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We study the decuplet baryon magnetic moments in a QCD-based quark model beyond the quenched
approximation. Our approach for unquenching the theory is based on heavy baryon perturbation theory in
which the axial couplings for baryon-meson and the meson-meson-photon couplings from chiral perturbation
theory are used together with the quark model moment couplings. It also involves the introduction of a form
factor characterizing the structure of baryons considered as composite particles. Using the parameters obtained
from fitting the octet baryon magnetic moments, we predict the decuplet baryon magnetic moments. TheV2

magnetic moment is found to be in good agreement with experiment:mV2 is predicted to be21.97mN

compared to the experimental result of (22.02 6 0.05! mN . @S0556-2821~98!06621-1#

PACS number~s!: 13.40.Em, 11.30.Rd

I. INTRODUCTION

The naive, nonrelativistic quark model~QM!, even
though very simple in its formalism, is qualitatively good in
describing the magnetic moments of the octet baryons. It fits
the pattern and the general magnitude of the octet baryon
moments up to 0.1mN ~nuclear magnetons! in average. The
discrepancies between theoretical predictions and experi-
mental data are due to the hadrons having an internal struc-
ture with dynamically intricate properties that the QM have
not accounted for. Therefore, it is desirable to build a dy-
namical theory for the QM.

In fact, the QM can be derived from QCD using the Wil-
son loop approach@1#. By calculating the gauge invariant
Green’s function for a baryon interacting with an electro-
magnetic field and using well-defined approximations, such
as the ‘‘quenched’’ approximation in which the internal vir-
tual quark pair loops are not allowed and the minimal area
law, we have derived the quark model for moments plus
semirelativistic corrections associated with the binding of the
quarks in the baryon. A test of this QCD-based QM by fitting
the octet baryon moments showed that the theory failed to
give any substantial improvement in the QM moments. The
problem was identified with the quenched approximation@1#.

To go beyond the quenched approximation, we have de-
veloped a loop expansion approach for the QCD-based QM
and studied the octet baryon moments using our newly de-
veloped approach@2#. Our calculation is based on the heavy
baryon perturbation theory in which the chiral baryon-meson
couplings and the meson-meson-photon couplings from the
chiral perturbation theory together with the QM moment
couplings are used. It also involves the introduction of a
single form factor characterizing the structure of the baryons
considered as composite particles. The form factor reflects
soft wave function effects with characteristic momenta at a
scalel'400 MeV, well below the chiral cutoff'1 GeV.
We chose the strong interaction coupling constants in the

chiral baryon-meson couplings to satisfy the SU~6! relations
F52/3D, C522D, andH523D, with D50.75 as would
be expected for theL50 QM states. Our theory is conver-
gent and has only three free parameters, the effective quark
momentsmu ,ms , and the wave function parameterl. The
last is constrained by theory and experiment. In contrast the
usual approaches to magnetic moments through chiral per-
turbation theory~ChPT! @4–7# involve seven parameters in
the description of the octet moments at one loop. If these
parameters are used in fitting the seven measured octet mo-
ments, the effects of dynamical loop corrections appear only
in the prediction for theS0L transition moment, where they
are small@7#.

We found in Ref.@2# that combining the dynamical cor-
rections from the loop expansion with those associated with
the binding of quarks in baryon significantly improved the
agreement between the theoretical and experimental values
of the baryon magnetic moments. The average deviation
from fitting the seven well-measured octet magnetic mo-
ments excluding the transition momentmLS0 is 0.05mN , a
substantial improvement on the QM. We concluded that the
loop expansion is an effective way of going beyond
quenched approximation in the octet baryon magnetic mo-
ment problem.

In this paper, we study the decuplet baryon magnetic mo-
ments using the same method. Our way of evaluating the
semirelativistic corrections associated with the binding of
quarks in the baryon and the choice of the strong interaction
coupling constants and the octet-decuplet mass difference are
the same for both octet and decuplet. We can therefore
evaluate the decuplet moments using the quark moments
mu ,ms , and the wave function parameterl obtained in fit-
ting the octet baryon moments, and predict the decuplet mo-
ments. In particular, the decuplet momentmV2 is predicted
to be 21.97mN compared to the experimental result of
(22.0260.05) mN . The loop corrections are again small in
comparison to the leading terms, and the contributions from
the decuplet intermediate states are substantial in comparison
to those from the octet intermediate states for some baryons.

