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Decuplet baryon magnetic moments in a QCD-based quark model
beyond the quenched approximation
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We study the decuplet baryon magnetic moments in a QCD-based quark model beyond the quenched
approximation. Our approach for unquenching the theory is based on heavy baryon perturbation theory in
which the axial couplings for baryon-meson and the meson-meson-photon couplings from chiral perturbation
theory are used together with the quark model moment couplings. It also involves the introduction of a form
factor characterizing the structure of baryons considered as composite particles. Using the parameters obtained
from fitting the octet baryon magnetic moments, we predict the decuplet baryon magnetic momerds. The
magnetic moment is found to be in good agreement with experimegnt: is predicted to be—1.97uy
compared to the experimental result of 2.02 = 0.05 w) . [S0556-282(98)06621-1

PACS numbs(s): 13.40.Em, 11.30.Rd

[. INTRODUCTION chiral baryon-meson couplings to satisfy the(6\relations
F=2/3D,C=—-2D, andH=—3D, with D=0.75 as would

The naive, nonrelativistic quark modelQM), even be expected for thé =0 QM states. Our theory is conver-
though very simple in its formalism, is qualitatively good in gent and has only three free parameters, the effective quark
describing the magnetic moments of the octet baryons. It fitsnomentsu,, ,us, and the wave function parameter The
the pattern and the general magnitude of the octet baryolast is constrained by theory and experiment. In contrast the
moments up to 04y (nuclear magnetonsn average. The usual approaches to magnetic moments through chiral per-
discrepancies between theoretical predictions and experiurbation theory(ChPT) [4-7] involve seven parameters in
mental data are due to the hadrons having an internal struthe description of the octet moments at one loop. If these
ture with dynamically intricate properties that the QM haveparameters are used in fitting the seven measured octet mo-
not accounted for. Therefore, it is desirable to build a dy-ments, the effects of dynamical loop corrections appear only
namical theory for the QM. in the prediction for th&CA transition moment, where they

In fact, the QM can be derived from QCD using the Wil- are small[7].
son loop approachil]. By calculating the gauge invariant ~ We found in Ref[2] that combining the dynamical cor-
Green's function for a baryon interacting with an electro-rections from the loop expansion with those associated with
magnetic field and using well-defined approximations, suctthe binding of quarks in baryon significantly improved the
as the “gquenched” approximation in which the internal vir- agreement between the theoretical and experimental values
tual quark pair loops are not allowed and the minimal areaf the baryon magnetic moments. The average deviation
law, we have derived the quark model for moments plusrom fitting the seven well-measured octet magnetic mo-
semirelativistic corrections associated with the binding of thements excluding the transition momeat,so is 0.05uy, a
quarks in the baryon. A test of this QCD-based QM by fitting substantial improvement on the QM. We concluded that the
the octet baryon moments showed that the theory failed ttbop expansion is an effective way of going beyond
give any substantial improvement in the QM moments. Theguenched approximation in the octet baryon magnetic mo-
problem was identified with the quenched approximafibn ~ ment problem.

To go beyond the quenched approximation, we have de- In this paper, we study the decuplet baryon magnetic mo-
veloped a loop expansion approach for the QCD-based QNMhents using the same method. Our way of evaluating the
and studied the octet baryon moments using our newly desemirelativistic corrections associated with the binding of
veloped approacf?]. Our calculation is based on the heavy quarks in the baryon and the choice of the strong interaction
baryon perturbation theory in which the chiral baryon-mesorcoupling constants and the octet-decuplet mass difference are
couplings and the meson-meson-photon couplings from ththe same for both octet and decuplet. We can therefore
chiral perturbation theory together with the QM momentevaluate the decuplet moments using the quark moments
couplings are used. It also involves the introduction of aw,,us, and the wave function parameterobtained in fit-
single form factor characterizing the structure of the baryonsing the octet baryon moments, and predict the decuplet mo-
considered as composite particles. The form factor reflectments. In particular, the decuplet momeng- is predicted
soft wave function effects with characteristic momenta at ao be —1.97u, compared to the experimental result of
scalex~400 MeV, well below the chiral cutoficl GeV. (—2.02+0.05) uy. The loop corrections are again small in
We chose the strong interaction coupling constants in theomparison to the leading terms, and the contributions from

the decuplet intermediate states are substantial in comparison
to those from the octet intermediate states for some baryons.
*Electronic address: phuoc@theoryl.physics.wisc.edu The paper is organized as follows. Section Il briefly de-
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scribes loop expansion approach. An expression of the de-

