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We discuss radiative corrections toW and quark propagators in the resonance regionus2M2u&MG. We
show that conventional mass renormalization, when applied to photonic or gluonic corrections, leads in next to
leading order~NLO! to contributions proportional to@MG/(s2M2)#n, (n51,2,...), i.e., to a non-convergent
series in the resonance region, a difficulty that affects all unstable particles coupled to massless quanta. A
solution of this problem, based on the concepts of pole mass and width, is presented. It elucidates the issue of
renormalization of amplitudes involving unstable particles, and automatically circumvents the problem of
apparent on-shell singularities. The roles of the Fried-Yennie gauge and the pinch technique prescription are
discussed. Because of special properties of the photonic and gluonic contributions, and in contrast with theZ
case, the gauge dependence of the conventional on-shell definition of mass is unbounded in NLO. The evalu-
ations of the width in the conventional and pole formulations are compared and shown to agree in NLO but not
beyond.@S0556-2821~98!01019-4#

PACS number~s!: 12.15.Lk, 11.10.Gh, 11.15.Bt, 14.70.Fm

I. INTRODUCTION

The aim of this paper is to study the radiative corrections
to W and unstable fermion propagators in the resonance re-
gion. Callings the invariant momentum transfer, this is the
region us2M2u&MG, whereM andG are the mass and the
width of the unstable particles. TheW analysis is a natural
counterpart of the study of theZ0 propagator that has played
a major role in the interpretation of electroweak physics in
the resonance region. For some time it has been known that
the conventional on-shell definition of mass,

M25M0
21Re A~M2!, ~1.1!

whereM0 is the unrenormalized mass andA(s) is the trans-
verse boson self-energy~including tadpole contributions!, is
gauge dependent inO(g4) and higher@1–3#. In theZ0 case,
the gauge dependence ofM is &2 MeV in O(g4) but be-
comes unbounded inO(g6) @3#. On the other hand, the
complex-pole position

s̄5m2
22 im2G25M0

21A~ s̄! ~1.2!

is gauge-invariant. Thus, a gauge-invariant definition can be
achieved by identifying the mass withm2 or appropriate
combinations ofm2 andG2 . In particular, it has been shown
@1# that theZ mass measured at the CERNe1e2 collider
LEP can be identified with

m15~m2
21G2

2!1/2. ~1.3!

In Eqs.~1.2!, ~1.3! we have followed the notation introduced
in Eqs.~4! and ~15! of Ref. @1#.

In the W case one expects similar theoretical features.
However, as shown in Sec. II, a new problem emerges: in the

treatment of the photonic corrections the conventional mass-
renormalization procedure generates contributions propor-
tional to @MG/(s2M2)# l , (l 51,2,...), in next to leading
order ~NLO!. Thus, one obtains an expansion that does not
converge in the resonance region! These theoretical features
are generally present whenever the unstable particle is
coupled to massless quanta. In Sec. II we present a solution
of this problem based on the concepts of pole mass and
width. It automatically circumvents the problem of apparent
on-shell singularities and, more generally, it elucidates the
issue of renormalization of amplitudes involving unstable
particles. The roles of the Fried-Yennie gauge and the pinch
technique are discussed in Sec. III. In contrast with theZ
case, we show that, because of special features of the bosonic
and gluonic contributions, the gauge dependence of the con-
ventional on-shell definition of mass is unbounded in NLO.
Section IV discusses the overall corrections to theW propa-
gator in NLO. In Sec. V the modified and conventional for-
mulations of theW width are compared and shown to agree
in NLO, but not beyond. Potential problems of the conven-
tional definition of width emerging in high orders of pertur-
bation theory are discussed. As a further illustration, in Sec.
VI we discuss the QCD corrections to an unstable quark
propagator in the resonance region.

II. PHOTONIC CORRECTIONS TO THE W PROPAGATOR
IN THE RESONANCE REGION

In order to illustrate the difficulties emerging in the reso-
nance region when the conventional mass renormalization is
employed, we consider the contributions of the transverse
part of theW propagator in the loop of Fig. 1, withl self-
energy insertions. Writing the transverseW self-energy in
the form

Pmn
~T!~q!5tmn~q!A~s!, ~2.1!

where s[q2 and tmn(q)5gmn2qmqn /q2, the contribution
AWg

( l ) (s) from Fig. 1 toA(s) is given by
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AWg
~ l ! ~s!5 ie2~m!

tmn~q!

~n21!
m42n

3E dnk

~2p!n Drb
~g!~k!D la

~W,T!~p!V rlnV bam

3F A~s!~p2!

p22M21 i eG l

, ~2.2!

wherep5q1k is theW loop-momentum,

D rb
~g!~k!52

i

k2 S grb1~jg21!
krkb

k2 D , ~2.3!

D la
~W,T!~p!5

2 i

p22M21 i e S gal2
papl

p2 D , ~2.4!