The paper is organized as follows. Section II briefly de-*Electronic address: phuoc@theory1.physics.wisc.edu
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scribes loop expansion approach. An expression of the de-
cuplet baryon magnetic moments are given in Sec. III, where
some numerical results of calculating the decuplet baryon
moments are also presented. The conclusions are given in
Sec. IV. All the necessary formulas for the decuplet baryon
moments can be found in the appendixes.

II. LOOP EXPANSION APPROACH

Going beyond the quenched approximation in the QCD-
based QM means that we have to develop an approach for
studying the meson loop effects in the QCD-based QM. We
also need to take the composite structure of the baryons into
account. This is already included in the calculation of the
QCD binding effects, but must also be included in the loop
calculations. For that purpose, we introduce a single form
factor characterizing the structure of theL50 baryons con-
sidered as composite particles. We base our loop calculations
on heavy baryon perturbation theory~HBPT! and use, to-
gether with the QM moment couplings, chiral couplings for
the low momentum couplings of mesons to baryons. That is,
the couplings of the heavy baryon~HB! chiral perturbation
theory are used where chiral baryon-meson couplings and
the meson-meson-electromagnetic field couplings are in-
voked, but the actual calculation of the loop graphs is modi-
fied with respect to Refs.@4,5#.1

A. Definition of couplings

1. Chiral couplings

HBChPT, which has been used to study the hadronic pro-
cesses of momentum transfers much less than 1 GeV, is well
described in Ref.@8#. Let us consider a heavy baryon inter-
acting with a low momentum meson. The velocity of the
baryon is nearly unchanged when it exchanges some small
momentum with the meson. Then, a nearly on-shell baryon
with velocity vm has momentum

pm5mBvm1km, ~2.1!

wheremB is the baryon mass, andkv!mB . The effective
heavy baryon theory is written in terms of baryon fieldsBv
with definite velocityvm, which are related to the original
baryon fields by@8#

Bv~x!5eimBv” vmxmB~x!. ~2.2!

The new baryon fields obey a modified Dirac equation

i ]”Bv50. ~2.3!

The chiral Lagrangian for baryon fields depends on the pseu-
doscalar meson octet

f5
1

A2S p0

A2
1

h

A6
p1 K1

p2
2

p0

A2
1

h

A6
K0

K2 K̄0 2
2h

A6

D , ~2.4!

which couples to the baryon fields through the vector and
axial vector currents defined by

Vm5
1

f 2 ~f]mf2]mff!1•••, Am5
]mf

f
1•••,

~2.5!

where f ;93 MeV is the meson decay constant. We will
retain, as shown above, only leading term in the derivative
expansion. The lowest order chiral Lagrangian for octet and
decuplet baryons is then

Lv5 iTrB̄v~v•D!Bv12D Tr B̄vSv
m$Am ,Bv%

12F Tr B̄vSv
m@Am ,Bv#2 i T̄v

m~v•D!Tvm1dT̄v
mTvm

1C~ T̄v
mAmBv1B̄vAmTv

m!12HT̄v
mSvnAnTvm

1Tr ]mf]mf1•••, ~2.6!

whered is the decuplet-octet mass difference, andDm5]m
1@Vm ,# is the covariant chiral derivative.Bv is the usual
matrix of octet baryons, and theTv

m are the decuplet of bary-
ons. D, F, C, andH are the strong interaction coupling
constants. The spin operatorSv

m is defined in Ref.@3#. This
Lagrangian defines meson-baryon couplings we will use.

The meson-meson-electromagnetic field couplings and
the convection current interactions of the baryons are intro-
duced into the Lagrangian by making the substitutions

Dm→Dm1 ieAm@Q,#,

]mf→Dmf5]mf1 ieAm@Q,f#,
~2.7!

whereAm is the photon field.

