,
X(962+ 108 q%) (44 e(4m)
. and gives in agreement wifl37]:
5 B |g4CATFq2 g g ﬂs ]
I+ ey, Joge0)= — “amnt c
ig4 Cr— =2 |Teq?
44 25 15m? — B F2) 7 (16 52
X _9_52+ﬁ+??) (45) {[ t+ Ct4]}0(50)_ (477)4 g_a .
(49
5 ig*CaTF18m? , '
[T} o0 = ~ante (46) Adding Egs.(47) and theC, term of Eq.(49) gives the

correct non-Abelian fermionic part of the gluon wave func-
. . - . P 2
These equations contain no nonlocal terms other than th:" rer|10r.marl1|zat|0n constapftimes 119%) see Ref[35] for
m?/e terms, which then have to vanish in the sum of a”exampé In the Feynman gauge:
contributions to the non-Abelian part of the gluon wave

. L . 4
function renormalization constant. Because of the very in- Ca _9 CaTe [ 20 _ § (50)
volved nature of the occurring nonlocal terms, this is already 3termionic  (4m)* |3€2 €]
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This testifies to the overall correctness of both the decom-

positions used as well as all the integrals listed in the appen- 4ig®CLCATE 7 (1 noT(el2)
dices. . Mvczm= WJ - — q2 2
For completeness we also give the counterterm for 2(_2v(1_v)>
Mgse,: which in the MS-scheme must be treated in the same m
way as the graphs before. All divergent terms proportional to €
m- cancel the corresponding nonlocal infinities in E2Q): (1+v)I'(+€/2) (2)
2 €2 2 el2
—-q —-q
. (Wv(l—v)) 2(n—1)(Wv(l—v))
I, = 4ig"Cr Te 12m2B,,+202B
T e 1) (am2l AT Bt 2B, nvr(f)
— 4A,— 1202M2C1,,) + (24q7m?— 48m*)C 5, N 12 .
_q €
—24m?B,,— (40%+16m?) B+ 8A,] (52) 8(n—1) Wvﬂ—v))
€
with (1+U)F 1+§
- 7 Tz (55
4(I’l—l) Wv(l—v))

P 2
ig"CeTrq 8 8
{1+ e Joe0)= @t ( —32tg¢) 52
Adding Eq. (55) with the appropriate normalization and

color factors to the result given in E€R7) does indeed give

It is an important difference to the massless case that the
countertermg48) (rather itsCr part and(51) are not related X 10 IRsum

by a simple minus sign as implied by the Ward identity. o5 [
There is an additional constant ternm4which gives new C . R .
. . . . C + + ¢ L4 .
contributions. For the purely Abelian fermionic part of the ¢.45 [
gluon wave function renormalization constant in the Feyn- N
man gauge we find in agreement with Rg5]: 04
035
4 c
Ce _9CeTe [ 4 53 03 ¢
3termionic (47T)4 €)’ F
0.25
3 ) . 0 2 :_A A A A r'y A A A
The cancellation of the higher ordédouble pole is a < F
characteristic feature in QED that holds to all ord38]. C
For M, we do not need to remove nonlocal terms as the 0.15 o
fermion loop is finite due to the projection of all three Lor- L
entz indices to zero. It is easy to check this by calculating all - - - - - - - -
divergent pieces after the integration Of the fermion Ioop' A" 0.0 :||||| Cod vl ol ol sl el
that is left is the divergence from the remaining integral 10" 10 10° 10° 107 10° 10° 10*
which has to be subtracted in the usual MS-fashion. This is 22

indicated in Fig. 4. The explicit pole term is given by: ) )
FIG. 5. The sum of the.~-dependent amplitudes and counter-
terms M E?+M 5g3+ Mot M E? t+ M 523 ; Circles correspond

to a choice ofg?=—10 GeV? and m=m,, triangles toq’=

igGC,:CAT,: 1 —100 GeV andm=m, while the lower curvgsquareshasqg?=
[Mycrloe)=—F5 a7 ( — ) (54) —100 GeV* andm=mj,. The overall normalization neglects color
(4m)"q factors and the coupling strength. All data are obtained by usifig 10

evaluations per iteration witieGAs and 100 iterations. The statis-

tical error is indicated and smaller than the symbols where invisible.
in agreement with the massless cd88]. In the case of The sum for each of the displayed sets of parameters is clearly
/\/lvc2 we do have nonlocal terms, and the counterterm readsndependent of the IR-gluon mass regulatoas expected.
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FIG. 6. A comparison of the six amplitudeglgse , Mgse,, Mgse, Mgsa, Myc, aNdM,,¢, With the massless limitdashed lines[39]

in the MS-scheme. Solid circles correspond to a choicg?ef— 1.5 GeV?, open ones tg?= —4.5 Ge\f. ©=0.31 GeV in each case. Each

graph begins to deviate from the massless limit only whéris of the same order as q? as expected. These results were obtained after