V bam5~2p2k!bgam1~2k2p!agbm2~k1p!mgba,
~2.5!

jg is the photon gauge parameter andA(s)(p2) stands for the
W transverse self-energy with the conventional mass renor-
malization subtraction:

A~s!~p2!5Re„A~p2!2A~M2!…1 i Im A~p2!

5A~p2!2A~M2!1 i Im A~M2!. ~2.6!

We recall that, in leading order,i Im A(M2)52iMG. Equa-
tion ~2.4! corresponds to the choicejw50 for theW gauge
parameterjw ~Landau gauge!. We note that each insertion of
A(s)(p2) is accompanied by an additional denominator@p2

2M21 i e]. Thus, Eq.~2.2! may be regarded as thel th term
in an expansion in powers of

@A~p2!2A~M2!1 i Im A~M2!#~p22M21 i e!21.

As A(p2)2A(M2)5O@g2(p22M2)# for p2'M2, the con-
tribution @A(p2)2A(M2)#(p22M21 i e)21 is of O(g2)
throughout the region of integration. Therefore, each succes-
sive insertion leads to corrections of higher order ing2.
However, asi Im A(M2)'2iMG is not subtracted, the com-
binationi Im A(M2)/(p22M21ie) may lead to terms ofO(1)
if the domain of integrationup22M2u&MG is important. In
fact, the contribution of@ i Im A(M2)/(p22M21ie)#l to Eq.
~2.2! is, to leading order,

AWg
~ l ! ~s!5

~2 iM G! l

l !

dl

d~M2! l AWg
~0! ~s!1¯ ~2.7!

where AWg
(0) (s) represents the diagram without self-energy

insertions and the dots indicate additional contributions not
relevant to our argument.

In the resonance region the inverse zeroth order propaga-
tor is proportional to (s2M21 iM G)5O(g2). Therefore, in
NLO, contributions ofO@a(s2M2)# are retained but those
of O@a(s2M2)2# are neglected. Explicit evaluation of
AWg

(0) (s) in NLO leads to

AWg
~0! ~s!5

a

2p F ~jg23!~s2M2!lnS M22s

M2 D1¯ G .
~2.8!

Inserting Eq.~2.8! into Eq. ~2.7! we obtain

AWg
~1! ~s!5

a

2p
~jg23!~ iM G!F lnS M22s

M2 D1
s

M2G1¯ ,

AWg
~ l ! ~s!5

a

2p
~jg23!

~s2M2!

l ~ l 21! S 2 iM G

s2M2 D l

1¯ ~ l>2!.

~2.9!

We see from Eq.~2.9! that Fig. 1, evaluated with conven-
tional mass renormalization, leads in NLO to a series in pow-
ers of MG/(s2M2), which does not converge in the reso-
nance region. Thus, rather than generating contributions of
higher order ing2, each successive self-energy insertion
gives rise to a factor2 iM G/(s2M2), which is nominally of
O(1) in the resonance region and furthermore diverges ats
5M2.

Formally, the series( l 50
` AWg

( l ) (s) with AWg
( l ) (s) given by

Eq. ~2.7! can be resummed. In fact, it leads to

(
l 50

`

AWg
~ l ! ~s,M2!5AWg

~0! ~s,M22 iM G!1¯ . ~2.10!

Thus,

(
l 50

`

AWg
~ l ! ~s!5

a

2p F ~jg23!~s2M21 iM G!

3 lnS M22 iM G2s

M22 iM G D1¯ G . ~2.11!

Even if one accepts these ‘‘a posteriori’’ formal resumma-
tions, the theoretical situation in the framework of conven-
tional mass renormalization is unsatisfactory. In fact, in the
conventional formalism, theW propagator is inversely pro-
portional to

D21~s!5s2M21 iM G2„A~s!2A~M2!…

2 iM G Re A8~M2! ~2.12!

FIG. 1. A class of photonic corrections to theW self-energy.
The inner solid and dashed lines and blobs represent transverseW
propagators and self-energies.
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whereG is the radiatively corrected width and we have em-
ployed its conventional definition

MG52Im A~M2!/@12Re A8~M2!#. ~2.13!

The contribution of Eq.~2.11! to D21(s) is

2
a

2p
~jg23!F ~s2M21 iM G!

3 lnS M22 iM G2s

M22 iM G D
1 iM GS 11 i

p

2 D G1¯ .

We note that the last term is a gauge-dependent contribu-
tion not proportional to the zeroth order terms2M2

1 iM G. As a consequence, in NLO the pole position isM̃2

2 iM̃ G̃, where

M̃25M2@12~a/4!~jg23!~G/M !#, ~2.14!

G̃5G@12~a/2p!~jg23!#. ~2.15!