0
cuplet baryon magnetic moments are given in Sec. lll, where T + 7 ot K*
some numerical results of calculating the decuplet baryon V2 6
moments are also presented. The conclusions are given in 1 ° g
Sec. IV. All the necessary formulas for the decuplet baryon o=— T - —+-L KO . (2.9
moments can be found in the appendixes. V2 V2 6
_ — 27
II. LOOP EXPANSION APPROACH K KO - %

Going beyond the quenched approximation in the QCD-
based QM means that we have to develop an approach f@yhich couples to the baryon fields through the vector and
studying the meson loop effects in the QCD-based QM. Wexxial vector currents defined by
also need to take the composite structure of the baryons into

account. This is already included in the calculation of the 1 9,
QCD binding effects, but must also be included in the loop V#=f—2(¢<?#¢—o7#¢¢)+~--, AM:MT'F‘“,
calculations. For that purpose, we introduce a single form 2.5

factor characterizing the structure of the=0 baryons con-

sidered as composite particles. We base our loop calculations . .

on heavy baryon perturbation theofiBPT) and use, to- wr:e'ref~9:?1 MeV Ibs the mlesi)n Oclj'ecag/ cor]st?ﬁt. th_a V‘é.'”

gether with the QM moment couplings, chiral couplings for'ctain, as snown above, only ieading term in the derivative
. ._expansion. The lowest order chiral Lagrangian for octet and

the low momentum couplings of mesons to baryons. That ISyacuplet barvons is then

the couplings of the heavy barydhiB) chiral perturbation P y

theory are used where chiral baryon-meson couplings and — —

the meson-meson-electromagnetic field couplings are in- £,=iTrB,(v-D)B,+2D TrB,S{A,,B,}

voked, but the actual calculation of the loop graphs is modi- — — —

fied with respect to Refg4,5].1 +2FTrB,Si[A,.B,]-1T{(v-D)T,,+ 6T;T,,

+C(THA, B, +B,A, T+ 2HT!S, A'T,,
+Tr9,p0 P+ -, (2.6)

A. Definition of couplings
1. Chiral couplings

HBChPT, which has been used to study the hadronic proyhere 5 is the decuplet-octet mass difference, @ng=d,,
cesses of momentum transfers much less than 1 GeV, is weu[vw] is the covariant chiral derivativeB, is the usual
described in Ref|8]. Let us consider a heavy baryon inter- mayriy of octet baryons, and ti* are the decuplet of bary-
acting with a low momentum meson. The velocity of the o D, F, ¢, and M are the strong interaction coupling

baryon tis nea{Iﬁ/ tl;nchanged _\I/_vr?en it exchlanges r?olrlns smalhstants. The spin operatf is defined in Ref[3]. This
momentum wi € meson. then, a nearly on-she aryOnLagrangian defines meson-baryon couplings we will use.

with velocity v has momentum The meson-meson-electromagnetic field couplings and
the convection current interactions of the baryons are intro-

p¥=mgv*+ k¥, @D duced into the Lagrangian by making the substitutions

wheremg is the baryon mass, arkb<mg. The effective
heavy baryon theory is written in terms of baryon fieRis
with definite velocityv#, which are related to the original

D,—D,+ieA,[Q,],

baryon fields by[8] d,6—D,p=3d,6+i1eA,[Q, 4],
2.7
B, (x)=e'Me?*" *uB(x). (2.2
where A, is the photon field.
The new baryon fields obey a modified Dirac equation
2. QM moment couplings
i4B,=0. 2.3 In order to employ the techniques of HBPT, we need

