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Radiative corrections toW and quark propagators in the resonance region
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We discuss radiative corrections W and quark propagators in the resonance redgeaM?|<MT". We
show that conventional mass renormalization, when applied to photonic or gluonic corrections, leads in next to
leading ordef(NLO) to contributions proportional ttMT'/(s—M?)]", (n=1,2,..), i.e., to a non-convergent
series in the resonance region, a difficulty that affects all unstable particles coupled to massless quanta. A
solution of this problem, based on the concepts of pole mass and width, is presented. It elucidates the issue of
renormalization of amplitudes involving unstable particles, and automatically circumvents the problem of
apparent on-shell singularities. The roles of the Fried-Yennie gauge and the pinch technique prescription are
discussed. Because of special properties of the photonic and gluonic contributions, and in contrastZvith the
case, the gauge dependence of the conventional on-shell definition of mass is unbounded in NLO. The evalu-
ations of the width in the conventional and pole formulations are compared and shown to agree in NLO but not
beyond.[S0556-282(98)01019-4

PACS numbgs): 12.15.Lk, 11.10.Gh, 11.15.Bt, 14.70.Fm

[. INTRODUCTION treatment of the photonic corrections the conventional mass-
renormalization procedure generates contributions propor-
The aim of this paper is to study the radiative correctiongional to [MT'/(s—M?)]', (I=1,2,..), in next to leading

to W and unstable fermion propagators in the resonance resrder (NLO). Thus, one obtains an expansion that does not
gion. Callings the invariant momentum transfer, this is the converge in the resonance region! These theoretical features
region|s—M?|<MT, whereM andI are the mass and the are generally present whenever the unstable particle is
width of the unstable particles. TA analysis is a natural coupled to massless quanta. In Sec. Il we present a solution
counterpart of the study of th&” propagator that has played of this problem based on the concepts of pole mass and

a major role in the interpretation of electroweak physics inwidth. It automatically circumvents the problem of apparent
the resonance region. For some time it has been known than-shell singularities and, more generally, it elucidates the

the conventional on-shell definition of mass, issue of renormalization of amplitudes involving unstable
particles. The roles of the Fried-Yennie gauge and the pinch
M2=M2+Re A(M?), (1.1)  technique are discussed in Sec. lll. In contrast with Zhe

case, we show that, because of special features of the bosonic
whereMj is the unrenormalized mass aAds) is the trans-  and gluonic contributions, the gauge dependence of the con-
verse boson self-enerdincluding tadpole contributionsis  ventional on-shell definition of mass is unbounded in NLO.
gauge dependent iB(g*) and highef1-3]. In theZ® case, Section IV discusses the overall corrections to igropa-
the gauge dependence bF is =2 MeV in O(g* but be- gator in NLO. In Sec. V the modified and conventional for-
comes unbounded i®(g®) [3]. On the other hand, the mulations of theW width are compared and shown to agree

complex-pole position in NLO, but not beyond. Potential problems of the conven-
. . tional definition of width emerging in high orders of pertur-
s= m%—im2F2= M§+A(s) 1.2 bation theory are discussed. As a further illustration, in Sec.

VI we discuss the QCD corrections to an unstable quark
is gauge-invariant. Thus, a gauge-invariant definition can bg@ropagator in the resonance region.
achieved by identifying the mass witim, or appropriate
combinations ofnz ansz. In particular, it has been shown Il. PHOTONIC CORRECTIONS TO THE W PROPAGATOR
[1] that theZ mass measured at the CERNe™ collider IN THE RESONANCE REGION

LEP can be identified with
In order to illustrate the difficulties emerging in the reso-

m;=(ma+T3)2 (1.3  nance region when the conventional mass renormalization is
employed, we consider the contributions of the transverse
In Egs.(1.2), (1.3) we have followed the notation introduced part of theW propagator in the loop of Fig. 1, with self-
in Egs.(4) and(15) of Ref.[1]. energy insertions. Writing the transvergeé self-energy in
In the W case one expects similar theoretical featuresthe form
However, as shown in Sec. I, a new problem emerges: in the

(@) =t,,(a)A(S), 2.1)
*Email address: massimo.passera@nyu.edu wheres=q?® andt,,(q)=g,,—d,d,/9° the contribution
"Email address: alberto.sirin@nyu.edu A\(,'V)y(s) from Fig. 1 toA(s) is given by
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FIG. 1. A class of photonic corrections to thg self-energy.

The inner solid and dashed lines and blobs represent transwéerse

propagators and self-energies.
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Vhek=(2p—k)Pg#+ (2k—p)“gP+— (k+p)“gh?,
(2.5

&, is the photon gauge parameter axid (p?) stands for the

W transverse self-energy with the conventional mass reno

malization subtraction:

A®(p?)=Re(A(p?) —A(M?))+i Im A(p?)