As the pole position is gauge-invariant, so must beM̃ andG̃.
Furthermore, in terms ofM̃ andG̃, D21(s) retains the Breit-
Wigner structure. Thus, in a resonance experimentM̃ andG̃
would be identified with the mass and width ofW. The re-
lation G̃5G@12(a/2p)(jg23)# leads then to a contradic-
tion: the measured, gauge-independent, widthG̃ would differ
from the theoretical valueG by a gauge-dependent quantity
in NLO. This contradicts the premise of the conventional
formalism thatG, defined in Eq.~2.13!, is the radiatively
corrected width and is, furthermore, gauge-independent. We
can anticipate that the root of the problem is that Eq.~2.13!
is only an approximate expression for the width of the un-
stable particle. In particular, it is not sufficiently accurate
when non-analytic contributions are considered.

It is therefore important to base the calculations in a for-
malism that avoids awkward resummations of non-
convergent series and the pitfalls we have encountered in the
previous argument. To achieve this, we return to the trans-
verse dressedW propagator, inversely proportional top2

2M0
22A(p2). In the conventional mass renormalization one

eliminates M0
2 by means of the expressionM0

25M2

2ReA(M2) @cf. Eq. ~1.1!#. An alternative possibility is to
eliminateM0

2 by M0
25 s̄2A( s̄) @cf. Eq. ~1.2!#. The dressed

propagator in the loop integral is inversely proportional to
p22 s̄2@A(p2)2A( s̄)#. Expansion of the dressed propaga-
tor leads in Fig. 1 to a series in powers of@A(p2)
2A( s̄)#/(p22 s̄). As A(p2)2A( s̄)5O@g2(p22 s̄)# when
the loop momentum is in the resonance region,@A(p2)
2A( s̄)#/(p22 s̄) is O(g2) throughout the domain of integra-
tion. Thus, each successive self-energy insertion leads now
to terms of higher order ing2 without awkward non conver-

gent contributions. In this modified strategy, the zeroth order
propagator in Eq.~2.4! is replaced by

D al
~W,T!~p!5

2 i

p22 s̄
S gal2

papl

p2 D . ~2.16!

We note that the imaginary part in (p22 s̄)21 has the same
sign as Feynman’si e prescription. Therefore, although the
poles of Eq.~2.4! in the k0 complex plane are displaced by
the im2G2 insertion, they remain in the same quadrants so
that Feynman’s contour integration or Wick’s rotation can be
carried out.AWg

(0) (s), Fig. 1 without loop insertions, now
leads directly to

AWg
~0! ~s!5

a

2p F ~jg23!~s2 s̄!lnS s̄2s

s̄
D 1¯G .

~2.17!

AWg
( l ) (s) ( l>1), the terms withl insertions in Fig. 1, give

now contributions ofO(ag2l), the normal situation in per-
turbative expansions. TheW propagator in the modified for-
malism is inversely proportional tos2 s̄2@A(s)2A( s̄)#.
The contribution of Eq.~2.17! to @A(s)2A( s̄)# is propor-
tional to s2 s̄ so that the pole position is not displaced, the
gauge-dependent contributions factorize as desired, and the
previously discussed pitfalls are avoided. AsAWg

( l ) ( s̄) is in-
frared convergent in the modified approach,AWg

( l ) (s) leads

now to contributions to @A(s)2A( s̄)# of order O@(s
2 s̄)ag2l #5O@ag2(l 11)# and can therefore be neglected in
NLO when l>1.

The remaining contributions toA(s) from the photonic
diagrams, including those from the longitudinal part of theW
propagator in the loop of Fig. 1, and from the diagrams in-
volving the unphysical scalarf and the ghostCg , have no
singularities ats5M2 and can therefore be studied with con-
ventional methods. In particular, in the evaluation ofA(s)
2A( s̄) in NLO it is sufficient to retain their one-loop con-
tributions. In these diagrams the propagators are proportional
to (p22M2jw)21 instead of (p22M2)21. As a conse-
quence, they lead to logarithmic contributions proportional
to

~s2M2!Fs2M2jw

M2 G lnS M2jw2s

M2jw
D ,

rather than Eq.~2.8!. They have branch cuts starting ats
5M2jw , which indicates the unphysical nature of these sin-
gularities. Although they must cancel in physical amplitudes,
they are present in partial amplitudes such as conventional
self-energies and propagators. We briefly discuss how to
treat them in NLO. Forujw21u*G/M , the logarithm can be
expanded abouts5M2 and one obtains

~s2M2!F12jw1
s2M2

M2 GF lnS jw21

jw
D1OS s2M2

M2~12jw! D G .
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The contribution fromO@(s2M2)/M2(12jw)# is propor-
tional to (s2M2)2/M2 and is therefore neglected in NLO.
For the same reason, we can neglect (s2M2)/M2 in the
second factor. Therefore, forujw21u*G/M , in NLO we can
approximate this contribution by the simple expression (s

2M2)(12jw)ln@(jw21)/jw#. For ujw21u&G/M the expan-
sion of the logarithmic factor is not valid, but we note that
the whole contribution is proportional to (s2M2)2 or (s
2M2)(12jw) and therefore negligible in NLO. As a con-
sequence, the above mentioned approximation can be used
for any value ofjw . Calling Ag(s) the overall contribution
of the one-loop photonic diagrams to the transverseW self-
energy ~Fig. 2!, in the modified formulation the relevant
quantity in the correction to theW propagator isAg(s)
2Ag( s̄). In generalRj gauge, we find, in NLO,

Ag~s!2Ag~ s̄!5
a~m2!