10° evaluations per iteration and after 50 iterations. The statistical error is smaller than the size of the symbols and the normalization neglects

color factors and the coupling strength.

completely local double and single pole terms as required iplexity involved. As mentioned before, also the translation
dimensional regularization after the subdivergences are sulinto FORTRAN was handled byAPLE as to reduce possible
tracted: accidental errors.
At this point we need the counterterms of the IR-
igfCCaTE [ 1 5 divergent contributionsM,, M, and Mo,c. As indi-
[Mye, T Myez Joeo)= AR (? - E) (56)  cated above and expressed in E@8), (39), and(40), these
were regulated by introducing a gluon mass regulator. The
remaining UV-divergences are treated as above in the con-
It demonstrates that indeed all nonlocal divergences argext of dimensional regularization. We therefore have to cal-
canceled and agrees furthermore with the pole terms okzuylate all counterterm contributions that occur for gluon
tained in the massless analyg89]. It should be noted that propagators with a gluon mass. Without such a dimensionful
all the integrals needed were already used inAhigse, cal-  quantity, only the crossed ladder diagram would yield a
culation for which such a strong internal consistency checlcounterterm in dimensional regularization. We again use the
was performed just above. All the required expansions abovgluon mass only foky-dependent terms as explained in Sec.
were carried out with the help ofAPLE in face of the com- Il A. This is indicated below.

114004-12



MASSIVE FERMIONIC CORRECTIONS TO THE HEAV . .. PHYSICAL REVIEW D 58 114004

x10 2 For completeness we also list the remaining counterterm
IRsum stemming from theky-independent part oM :
0.35
I € €
0325 | 16g°CrCATRA7 72T | 14 5 F( - 5)
- Mié| = 2\ 1+€l2 .
0.3 - . o 2 w1 €)—a
: S
0.275 |- g (59)
025 |- . The gluon mass terms that occur in the expansion of the
L-e----- s - >~ E EE T TP original as well as the counterterms above in powers iof
0.225 |- the pole terms of dimensional regularization represent now
- nonlocal divergences which have to cancel in the same way
02 |- as terms containingn?® or nonpolynomial functions of?.
- The remaining IR-divergent pole terms are contained in the
0.175 — form of logarithmic divergences iN. Figure 5 demonstrates
B that in the sum of the IR-divergent amplitudes plus their
0.15 - ° corresponding counterterms nedependence is left within
B o the statistical errors. For convenience, three sets of values for
0125 —o----- ©----- o----- O ---o- o------ O-cooomoooooo- g andm? are displayed while the renormalization scale
K remains fixed. We have checked that it also holds for a va-
0.1 IIII| L III\HIl L I\IHIIl 1 IIIIIII| 1 \IIIIII| | IIIIIII| 1 \IIIIII| | IIIIIII| . .
6 5 ) 3 2 1 riety of other choices of parameters. Some need fewer evalu-
10 10 10 10 210 10 1 10 ations to converge while others need up td per iteration.
m It is perhaps interesting to note that the crossed ladder

diagram, naively only singly IR-divergent, actually possesses

+ Mgpe Plus their MS-counterterms with the massless limit a quadratic d'Verge”,Ce In |ngWthh canC(_eIs théalso un-
(dashed lings[39]. Solid circles correspond to a choice gf= precteaj quadratic dl_ve_rgence |r_1 the Abelian vertex c_orrec—
—1.5Ge\?, open ones tog’=—4.5 Ge\?. x=0.031 GeV and tion term. The remaining UV-divergent pole terms in the
A2=10"8 in each case. The sum begins to deviate from the massMS-scheme are found to be

less limit only whenm? is of the same order asq? as was the case

FIG. 7. A comparison of the sum of amplitud&\sic|+/\/va3

k k
for the other graphs. These results were obtained aftet8lua- [M c?+M C?Ct]O(eo):O (60)
tions per iteration and after 100 iterations. The statistical error is
e e T e roMElzalonegects. |y \gto 1o SCECATE( 16 80
upli . == " A" _ 4
ping sireng [Mye,t Mic, Joe=~amagz | ~ 32" ¢
(61)

The results are obtained in a similar way as for the corre-
sponding amplitudes, first integrating over the heavy quark ig8CC,T 16 16
propagator in the complei,-plane with a subsequentiah ( [M K&+ MK + M¥ Jo0= %( )
—1)-dimensional Euclidean integral remaining. The results s o (4m)"q
are obtained straightforwardly as there are only pole terms

and no branch cuts in the counterterm contributions. We find | . .
for the gluon mass regulated terms: which states that the counterterm in case'\&bt? completely

remove all pole terms ir. It is also clear that all nonlocal
terms are removed by the appropriate counterterms as was

 3€? * 9¢
(62)