2. QM moment couplings

In order to employ the techniques of HBPT, we need
octet, decuplet, and decuplet-octet transition magnetic mo-
ment operators which give the corresponding QM moments.
We can construct these usingBv , Tv

m , and the moment op-

eratorQ̂5 diag (mu ,md ,ms) @2#. For example, the QM de-
cuplet magnetic moment operator is

L ~3/2!52 i
3e

2mN
T̄v ikl

m Q̂j
i Tv

n jklFmn, ~2.8!

1As in Ref. @2#, we emphasize that we are not doing the usual
momentum expansion of ChPT in the sense that the higher-order
effective couplings of ChPT will be implicit output of our dynami-
cal calculations.
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wherei , j , k, andl are SU~3! flavor indices. In a momentum
space, after doing a calculation on the flavor indices, we find
that this operator reproduces the QM decuplet moments

L b
~3/2!~q!52 imb

QMI , ~2.9!

where q is the photon momentum and the spin dependent
factor I is defined by

I 5 imN~ T̄8•AT8•q2T̄8•qT8•A!. ~2.10!

TheT8’s are defined and the factor is evaluated in Appendix
A using the heavy baryon spin structure states. Note that the
decupletT8’s are now having the Dirac, spin and Lorentz

indices only,T85T
a,l

8m
. The Dirac indexa and spin index

are suppressed. The QM decuplet momentsmb
QM are

mD11
QM

53mu , mD1
QM

52mu1md ,

mD0
QM

52md1mu , mD2
QM

53md ,

mS* 1
QM

52mu1ms , mS* 0
QM

5mu1md1ms ,

mS* 2
QM

52md1ms ,

mJ* 0
QM

52ms1mu , mJ* 2
QM

52ms1md ,
~2.11!

mV2
QM

53ms .

The decuplet-octet transition magnetic moment operator is
chosen as

L ~od!52 i
2e

mN
Fmn~e i jkQ̂l

i B̄vm
j Sv

mTv
nklm1H.c!, ~2.12!

which gives the decuplet-octet transition moments

mD1p52
A2

3
~mu2md!, mD0n52

A2

3
~mu2md!,

mS* 1S152
A2

3
~ms2mu!, mS* 2S252

A2

3
~md2ms!,

mS* 0S05
A2

3
~mu1mu22ms!, mS* 0L5A2

3
~md2mu!,

~2.13!

mJ* 0J052
A2

3
~ms2mu!, mJ* 2J252

A2

3
~md2ms!,

which are the same as the QM results except for a change in
sign of mS* 0L and mJ* 0J0. This difference comes from a
difference choice of the phases of the baryon fields, and does
not affect to the calculations of the loop corrections for the
baryon magnetic moments.

B. Meson wave function effects—form factor

For investigating the meson wave function effects on the
baryon moments, we introduce at each vertex with a meson
line a form factorF(k,v) defined in the rest frame of the
heavy baryon by

F~k,v !5
l2

l21k2 , ~2.14!

wherek5(k0 ,k) is the four-momentum of meson andl is a
parameter characterizing a natural momentum scale for the
wave function, expected to be much below 1 GeV. The form
factor defined as in Eq.~2.14! is normalized at chiral limit
when k is set equal to zero. With the introduction of this
form factor, all the Feynman integrals give finite contribu-
tions. We therefore have a convergent theory in which the
counterterms characteristic of loop calculations in ChPT are
no longer necessary.

Our method for evaluating the Feynman integrals from
the loop graphs~Figs. 1 and 2! with the form factors inserted
is as follows.

First, we rewrite the form factor~2.14! in terms ofkm and
vm as

FIG. 1. Diagrams that give rise to nonanalyticms
1/2 corrections

to the baryon magnetic moments in the conventional ChPT. The
dashed lines denote the mesons, the single and double solid lines
denote octet and decuplet baryons, respectively. A heavy dot with a
meson line represents a form factorF(k,v) @Eq. ~2.14!#, wherek is
the meson momentum.

FIG. 2. Diagrams that give rise to nonanalyticmsln ms correc-
tions to the baryon magnetic moments in the conventional ChPT.
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2l2

k22~k•v !22l2 . ~2.15!

