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We apply the Pade´ summation to theb(l) function for the quartic Higgs couplingl in the standard
electroweak model. We use theb function calculated to five loops in the minimal subtraction scheme to
demonstrate the improvement resulting from the summation, and then apply the method to the more physical
on-mass-shell renormalization scheme whereb is known to three loops. We find that the apparent convergence
of the perturbation series forb is significantly improved, and apply the result to the study of the running
couplingl(s). @S0556-2821~98!00921-7#
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I. INTRODUCTION

In the standard model of elementary particle physics, the
SU(2)3U(1) symmetry is spontaneously broken to a re-
sidual U(1)EM , generating mass for theW6 and Z gauge
bosons and the matter fields. A possible cause for the sym-
metry breaking is the presence of an additional scalar field,
the Higgs field. Although there is as yet no experimental
evidence for the expected Higgs boson, we can still explore
the implications of this symmetry-breaking mechanism using
radiative corrections to standard-model processes. For ex-
ample, the condition that perturbative calculations be reliable
provides a theoretical upper bound on the massMH of a
weakly interacting Higgs boson@1–11#.

In a recent paper@11#, Nierste and Riesselmann analyzed
one- and two-scale processes involving the Higgs field with a
particular emphasis on the running of the quartic Higgs cou-
pling l(m). They assessed the reliability of perturbation
theory using two criteria: the relative difference of physical
quantities calculated in different renormalization schemes;
and the dependence ofl on the renormalization scalem. If
perturbation theory is to be reliable, the choices of the renor-
malization scheme and scale should not be important for
physical quantities. To determinel(m) in their analysis,
Nierste and Riesselmann integrated the renormalization-
group equation using the three-loopb function, and solved
the resulting equation forl iteratively using four different
approximation schemes. The solutions differed significantly
for large values of the coupling or mass scale, and deter-
mined one constraint onMH in a perturbative theory. This
uncertainty inl(m) carries over to physical quantities such
as scattering amplitudes and again affects the ranges ofMH
andm over which perturbative calculations are reliable.

We show here that is is possible to explore the regime of
large coupling without the ambiguities that arise from the
direct iterative solution for the coupling. We approach the
problem by emphasizing theb functionb(l), and show that
it can apparently be determined reliably to rather large values

of l by using Pade´ approximates@12,13# to sum the pertur-
bation series for b(l) @14#. Integration of the
renormalization-group equation then gives an implicit equa-
tion for l(m) that can be inverted numerically. The results
can be used to study the validity of perturbation theory for
scattering amplitudes in the region of large Higgs-boson
masses and high energies where the running couplingl(m)
is the natural renormalization-group expansion parameter.
We will not pursue those applications here as a number of
authors@4–11,15# have considered them in detail.

We first investigate the Pade´ approach in Sec. II using the
the results forb(l) in the minimal subtraction~MS! renor-
malization scheme for which the perturbation series forb is
known to five loops@16,17#. After establishing the effective-
ness of the Pade´ approach, we apply it in Sec. III to the more
physical on-mass-shell~OMS! renormalization scheme
whereb is only known to three loops@11,18#. We find that
Padésummation of the series apparently gives a reliable re-
sult for b(l) for quite large values of the coupling,l<10,
and conclude, after inversion of the renormalization-group
expression, thatl(m) is known reliably in the OMS scheme
for m<4 TeV for MH<800 GeV. The region in which
l(m) is known well extends to very large mass scales ifMH
is sufficiently small, for example, to 1017 GeV for MH
<155 GeV.

II. PADÉ SUMMATION OF THE b FUNCTION

A. Preliminary considerations

In the following, we deal with the quartic Higgs-boson
coupling l defined at tree level in terms ofMH and the
electroweak vacuum expectation valuev5246 GeV or the
Fermi couplingGF by l5MH

2/2v25GFMH
2/A2. We will

work in the interesting limit of large Higgs-boson masses,
corresponding to the limit of large quartic couplings, and
neglect the effects of couplings with fermions.

The running couplingl(m) is defined as the solution of
the renormalization-group equation

m
dl~m!

dm
5b~l! ~1!*Electronic address: ldurand@theory2.physics.wisc.edu
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at the energy scalem. The functionb(l) is given in pertur-
bation theory as a power series inl:

b~l!5
l2

16p2(n50
bnS l

16p2D n

~2!

5b0

l2

16p2S 11 (
n51

BnlnD . ~3!