4igGCFCATF7]f’2F( 1+ g) gxpected. In order to compare this with th_e resu!ts obtained
Mmbo — in the massless case one would need to differentiate between
C|Ct 5 €yv and €R-
6(477)7/2F(§) m?
1 V. NUMERICAL RESULTS
1
xf dv—— ARSEL (57 At this point we have calculated all diagrams that contrib-
0 (_qzv(l_v)+ — ute to the massive fermionic corrections to the heavy quark
m m potential that were previously unknown. In the previous sec-
tion we demonstrated that the counterterms successfully re-
€ move all nonlocal divergences and that the MS-subtraction
8igGCFCATFnE’2F(§> terms coincide with the massless limit. The complexity of
ko _ _ . (58) the explicit results given in the appendices raises some ques-
C3e 3eq(4m) 72T E 7\_) tions about how stable a numerical integration over up to
eqiam 2\ m? four Feynman parameters is wittGAS as well as about the
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FIG. 8. The mass dependenceaf at one(bottom and two loops. The two loop case is displayed in terms of all Abelian t¢lefts
and for all non-Abelian termgproportional toC,). Triangles denoten’=m?2=(1.5 GeVy and open circlesn’=mZ=(4.5 GeV¥. The
massless case is also includéide). All curves have the same value of the renormalization spat.031 GeV. It is clearly visible that
the flavor threshold behavior is quite similar in the three figures with an opposite tendency for low valueg of the two loop case
though. The one loop corrections have an equal sign relative to the Abelian two loop corrections. The coupling constants are omitted. All

cases approach the massless limit wheih—g? <1.

correctness of the finite terms of these expressions. An ideal It is clear from these results that deviations from the
test is provided by the results obtained in Réf] for the  massless limit only occur whem?~ —q? or greater. This
massless limit. o was of course expected and the motivation for this calcula-
Figure 6 contains the results of the IR-finite two l00p tjon, A similar dependence is observed for the sum of the
amphtude_s from Figs. 2.and 3 in Sec. |I. The tadpole d.'a'three IR-divergent amplitudes from Fig. 2 in Sec. Il. Here it
g::mhsvas?:(s)cvis rgm;lrl]y llr]hetzhg;rlrllrgslt csr?oitcheast q%r;gnéh?h;'x is impossible to compare on an amplitude by amplitude level
?engrmalization scalg Were made in all six plots. Since the §ince a (_jifferent IR-re_guIator was used. Only the sum of
results of Ref. [19] were calculated in the infrared finite contrlbutlopg can be compare(_j at the tvx_/o loop
MS-renormalization scheme, we use level. We checked explicitly that by replacing Io)g(ywth _
1/e, only the double pole terms can be seen to be identical.
The single pole terms differ and so do the finite contribu-
_ /ey o 63 tions for each amplitude. In the sum, however, the IR-
MMS™ N g7 HMS- (63 divergent pieces cancés demonstrated in Fig),5and here
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we can find a meaningful comparison. Figure 7 demonstrates a,
that the correct massless limit is indeed recovered. The nu- o
merical accuracy in terms of the statistical error from the
VEGAS Monte Carlo integration is actually included in the
figures. It is better than 1% though, and thus not visible on
the scale of the plots. The gluon mass regulated graphs were
evaluated over twice as many iteratiofiO0) compared to 0.015
the graphs from Fig. 6 as the required cancellations are nu-
merically more unstable. In both cases the number of evalu- -0.02
ations per iteration is 0

Figure 8 displays the sums of all non-Abelian as well as
the sum of all Abelian fermionic contributions to the heavy
quark potential. In addition we included the one loop correc-
tions (bottom in the MS-schemdomitting coupling con- -0.035
stant$ as given in Eq(26). The simple logarithmic behavior
of the massless one loop result is clearly visible and asymp- .04
totically approached by the massive curves. The sign of the
one loop correction is equal to the two loop Abelian result,
reflecting the fact that effectively for large momenta J
BSEPlog (u/— ) —[BFEPlog (u/—P)? (in the massless
case, with3EP= —2). The relative size of the mass effects -q
are comparable for the one and two loop corrections. _

The massless two loop results can be seen to possess theF!G- 9. The complete two loop mass dependence agf
expected double logarithmic contributions. The massive twg= @/°°/g° for m*=mZ=(1.5 GeV} (triangles and m*=m;
loop results show an almost completely opposite behavioF_(4-5 GeVY (open circles The massless case is also ir_mlnuded
for ow vlues of- ¢°. ALt flavor s, hough, 11,1 % (1CE S e e DSl Do e s,
both contributions decrease .the value Obtam.ed from th(eamd is dominated by the new non-Abelian contributions.
massless case by the safnglative order of magnitude. The
overall corrections are much larger in absolute terms for the
non-Abelian case, partially due to an extra factorQ@y, “natural” heavy quark potentiam-dependence to an effec-
while in relative terms the Abelian corrections are bigger. Intive continuous and smooth function(— g% m?) [8] seems
the high energy regime both graphs show that the massled@ be a promising candidate.
limit is approached asymptotically.