. . i octet, decuplet, and decuplet-octet transition magnetic mo-
The chiral Lagrangian for baryon fields depends on the pseys,ant operators which give the corresponding QM moments.
doscalar meson octet We can construct these usifg, T/, and the moment op-

eratorQ= diag (uy.mq.1s) [2]. For example, the QM de-
cuplet magnetic moment operator is
As in Ref.[2], we emphasize that we are not doing the usual
momentum expansion of ChPT in the sense that the higher-order 3e _
effective couplings of ChPT will be implicit output of our dynami- L3 _j A QITYKE (2.8
cal calculations. 2my v R
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wherei, j, k, andl are SU3) flavor indices. In a momentum %
space, after doing a calculation on the flavor indices, we find R %
that this operator reproduces the QM decuplet moments
Le (@)= —iug", (2.9 (@) (b)
where g is the photon momentum and the spin dependent FIG. 1. Diagrams that give rise to nonanalyiic? corrections
factor| is defined by to the baryon magnetic moments in the conventional ChPT. The
. . dashed lines denote the mesons, the single and double solid lines
I=iun(T - AT -q=T"-qT"- A). (2.10  denote octet and decuplet baryons, respectively. A heavy dot with a

meson line represents a form factefk,v) [Eq. (2.14], wherek is
TheT’’s are defined and the factor is evaluated in Appendixthe meson momentum.
A using the heavy baryon spin structure states. Note that the
decupletT’’s are now having the Dirac, spin and Lorentz B. Meson wave function effects—form factor

indices only,T' =T ¥ The Dirac indexa and spin index For investigating the meson wave function effects on the

N baryon moments, we introduce at each vertex with a meson
line a form factorF(k,v) defined in the rest frame of the
heavy baryon by

are suppressed. The QM decuplet momerf¥' are

QM _ QM_
Ma++=3pys Ma+=2Hut By,

)\2

10 =2pg+ fhy, pat=3uq, Fko)= Tz (214

QM _ QM _
Ksx+=2puT B, K50~ hut ot Ms, wherek=(Kkgq,k) is the four-momentum of meson aidis a

oM parameter characterizing a natural momentum scale for the
Msx-=2pug+F Us, wave function, expected to be much below 1 GeV. The form

factor defined as in Eq2.14) is normalized at chiral limit

Mgiﬂozzﬂd Ly M‘E?T_ZZMSJF L whenk is set equal to zero. With the introduction of this

(2.11  form factor, all the Feynman integrals give finite contribu-
tions. We therefore have a convergent theory in which the
counterterms characteristic of loop calculations in ChPT are
no longer necessary.

The decuplet-octet transition magnetic moment operator is ©Our method for evaluating the Feynman integrals from

chosen as the loop graphsFigs. 1 and 2with the form factors inserted

is as follows.

_2e R " First, we rewrite the form factai2.14) in terms ofk* and
E(Od)=—|m—NFMV(eiij:B'va{jT;’ MtH.0), (212 y#as

M
neY=3us.

which gives the decuplet-octet transition moments

2 2
pa+p=273 (M )y Ba0n= 25 (Hu™ Ha),

V2

2
paxrz+ =27 (s pu),  paxox-=25(Ka— ko),

\/E 2 ‘/,’—7-~‘\“ ‘,l"-—-\\\“
psx0s0= o (put pu=2us),  psron="\ z(ka=mu), :—?ﬁ =-=%—¢=
(2.13
(c) (d)

2 2
pEx00=27(hs™ pu)y  MEx-m-= 25 (HaT K,

; ;
(a) (b)

which are the same as the QM results except for a change in . ' » .

sign of us«o0, and uz«ozo. This difference comes from a § (e) % (f)

difference choice of the phases of the baryon fields, and does

not affect to the calculations of the loop corrections for the FIG. 2. Diagrams that give rise to nonanalyticin m, correc-
baryon magnetic moments. tions to the baryon magnetic moments in the conventional ChPT.
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—\2 and
= T an_£2 m 1
Then, using the Feynman parametrization formula, we com- Ho xSk 16wf? X b
bine the factors in the denominator for the loop graph into a 1
general form TLX) _ 9 (X)
, , +x:;r<,n 32,”_2f2[(7b 2\ ap)
ke+a(k-v) +(k-V)+C, (2.16
- 720 —
where @ and C are parameters independent of the integral XLy(Mx, =8N+ 75 “La(Mx, = 3.N)],
variablesk, and the vecto¥ is any combination of and the (3.9
photon momentung. At this point, by changing variables to _
=k Bo(k 217 where ay=ud™ , and the group coefficientg(®, B,
=kt Bu(k-v), ' WY XD 20 S0 and 2™ are given in the Appen-
and choosingB=+\1+a—1, we can get rid of the dixB. 5
(k-v)? term in the denominator. E42.16) becomes Analytic expressions for Lo(my,\), F(my,d8,\),
' e L,(my,8,N), andL,(my,8,N), which are the functions of
k'“+(k"-V)+C, (218 the meson masses, the decuplet-octet mass diffei@naed

where the vecto¥ is also any combination of andq. The the natural cutoff\, are given in Ref[2]. It is straightfor-