The coefficientsbn are renormalization-scheme dependent
beyond two loops. They are known through three loops in
the on-mass-shell renormalization scheme@11,18#,

OMS: b0524, b152312, b254238.23, ~4!

and to five loops in the minimal subtraction scheme@16,17#,

MS: b0524, b152312, b2512 022.7,

b352690 759, b454.912613107. ~5!

Alternatively, the coefficientsBn are given by

OMS: B051, B1520.082 323, B250.007 081 6,
~6!

MS: B051, B1520.082 323, B250.020 089,

B3520.007 309 0, B450.003 291 7. ~7!

To determine the running coupling, one must integrate the
renormalization group equation, Eq.~1!, and solve the im-
plicit equation

ln
m

m0
5E

l~m0!

l~m! dx

b~x!
. ~8!

This equation determinesl(m) in terms of the initial and
final mass scalesm0 andm and the initial value of the cou-
pling at the scalem0 , defined asl05l(m0). Different, typi-
cally iterative, methods of solution lead to different results
for l(m), with the differences increasing for large vales of
MH or l0 and form@m0 @11#. Since theb function is only
known to finite order, the only constraint on this standard
approach is that the different solutions satisfy the
renormalization-group equation, Eq.~8!, to that order. How-
ever, the resulting ambiguities for large values ofMH can
compromise tests of the reliability of perturbation theory,
and the determination of limits onMH in a weakly interact-
ing theory. It is therefore useful to approach the problem
differently, and concentrate on theb function itself. If b(l)
is known accurately for some range ofl, the integral in Eq.
~8! will also be accurately determined, and the equation can
be inverted numerically to findl(m) in that region.

B. Padésummation and b„l…

Padéapproximates@12,13# give a very useful way of sum-
ming or extrapolating a series for which only a finite number

of terms are known. The@N, M # Padéapproximate for a
function f (z) defined by a truncated power series

f ~z!5(
j 50

m

cjz
j1O~zm11! ~9!

is a ratio of two polynomials,

P@N, M #~z![

(
n50

N

anzn

(
n50

M

bnzn

, b051, N1M5m.

~10!

The coefficientsan , bn are determined uniquely by the re-
quirement that the series expansion ofP@N, M #(z) agree
term-by-term with the series forf (z) through terms of order
zm.

The sequence of Pade´ approximatesP@N, M # is known
to converge tof (z) asN, M→` with N2M fixed for large
classes of functions@12,13#, but the approximates can also
give useful and rapidly convergent asymptotic approxima-
tions for finiteN andM even if the sequence and the original
series forf (z) do not converge@13#.

In the present case, the function in question isb(l),
known perturbatively to ordersl4 and l6, that is, to three
and five loops, in the OMS and MS renormalization
schemes, respectively. The perturbation series forb is not
expected to converge, but a Pade´ summation of the series
may still be useful forl not too large. Because the pertur-
bative expansion ofb(l) starts at orderl2, we will extract
the leading power explicitly, redefine the Pade´ coefficients,
and define the@N, M # approximate for then-loop b func-
tion as1

b@N, M #5b0

l2

16p2

11a1l1a2l21•••1aNlN

11b1l1b2l21•••1bMlM
,

N1M5n21. ~11!

Note that the approximatesb @n21, 0# are just the perturba-
tion series forb carried ton loops.

The series forb(l) defined by Eq.~3! are alternating
series in which the ratios of coefficientsBn11 /Bn change
only slowly in either OMS or MS renormalization in the
range in which theB’s are known. This suggests that the
diagonal approximatesb @N, N# with M5N or the subdi-
agonal approximates withM5N11 may be particularly ef-
fective in estimating the series. In the case of OMS renor-
malization, theb ’s are known only to three loops, soM
1N<2. The possible choices are thenb @1, 1# or b @0, 2# if
we use all the three-loop information, orb @0, 1# if the per-

1Padésummation ofb was considered by Yang and Ni@14#, but
without applications to the present problem. Those authors did not
extract the overall factorl2, so use a different labeling of the ap-
proximates, and miss the diagonal approximates used here.
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turbation series is truncated at two loops.b @2, 0# and
b @1, 0# are just the three- and two-loop perturbation series.
In the case of MS renormalization,b is known to five loops,
M1N<4, and we will consider the approximatesb @1, 2# at
the four-loop level, andb @2, 2# at five loops, keepingM
5N or M5N11. The additional five-loop approximates
b @1, 3#, b @3, 1#, and b @0, 4# are members of sequences
two or more steps off the diagonal. These are not expected to
converge as rapidly as the sequences we consider. The coef-
ficientsaj , bj for these approximates are given in Appendix
A.