2p
~s2 s̄!H dS jw

2
2

23

6 D1
34

9
22 lnS s̄2s

s̄
D 2~jw21!Fjw

12
2S 12

~jw21!2

12 D lnS jw21

jw
D G2S 11

12
2

jw

4 D
3 ln jw1~jg21!Fd

2
1

1

2
1 lnS s̄2s

s̄
D 1

~jw
2 21!

4
lnS jw21

jw
D2

ln jw

4
1

jw

4 G J , ~2.18!

where d5(n24)211(gE2 ln 4p)/2, we have treated the
logarithmic terms according to the previous discussion and
set m5m2 . The corresponding one-loop gluonic contribu-
tion to the quark self-energy is depicted in Fig. 3.

Writing

12
s

s̄
512

s

m1
2 2 i

s

m1
2

G2

m2
5reiu, ~2.19!

we have

r5F S 12
s

m1
2D 2

1
s2G2

2

m1
4m2

2G1/2

, ~2.20!

r sin u52
sG2

m1
2m2

, ~2.21!

wherem1 is defined in Eq.~1.3!. Calling a[sin21(G2 /m1),
we have: for 2`,s,0, a.u.0; for 0,s,m1

2, 0.u
.2p/2; for m1

2,s,`, 2p/2.u.2p1a. In Figs. 4 and
5 the functions lnr(s) and u(s) are plotted for m1
580.4 GeV andG15G2m1 /m252 GeV over a large range
of As values. Figures 6 and 7 compare these functions with
the zero-width approximations over the resonance region. In
the limit G2→0, u(s) becomes a step function. This corre-
sponds to the well-known expression

ImF lnS M22s2 i e

M2 D G52pu~s2M2!,

where thei e prescription impliesu(0)51/2. The zero width
approximation, however, is not valid in the resonance region.

FIG. 2. One-loop photonic diagrams for theW self-energy;f is
the unphysical scalar,Cg andCW are ghosts.

FIG. 3. One loop diagram for the quark self-energy in QCD.

FIG. 4. The function lnr(s) over a large range ofAs values, for
m1580.4 GeV andG152 GeV @see Eq.~2.20!#. The minimum oc-
curs atAs5m2 .
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Equation~2.18! exhibits a number of interesting theoreti-

cal features:~a! the coefficient of ln@(s̄2s)/s̄# is independent
of jw but is proportional to (jg23). ~b! The logarithm
ln(jw21) contains an imaginary contribution2 ipu(1
2jw). This can be understood from the observation that, for
jw,1, a W boson of masss5M2 has non-vanishing phase
space to ‘‘decay’’ into a photon and particles of massM2jw .
As explained before, Eq.~2.18! is only valid in the resonance
region.

For completeness, the full one-loop expression forAg(s)
in generalRj gauges is given in the Appendix.

III. FRIED-YENNIE GAUGE
AND THE PT PRESCRIPTION.

GAUGE DEPENDENCE OF THE ON-SHELL MASS

We note that the ln@(s̄2s)/s̄# terms in Eq.~2.17! and Eq.
~2.18! cancel forjg53, the gauge introduced by Fried and
Yennie in Lamb-shift calculations@4#. It should be empha-
sized, however, that a gauge-independent logarithm of this
type survives in physical amplitudes involving unstable par-
ticles such asW @5#. Thus, the choicejg53 removes this
contribution from the propagator’s corrections, but not the
overall amplitude. In this connection, it is interesting to in-
quire how the pinch technique~PT! prescription treats these
terms. We recall that the PT is a prescription that combines
the conventional self-energies with ‘‘pinch parts’’ from ver-
tex and box diagrams in such a manner that the modified
self-energies are independent ofj i ( i 5W,g,Z) and exhibit
desirable theoretical properties. Callinga(q2) the PTW self-
energy, we recall that, in the standard model~SM!,

a~s!5@A~s!#j i5124g2~m!~s2M2!

3@cos2uW I WZ~s!1sin2uW I gW~s!#, ~3.1!

where

I i j ~s!5 im42nE dnk

~2p!n

1

~k22mi
2!@~k1q!22mj

2#
,

and tadpole contributions have been included in botha(s)
and A(s) @6#. The I gW(s) term leads to a contribution
2(a/p)@(s2M2)2/s# ln@(M22s)/M2#, which is of higher or-
der in (s2M2). Therefore, in NLO the PT self-energy gen-
erates the same ln@(s̄2s)/s̄# term as the ’t Hooft–Feynman

FIG. 5. The functionu(s) for m1580.4 GeV andG152 GeV
@see Eq.~2.21!#. The value2p/2 is attained atAs5m1 .