=A(p?)—A(M?)+i Im A(M?). (2.6)

We recall that, in leading order,Im A(M?)=—iMI. Equa-
tion (2.4) corresponds to the choigg,=0 for the W gauge

parametek,, (Landau gauge We note that each insertion of

A®(p?) is accompanied by an additional denomingtp?
—M?+i€]. Thus, Eq.(2.2 may be regarded as thth term
in an expansion in powers of

[A(p?)—A(M?)+i Im A(M?)](p?—M?+ie) L.

As A(p?) —A(M?)=0[g?(p?>—M?)] for p>~M?, the con-
tribution [A(p?)—A(M?)](p?—M?+ie)"! is of O(g?d)
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(—iMT)"  d'
Awy(s): I d(MZ)l

AR+ (2.7

where AS,%(S) represents the diagram without self-energy
insertions and the dots indicate additional contributions not
relevant to our argument.

In the resonance region the inverse zeroth order propaga-
tor is proportional to §—M?2?+iMT")=0(g?). Therefore, in
NLO, contributions ofO[ a(s—M?)] are retained but those
of O[a(s—M?)?] are neglected. Explicit evaluation of
AR)(s) in NLO leads to

2_
AR)(s) = % (gy—S)(s—Mz)ln( |
(2.9
Inserting Eq.(2.8) into Eq. (2.7) we obtain
) a _ M2— s
AWy(S):Z(Ey_:S)('MF) In ™Mz +W +ee
0 a (s—M?)[—iMT\!
AW'y(S)ZZ(gy_:g)W M2 (1=2).
(2.9

We see from Eq(2.9) that Fig. 1, evaluated with conven-
tional mass renormalization, leads in NLO to a series in pow-
ers of MI'/(s—M?), which does not converge in the reso-
nance region. Thus, rather than generating contributions of
higher order ing?, each successive self-energy insertion
gives rise to a factor iMI'/(s— M?), which is nominally of
IQ(l)2 in the resonance region and furthermore diverges at
=M<

Formally, the serie€Z (Al (s) with A})(s) given by
Eq. (2.7 can be resummed. In fact, it leads to

S, Al (M) A (s M7 MT) - (210
I=0

Thus,

3 Al(s)= % [(gy—s)(s—lvl%rimr)
M2—iMTI'—s

Il —z=ivT

+--+l. (21D

Even if one accepts these “a posteriori” formal resumma-
tions, the theoretical situation in the framework of conven-

throughout the region of integration. Therefore, each succesiona| mass renormalization is unsatisfactory. In fact, in the

sive insertion leads to corrections of higher ordergh

However, as Im A(M?~—iMT is not subtracted, the com-

binationi Im A(M?)/(p>—M?+i€) may lead to terms o®(1)
if the domain of integratiofp?—M?2|<MT is important. In
fact, the contribution ofi Im A(M?)/(p>—M?+i€)] to Eq.
(2.2 is, to leading order,

conventional formalism, th&V propagator is inversely pro-
portional to

D Ys)=s—M?+iMT — (A(s)—A(M?))

—iMT ReA’(M?) (2.12
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wherel is the radiatively corrected width and we have em-gent contributions. In this modified strategy, the zeroth order
ployed its conventional definition propagator in Eq(2.4) is replaced by

MI'=—Im A(M?)/[1-ReA’(M?)]. (2.13

(2.19

papx>
p? |’

—i
Di(p)= 2_;( Oar—
The contribution of Eq(2.11) to D ~1(s) is P

We note that the imaginary part ip{—s) ! has the same

o
- E(gy— 3)| (s—M?2+iMT) sign as Feynman’'se prescription. Therefore, although the
poles of Eq.(2.4) in the k® complex plane are displaced by
M2—iMT —s the im,I', insertion, they remain in the same quadrants so
XIn TMZSIMT that Feynman’s contour integration or Wick’s rotation can be
carried out.A{y)(s), Fig. 1 without loop insertions, now
. T leads directly to
+iMT 1+|§ -
A s-s
We note that the last term is a gauge-dependent contribu- (3)_ (57 3)(s— s)in S
tion not proportional to the zeroth order ters—M? 2.17
+iMT. As a consequence, in NLO the pole positiorivi$
—iMT, where A(') ,(s) (I=1), the terms withl insertions in Fig. 1, give
now contributions ofO(«g?'), the normal situation in per-
=M 1—(al4)(&,~3)(TIM)], (2.14  turbative expansions. Th& propagator in the modified for-
malism is inversely proportional ts—s—[A(s)—A(s)].
1~“=F[1—(a/27r)(§y— 3)]. (2.159  The contribution of Eq(2.17) to [A(s)—A(s)] is propor-

tional to s—s so that the pole position is not displaced, the
As the pole position is gauge-invariant, so musfibandT . gauge-dependent contributions factorize as desired, and the