C. Tests of Pade´ summation using MS renormalization

The fact that the perturbation series forb is known to five
loops gives us the opportunity to test the Pade´ summation
procedure using known results. Having established its reli-
ability, we will then apply the method in Sec. III to the more
physical OMS renormalization scheme in which the connec-
tion betweenl andMH is known.

1. Convergence of the Pade´ sequence

Based upon the general convergence properties of Pade´
approximates and the alternating character of the series at
hand, we expect the sequenceb @1, 1#, b @1, 2#, andb @2, 2#
to converge as we progress from three to five loops. We plot
these approximates in Fig. 1 to demonstrate that conver-
gence. The convergence of the Pade´ sequence is, in fact,
relatively fast. For low values ofl there is excellent agree-
ment. Even forl510,b @1, 1# andb @1, 2# differ by ,10%
with the diagonal five-loop approximateb @2, 2# lying
roughly halfway between the other two. We interpret the

agreement and the pattern of convergence as strong evidence
for the effectiveness of theb @N, N# sequence in summing
the series forb(l), and conclude that it is unlikely thatb
would be found to differ significantly fromb @2, 2# in the
region shown if higher-loop contributions were calculated.

In Fig. 2, we look at the problem from the point of view
of the purely perturbative approach, and show the sequence
of the N-loop perturbation seriesb @N21, 0# for b. This is
not a sequence in whichN andM increase together with the
differenceN2M fixed, so the standard results on Pade´ con-
vergence do not apply. The convergence of the sequence is
very slow as shown in the figure, with large differences be-
tween successive terms already present forl.3. For com-
parison, we also show the three- and five-loop diagonal ap-
proximatesb @1, 1# andb @2, 2#. These forms interpolate the
perturbative sequence very well, eliminating the dominance
of the last term in the series forl large. Sinceb @1, 1#,
b @2, 2#, and the four-loop approximateb @1, 2# differ from
each other by less than 5% forl,10, all are effective in
extrapolating the perturbation series. We conclude, in par-
ticular, that the three-loop approximateb @1, 1# already
gives a reasonable extrapolation forb(l).

2. Estimates of unknown coefficients

Padéapproximates often converge to the limit function
faster than the power series used to construct them. In that
case, the terms in the expansion of a Pade´ approximate be-
yond the matched order may give reasonable estimates for
the unknown higher-order coefficients in the power series.
As a simple test of this expectation in the present case, we
can expand the three- and four-loop approximatesb @1, 1#
and b @1, 2# to one order higher inl than the finite power

FIG. 1. A comparison of the sequence of five-loop diagonal and
subdiagonal Pade´ approximates forb(l) in the MS renormalization
scheme. Note that alternate approximates are too large or too small,
and that the sequence converges rapidly with the final result pre-
sumably in the band betweenb @1, 2# andb @2, 2#.

FIG. 2. Demonstration of the slow convergence of successive
perturbative approximations to theb function toward the diagonal
Padéapproximateb @2, 2# for MS renormalization.
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series used to construct them, and compare the new coeffi-
cient with the known four- and five-loop results. Thus, the
expansion

b @1, 1#5
l2

16p2
b0@11B1l1B2l21~B2

2/B1!l3

1~B2
3/B1

2!l41•••# ~12!

gives the estimates

B38[B2
2/B1 , B48[B2

3/B1
2 , ~13!

for the four- and five-loop coefficientsB3 and B4 , results
equivalent to

b38[b2
2/b152463 286, b48[b2

3/b1
251.7853107.

~14!

The actual four- and five-loop results are

b352690 759, b454.9133107. ~15!

The estimates ofb3 andb4 from the three-loop are therefore
about 0.67 and 0.36 of the actual coefficients and have the
correct signs.

In the case ofb @1, 2#, we can estimate onlyb4 , with the
result

B4852~B3
222B1B2B31B2

3!/~B1
22B2!. ~16!

This estimate givesb4853.483107, and a ratio b48/b4

50.71.
The estimates for the first missing terms in the perturba-

tion series are too small in both of the cases considered. We
can understand this result qualitatively as resulting from the
averaging of an alternating series by the approximates, with
the corresponding tendency to avoid large higher coefficients
in the expansion. We will use this observation below.

The effects of incorrect estimates ofB3 on the approxi-
mateb @1, 2# are shown in Fig. 3. In these calculations, we
have takenB3 as five- and ten times the estimated value, and
calculatedb @1, 2# using the new value as input. The result is
a ,10% change inb for l,10 despite the very large values
of the new coefficient.