Feynman integrals with the intergrands containing the deward o getF(myx,—4,\), Li(mx,—6,A), and Ly(my,
nominators of this type are easily evaluated. Note that the 4,A) from these expressions given, and such an example is
Jacobian of the transformation of variablgq. (2.17] is ~ shown in Appendix C. To have an idea which corrections

UVI+ e, come from which loop graph@igs. 1 and 2, it is necessary
to know thatg{®), BV, yi™), 20 5209 \ ) “andx ()
Ill. DECUPLET BARYON MAGNETIC MOMENTS are the group coefficients of the graphg)11(b), 2(a), 2(b),
A. Theoretical expressions 2(c) [or 2(d)], 2(e) and Zf), respectively.
The calculation of the loop graphs shown in Figs. 1 and 2 B. Numerical results

is straightforward. The main difficulty is in the calculation of
the “group coefficients” that arise from the products of ~NOw we are ready to evaluate the decuplet baryon mag-

couplings. These algebraic calculations were done using®lic moments. As done in the octet moment case, the cor-
MATHEMATICA and checked with some group coefficients rectionsA g™ from the QCD-based QM are calculated us-
given in Ref.[9]. The results are given in Appendix B. We ing the values ot’s andA’s given in Ref[7]. Again, for the

will only give the final expressions for the decuplet baryonloop corrections, the coupling constafsD, C, and’H are
magnetic moments. In units of nuclear magnetons, an exehosen such tha+ D=1.25~|g,/gy| (ga andg,, are the

pression of baryon moments is given by axial vector and vector coupling constants, respectjvahd
0y (5=0), . (520 the SU(6) relations between the coupling constahkts
Mp=pmp Ty Tt uy 3.1  —2p/3¢=-2D, andH=—3D are satisfied, as expected

for L=0 baryons. We also choose the decuplet-octet mass

where,ug’) are the contributions from the lowest loop order. "
difference =250 MeV andf ;=93 MeV, fy=f, =1.2f .

These include the QM moments plus the correctidnsd™ h o d th |
from the QCD-based QM.The terms inu{’=% are contri- e remaining three parametefs,, us, and the natura

butions from the loop graphs which are independent of th&utoff  are given the values that give the best fit in the octet

decuplet-octet mass differenga= m3ecPlel. ma®et (here in- TSTOegtI\/ClZ\S/e’ namely,,=2.803uy, us=—0.656uy, and

termediate baryon states are purely decypbeid the terms We ai lculated val for the d et b
in 1{°*% are contributions from the loop graphs dependent ¥'¢ 9'V€ OUT calculaled values for the decuplet baryon
agnetic moments, and the corresponding values from the

to & (here intermediate baryon states are octet or octet an . . 0
decufolet combined We findy M, in Table | and a detailed breakdown of the contributions
of the loop integrals to the magnetic moments in Table II.

w=ap+AudM, (3.2 We find that the predicted decuplet momentu,-=
A —1.97uy is in very good agreement with the experimental
(6=0)_ My A (X) result of (—2.02 = 0.09 uy, and the theoretical value of
Fo = &\ Tonf? ()\+mx)3'8b A+ +=5.69uy falls within the experimental rangéom 3.7
to 7.5 in unit of nuclear magnetons

D 1 (29— 20 ) Lo(my ) As in the octet case, again we see that the loop contribu-
X7k, 16m°f? Yo b b =0UX tions are small in comparison to the tree level or QM terms,
that the contributions from the graphs involving the interme-
diate decuplet statdsum of the graphs(d), 2(a), 2(c), 2(d),

and Ze)] are substantial. For some baryons, those contribu-
tions are even larger than those from the graphs involving
2The explicit expressions af 3" are given in Refs[1,2] only the intermediate octet states.