Furthermore, in terms dfl andT’, D ~*(s) retains the Breit- previously discussed pitfalls are avoided. A&,) (s) is in-

Wigner structure. Thus, in a resonance experiniérandl”  frared convergent in the modified approaét{,v) (s) leads
would be identified with the mass and width \f. The re- now to contributions to[A(s)—A(s)] of order O[(s
lation T =T'[1— (a/2m)(&,—3)] leads then to a contradic- —s)@g?]=0[ag?! "] and can therefore be neglected in
tion: the measured, gauge-independent, widthould differ ~ NLO whenl=1.

from the theoretical valug by a gauge-dependent quantity ~ The remaining contributions té(s) from the photonic

in NLO. This contradicts the premise of the conventionaldiagrams, including those from the longitudinal part of e
formalism thatI", defined in Eq.(2.13, is the radiatively —Ppropagator in the loop of Fig. 1, and from the diagrams in-
corrected width and is, furthermore, gauge-independent. Weolving the unphysical scalap and the ghosC,, have no
can anticipate that the root of the problem is that &413 singularities as=M? and can therefore be studied with con-
is only an approximate expression for the width of the un-ventional methods. In particular, in the evaluationAffs)
stable particle. In particular, it is not sufficiently accurate —A(s) in NLO it is sufficient to retain their one-loop con-
when non-analytic contributions are considered. tributions. In these diagrams the propagators are proportional

It is therefore important to base the calculations in a forto (p2—M?2¢,) ! instead of p>°—M?)"1. As a conse-
malism that avoids awkward resummations of non-quence, they lead to logarithmic contributions proportional
convergent series and the pitfalls we have encountered in the
previous argument. To achieve this, we return to the trans-
verse dressedV propagator, inversely proportional to? ~M2¢,] [M2%&,—s
—M3—A(p?). In the conventional mass renormalization one (s— MZ)[ 2 In( 2 ) ,

Mo . M M*&w
eliminates M3 by means of the expressioM3=M?
—ReAM?) [Cf Eq. (1.J]. An alternative possibility is 0 4ther than Eq(2.8). They have branch cuts starting st
eliminateM3 by M3=s—A(s) [cf. Eq. (1.2]. The dressed =M2¢,,, which indicates the unphysical nature of these sin-
prOpggator in the loop integral is inversely proportional togularities. Although they must cancel in physical amplitudes,
p?—s—[A(p?) —A(s)]. Expansion of the dressed propaga-they are present in partial amplitudes such as conventional
tor leads in Fig. 1 to a series in powers oA(p?)  self-energies and propagators. We briefly discuss how to
—A(S)]/(p?—3). As A(p?)—A(s)=0[g(p?>—s)] when treatthemin NLO. thgw— 1/=T'/M, the logarithm can be
the loop momentum is in the resonance regipA(p?)  €xPanded abow=M* and one obtains
—A(s)]/(p?—s) is O(g?) throughout the domain of integra- B 1 M2
tion. Thus, each successwe self-energy insertion leads novyg— Mz)[l ot |n(§W +O< ZS ”
to terms of higher order ig? without awkward non conver- v Ew M4(1—¢&w)

M2
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cY FIG. 3. One loop diagram for the quark self-energy in QCD.
w w

—M?)(1- g IN[(&,—1)/&,]. For |&,—1]<T'/M the expan-

sion of the logarithmic factor is not valid, but we note that
FIG. 2. One-loop photonic diagrams for tiiéself-energy:pis  the whole contribution is proportional tos M?)? or (s

the unphysical scalac;, andC,y are ghosts. —M?)(1-¢&,) and therefore negligible in NLO. As a con-

sequence, the above mentioned approximation can be used

The contribution fromO[(s—M?2)/M2(1—¢&,)] is propor-  for any value of¢,,. Calling A’(s) the overall contribution

tional to (s—M?)2/M? and is therefore neglected in NLO. Of the one-loop photonic diagrams to the transvatsself-