Then, using the Feynman parametrization formula, we com-
bine the factors in the denominator for the loop graph into a
general form

k21a~k•v !21~k•V!1C, ~2.16!

wherea and C are parameters independent of the integral
variablesk, and the vectorV is any combination ofv and the
photon momentumq. At this point, by changing variables to

k85k1bv~k•v !, ~2.17!

and choosingb56A11a21, we can get rid of the
(k•v)2 term in the denominator. Eq.~2.16! becomes

k821~k8•Ṽ!1C, ~2.18!

where the vectorṼ is also any combination ofv andq. The
Feynman integrals with the intergrands containing the de-
nominators of this type are easily evaluated. Note that the
Jacobian of the transformation of variables@Eq. ~2.17!# is
1/A11a.

III. DECUPLET BARYON MAGNETIC MOMENTS

A. Theoretical expressions

The calculation of the loop graphs shown in Figs. 1 and 2
is straightforward. The main difficulty is in the calculation of
the ‘‘group coefficients’’ that arise from the products of
couplings. These algebraic calculations were done using
MATHEMATICA and checked with some group coefficients
given in Ref.@9#. The results are given in Appendix B. We
will only give the final expressions for the decuplet baryon
magnetic moments. In units of nuclear magnetons, an ex-
pression of baryon moments is given by

mb5mb
~0!1mb

~d50!1mb
~dÞ0! , ~3.1!

wheremb
(0) are the contributions from the lowest loop order.

These include the QM moments plus the correctionsDmb
QM

from the QCD-based QM.2 The terms inmb
(d50) are contri-

butions from the loop graphs which are independent of the
decuplet-octet mass differenced5mB

decuplet2mB
octet ~here in-

termediate baryon states are purely decuplet!, and the terms
in mb

(dÞ0) are contributions from the loop graphs dependent
to d ~here intermediate baryon states are octet or octet and
decuplet combined!. We find

mb
~0!5ab1Dmb

QM , ~3.2!

mb
~d50!5 (

X5p,K

mN

72p f 2

l4

~l1mX!3 bb
~X!

1 (
X5p,K,h

1

16p2f 2 ~gb
1~X!22lb

~X!ab!L0~mX ,l!

~3.3!

and

mb
~dÞ0!5 (

X5p,K
2

mN

16p f 2 F̃~mX ,2d,l!b̃b
~X!

1 (
X5p,K,h

1

32p2f 2 @~ g̃b
1~X!22l̃b

~X!ab!

3L1~mX ,2d,l!1g̃b
2~X!L2~mX ,2d,l!#,

~3.4!

where ab5mb
QM , and the group coefficientsbb

(X) , b̃b
(X) ,

lb
(X) , l̃b

(X) , gb
1(X) , g̃b

1(X) , andg̃b
2(X) are given in the Appen-

dix B.
Analytic expressions for L0(mX ,l), F̃(mX ,d,l),

L1(mX ,d,l), andL2(mX ,d,l), which are the functions of
the meson masses, the decuplet-octet mass differenced, and
the natural cutoffl, are given in Ref.@2#. It is straightfor-
ward to get F̃(mX ,2d,l), L1(mX ,2d,l), and L2(mX ,
2d,l) from these expressions given, and such an example is
shown in Appendix C. To have an idea which corrections
come from which loop graphs~Figs. 1 and 2!, it is necessary
to know thatbb

(X) , b̃b
(X) , gb

1(X) , g̃b
1(X) , g̃b

2(X) , lb
(X) , andl̃b

(X)

are the group coefficients of the graphs 1~a!, 1~b!, 2~a!, 2~b!,
2~c! @or 2~d!#, 2~e! and 2~f!, respectively.

B. Numerical results

Now we are ready to evaluate the decuplet baryon mag-
netic moments. As done in the octet moment case, the cor-
rectionsDmb

QM from the QCD-based QM are calculated us-
ing the values ofe ’s andD ’s given in Ref.@7#. Again, for the
loop corrections, the coupling constantsF, D, C, andH are
chosen such thatF1D51.25'ugA /gVu (gA andgV are the
axial vector and vector coupling constants, respectively! and
the SU(6) relations between the coupling constantsF
52D/3,C522D, andH523D are satisfied, as expected
for L50 baryons. We also choose the decuplet-octet mass
differenced5250 MeV andf p593 MeV, f K5 f h51.2f p .
The remaining three parametersmu , ms , and the natural
cutoff l are given the values that give the best fit in the octet
moment case, namely,mu52.803mN , ms520.656mN , and
l5407 MeV.