The complete massive fermionic two loop contributions
to the heavy quark potential are presented in Fig. 9. It can be VI. CONCLUSIONS
seen that the overall curve is dominated by the non-Abelian

thres‘r)old behaylo(partlally due to the exira factor @,). Abelian massive fermionic corrections to the heavy quark
The “mc-graph (tr2|angle25) maztches the masslc_ess case forpotential through two loops. They describe the analytic fla-
lower vallues of—g“ asmg<< M- At the regpectlve thresh- | o thresholds of the physical coupling,(q2,m2). The new
olds we find roughly a 33% deviation relative to the massles$ggits were obtained by using a mixed analytical, computer-
case. This could be very significant for applications whereg|gepraic as well as numerical approach and strong consis-
quark masses are expected to play an important part. Furtheency checks were performed by observing that all nonlocal
more, the physically defined effective chargg(q®,m?) in-  divergences cancel by adding the appropriate counterterms.
corporates quark masses naturally at the flavor thresholds case of the complicated two point diagrams it is found that
and is also analytic. Thus, there is no problem of evolvingthe weighted sum of all diagrams gives the correct local
the strong coupling constant through these thresholds angluon wave function renormalization constant. The renor-
one never needs to impose matching conditions. At high valmalization constants were given explicitly.
ues ofg? the theory becomes massless and reproduces the It was also checked that no spurious infrared divergences
leading logarithmic terms obtained by tigefunction analy-  were introduced by the implemented reduction scheme as
sis as these coefficients are scheme independent through tiltey are present in the intermediate steps of the calculation.
loops in a massless theory. For the explicitly IR-divergent diagrams we proved that no
The above analysis can also be helpful for the incorporaphysical results depend on the introduction of the gluon mass
tion of massive fermions in lattice analyses as the heavyegulator\. This is a consequence of the color singlet state
quark potential is defined by the gauge invariant vacuunof the external heavy quark sources.
expectation value of the Wilson loop in E@.). For a direct All physically interesting and gauge invariant finite parts
application of the presented results, a recently proposed wayere integrated witieGas[31] and found to agree perfectly
of incorporating quark flavor thresholds by relating thewith the massless results of R¢R0] in that limit which

-0.005

» O
»O

-0.025

-0.03

-0.045

LRI LA L L L B B B IR I IR BN LY L L

= I s LT T T AATSRyR R
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We have calculated all the necessary integrals for the non-
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actually checks this part of the analysis[itB]. The differ-  detail in the next section together with all other integrals
ence to the massless case around the charm and bottom fleeeded in this work.

vor thresholds was found to be roughly 33%. The size of this We work in n space-time dimensions,=4— ¢, and for
effect can have important consequences for processes the two loop integrals we use the following notation:

which one cannot neglect these masses as well as for the
evolution of the strong coupling constant through analytic
flavor thresholds. 9 SOUPInY ’ g [1]=(+a)?—m? [2]=I?-m?
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TMR-fund. with squares of “denominator” terms in the numerator
“Y"-integrals and pure two loop scalar integrals by .
APPENDIX A: DECOMPOSITION OF TWO LOOP In the following we use various symmetries betweén
TENSOR INTEGRALS as well as betweem-integrals. For instance

For the gluon self energy grap.)h)s/lgsel,_/\/lgse[1 a.md Y250=Yhans,  Tia=Tozs. (A2)
Mygsq, We chose to not do the fermion loop integral first, as  For two loop scalar integrals that are actually a product of
we did for all vacuum polarization insertions, but to decom-scalar one loop integrals we use the respective one loop no-
pose the occurring tensor integrals into a linear combinatiomation of Ref.[41]. All of the decompositions were pro-
of scalar two loop integrals. The scalar integrals entering irgrammed irForRM [30] and lead to the following relations for
the expression given in Eq18) [or (20)] will be treated in Mygse,:

u [ d d") w2<((1 +9)%—m?)?
V2ss (m)“f (2m)" (1IP=m*)((1 —k)*—m?) (k+q)*k?