For the same reason, we can neglest 12)/M? in the  €nergy (Fig. 2, in the modified formulation the relevant

second factor. Therefore, fb¢,—1|=T/M, in NLOwe can  quantity in the correction to th&V propagator isA”(s)

approximate this contribution by the simple expressisn ( —A?(s). In generalR, gauge, we find, in NLO,

q Cw q

— a(my) —| [& 23| 34 s—s w (En— 17| [&u—1 11 &
Y — A7, = — —_— _ _ | — — - — — _ —= = —
A7(s)—A"(s) o (s S){5( 5 6)+ 9 2In( E) (éw—1) 7 (1 R In £ 2
s 1 [s=s| (&-1 [&~1) Ing, &
XIn §W+(§y_l) E‘Fz‘l"ﬂ( < )+ 1 In & ~ 72 +Z , (2.18
|
where 6=(n—4)"1+ (yg—In47)/2, we have treated the M2—s—ie )
logarithmic terms according to the previous discussion and Im |H(T) =—mh(s—M"?),

set u=m,. The corresponding one-loop gluonic contribu-

tion to the quark self-energy is depicted in Fig. 3. where the e prescription implie®(0)=1/2. The zero width

Writing approximation, however, is not valid in the resonance region.
S s s T .
1_;:1_W_iﬁm_2:pelgl (2 19 0: T T T 5|0 T T T 1?0 T T T T 1:50
we have of Jo
L s\2 sraie ., -0.5 - -; 05
A LT I
L-15F 4-15
in o s, 29 - .
in 6= — . 2F 4-2
p S m%mz’ ( :D E E
25k q4-25
wherem; is defined in Eq(1.3). Calling a=sin"}(I",/my), sk s
we have: for —»<s<0, a>6>0; for 0<s<m3, 0>6 g ]
>—/2; for m’<s<o, —7/2>6>— 7+ a. In Figs. 4 and 35 4-35
5 the functions Ip(s) and 6(s) are plotted for m; 03 I R <I>o L 1350

=80.4 GeV andl’;=I',;m;/m,=2 GeV over a large range %0 Vs (GeV) !
of \/s values. Figures 6 and 7 compare these functions with

the zero-width approximations over the resonance region. In  FIG. 4. The function Irp(s) over a large range ofs values, for
the limit I',—0, 6(s) becomes a step function. This corre- m;=80.4 GeV and’;=2 GeV[see Eq(2.20]. The minimum oc-
sponds to the well-known expression curs atys=m,.
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FIG. 5. The functiond(s) for m;=80.4 GeV andl';=2 GeV FIG. 7. Comparison of)(s) (solid line) with the step function
[see Eq{(2.2))]. The value— /2 is attained at/s= m; . approximation (dotted ling over the resonance regioiim,

=80.4 GeV,I';=2 GeV).
Equation(2.18 exhibits a number of interesting theoreti-
cal features(a) the coefficient of Ip(s—s)/s] is independent
of &, but is proportional to §,—3). (b) The logarithm
In(§,—1) contains an imaginary contribution-im6(1

—¢&,)- This can be understood from the observation that, for \We note that the [r@_s)g] terms in Eq.(2.17 and Eq.
£w<1, aW boson of mass=M? has non-vanishing phase (2.18 cancel for¢, =3, the gauge introduced by Fried and

Ill. FRIED-YENNIE GAUGE
AND THE PT PRESCRIPTION.
GAUGE DEPENDENCE OF THE ON-SHELL MASS

space to “decay” into a photon and particles of md%,,.  Yennie in Lamb-shift calculationg4]. It should be empha-

As explained before, Eq2.18) is only valid in the resonance sized, however, that a gauge-independent logarithm of this

region. type survives in physical amplitudes involving unstable par-
For completeness, the full one-loop expressionXd#(s) ticles such asw [5]. Thus, the choic&,=3 removes this

in generalR; gauges is given in the Appendix. contribution from the propagator’s corrections, but not the

overall amplitude. In this connection, it is interesting to in-
quire how the pinch techniqué®T) prescription treats these
terms. We recall that the PT is a prescription that combines
the conventional self-energies with “pinch parts” from ver-

s e - - # tex and box diagrams in such a manner that the modified
sk 1, self-energies are independent &f(i=W,v,Z) and exhibit
: . desirable theoretical properties. Calliagg?) the PTW self-
i ] energy, we recall that, in the standard mo¢f&\),
4l d4
[ ] a(s)=[A(s)]; =1~ 49%(p)(s— M?)
; sk 1. X[coS Oy lwz(S) +siPoyl w(s)], (3.1
i ] where
6 —-6
[ ] | (8)=i " d"k 1
ii(s)=i ,
LL 1, ST 2m" (K2=m))[(k+q)?—m’]
: 1 . . L ) 1 . :-I-: 1 L ) ) . :
79 81 82

80‘/_ GeV and tadpole contributions have been included in keth)
s (GeV) and A(s) [6]. The | (s) term leads to a contribution