J’_

(3.3
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TABLE I. The decuplet magnetic moments from the QM and supported in part by the U.S. Department of Energy under
the QCD-based QM with loop corrections. The results from the QMGrant No. DE-FG02-95ER40896.
are evaluated using the best-fit parameters for the octet moments

from the QM, u,=1.818, andu.=—0.580 APPENDIX A: HEAVY BARYON SPIN STRUCTURE

s QM QM with loops Experiment In a rest frame of a spid-baryon, the statel,j,) of this
baryon are specified by a vecterand a spins spinor &,

ATY 5.455 5.689 3575 Y 11 P y pinz spinor &,

A 2728 2778 m=— 3,5 as follows:

A° 0 —-0.134 3 3

A~ —2.728 —3.045 25 =e, €12,

P 3.057 2.933

3*0 0.329 0.137 31 . 5

S*- —2.399 —2.659 _ \[

—,=)=—=e 1 1ot \/= ,

Ex0 0.658 0.424 2 2> 3 #aé-1zt \ 3% bz

B*- —2.069 —2.307

(e —1.740 -1.970 —2.02+ 0.05

3 1 2 1
57 5/=\3% & 1t ﬁe—lfllzl

3 3
Ev_§>:el§ 1/2- (A1)

IV. CONCLUSIONS

In this paper, we have extended our earlier calculations of
the octet baryon moments in a QCD-based QM with loop
corrections to include the decuplet baryon magnetic moThese states are satisfied the expected orthogonality and nor-
ments. We have predicted the decuplet moments using th@alization properties. In terms of the vector-spinor functions
input parameters obtained from studying the octet baryory’ =T/“ with « a Dirac spinor index andl =], a total spin
moments. We find that our predicted decuplet momegnt index ihe staté?, 2) is identified as
is in very good agreement with its experimental value. ’ 202

Again, we have shown that our loop approach for the 33
baryon magnetic moments in a QCD-based QM works. The ‘E’ §> =T
loop corrections extend our QCD-based QM beyond the
qguenched approximation. The resulting theory describes thgnd so on.
baryon magnetic moments much better than the QM. It can ~<iqer the factor=iuy(T' - AT'-q—T'-qT'- A) that
fit the seven observed octet baryon magnetic moments up te?ppears in Eq.2.10 InN the baryon rest frameT’*
about 0.0y in average magnitude, gives a result for the:(OT’) while Aﬂ'z(d'A) for a pure magnetic field, then
39A transition moment consistent with experiment, and Preihe f,actc;rl reduces to form '
dicts uo- very well. We hope that the other decuplet baryon
moments predicted from our theory will be tested by the | =, (T"* AT’ .q—T *qT’-A)=iuy(T *XT')-(AXQ)
future experimental data.

1 .,
P E(Tlfz atiTih e, (A2)

=un(T*XT')-B, (A3)
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TABLE IlI. Detailed breakdown of the contributions of the loop integrals to the magnetic moments of the
decuplet baryonsin uy). Those contributions are evaluatedrat 0.5, D=0.75,C=—-1.5, H=-2.25, 8
=250 MeV, u,=2.083, us= —0.656, and the natural cutaff=407 MeV. The superscriptN) and (A) are
used to indicate that the intermediate baryon states are octet and decuplet, respectively.

b Huy Ms ApdM my/AN) In m{™ my/A4) In m® Loops o

ATT 6.249 —0.434 0.078 —-0.351 0.159 —-0.012 —-0.126 5.689
At 3.125 —-0.217 0.052 —0.183 0.060 —0.059 —0.130 2.778
A° 0 0 0.026 —-0.015 —0.039 —0.106 —-0.134 —-0.134
A —-3.125 0.217 0 0.153 —-0.138 —0.152 —-0.138 —3.045
SxF 3.510 —0.343 0.026 —-0.192 0.099 —-0.167 —-0.234 2.933
3*0 0.386 —0.089 0 —-0.032 0 —-0.127 —0.159 0.137
3 —2.739 0.165 —0.026 0.127 —0.099 —0.087 —0.085 —2.659
F*0 0.771 —-0.191 —0.026 —0.052 0.039 -0.117 —0.156 0.424
B*- —2.354 0.096 —0.052 0.102 —0.060 —0.041 —0.050 —2.307
(. —1.968 0.013 —-0.077 0.077 —-0.021 0.006 —0.015 —-1.970
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I=xiu\B forj,==

’

[N N W

B
Zii,u,Ng fOI’jZZiE. (A4)

Using Eq.(A1), we can check the validity of the follow-

ing relation which is useful when evaluating some loop
graphs

1
T’ AT -q— T qT'-A)),
(A5)

THq-S,,A-S,]T,=

whereS, is the spin operator.