2 1n 4 2 2 2 2
=0Q°(Ty35— T139) + =1 g(_m T1235+ M T35t M AB 1y —M Ty 35— A3)

2 2 N 4 N 4 24 4 n ., m,
—MT 135+ M Tyzst 20 Tozast 54 A2C 455~ M " Toza55~ 0 AxCus5T sMa Tioast 124 Ti3s

n n
- Zqums”L NOPA,Bs— 5 0°AsB 1y +2m?Q°T 2345+ M?0°T 2355~ 9T 135 (A3)
vl _j d"k dl w2((1+g)?—m?)
245~ | 2m" ) (2m)" (12=m?)((1—k)2—m?)(k+q)%k?
1 2
=AyBst+ E(T235_ T135T 0T 2349 (A4)
L "l 125 (k+q)?
257 ) 2m ] @m" ((+a)?—m?) (12— m?)((1-k)>—m?)k?
2 1 2 2 2
=AsB 1ot q T35t E(T2'35+A2522'_AzBlz'_Tlas_q AsC1op +(M*—Q°) T1235) (A5)
dnk dn| #25(“ _ k)Z_ m2) q2
Y3 =ABss— 5 B1Byss (A6)

25~ | 2m" ) @m)" ((1+9)2—m?) (17— m?)(k+q) 2K 2
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i [ Ak o an p24((1+q)2—m?)
2] @mt ) @m" (1Z-md)((1—k)Z—m?)(k+q)?
1 2 5 2 2 2
= §[A2+m (T2r35— AsB1o —T135t M T1235) + 4 (T1z5t ApBry —M T 35) ] (A7)
vi__ d"k d"l w2é(k+q)?
B ) 2m" ) o)t ((+)2-md)((1-k)*-m?)k?
1 2,2 2, 2 2 2
= §(A2—I—q Ti35)— §[m (Torgs=AoB1y = T13st M T1235) + Q7 (AB1y =M T1p35) | (A8)

L[ dk oA (g2
Yo~ | Gy | e (- mD (k2 mA)k

5 =0T s (A9)

[ d% d'l (I +q)?-m?)
45 (2’7T)n (27T)n (IZ_mZ)(k+q)2k2_q

Y3 A,Bys. (A10)

For the remaining two diagramsylyse, and Mgsq, We AYSes=A5+q%A,B,;. (A17)
have slightly different denominators as is evident from Egs.
(6) and(7). It is possible, though, to relate these to the con-
ventions given in Eq(A1) with the exception of the finite
scalar integrall},s,5 Which is given in Eq.(B48). “ A" de-
notes the faCt that the t0p0|Ogy Of these diagl’ams iS Abelian. In th|s appendix we give the exp"cit resu'ts for a” the
Below we list theY-functions we need for the required de- jntegrals needed in the calculation of the two loop fermionic
composition with terms on the left-hand side having the de¢gyrections to the heavy quark potential. These include all

nominators of the original integrals and given in terms Ofihe gcalar two loop integrals occurring in the decomposition
functions on the RHS which are using the conventions of Edof the gluon self energy grapi in Sec. Il as well as
gse :

Al): - . -
(AD) the remaining tensor integrals needed for the remaining con-
AYZaas=AB1ot Togs— T1ast Q% Tioas— Yies  (A1l)  tributions. Since the potential between two infinitely heavy
color test charges represents a physical quantity, all integrals

APPENDIX B: TWO-LOOP INTEGRALS

AU3 ) q2 ) presented are real due to the spacelike value of the physical
Yi245= 2A2B1oH| 2m°— o B (A12)  momentum transfeq?< 0. For this reason we found it con-
venient to adopt both analytical as well as numerical meth-
AY3335= Toas+ 0T o235 (A13)  ods for the implementation in\ORTRAN. Wherever possible
we proceed with the integration of the remaining Feynman
AYZ =AY =AY 0= AY 23= Yia, (A14)  parameter integrals and where this becomes too involved, we
A integrate the remainder with the Monte Carlo integrater
AY335=0"Toss (Al5)  Gas[31].
The notation is as follows.
Aol ) The following Feynman parameter identitigk2] are very
Y235= 0 Tazs (A16)  useful and were employed in all integrals in this work:
1 1 1 ul 2ul 3 U
—=ijdu...jdu_ B1
a...an (m) o ! o M l(aguy. .. Up_1taUy.. Up_o(1—Up_q)+ ... +amp(1—uy))™ (B1)
1 I'(a+p) (1 us Y(1—u)pt
o B: u a+p (Bz)
a*b” T(a)['(B) Jo (au+b(l1—u))
1 L(a+B+y) (1 1 (u)* Hu(l-v)f H(1-u)rt
anpB = duu dU at BT (B3)
a*bPc? T'(a)T'(B)I'(y) Jo 0 (auv+bu(l—-v)+c(1—u)) Y
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1 T(at+Bty+9o) 7 (uow)®* Yuv(1-w))A Y(u(l-v)) Y(1-u)??
a®bPc’d®” T(a)T (BT (NT(D) J du Jd””f I oW+ buo(1—w) + cU(1—0) + d(1—u) = PF77s"
(B4)
We use the following abbreviations in addition:
A’ A pu? ~
n=—7 {E_—qz, a=u+(1-u)x(1—x), a=u+(1-u)(1—x) (B5)
g7 (uA(1- v)2 u(l-v)| 1-u
AZW( P o + o (B6)
~ 97 [uA(1- v)2 u(l—v)\ 1
A=W( =2 P &7
@ (U¥(1-v)? u(l-v)| 1-w

where u is the dimensional-regularization mass paramg2&t. All results are given in terms of their dependenceecend
would have to be expanded with the factors given in the explicit results of Sec. Il (o The results in this paper were
obtained by employingnApPLE to do the required expansion and are too cumbersome for explicit presentation.