22 2 2 i ;
FIG. 6. Comparison of Ip(s) (solid line) with its zero-width _(a_/”)[(s_zM )°/s]In[(M*—s)/M7], which is of higher or-
approximation Ifl—s/mé| (dotted ling over the resonance region d€r in (s—M?). Therefore, in NLO the PT self-energy gen-
(m;=80.4 GeV,I';=2 GeV). erates the same [ifs—s)/s] term as the 't Hooft—Feynman
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Mz—m§=a(212)(f,/—3)m2F2+--- , (3.4

gauge €,=1), i.e.,— (a/m)(s—s)In[(s—9)/s]. The possibil-

ity has been suggested in the past to define the on-shell mass
in terms of the PT self-energy, name\y?= M3+ Rea(M?)

[7]. This has the advantage that one is dealing here with a
&-independent amplitude. Repeating the argument after Eqvhere the dots indicate additional contributions. Note that
(2.11, we see however that conventional on-shell renormalthis last equation corresponds to Eg.14) with the identifi-
ization based ona(s) would lead to a contribution cation—m;.

IMT (a/m)[1+i /2] which, althougk; indzepgndent, Isnot  As ¢ can be arbitrarily large, Eq3.4) reveals that in the
proportional to the zeroth order tersx M“+iMT. Its re-  \y case the gauge dependence of the conventional on-shell

moval .WOU|d r_equire a redefinition .dﬂ and I, which _is definition of mass is unbounded in NLO for any valuet@f.
inconsistent with the fact thdt contains all the corrections _ . . . — 5
yS|m|larly, the term proportional to s-s)(&,—1)(&,

of O(«a). This problem can be circumvented once more b - 8 /\Sw
recalling that the PT does not displace the position of the 1)IN(&,—1) in Eqé(2.18) gives an unbozundezd.contrlbutlon
complex pole at least through(g*) [8], and expressing the (a/8)(¢,~1)MT'(,—1)6(1-&,) to M*—mi in the re-
inverse propagator as—?—[a(s)—a(?)]. The contribution  Stricted ranget,,<1. This situation is to be contrasted with
Nl T S : the Z case, where the gauge dependence in NLO is bounded
'?(: t(zeg ;)Clinhi ;gziée:isn:%i(;; d;ézLILTeErZS:Zt)(;ZL q and=2 MeV [3]. The difference is due to the contribution of
A . . "the | ithms f he ph ic di , Which
The difference betweem,, defined in Eq(1.3), and the the logarithms from the photonic diagrams, which are absent

. ) , . : in the Z case. In particular, in the frequently employed 't
conventional on-shell madd, defined in Eq(1.1), is Hooft—Feynman gauge&(=1), Eq. (3.4) leads tom,— M

M2— mi: Re A(M2)—Re A(s)— F%. (3.2) = a(m,)I',/4~4 MeV. In analogy with .thi. case, there_ are
also bounded gauge-dependent contribution®te- M aris-
The contribution of the §—s)In[(S—9)/s] term to the right-  ing from non-photonic diagrams in the restricted range
hand sidgRHS) of Eq. (3.2) is <cosh, [1-&,] and from the photonic corrections propor-
tional to (¢,— 1)In[(&,—1)/&,] [cf. Eq.(2.18].

a(m,) s—M?2
br@;a(w—@RM{ =

. IV. OVERALL CORRECTIONS TO W PROPAGATORS
s—M? IN THE RESONANCE REGION

—myI's Im In| — ) ) _

S In contrast with the photonic corrections, the non-
— photonic contributionsA,,(s) to A(s) are analytic around
~ M(é_g) (M2—m?)Re |,.< S__M ) s=s. We can therefore write
2 S
+mﬂkg_ (3.3 Anp(8) = Anp(S) = (S=S)AL (M) +---, (4.1)

InIm |n[(§—|v|2)/§] we have approximatelulzwmi and used where the dots indicate higher-order contributions.

the fact thatg=— /2 for s=mj7 [see discussion after Eq. In the resonance region, and in NLO, the transvefise
(2.21)]. Thus, we see that propagator is given by
|
—i(Qus—9.95/9°
D)= (G~ Godp ) , (42
— ) ) —
(S_S) 1_Anp(m§)_ 27T F(Slsigyl§W)

wheres=q? andF(s,g,g,/,gw) is the expression between curly brackets in €qL8. An alternative expression, involving an
s-dependent width, can be obtained by split'['uhngp into real and imaginary parts, and the latter into fermionicAjrand
bosonic ImA,, contributions. Neglecting very small scaling violations, we have

Im Aj(m3)=Im Ag(m3)/m3~—T,/m,. 4.3

Equation(4.2) becomes then

113010-6
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—(Qup—0als/q?)
DUE (@)= b