We give our calculated values for the decuplet baryon
magnetic moments, and the corresponding values from the
QM, in Table I and a detailed breakdown of the contributions
of the loop integrals to the magnetic moments in Table II.
We find that the predicted decuplet momentmV25
21.97mN is in very good agreement with the experimental
result of (22.02 6 0.05! mN , and the theoretical value of
mD1155.69mN falls within the experimental range~from 3.7
to 7.5 in unit of nuclear magnetons!

As in the octet case, again we see that the loop contribu-
tions are small in comparison to the tree level or QM terms,
that the contributions from the graphs involving the interme-
diate decuplet states@sum of the graphs 1~a!, 2~a!, 2~c!, 2~d!,
and 2~e!# are substantial. For some baryons, those contribu-
tions are even larger than those from the graphs involving
only the intermediate octet states.2The explicit expressions ofDmb

QM are given in Refs.@1,2#
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IV. CONCLUSIONS

In this paper, we have extended our earlier calculations of
the octet baryon moments in a QCD-based QM with loop
corrections to include the decuplet baryon magnetic mo-
ments. We have predicted the decuplet moments using the
input parameters obtained from studying the octet baryon
moments. We find that our predicted decuplet momentmV2

is in very good agreement with its experimental value.
Again, we have shown that our loop approach for the

baryon magnetic moments in a QCD-based QM works. The
loop corrections extend our QCD-based QM beyond the
quenched approximation. The resulting theory describes the
baryon magnetic moments much better than the QM. It can
fit the seven observed octet baryon magnetic moments up to
about 0.05mN in average magnitude, gives a result for the
S0L transition moment consistent with experiment, and pre-
dictsmV2 very well. We hope that the other decuplet baryon
moments predicted from our theory will be tested by the
future experimental data.
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APPENDIX A: HEAVY BARYON SPIN STRUCTURE

In a rest frame of a spin-3
2 baryon, the statesu j , j z& of this

baryon are specified by a vectore and a spin-12 spinor jm ,

m52 1
2 , 1

2 as follows:

U 3

2
,
3

2L 5e11j1/2,

U 3

2
,
1

2L 5
1

A3
e11j21/21A2

3
e0 j1/2,

U 3

2
,2

1

2L 5A2

3
e0 j2 1/21

1

A3
e21j1/2,

U 3

2
,2

3

2L 5e21j2 1/2. ~A1!

These states are satisfied the expected orthogonality and nor-
malization properties. In terms of the vector-spinor functions
T85Ta,l8m with a a Dirac spinor index andl5 j z a total spin

index, the stateu 3
2 , 3

2 & is identified as

U 3

2
,
3

2L 5T1/2 , 3/2811 52
1

A2
~T1/2 , 3/28x 1 iT1/2 , 3/28y !, ~A2!

and so on.
Consider the factorI 5 imN(T̄8•AT8•q2T̄8•qT8•A) that

appears in Eq.~2.10!. In the baryon rest frameT8m

5(0,T8), while Am5(0,A) for a pure magnetic field, then
the factorI reduces to form

I 5 imN~T8*•AT 8•q2T8*•qT8•A!5 imN~T8*3T8!•~A3q!

5mN~T8*3T8!•B, ~A3!

where B5 i (A3q) is the magnetic field. By choosing the
magnetic field along thee0 direction, B5e0B, then it fol-
lows, from Eqs.~A1! and ~A3!,

TABLE I. The decuplet magnetic moments from the QM and
the QCD-based QM with loop corrections. The results from the QM
are evaluated using the best-fit parameters for the octet moments
from the QM,mu51.818, andms520.580

mb QM QM with loops Experiment

D11 5.455 5.689 3.527.5
D1 2.728 2.778
D0 0 20.134
D2 22.728 23.045
S* 1 3.057 2.933
S* 0 0.329 0.137
S* 2 22.399 22.659
J* 0 0.658 0.424
J* 2 22.069 22.307
V2 21.740 21.970 22.02 6 0.05