FIG. 6. Comparison of lnr(s) ~solid line! with its zero-width
approximation lnu12s/m1

2u ~dotted line! over the resonance region
(m1580.4 GeV,G152 GeV!.

FIG. 7. Comparison ofu(s) ~solid line! with the step function
approximation ~dotted line! over the resonance region~m1

580.4 GeV,G152 GeV!.
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gauge (jg51), i.e.,2(a/p)(s2 s̄)ln@(s̄2s)/s̄#. The possibil-
ity has been suggested in the past to define the on-shell mass
in terms of the PT self-energy, namelyM25M0

21Rea(M2)
@7#. This has the advantage that one is dealing here with a
j i-independent amplitude. Repeating the argument after Eq.
~2.11!, we see however that conventional on-shell renormal-
ization based ona(s) would lead to a contribution
iM G(a/p)@11 ip/2# which, althoughj i independent, is not
proportional to the zeroth order terms2M21 iM G. Its re-
moval would require a redefinition ofM and G, which is
inconsistent with the fact thatG contains all the corrections
of O(a). This problem can be circumvented once more by
recalling that the PT does not displace the position of the
complex pole at least throughO(g4) @8#, and expressing the
inverse propagator ass2 s̄2@a(s)2a( s̄)#. The contribution
of the (s2 s̄)ln@(s̄2s)/s̄# terms toa(s)2a( s̄) is proportional
to (s2 s̄) and the above mentioned difficulties are avoided.

The difference betweenm1 , defined in Eq.~1.3!, and the
conventional on-shell massM , defined in Eq.~1.1!, is

M22m1
25Re A~M2!2Re A~ s̄!2G2

2 . ~3.2!

The contribution of the (s2 s̄)ln@(s̄2s)/s̄# term to the right-
hand side~RHS! of Eq. ~3.2! is

a~m2!

2p
~jg23!F ~M22m2

2!Re lnS s̄2M2

s̄
D

2m2G2 Im lnS s̄2M2

s̄
D G

'
a~m2!

2p
~jg23!F ~M22m1

2!Re lnS s̄2M2

s̄
D

1m2G2

p

2 G . ~3.3!

In Im ln@(s̄2M2)/s̄# we have approximatedM2'm1
2 and used

the fact thatu52p/2 for s5m1
2 @see discussion after Eq.

~2.21!#. Thus, we see that

M22m1
25

a~m2!

4
~jg23!m2G21¯ , ~3.4!

where the dots indicate additional contributions. Note that
this last equation corresponds to Eq.~2.14! with the identifi-

cationM̃→m1 .
As jg can be arbitrarily large, Eq.~3.4! reveals that in the

W case the gauge dependence of the conventional on-shell
definition of mass is unbounded in NLO for any value ofjw .

Similarly, the term proportional to (s2 s̄)(jg21)(jw
2

21)ln(jw21) in Eq.~2.18! gives an unbounded contribution
(a/8)(jg21)MG(jw

2 21)u(12jw) to M22m1
2 in the re-

stricted rangejw,1. This situation is to be contrasted with
theZ case, where the gauge dependence in NLO is bounded
and&2 MeV @3#. The difference is due to the contribution of
the logarithms from the photonic diagrams, which are absent
in the Z case. In particular, in the frequently employed ’t
Hooft–Feynman gauge (j i51), Eq. ~3.4! leads tom12M
5a(m2)G2/4'4 MeV. In analogy with theZ case, there are
also bounded gauge-dependent contributions tom12M aris-
ing from non-photonic diagrams in the restricted rangeAjz

<cosuw @12Ajw# and from the photonic corrections propor-
tional to (jw21)ln@(jw21)/jw# @cf. Eq. ~2.18!#.

IV. OVERALL CORRECTIONS TO W PROPAGATORS
IN THE RESONANCE REGION

In contrast with the photonic corrections, the non-
photonic contributionsAnp(s) to A(s) are analytic around
s5 s̄. We can therefore write

Anp~s!2Anp~ s̄!5~s2 s̄!Anp8 ~m2
2!1¯ , ~4.1!

where the dots indicate higher-order contributions.
In the resonance region, and in NLO, the transverseW

propagator is given by

D ab
~W,T!~q!5

2 i ~gab2qaqb /q2!

~s2 s̄!F12Anp8 ~m2
2!2

a~m2!

2p
F~s,s̄,jg ,jw!G , ~4.2!

wheres5q2 andF(s,s̄,jg ,jw) is the expression between curly brackets in Eq.~2.18!. An alternative expression, involving an
s-dependent width, can be obtained by splittingAnp8 into real and imaginary parts, and the latter into fermionic ImAf8 and
bosonic ImAb8 contributions. Neglecting very small scaling violations, we have

Im Af8~m2
2!'Im Af~m2

2!/m2
2'2G2 /m2 . ~4.3!