(D) - (4.9

2

2 . Fl ’ 2 . ! 2
S—m1+ISF1 1-ReA,(m7)—i Im Ag(mi) —

where T'y /my=T,/m,. ImA(m?) is nonzero and gauge- m,I',=—Im A(M2,M2)+m,I', Re A’ (M2 ,M?)+0(g®).
dependent in the subclass of gauges that satigfy (5.5
<cosA,[1—/&,]. (If this condition is satisfied, 8 boson of

mass/s~M,, has non-vanishing phase space to “decay” Comparing Eq(5.2) and Eq.(5.5 we see that indeed

into particles of massMyé, and Mv&,.) Otherwise

Im Ab(mf) vanishes. Althoughm; and T'; are gauge- T,=T +0(g"). 5.6
invariant, ReA\(m)), ImA, (i), and F are gauge-

dependent. In phyS|caI amplltudes such gauge-dependent

terms cancel against contributions from vertex and box dlaThuS the two calculations of the width coincide through
grams. The crucial point is that the gauge-dependent contr(9). in NLO. It is interesting to see how the two
butions in Eq.(4.4) factorize so that such cancellations Camformulatlons treat potentlal infrared divergences. As is well-

take place and the position of the complex pole is not disknown, ~ReA(M?M?), the photonic  contribution to
placed. ReA’'(M2M?), is logarithmically infrared divergent. There-

fore, MT" ReA’'(M2M?) in the last term of Eq(5.2) contains
a logarithmic infrared divergence i®(ag?). This is can-
celed by an infrared divergence in M2 M?) arising from
AG)(M2,M?), i.e., Fig. 1 with one self-energy insertion. As
In this section we show that the conventional and modit is clear from the discussion of Sec. Il, the infrared diver-
fied formulations lead to the same result for #Mewidth in gence mA(l)(M ,M?) has its origin in the fact that the
NLO. However, the two approaches differ in higher orders.self-energy = insertion induces a correction factor
In particular, the conventional formulation is plagued in highj |m A(M?)/(p>—M?), wherep is theW loop momentum.
orders by severe infrared singularities. Callivg(s,M3) the In higher orders the problem of infrared divergences in
transverse self-energy evaluated in terms of the bare mase conventional approach becomes severe. It follows from
Mo, andA(s,M?) and A(s 5) the expressmns obtained by Eg.(2.9) that the d|agrams in Fig. 1 generate infrared diver-
substituting M2=M2—ReAMZM?) and M2=s—A(s,s),  gences oD[a(—i) 'MT(I'/N\ i)' 1] in A(M2,M?), where
respectively, we have M_mn is the |nfrared cut-off. As a consequence, E52), the
width evaluated in the conventional formulation, contains a
power-like infrared divergence of Ofla(¢,
—3)MI'(I'/\in)?] which appears inO(ag®). Similarly,
the conventional mass renormalization countertesivi?
=ReA(M?%M?) contains an infrared divergence Of a(£,
—3)MI'?/\min] that appears irO(ag*). One can avoid
_ 2 2 FONA2 N2 these leading infrared divergences by resumming the contri-
M= =Im AMM%,M?)+MI ReA/(M%,M%), (5.2 butions of the IMA(M?,M?)~—MTI insertions in Fig. 1. As

where the prime means differentiation with respect to the explained in Sec. I, this would lead to the replacement
first argument. Instead, in the modified formulation discussed
in the present paper, the width is defined by a ) M2—s

5 (£,=3)(s=M?)In| =

V. COMPARISON OF THE W WIDTH IN THE
CONVENTIONAL AND MODIFIED FORMULATIONS

Ao(s,M2)=A(s,M?)=A(s,S). (5.1)

In the conventional approach th¥ width is given by Eq.
(2.13 or, equivalently,

m,I,=—Im A(s,s), (5.3
22 (s:5) ¢ @ 5 MDY M2—s—iMT
which follows from Eq.(1.2). Combining Eq.(5.3) with Eq. ~ 5 (& ISTMIHIMD)In| g o
(5.1 we find:
— Unfortunately, the contribution of this resummed expression
m,l'y=—1m A(s,M*) to the right-hand side of Ed5.2) is (a/2m)(£,—3)MT, a
=—Im A(M2,M?) gauge-dependent contribution 6f(ag?) to the width. In

contrast, in the modified formulation the corresponding ex-
—Im[(s—M?)A'(M2,M?)]+0(g®. (5.4  pression is &/2m)(£,~3)(s—s)In[(s—9)/s] and causes no
problem since it g|ves no contribution to E®&.J). It is also
As s—M?=m3—M2—im,I'; and mj—M?=0(g*), Eq. important to note thal.(s,s) is infrared convergent in all
(5.4) becomes orders, since the self-energy insertions induce a correction
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m2—q2

factor[A(p2,s) —A(s,s)]'/(p?2—s)' in the integrand of Fig. ay(m)
2(6-3)| ~—;