TABLE II. Detailed breakdown of the contributions of the loop integrals to the magnetic moments of the
decuplet baryons~in mN). Those contributions are evaluated atF50.5, D50.75, C521.5, H522.25, d
5250 MeV,mu52.083,ms520.656, and the natural cutoffl5407 MeV. The superscripts~N! and (D) are
used to indicate that the intermediate baryon states are octet and decuplet, respectively.

mb mu , ms Dmb
QM ms

1/2(N) ln ms
(N) ms

1/2(D) ln ms
(D) Loops mb

D11 6.249 20.434 0.078 20.351 0.159 20.012 20.126 5.689
D1 3.125 20.217 0.052 20.183 0.060 20.059 20.130 2.778
D0 0 0 0.026 20.015 20.039 20.106 20.134 20.134
D2 23.125 0.217 0 0.153 20.138 20.152 20.138 23.045
S* 1 3.510 20.343 0.026 20.192 0.099 20.167 20.234 2.933
S* 0 0.386 20.089 0 20.032 0 20.127 20.159 0.137
S* 2 22.739 0.165 20.026 0.127 20.099 20.087 20.085 22.659
J* 0 0.771 20.191 20.026 20.052 0.039 20.117 20.156 0.424
J* 2 22.354 0.096 20.052 0.102 20.060 20.041 20.050 22.307
V2 21.968 0.013 20.077 0.077 20.021 0.006 20.015 21.970
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I 56 imNB for j z56
3

2
,

56 imN

B

3
for j z56

1

2
. ~A4!

Using Eq.~A1!, we can check the validity of the follow-
ing relation which is useful when evaluating some loop
graphs

T̄8m@q•Sv ,A•Sv# Tm8 5
1

2
~ T̄8•AT8•q2T̄8•q T8•A!,

~A5!

whereSv is the spin operator.

APPENDIX B: THE GROUP COEFFICIENTS

In this appendix, the group coefficients are presented ex-
plicitly. For simplicity, the superscript~X! is suppressed. The
group coefficientsbb evaluated from the graphs 1~a!, up to a
factorH 2, are

bD11
~p!

5
1

3
, bD1

~p!
5

1

9
, bD0

~p!
52

1

9
, bD2

~p!
52

1

3
,

bS* 1
~p!

5
2

9
, bS* 0

~p!
50, bS* 2

~p!
52

2

9
,

~B1!

bJ* 0
~p!

5
1

9
, bJ* 2

~p!
52

1

9
,

bV2
~p!

50,

for the pion loops and

bD11
~K !

5
1

3
, bD1

~K !
5

2

9
, bD0

~K !
5

1

9
, bD2

~K !
50,

bS* 1
~K !

5
1

9
, bS* 0

~K !
50, bS* 2

~K !
52

1

9
,

~B2!

bJ* 0
~K !

52
1

9
, bJ* 2

~K !
52

2

9
,

bV2
~K !

52
1

3
,

for the kaon loops. The group coefficientsb̃b evaluated from
the graph 1~b!, up to a factorC 2, are

b̃D11
~p!

51, b̃D1
~p!

5
1

3
, b̃D0

~p!
52

1

3
, b̃D2

~p!
521,

b̃S* 1
~p!

5
2

3
, b̃S* 0

~p!
50, b̃S* 2

~p!
52

2

3
,

~B3!

b̃J* 0
~p!

5
1

3
, b̃J* 2

~p!
52

1

3
,

b̃V2
~p!

50,

for the pion loops and

b̃D11
~K !

51, b̃D1
~K !

5
2

3
, b̃D0

~K !
5

1

3
, b̃D2

~K !
50,

b̃S* 1
~K !

5
1

3
, b̃S* 0

~K !
50, b̃S* 2

~K !
52

1

3
,

~B4!

b̃J* 0
~K !

52
1

3
, b̃J* 2

~K !
52

2

3
,

b̃V2
~K !

521,

for the kaon loops. The group coefficientsgb
1 evaluated from

the graphs 2~a!, up to a factor 11H 2/9, are

gD11
1~p!

52mu , gD1
1~p!