We start with results of the following simple scalar one and two loop functions:

dn| ME im2775/21'* _ E
A= | o —md) 16772 (B9)
. € E
o "’/ZF(E)
Bo= 2" (17—m?)2 = 16,2 (B10)
. € 6
e "’/ZF(E)
BZZ’E (2’7T)n (|2_m2)|2: € (Bll)
16772<1——)
2
N . ine/ZI‘(_)
d"l M 1 2
Bio= >0 (] T2 dx 7 Py (B12
(2m)" ((I+q) ) fo (4 )( 9 (1) +x
L e | ol
Bio= m 7 = | dX — 7 (B13)
(2m)" (1 +)*=m)(1°=m%)  Jo (477)2(%)((1_)()“
e . ine/ZF(g) Ige/ZI‘(g)FZ( 1— g)
o= 3 G e ) - 7 G2 e (819
(47)2 X(1—x ))
m?
ak e |gf’2r( ) (1——) 1+2
Cass= | (2my (kv a2kt P 4m) (1) (B19
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MASSIVE FERMIONIC CORRECTIONS TO THE HEAV . ..

. y . ix 721 1+§
Cio= m ATV ) 2:_f dx 7 T e (B16)
2 I+qg)c—m*)(1“—m - €
2o (+a)2—m)(P—m?)2 "~ J, (477)2m2( qu i+
dn Me 1 1 i??EIZF 1+§ X75/2
ClZZ’EJ 2m)" ((|+q)2_m2)(|2_m2)|2:_f0 dXJl) dy . % ) TTel2 (B17)
(47)“m W(x(l—y) -1+y)+1
A very useful integral for Eq(B17) is given by
-1
(B18)

a log(1
A og(1—a).

1 2
~3 Ja?—4atanh?

1 1 -
jo deO dy{a[x(l—y)2_1+y]+1}: \/m

This integral is needed in order to analytically separate the divergent piece<sipacés multiplied by A, in the solution

for Eq. (6).
2 € 2 €
d"k dn| ,LLZE m 1]61“(§>F(—1+e)1“ (1—5)
T2’35E (277)” (27T)n |2((|_k)2_m2)k2: (477)4F(2_E) (Blg)
2
f dk f &l 2 manI‘Z(g)F(—l-i-e)F 1—%)
Tozs= n TRV TR AV YN (B20)
(2m) (2m)" (17=m*)((1 —=k)=—m)k (4ﬂ)4r(2_g)r(e)

The reason why the following integrals cannot be given in such a simple form is the presence of the external momentum
transferq in addition to the masses. In order to extract the infinite pieces from the next infggealwe repeatedly use the

following propagator identity:
1 1 2lg+02 Bo1
e L (I R (821
It then follows that
Tya= d ant we =Toaect T+ T+ T B22
135~ (277)” (277)” ((l+q)2_m2)((|_k)2_m2)k2_ 235t Tat Tp+T¢, ( )
with
2T S|r(or| 1- |1 1+ =
. J d"k f d"| w2(2lq+q?) Y. (e) 2 2 -
a=— (27T)n (27T)n (IZ_mZ)Z((l _k)2_m2)k2 - . € ( )
(4m)'T| 2= 5|T(1+e)
. d"k d"l w?<(21g+qg?)?
=) 2m™ ) (2m)" 17— m?)3((1 —k)Z—m?)k?
T 1 P Y . ) P R B P P
T\ Z | T(OT| 1= 5T 1+ 3] @ g+ e 7T 3T+ el 1=5 T 243 20

€
2(477)4F(2—§)F(2+6)

€
n(4w)4r(2—§)r(1+e)

In passing we note that
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1
Tos5= — azTa- (B25)