1, and this converges, modulo logarithmspds-s. In par- (4= 37 {(q—m)
ticular, it is easy to check that the contributions@ffa(¢,

—3)MI'(I'/A\nin)?] to the width mentioned above are can- _

celed by terms oD(ag®) in the expansion of Eq(5.4). In +m[4—-65]; +-- (6.9
the conventional formulation such terms are not incluladéd

Eqg. (5.2] and this leads to the problem of uncompensatedand
infrared singularities in high orders of perturbation theory.

+25¢,

Other theoretical difficulties of the conventional definition of (m) m2— g2
width and the need to replace it by H§.3) have been em- SL(d) = 1O 2(59_3)"]( _2q )
phasized in Ref[9] and Ref[10]. (4—m) 3m m
-1
VI. QCD CORRECTIONS TO QUARK PROPAGATORS +26&, |+ (6.6
IN THE RESONANCE REGION g ' '

In pure QCD quarks are stable particles. However, the;gb\S in theW-
become unstable when weak interactions are switched Ot as in the
An examplg of a reaction that may probe the t+op quarl%an be obt
propagator in the resonance regiors +b—t—~W"+b. substitutinga— (4/3)a(m), where 4/3 arises from the color
In this section we discuss in NLO the QCD part of the cor- o o — ()
rections to the quark propagator in the resonance region. T @ctor. Writing once mores=a’, 1-s/m”=p(s)e'™, the
relevant diagram is depicted in Fig. 3. Because the gluonfnctions p(s) and 6(s) are given by Eg.(z.%() %‘d Eq.
are massless, we anticipate problems analogous to those df€:2) with the identification m,=(m°—I'*/4)"*, I
cussed in Sec. II. Therefore, we work from the outset in the= M[/Mz, andm, defined in Eq.(1.3). The difference be-
complex pole formulation. Denoting the position of the com-tWeenm and the on-shell madd =m,+Re (M) in leading

plex pole bym=m-—iI'/2, we observe thdf arises from the order is
weak interactions. For example, in the top chsemerges in 5 2
: . ag(m) m-—M
lowest order from the imaginary part of th&b and ¢b —m=— — — _
>t Ol i M—m I'(§g—3)Im In
contributions to the top self-energy. If we trdatin lowest 37 m?
order in the weak interactions, but otherwise neglect the re-
maining weak interaction contributions to the self-energy, _ as(m)r(g ~3) 6.7)
9 ' :

propagator case, we see that the logarithm van-
Fried-Yennie gaudg= 3. In fact, its coefficient
ained from the analogous term in Ej17) by

the dressed quark propagator can be written as 6

which can also be obtained from E(8.4) by substituting

i
Se(d)= q_a_ (E(Q)—E(E))' (6.3) once morea(m,)—(4/3)ag(m). Thus, in analogy with the
W caseM —m is unbounded in NLO. In the Feynman gauge
whereZ (¢) is the pure QCD contribution. (§4=1) Eq. (6.7 leads tom—M=ay(m)I'/3~56 MeV,
Decomposing while in the Landau gauge £(=0) we have m—M
~84 MeV.
3 (4)=mA(g?) +4B(g?), (6.2)

VII. CONCLUSIONS

and using/(p—m) as loop propagator, we find from Fig. 3: We have shown in Sec. Il that conventional mass renor-

malization[Eg. (1.1)], when applied to the photonic and glu-
—25+2 onic diagrams, leads to a series in powers Mf/(s
—M?), which does not converge in the resonance region
[Eq. (2.9]. In Sec. V we have pointed out that this behavior
]’ 6.3 induces in high orders power-like infrared divergences in

as(m
—? —2+(§g+3)

both M andT'. In principle, these severe problems can be

circumvented by a resummation procedure, explained in Sec.
( )[ m2 II. Unfortunately, the resummed expressions are incompat-
S

26—1— — ible with the conventional definition of widtfEq. (2.13 and
Eq. (5.2)]. In fact, combining the resummed expression with
) — these equations, we have encountered gauge-dependent cor-
I ( ) ] ’