Equation~4.2! becomes then
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D ab
~W,T!~q!5

2 i ~gab2qaqb /q2!

S s2m1
21 is

G1

m1
D F12Re Anp8 ~m1

2!2 i Im Ab8~m1
2!2

a~m1!

2p
F G , ~4.4!

where G1 /m15G2 /m2 . Im Ab8(m1
2) is nonzero and gauge-

dependent in the subclass of gauges that satisfyAjz

<cosuw@12Ajw#. ~If this condition is satisfied, aW boson of
massAs'MW has non-vanishing phase space to ‘‘decay’’
into particles of massMWAjw and MZAjz .! Otherwise
Im Ab8(m1

2) vanishes. Althoughm1 and G1 are gauge-
invariant, ReAnp8 (m1

2), Im Anp8 (m1
2), and F are gauge-

dependent. In physical amplitudes, such gauge-dependent
terms cancel against contributions from vertex and box dia-
grams. The crucial point is that the gauge-dependent contri-
butions in Eq.~4.4! factorize so that such cancellations can
take place and the position of the complex pole is not dis-
placed.

V. COMPARISON OF THE W WIDTH IN THE
CONVENTIONAL AND MODIFIED FORMULATIONS

In this section we show that the conventional and modi-
fied formulations lead to the same result for theW width in
NLO. However, the two approaches differ in higher orders.
In particular, the conventional formulation is plagued in high
orders by severe infrared singularities. CallingA0(s,M0

2) the
transverse self-energy evaluated in terms of the bare mass
M0 , andA(s,M2) and Ā(s,s̄) the expressions obtained by
substituting M0

25M22ReA(M2,M2) and M0
25 s̄2Ā( s̄,s̄),

respectively, we have

A0~s,M0
2!5A~s,M2!5Ā~s,s̄!. ~5.1!

In the conventional approach theW width is given by Eq.
~2.13! or, equivalently,

MG52Im A~M2,M2!1MG Re A8~M2,M2!, ~5.2!

where the prime means differentiation with respect to the
first argument. Instead, in the modified formulation discussed
in the present paper, the width is defined by

m2G252Im Ā~ s̄,s̄!, ~5.3!

which follows from Eq.~1.2!. Combining Eq.~5.3! with Eq.
~5.1! we find:

m2G252Im A~ s̄,M2!

52Im A~M2,M2!

2Im@~ s̄2M2!A8~M2,M2!#1O~g6!. ~5.4!

As s̄2M25m2
22M22 im2G2 and m2

22M25O(g4), Eq.
~5.4! becomes

m2G252Im A~M2,M2!1m2G2 Re A8~M2,M2!1O~g6!.
~5.5!

Comparing Eq.~5.2! and Eq.~5.5! we see that indeed

G25G1O~g6!. ~5.6!

Thus, the two calculations of the width coincide through
O(g4), i.e., in NLO. It is interesting to see how the two
formulations treat potential infrared divergences. As is well-
known, ReAg8(M

2,M2), the photonic contribution to
ReA8(M2,M2), is logarithmically infrared divergent. There-
fore,MG ReA8(M2,M2) in the last term of Eq.~5.2! contains
a logarithmic infrared divergence inO(ag2). This is can-
celed by an infrared divergence in ImA(M2,M2) arising from
AWg

(1) (M2,M2), i.e., Fig. 1 with one self-energy insertion. As
it is clear from the discussion of Sec. II, the infrared diver-
gence inAWg

(1) (M2,M2) has its origin in the fact that the
self-energy insertion induces a correction factor
i Im A(M2)/(p22M2), wherep is theW loop momentum.

In higher orders the problem of infrared divergences in
the conventional approach becomes severe. It follows from
Eq. ~2.9! that the diagrams in Fig. 1 generate infrared diver-
gences ofO@a(2 i ) lMG(G/lmin)

l 21# in A(M2,M2), where
lmin is the infrared cut-off. As a consequence, Eq.~5.2!, the
width evaluated in the conventional formulation, contains a
power-like infrared divergence of O@a(jg
23)MG(G/lmin)

2# which appears inO(ag6). Similarly,
the conventional mass renormalization countertermdM2

5ReA(M2,M2) contains an infrared divergence ofO@a(jg
23)MG2/lmin# that appears inO(ag4). One can avoid
these leading infrared divergences by resumming the contri-
butions of the ImA(M2,M2)'2MG insertions in Fig. 1. As
explained in Sec. II, this would lead to the replacement

a

2p
~jg23!~s2M2!lnS M22s

M2 D
→

a

2p
~jg23!~s2M21 iM G!lnS M22s2 iM G

M22 iM G D .