The last termil' . has only a simple pole iawhich is, however, buried in the Feynman parameter integration. This is a quite
common problem that arises because oflthactors in Eqs(B2) and(B3). We take ‘u” to be that Feynman parameter and
for our purposes it suffices to write the following identity:

fldu(l—u)f’*lf(u)z Ef(1)+ fldu(l—u)f’zfl(f(u)—f(l)). (B26)
0 € 0

The respective terms for

L d"k d"| w24(21q+q?)3
= @em] @m" (P-m)¥(+a)?-m)(1-kZ-m)K?
are
1 1 u
f(u)zf dxf T
0 0 2(477) 4Xe/2’a4+ €l2
ud(1-v)° u’(1-v)®>  u(l- u(l—
_g-v’ Pl ud-o) 612917V
q4 aS a,2 o q2
x| = F(2+e)— — [(1+e) (B27)
m A2+e m?2 ~1ie
and thus

f(1)= fdxf der

1-8(1-v)3+12(1-v)?—6(1— 2 6—12(1—
Q_4 8(1-v)°+12(1-v)? 2+E v)F(2+6)_Q_ (1-v)
m m

=I(1+e)|. (B29

q2 2 q2
(—Wv(l—v)-kl (—Wv(l—v)-kl
Although this result forT 35 is correct, it is numerically unstable in the massless limit because of terms of afttie?
which have to cancel an?—0. A way out of this calamity as well as a very good check on the correctness of our result for
this integral is to use the propagator identiB21) for 1/(k+q)? instead after shifting the loop momenta. This yields

2k
T135= Toss— 07T 2905~ < < m> > : (B29)

The result forT,z,s5is given below and the last term in the equation can easily be found tq@@ —v)/«] times the
expressions for the scalar integral. This term just stems from the momenturk-stift—q[u(1—wv)/«a]. Numerically, away
from the singularity atn=0, both solutions agree.

In similar ways we treat the following more complicated integrals, always callirigthe Feynman parameter that contains
an additional divergence ff(u)-terms are quoted. The desired value for the respective integrals are understood to follow from
an expansion ire of Eq. (B26). For

dn MZE
T2345_f (2m )n (2m)" (|2_m2)((|_k)2_m2)(k+q)2k2 (B30)
we get
6F 61"
jdXJ dvﬁfﬁ’?' jd z(e) e (B31)
<4w>( 91 U))
Similarly,
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dnl sz
Tt | oyt | Gz (e TR (832
with
1 1 EF u r
f(u)z—f dxf dv (e) f(1)= def do " 2(6) . (B33)
0 0 (477)4 5/2'~2+e/2’~e del2 q
(4)"xc ——Zv(l—v)-i-l
m
For
B d"k d"l we
T12’35= (27T)n (27T)n ((|+q)2_m2)|2((|_k)2_m2)k2 (B34)
we find
nI'(e)u 1 1 T
f(u)= fdxf dv /:) — f(1)z—f dxf dv a (© . (83D
0 4 € 2+€l2x re 0 0
(4)*x<2a2* €12\ (477)4xf’2(—q—zv(l—v)+l—v
m
The infrared finite integral
| J J' d"l 2¢(k2+2kq) B36
2455— 2’7T)n zw)n (|2_m2)(k+q)2k4 ( )
is a product of two one loop functions which are given by
im2775/21" _ E
L fld i£? ( n F(e) (1—u)(1+u) I‘(l e)) B3
455~ u(477_) 2(u(1_u))e/2 E - (u(l_u))1+e72 +§ ( )

and in dimensional regularization we haMgss= Al 455= 4>A,C,s5, WhereA and C denote the respective one loop scalar
integrals. For the infrared finite combination

d"k dnl 2¢(k24 2k
f o a) (839)

|234555q2T23455_T2355: _f (2’7T)n (27T)n (|2_m2)((| _k)2_m2)(k+q)2k4

we get two “f(u)” terms, distinguished below by capitétontaining double pole termsnd lower caséwith only simple
poleg letters:

€ 2 €
F(u)= fdxf dv%, F(l)zfldv Nl {e) _ (B40)
(47)°a A q
2(477)4(—521)(1—1)))

T(1 2 1 T(1
f(u)ffldxfldv/* . 4(;5/)2“10+5, fﬂ)E—fldv ( +U)772 dro . (B41)
o Jo (4m)"a” A 0 J Qa
(4m) —Wv(l—v)

A

q_2<u2(1—v)2_2u(1—v))

2 a? a

(B42)

3

For
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dnl MZE
Ton | Gy | e (TR AR (843
we find
11 T(1+e)u? 11 T(1+
f(u)zf de' dv ’74 (/T:)/Zfl , f(1)zf dxf dv 7 (2 €)u _— (B44)
0 0 € +e +e€ 0 0
(4’77) X" A (417)4Xe/2(_q_20(1_v)+1)
m
The completely finite integral
| 2]
12357 | @)t | @)t (P=m?)((1+ q)2— m?) (1 - K)P— m?) (k+ q) K2
is given by
1 (1 (1 1 pT(1+e) xu(1—u)<?
T1234FJ' de dyf duf dU 2 74 2 > ~\ 1te (845)
o Jo "Jo Jo m(4m)® [ [d® p| @
w2 e
e can of course be set to zero in the above expression and we use the following abbreviations:
o=u(l—v)+(1-u)(1l-y)x(1—Xx) (B46)
p=U(1-v)+(1-u)(Xx(1-y)—x*(1=y)?). (B47)