_(H“—q“

. (6.4) rections ofO(al’) to the width and resonant propagator, in
q

contradiction with basic theoretical properties of these am-
plitudes. This clash between the resummed expressions and
where £, is the gluon gauge parameter and we havewset the conventional definition of width is not difficult to under-
=m. In NLO in the resonance region this simplifies to stand. Indeed, the usual derivation of the latter treats the

m
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unstable particle as an asymptotic state, which is clearly an-s)/(M2—iMI")] in order to avoid apparent on-shell singu-
approximation. In Sec. Il and V we have discussed an altertarities (see, for example, Refg5, 11] and the first article of
native treatment of the resonant propagator and the widtRef. [12]). In this paper we have attempted to clarify the
based on the complex pole positisrr M2+ A(s). The non-  theoretical basis for this heuristic procedure and shown how

convergent terms in the resonant region and the potentidl emerges from the formalism. In fact, the analysis leads to
infrared divergences ifi andM are avoided by employing the conclusion that the replacemewt— s must be made in
(p2—'s) ! rather than p2—M2)~! in the Feynman inte- the complete expression of the non-analytic terms and that,
grals, wherep is theW or quark loop momentum. The one- at the same time, the definition of width must be changed
loop diagrams lead now directly to the resummed expressioffom Ed.(5.2) to Eq.(5.3.

of the conventional approach, while the multi-loop expan- The idea of employings, rather than the conventional
sion generates terms which are genuinely of higher ordempproach, as a basis to define the mass and width of unstable
The non-analytic terms and gauge-dependent corrections iparticles and analyze the propagator in the resonance region
the resonant region cause no problem because they are pfaas been recently advocated, for different theoretical reasons,
portional tos—s and exactly factorize. We emphasize thatPy & number of theoristf1-3,9,10,12 The arguments in
this is a crucial property, since it implies that the pole posi-this paper provide an additional and powerful argument for
tion is not displaced and the gauge-dependent correctioriich an approach.

can be canceled by vertex and box contributions. Further-

more, they do not lead to difficulties in the evaluation of the ACKNOWLEDGMENTS

width because the latter is now defined by E3. In par- We would like to thank B. A. Kniehl, M. Porrati, and M.

tlcullar,t.the nc()jnt-r?nalytlc co.nt.nt?uuogs cancel e)t("f:c“};l n d'tSSchaden for very useful discussions. This research was sup-
evaluation and the answer is infrared convergent to all or egaé)rted in part by NSF Grant PHY-9722083.

in the perturbative expansion. Comparing the masses defin
in the two approaches, in Sec. Ill we have reached the con-
clusion that, unlike th& case, the gauge dependence of the
conventional definition of mad€q. (1.1)] is unbounded in
NLO for any value of¢,,. In Sec. V it is further shown that
the conventional and alternative formulations of the width The conventional evaluation of the contribution of Fig. 2
coincide in NLO, but not beyond. The analysis reveals also & the transvers®V self-energy is given by
curious and perhaps universal property: in NLO the non-
analytic terms in both the/ and quark propagators vanish in AY(S)=AY(8)|g =1+ AAY(S)[¢ 21, (Al)
the Fried-Yennie gaugé,=3. o

In the past, a number of authors have employed heuristivhereA”(s)| -1, the contribution in the 't Hooft—Feynman
cally the replacement [GM?—s)/M?]—In[(M>—iMT"  gauge, is

APPENDIX: PHOTONIC CORRECTIONS
TO THE TRANSVERSE W SELF-ENERGY
IN GENERAL R; GAUGES

2 M4

M\ /10 11 31 M* 1 2M
5+|n; —s+3M? +—M2+—s——+§(M2—s)L(s,M2) 5+~ || (A2)

3 6 9 3s

a
AY(S)|g-1= 5 ( -

The remainder is

M?+s (M?-s)?
s 6s°

(M?¢,—3)
M2

M2+s (M2g,—s)?
s 6s°

—L(s,M2¢&,)(M?=5s)

2

M 2
5+1In —) —— (&t D)+
o S

In &y—&w—3— ( lel\jl_zs)((szL s)2L(s,M?)

S
e

M?—s
LD

( Ey—S)L(s, fw)) (éw ) n ; S E éw 7 éw ﬂ. E g ﬂ
4 s 55?2 ¢ 3
_ 2~ _ >w 2 T np242
+ 6s +1In &,| M 6 6M2+ 5 (M=+s) 4M &, ] (A3)

where

_nl Y =X
L(X,y)—|n< y )
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and é is defined after Eq(2.18).

PHYSICAL REVIEW D58 113010

¢, dependent antl(s,M2¢,) contributions inA(s), and we

The & dependence of the complete transverse self-energsee that these terms indeed cancel wherM?. The non-
A(s) must vanish on-shellprovided the tadpole contribu- vanishing terms in Eq(A3) are canceled on-shell by non-
tions are included The photonic diagrams give rise to all the photonic contributions.
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