Unfortunately, the contribution of this resummed expression
to the right-hand side of Eq.~5.2! is (a/2p)(jg23)MG, a
gauge-dependent contribution ofO(ag2) to the width. In
contrast, in the modified formulation the corresponding ex-
pression is (a/2p)(jg23)(s2 s̄)ln@(s̄2s)/s̄# and causes no
problem since it gives no contribution to Eq.~5.3!. It is also
important to note thatĀWg( s̄,s̄) is infrared convergent in all
orders, since the self-energy insertions induce a correction
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factor @Ā(p2,s̄)2Ā( s̄,s̄)# l /(p22 s̄) l in the integrand of Fig.
1, and this converges, modulo logarithms, asp2→ s̄. In par-
ticular, it is easy to check that the contributions ofO@a(jg
23)MG(G/lmin)

2# to the width mentioned above are can-
celed by terms ofO(ag6) in the expansion of Eq.~5.4!. In
the conventional formulation such terms are not included@cf.
Eq. ~5.2!# and this leads to the problem of uncompensated
infrared singularities in high orders of perturbation theory.
Other theoretical difficulties of the conventional definition of
width and the need to replace it by Eq.~5.3! have been em-
phasized in Ref.@9# and Ref.@10#.

VI. QCD CORRECTIONS TO QUARK PROPAGATORS
IN THE RESONANCE REGION

In pure QCD quarks are stable particles. However, they
become unstable when weak interactions are switched on.
An example of a reaction that may probe the top quark
propagator in the resonance region isW11b→t→W11b.
In this section we discuss in NLO the QCD part of the cor-
rections to the quark propagator in the resonance region. The
relevant diagram is depicted in Fig. 3. Because the gluons
are massless, we anticipate problems analogous to those dis-
cussed in Sec. II. Therefore, we work from the outset in the
complex pole formulation. Denoting the position of the com-
plex pole bym̄5m2 iG/2, we observe thatG arises from the
weak interactions. For example, in the top caseG emerges in
lowest order from the imaginary part of theWb and fb
contributions to the top self-energy. If we treatG in lowest
order in the weak interactions, but otherwise neglect the re-
maining weak interaction contributions to the self-energy,
the dressed quark propagator can be written as

SF8 ~q” !5
i

q”2m̄2„S~q” !2S„m̄)…
, ~6.1!

whereS(q” ) is the pure QCD contribution.
Decomposing

S~q” !5m̄A~q2!1q”B~q2!, ~6.2!

and usingi /(p”2m̄) as loop propagator, we find from Fig. 3:

A~q2!5
as~m!

3p H 221~jg13!F22d12

1S m̄22q2

q2 D lnS m̄22q2

m̄2 D G J , ~6.3!

B~q2!5jg

as~m!

3p H 2d212
m̄2

q2

2S m̄42q4

q4 D lnS m̄22q2

m̄2 D J , ~6.4!

wherejg is the gluon gauge parameter and we have setm
5m. In NLO in the resonance region this simplifies to

S~q” !5
as~m!

3p H ~q”2m̄!F2~jg23!lnS m̄22q2

m̄2 D 12djgG
1m̄@426d#J 1¯ ~6.5!

and

SF8 ~q” !5
i

~q”2m̄!
H 12

as~m!

3p F2~jg23!lnS m̄22q2

m̄2 D
12djgG1¯J 21

. ~6.6!

As in theW-propagator case, we see that the logarithm van-
ishes in the Fried-Yennie gaugejg53. In fact, its coefficient
can be obtained from the analogous term in Eq.~2.17! by
substitutinga→(4/3)as(m), where 4/3 arises from the color
factor. Writing once mores5q2, 12s/m̄25r(s)eiu(s), the
functions r(s) and u(s) are given by Eq.~2.20! and Eq.
~2.21! with the identification m25(m22G2/4)1/2, G2
5mG/m2 , andm1 defined in Eq.~1.3!. The difference be-
tweenm and the on-shell massM5m01ReS(M) in leading
order is

M2m52
as~m!

3p
G~jg23!Im lnS m̄22M2

m̄2 D
5

as~m!

6
G~jg23!, ~6.7!

which can also be obtained from Eq.~3.4! by substituting
once morea(m2)→(4/3)as(m). Thus, in analogy with the
W case,M2m is unbounded in NLO. In the Feynman gauge
(jg51) Eq. ~6.7! leads to m2M5as(m)G/3'56 MeV,
while in the Landau gauge (jg50) we have m2M
'84 MeV.