For the “Abelian” gluon self energy graprgse4 we need another completely finite integral with five denominators,
namely

TA _ d"k f dnl ,u,ze
1245 | 2m) ) (2m)" (P mA)((+ g 7= mA) (1= K A((k+ g)—m?) (kZ—m?)
Here we find
1 1 1 1 T(1+e€) XU(1—u)<?
A n
T12345—f0dxfodYJodeodU mEmn: q_z 0_2_3 +X(1—u) Tve- (B49)
@ m2 az o o

Again, we can safely setto zero like above. The following integrals are needed for the diagrams where we integrated out
the fermion loop first, withn(kz,mz) taken from Eq.(26):

d"k y2 7T(k2 J f 2F(—1+E)X(l—X)(l—U)_Elz’)f oo
2m" K 32na? " (B49)
g ux(1—x) 1-e
2 _ _ _ —€l2 el _
f Ak (K2, m? _f | J, | mMmT(—1+e)x(1—x)(1—u) 77( - - +1) -
(2,”_)n (k+q)2 - o X o u 32774a,2—e/2 ( )
Cun o @Pux(l-x) \E
dk 2kquem(km?) (1 (1 —g?m?T'(— 1+ e)x(1—x)u(1—u) /Zn(—m — 1
f (2m)" (k+0)? :jo dxfodu 1673 a’ €2
(B51)
Below we split again intd(u) andf(1) terms. For
d"k  uém(k?,m?
pEr( ) (852

2m)" (k+q)%k?
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we find
; Jd f I'(e)ux(1—x) n© B
(U X 327 4 +e A€ ( 53)
f(1)= fdf e~ x)’ B54
o om?
For
d'k  (k?+2kq) wem(k3,m?
j i ( Q) u 27(4 ) (855
(2m) (k+q)°k
there are two contributions corresponding to terms with double péigsd only single polesf():
B 1 1 T'(e)nu?vx(1—x)7n¢
F(u):_jo dxfo dv 641T4CY3+E/2A€ (856)
I'(e)nux(1—x)n¢
F(l)= fdxf dv qv(l oG (B57)
m?
u?(1-v)>  _u(l-
qzr(1+e)u2vx(1—x)nf( (azv) 2 (av)
f(U)EJO dXJO dv 32rn2ﬂ_4a3+5/2A1+e (858)
H(1)= fd f q I'(l+e)(1+v)x(1—x)n¢ B59
(1) X| dv o (I=u) (B59)
m?

In the following we give details about the evaluation of the IR-divergent integrals of Sec. Ill A. The contributions containing
heavy quark propagator terms were regulated using a gluon mass regulator and lead to the following general int&gral over

0 dkO 1
Iko:f_w 27 (kotis)X(— K3+ K2+ M%—ig)P’ (B60)

The general power in integraB60) leads to a branch cut along the real axis for all those values for V\NSi%i‘kz-i— M?2.
Including thei e-prescription as indicated in E¢B60), we choose a path in the complex plane around the branch cut in the
upper half of the plane and find the following solution:

dko 1
Gz 2w K| —kZ+kZ+ M2 P

Ik, = —2i sin(B)

1
T(l—B)F(EJﬁB
=—2i Sin(ﬁﬁ)zws/z(kz_l_Mz)llzw- (B6Y)

The remaining Euclidean integral can then be performed easily. In the case of the crossed ladder tiagveerfind in
this manner again a divergence which is hidden in Feynman parameters. This can be handled by splift{ing arid f (1)
terms as above. For

dnk Me,n.(kZ’mZ)
(27)" (Kg+ie)2(k°—N2+ie)((k+Q)°—\°+is)

(B62)
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we find

€
_ €

r( 1 g)F(1+e)F 2+

f(u)=16 sir| ~ 2)” fld fld X204 B63
(u)_ Sl Eﬂ- (47T)47Tm2 0 X 0 v ot o2 )\2 )1+E ( )
(2% A+m7u

€

r 16I‘1+ I‘2+'E
2|l (1te) 2

£(1)=16 sid = ! fld Jld X(1=%)
( )_ Sl Eﬂ- (477)477_m2 0 X 0 U(_qZ )\2 I+e-

WU(].-U)-FW

(B64)

The vertex correction graph/lucs and the integral occurring in the onle-loop verex correction t&ry), . can be calculated
analogously. Here we have

d"k wém(k?,m?) BEE
(27)" (kg+tie)2(k°—N+ig) (869
with the corresponding solutions

Il - |ror| 1+ | »¢
e 16 il € —p|lr| 1+ 5)n fld X(1—x) 566
(u)__ Si EW (477)47Tq2 o X . /2( 2 )6 ( )

a "l 1-u+ —u
m

r 61“ ri e
f1—8'€ 5 (€) TSI ) € .
(L= §Sln E’IT (477)47Tq2 F . (B67)
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