5
13

12
mu , gD0

1~p!
5

mu

6
,

gD2
1~p!

52
3

4
mu ,

gS* 1
1~p!

5
1

9
~5mu14ms!, gS* 0

1~p!
5

2

9
~mu12ms!,

gS* 2
1~p!

5
1

9
~2mu14ms!,

~B5!

gJ* 0
1~p!

5
ms

3
, gJ* 2

1~p!
5

1

12
~mu14ms!,

gV2
1~p!

50,

for the pion loops

gD11
1~K !

5
1

3
~2mu1ms!, gD1

1~K !
5

1

3
~mu1ms!,

gD0
1~K !

5
ms

3
, gD2

1~K !
5

1

3
~2mu1ms!,

gS* 1
1~K !

5
1

18
~29mu116ms!, gS* 0

1~K !
5

4

9
~mu12ms!,

gS* 2
1~K !

5
1

18
~213mu116ms!,

~B6!

gJ* 0
1~K !

5mu1
5ms

3
, gJ* 2

1~K !
5

1

3
~2mu15ms!,

gV2
1~K !

5
1

6
~mu18ms!,
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for the kaon loops, and

gD11
1~h!

5
mu

2
, gD1

1~h!
5

mu

4
,

gD0
1~h!

50, gD2
1~h!

52
mu

4
,

gS* 1
1~h!

50, gS* 0
1~h!

50,gS* 2
1~h!

50, ~B7!

gJ* 0
1~h!

5
1

6
~mu12ms!, gJ* 2

1~h!
5

1

12
~2mu14ms!,

gV2
1~h!

52ms ,

for theh loops. The coefficientsg̃b
1 evaluated from the graph

2~b! are given, up to a factorC 2, as follows:

g̃D11
1~p!

5
3

2
mu , g̃D1

1~p!
5

2

3
mu ,

g̃D0
1~p!

52
mu

6
, g̃D2

1~p!
52mu ,

g̃S* 1
1~p!

5
7

18
~2mu1ms!, g̃S* 0

1~p!
5

1

18
~2mu17ms!,

~B8!

g̃S* 2
1~p!

5
1

18
~210mu17ms!,

g̃J* 0
1~p!

5
2

3
ms , g̃J* 2

1~p!
5

1

12
~2mu18ms!,

g̃V2
1~p!

50,

for the pion loops,

g̃D11
1~K !

5
1

3
~4mu2ms!, g̃D1

1~K !
5

1

3
~2mu2ms!,

g̃D0
1~K !

52
ms

3
, g̃D2

1~K !
52

1

3
~2mu1ms!,

g̃S* 1
1~K !

5
1

18
~7mu18ms!, g̃S* 0

1~K !
5

1

18
~mu18ms!,

~B9!

g̃S* 2
1~K !

5
1

18
~25mu18ms!,

g̃J* 0
1~K !

5mu1
ms

3
, g̃J* 2

1~K !
5

1

3
~22mu1ms!,

g̃V2
1~K !

5
1

6
~2mu116ms!,

for the kaon loops, and

g̃D11
1~h!

50, g̃D1
1~h!

50, g̃D0
1~h!

50, g̃D2
1~h!

50,

g̃S* 1
1~h!

5
1

6
~4mu2ms!, g̃S* 0

1~h!
5

1

6
~mu2ms!,

g̃S* 2
1~h!

52
1

6
~2mu1ms!, ~B10!

g̃J* 0
1~h!

5
1

6
~2mu14ms!, g̃J* 2

1~h!
5

1

12
~mu18ms!,

g̃V2
1~h!

50,

for theh loops. The coefficientsg̃b
2 evaluated from the graph

2~c! @or 2~d!# are given, up to a factor 2CH/3, by

g̃D11
2~p!

52mu , g̃D1
2~p!

5
2

3
mu ,

g̃D0
2~p!

52
2

3
mu , g̃D2

2~p!
522mu ,

g̃S* 1
2~p!

5
4

9
~mu12ms!, g̃S* 0

2~p!
5

2

9
~2mu14ms!,

~B11!

g̃S* 2
2~p!

5
8

9
~2mu1ms!,

g̃J* 0
2~p!