VII. CONCLUSIONS

We have shown in Sec. II that conventional mass renor-
malization@Eq. ~1.1!#, when applied to the photonic and glu-
onic diagrams, leads to a series in powers ofMG/(s
2M2), which does not converge in the resonance region
@Eq. ~2.9!#. In Sec. V we have pointed out that this behavior
induces in high orders power-like infrared divergences in
both M and G. In principle, these severe problems can be
circumvented by a resummation procedure, explained in Sec.
II. Unfortunately, the resummed expressions are incompat-
ible with the conventional definition of width@Eq. ~2.13! and
Eq. ~5.2!#. In fact, combining the resummed expression with
these equations, we have encountered gauge-dependent cor-
rections ofO(aG) to the width and resonant propagator, in
contradiction with basic theoretical properties of these am-
plitudes. This clash between the resummed expressions and
the conventional definition of width is not difficult to under-
stand. Indeed, the usual derivation of the latter treats the
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unstable particle as an asymptotic state, which is clearly an
approximation. In Sec. II and V we have discussed an alter-
native treatment of the resonant propagator and the width
based on the complex pole positions̄5M0

21A( s̄). The non-
convergent terms in the resonant region and the potential
infrared divergences inG and M are avoided by employing
(p22 s̄)21 rather than (p22M2)21 in the Feynman inte-
grals, wherep is theW or quark loop momentum. The one-
loop diagrams lead now directly to the resummed expression
of the conventional approach, while the multi-loop expan-
sion generates terms which are genuinely of higher order.
The non-analytic terms and gauge-dependent corrections in
the resonant region cause no problem because they are pro-
portional tos2 s̄ and exactly factorize. We emphasize that
this is a crucial property, since it implies that the pole posi-
tion is not displaced and the gauge-dependent corrections
can be canceled by vertex and box contributions. Further-
more, they do not lead to difficulties in the evaluation of the
width because the latter is now defined by Eq.~5.3!. In par-
ticular, the non-analytic contributions cancel exactly in its
evaluation and the answer is infrared convergent to all orders
in the perturbative expansion. Comparing the masses defined
in the two approaches, in Sec. III we have reached the con-
clusion that, unlike theZ case, the gauge dependence of the
conventional definition of mass@Eq. ~1.1!# is unbounded in
NLO for any value ofjw . In Sec. V it is further shown that
the conventional and alternative formulations of the width
coincide in NLO, but not beyond. The analysis reveals also a
curious and perhaps universal property: in NLO the non-
analytic terms in both theW and quark propagators vanish in
the Fried-Yennie gaugejg53.

In the past, a number of authors have employed heuristi-
cally the replacement ln@(M22s)/M2#→ln@(M22iMG

2s)/(M22iMG)# in order to avoid apparent on-shell singu-
larities ~see, for example, Refs.@5, 11# and the first article of
Ref. @12#!. In this paper we have attempted to clarify the
theoretical basis for this heuristic procedure and shown how
it emerges from the formalism. In fact, the analysis leads to
the conclusion that the replacementM2→ s̄ must be made in
the complete expression of the non-analytic terms and that,
at the same time, the definition of width must be changed
from Eq. ~5.2! to Eq. ~5.3!.

The idea of employings̄, rather than the conventional
approach, as a basis to define the mass and width of unstable
particles and analyze the propagator in the resonance region
has been recently advocated, for different theoretical reasons,
by a number of theorists@1–3,9,10,12#. The arguments in
this paper provide an additional and powerful argument for
such an approach.
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APPENDIX: PHOTONIC CORRECTIONS
TO THE TRANSVERSE W SELF-ENERGY

IN GENERAL Rj GAUGES

The conventional evaluation of the contribution of Fig. 2
to the transverseW self-energy is given by

Ag~s!5Ag~s!uj i511DAg~s!uj iÞ1 , ~A1!

whereAg(s)uj i51 , the contribution in the ’t Hooft–Feynman
gauge, is

Ag~s!uj i515
a

2p H 2S d1 ln
M

m D S 10

3
s13M2D1

11

6
M21

31

9
s2

M4

3s
1

1

3
~M22s!L~s,M2!F51

2M2

s
2

M4

s2 G J . ~A2!

The remainder is

DAg~s!uj iÞ15
a

4p H L~s,M2!
~M22s!2

M2 FM21s

s
2

~M22s!2

6s2 G2L~s,M2jw!~M22s!
~M2jw2s!

M2 FM21s

s
2

~M2jw2s!2

6s2 G
1~jg21!S M22s

4 D F24S d1 ln
M

m D2
M2

s
~jw11!1S 11

s

M2D ln jw2jw232S M21s

s2M2 D~ ~M21s!2L~s,M2!

1~M4jw
2 2s2!L~s,M2jw!! G1~jw21!F S d1 ln

M

m D S s2
3

2
M2jw2

M2

2 D1jwS 11

24
M21

M4

6s D1
s

6
2

17

24
M2

1
M4

6s G1 ln jwFM22
s

6
2

5s2

6M2 1
jw

2
~M21s!2

3

4
M2jw

2 G J , ~A3!

where

L~x,y!5 lnS y2x

y D ,
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andd is defined after Eq.~2.18!.
Thej i dependence of the complete transverse self-energy

A(s) must vanish on-shell~provided the tadpole contribu-
tions are included!. The photonic diagrams give rise to all the

jg dependent andL(s,M2jw) contributions inA(s), and we
see that these terms indeed cancel whens5M2. The non-
vanishing terms in Eq.~A3! are canceled on-shell by non-
photonic contributions.
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