APPENDIX B: THE GROUP COEFFICIENTS

plicitly. For simplicity, the superscrigiX) is suppressed. The

group coefficientg3,, evaluated from the graphsd), up to a
factor 1?2, are

PHYSICAL REVIEW D 58 113003

for the pion loops and

2 - 1 -
Bite=1, Byi=3. By=3. By’=0,
1
(K) _n %K _
ﬁz*#— 3 ,32*0—0 Bz*— _3
(B4)
1 2
pK _ = pkK %
B:*O 3: ,85*7 3;
,B(K)

for the kaon loops. The group coefficiemt# evaluated from

the graphs @), up to a factor 1H?2/9, are
In this appendix, the group coefficients are presented ex-

;13

y7i
7A++—2,uu, '}’i(f = 1m_ C1

21“[11 ’VAO 6 1

1 1 3
(m) _ (m) _ (m) _ (m) _ w
BA++—§ ﬂA+_§1 BAO_ 9’ BA*__g’ ’yi(,)_—zlu,u,
2 2
() (m) (m) _
*x+— A * 0: *x——  q° T 1
Faremge Parom0 P g YA = 5 (S 4, ¥ g (209,
(B1)
m_1 = 1
B,_,*O_§ ,85*7:__1 1(m) 1
Vs*-— 6(_,“«u+4,“«s)a
(17>_
Bg-=0, (B5)
i L M T
for the pion loops and yg*gz ?S 75*7 Z(Mu+4,us),
1 2
K) _ = oK_% K (K)_
BA++_3! ,BA+ 91 B 91 BA* 01 1(77):0
Ya- '
w 10 g a0 for the pion |
ﬁ2*+_ 6, ,BE*O_ ’ Bg*f_ §. or the pion loops
(B2) 1
1 2 1(K 1(K
Blo=—5, BY -3, yari= <2uu+us>, it =gyt o),
(K) _ _ 1 1K) _ Ms 1K) _
Q- §’ Yao :?1 Ya- — _(_Mu+Ms)v
for the kaon loops. The group coefficielﬁg evaluated from
2
the graph 1), up to a factorC<, are 7,;'()_ 18(29’““+ 16us), 7,;*0 (Mu+ 2us),
T T 1 T 1 S
BY=1 Bi=5, BW=-3 BO=-1 )
, , yaul = 7g(— 13uy+ 164y,
,3(27;)+_ 5 BEZ)O_ BE*— — 5 (BG)
3 3 5.1 1
1 (B3) 7~1<3— +?S, yi(fl—3( Hyt5us),
Bllo-z, Bl ——=
* 3 :* 3!
N(QT’_):(), ')’Q—K): _(Mu+8ﬂs)a
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for the kaon loops, and

'}/E*Jr_o ,yl(ﬂ) O,y2 0

1(7)

Mut2ups), Yzx-=

2(b) are given, up to a facta??, as follows:

~1(m) 3

Ya++— o 2

EMU: Ya+ _3Muv

~im_ _ Fu =i
7A Ei -

Ya- —Mu>

T _

~ym 1
et = 18<2uu+us>, Yewo = 1g(2u+ Ths),

~um L
’)é(* )= 1_8( —10uy+7us),

~1(m)_ 2

~im 1
7"’*0 31“’5!

Yok -= 1_2(_,U«u+8//«s)v

Ya”'=0,

for the pion loops,

~UK)

7A++ (4#u Ms), Ya+ __(Zl’vu_

~1UK)_ _ Ms ~1K)

1
Ya0 3’ Ya- :_§(2MU+MS)'

~uky)_ 1

Vsx+= 1_8(7Mu+8ﬂs) sro=

')’E*O

~ 1
')é(*K*) = 1_8( —Suyt+8us),

~1(K)_ Ms

~1(K
Yex0= Mu+§, )

1
Yax-= 3(— 200t us),

~ LK)

Ya- _(_Mu+16ﬂs):

for the kaon loops, and

S g,

Ms),

18(Mu+ 8us),
(B9)

(B7)

(B8)

PHYSICAL REVIEW D 58 113003

;i(:]}r_o ,}/i(l?_o ,yA =0, ",;/i(j)zo’
~1n) _ 1(n) 1
Ysx+= —(4Mu—us) YE*O_E(MU_Ms)a
1
~1
Y= = 5 (2ut o), (B10)
Y= —( putaps), yail= Z(Mu+8Ms)a
~1
Ya"=0,