5
2

3
ms , g̃J* 2

2~p!
5

1

3
~2mu12ms!,

g̃V2
2~p!

50,

for the pion loops,

g̃D11
2~K !

5
4

3
~mu2ms!, g̃D1

2~K !
5

2

3
~mu22ms!,

g̃D0
2~K !

52
4

3
ms , g̃D2

2~K !
52

2

3
~mu12ms!,

g̃S* 1
2~K !

5
2

9
~7mu24ms!, g̃S* 0

2~K !
5

2

9
~mu24ms!,

g̃S* 2
2~K !

52
2

9
~5mu14ms!, ~B12!

g̃J* 0
2~K !

5
4

3
ms , g̃J* 2

2~K !
5

2

3
~2mu12ms!,

g̃V2
2~K !

5
2

3
~2mu14ms!,

for the kaon loops, and
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g̃D11
2~h!

50, g̃D1
2~h!

50, g̃D0
2~h!

50, g̃D2
2~h!

50,

g̃S* 1
2~h!

50, g̃S* 0
2~h!

50, g̃S* 2
2~h!

50,

~B13!

g̃J* 0
2~h!

5
2

3
~mu2ms!, g̃J* 2

2~h!
52

1

3
~mu12ms!,

g̃V2
2~h!

50,

for theh loops. The group coefficientslb evaluated from the
graph 2~e!, up to a factorH 2, are

lD
~p!5

25

36
, lS*

~p!
5

10

27
, lJ*

~p!
5

5

36
, lV2

~p!
50, ~B14!

for the pion loops,

lD
~K !5

5

18
, lS*

~K !
5

20

27
, lJ*

~K !
5

5

6
, lV2

~K !
5

5

9
, ~B15!

for the kaon loops, and

lD
~h!5

5

36
, lS*

~h!
50, lJ*

~h!
5

5

36
, lV2

~h!
5

5

9
, ~B16!

for theh loops. The group coefficientsl̃b evaluated from the
graph 2~f!, up to a factorC 2, are

l̃D
~p!5

1

2
, l̃

S*
˜

~p!
5

5

12
, l̃J*

~p!
5

1

4
, l̃V2

~p!
50, ~B17!

for the pion loops

l̃D
~K !5

1

2
, l̃S*

~K !
5

1

3
, l̃J*

~K !
5

1

2
, l̃V2

~K !
51, ~B18!

for the kaon loops, and

l̃D
~h!50, l̃S*

~h!
51, l̃J*

~h!
5

1

4
, l̃V2

~h!
50, ~B19!

for the h loops.

APPENDIX C: THE EXPRESSIONS OF F̃ , L 0 , L 1 , AND L 2

The expressions ofL0(m,l), F̃(m,d,l), L1(mX ,d,l),
and L2(mX ,d,l) are given in Ref.@2#. In order to get
F̃(mX ,2d,l), L1(mX ,2d,l), and L2(mX ,2d,l) from
them, we make an analytic continuation from positive to
negatived. Note that the functions can acquire an imaginary
part in the continuation, but it will not contribute to the de-
cuplet moments and therefore can be ignored. The real parts
of the new functions are obtained by a simple substitution of
2d for d.

As an illustration, The functionF̃(m,2d,l) is found to
be of the form

pF̃~m,2d,l!5
l4

3~l22m21d2!2H 2N~m,2d,l!

1
5l212m2

l22m2 d1
l212m2

~l22m2!2 d3

1
ld

~l22m2!2~l22m21d2!F3~2l213m2!

3~l22m2!22~l226m2!d2

1
3m2

l22m2 d4G F0~m,l!J , ~C1!

where

N~m,2d,l!5
1

~l22m21d2!
@pl~l213m223d2!

22~3l21m22d2! F0~m,2d!#, ~C2!

and

F0~m,6d!5Am22d2 @p/27arctan~d/Am22d2!#

for m>d, ~C3!

5Ad22m2 $ ln @~7d1Ad22m2!/m#

2~171!ip/2% for m,d. ~C4!

Similarly, the functionsL1(m,2d,l), andL2(m,2d,l)
can be easily read off fromL1(m,d,l), andL2(m,d,l).
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