~ for the # loops. The coefficient:exﬁ evaluated from the graph
for the 7 loops. The coefficients«é evaluated from the graph 2(c) [or 2(d)] are given, up to a factor(Z/3, by

for the

113003-7
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~2(m ~2(m
7A<+J)r_2/1’u1 YA(+ )_ 3Muv

2
~2(m ~2(m
VA( )__§1va '}’A(—)_ 24y,
~ 4 ~ 2
2(m 2(m
72(*4226(/1“_’_21“’5)! ')’2(*0)25(_/.%‘*‘4/.1,5),

(B11)

~2(m) _
72*———( Myt ),
~ 2 ~
2(m 2(m
7':(*3=3Ms- 7~(*3——(—Mu+2us),
~2(m
7a2'=0,
pion loops,

4 2
~2(K (K
Y= 2 (my— ), YaL'=Z(m—2pms),

3 3
~2(K) ~2(K) 2
Va0 =T Mss Ya- = g (Hut2us),

3 3
~2k) _ 2 ~aK)_ 2
Vsx+= (7IL'LU_4IL'LS)! 72*0_§(ﬂu_4ﬂs),
~2(K) 2
Vsx-T7 5(5Mu+4ﬂs)a (B12)
~ak) 4 ~2(K)
Va*o—3ﬂs, %*———(—MUJFZMS),

2
~2(K
70(—): §(_Mu+4ﬂs)a

for the kaon loops, and
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T}’i(Jﬁ—o 72@_01 2(77) =0, ,y2(77 0, APPENDIX C: THE EXPRESSIONS OF F, Ly, L4, AND L,
~2(n) ~2(n) ~2(n) The expressions ofo(m,\), F(m,8,1), Li(my,8,\),
Ysx+=0, 75x0=0, 75.-=0, and Ly(my,8,1\) are given in Ref.[2]. In order to get

(B13  FE(my,—8\), Li(my,—8\), and Ly(my,—8,\) from
;,ngo__(#u ©e), }i(*”),=——(,uu+2,us), them, we make an analytic continuation from positive to
B 3 negatives. Note that the functions can acquire an imaginary
part in the continuation, but it will not contribute to the de-
cuplet moments and therefore can be ignored. The real parts
of the new functions are obtained by a simple substitution of
— ¢ for 6.

As an illustration, The functiofr(m,— &,\) is found to
be of the form

~2
’yﬂfl? _o!

for the » loops. The group coefficienis, evaluated from the
graph 2e), up to a factorH?, are

A=2> xg”:l—o A== Ng)=0, (B14) N
36’ * 27 "E* 36 - _ _
2 2 2
for the pion loops, 5\ +2m S5+ A“+2m 53
)\Z_mz ()\2_m2)2
5 20 5 5 AS [ aon 2 ar2
_ (K)_ (K)_ () _
)\(AK)_1_8’ )\2* - 2_71 )\E*_ 61 )\Q,— §, (815) + ()\2_m2)2()\2_m2+ 52)[3(2)\ +3m )

X(AN2=m?)—2(\2—6m?) &2
for the kaon loops, and 3m?
+m54 Fo(m,\)(, (C)
5 5 5
(m— (m) _ () _ (m _
N=35 Mx=0. Ngi=gp Mg"=g, (B1O)  where

for the 5 loops. The group coefficienis, evaluated from the

N(m,— 8\) = ————- [ TA(\%+3m?— 352
graph 2f), up to a factorC?, are ( ) (N*—m*+ 5% LM )
R R i~ —2(3\*+m?= 8% Fo(m,—9)],  (C2)
and
for the pion loops
X(AK):%1 X(Eri): % X(EK*)= % X-1, (B19 Fo(m,* 8)=m?— 62 w/2F arctan( 6/ m?— 6)]
for the kaon loops, and for m=4, (C3
L =&*—m?{In[(F 6+ 6°—m?)/m]
X=0, X¥=1, XZ=7, X2=0, (819 —(1F1)im/2  for m<s. (C4)
Similarly, the functiond_;(m,— &,\), andL,(m,— §,\)
for the # loops. can be easily read off frorh;(m, 5,\), andL,(m,S,\).
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