D. The running coupling l„µ… in MS renormalization

The effect of the uncertainty inb(l) on the running of
l(m) can be studied by integrating the renormaliza-
tion-group equation, Eq.~1!, and solving numerically forl
as a function of its initial valuel0 and the ratio of energy
scalesm/m0 .2 We have done this calculation using the ap-
proximates b @1, 1# and b @1, 2#, choosing initial values
l051, 3, 5. The results are shown in Fig. 4. The result for

the optimum five-loop approximate,b @2, 2#, lies near the
center of the shaded regions in that figure, as would be ex-
pected from the comparison of the approximates in Fig. 1.
We believe the estimated range of uncertainty is quite gen-
erous given the rapid convergence of the sequence shown
there towardb @2, 2#.

2In the case of MS renormalization,l is connected only indirectly
to the physical pole mass of the Higgs boson, so we cannot state the
results in terms ofm andMH without using a separate calculation of
the self-energy function.

FIG. 3. Plots of the Pade´ approximateb @1, 2# to the MS b
function using the actual value of the four-loop coefficientb3 and
values five and ten times the estimate obtained from the three-loop
approximateb @1, 1#.

FIG. 4. Plots showing the running ofl(m) as a function of the
ratio of scalesm/m0 for different initial choices ofl0 in the MS
renormalization scheme. The differences between the curves ob-
tained using the Pade´ approximatesb @1, 1# and b @1, 2# corre-
sponding to three- and four-loop summations ofb indicates the
range of uncertainty in the result. The curves for the five-loopb
function lie near the center of the band of uncertainty.
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The range of uncertainty inl(m) at fixed m/m0 is quite
small for l051, 3 over the entire range shown,m/m0<6.
The uncertainty is larger forl055, roughly 16%, atm/m0

53, but even then the boundary curves differ from the curve
for b @2, 2# by ,8%.

The rather small effect of uncertainties inb on l(m) can
be understood rather simply. The renormalization-group
equation involves 1/b rather thanb. The prefactorl2 in the
Padéexpression in Eq.~11! leads to a rapid decrease in the
integrand, and the value of the integral is determined mainly
by the region nearl0 , the lower endpoint of the integration.
For l0 small, b is well determined in the most important
region, and the uncertainty in the integral is small. The un-
certainty in the integral, hence the uncertainty inl(m), be-
comes large only for renormalization-group evolution away
from a large starting value forl0 .

III. APPLICATIONS: RANGES OF RELIABILITY OF b„l…

AND l„µ… IN OMS RENORMALIZATION

A. Padéapproximates for b„l…OMS

Having tested the use of Pade´ approximates in the MS
scheme, we consider the implications of Pade´ summation for
the OMS scheme. The most significant difference is the lim-
ited order, three loops, to which the perturbation series forb
is known. We are therefore restricted to two approximates
that use the full information available, the diagonal approxi-
mateb @1, 1# and the subdiagonal approximateb @0, 2#. We
can also useb @0, 1# at the two-loop level. Based upon the
convergence of the Pade´ sequence demonstrated for the MS
scheme, and the apparent reduction in the size of the coeffi-
cients in the OMS scheme,3 we will assume that these ap-
proximates again provide an accurate estimate for theb
function, with the diagonal approximate probably the most
reliable.

To determine the range ofl for which theb function is
reliable, we first considered the differences among the three-
loop functionsb @1, 1# andb @0, 2#, and the two-loop func-
tion b @0, 1#. These approximates can barely be distin-
guished over the range ofl shown in Fig. 5 with the scale
used there, so onlyb @1, 1# is shown. This agreement is the
result of the nearly geometric growth of the first coefficients
in the perturbation series. The three-loop approximates
b @1, 1# and b @0, 2# continue to agree well to much larger
values ofl. While one is tempted on this basis to conclude
that the OMSb function is reliably known forl<10, the
range of current interest, the geometric character of the low-
order perturbation series may well be accidental. We have
therefore attempted to estimate a wider range of uncertainty
in the b function in a different way by supposing, in agree-
ment with the results of the MS analysis, that the coeffic-

ient B38 estimated by expandingb @1, 1# is too small, and
constructing a new ‘‘four-loop’’ approximateb @1, 2# using
a greatly increased value ofB3 . The result obtained using
B355B38 is shown in Fig. 5. The change in the extrapolation
of the perturbation series is quite small, with a difference of
less than 2% betweenb @1, 1# and b @1, 1# for l,10. We
also show the perturbation series for theb function,b @2, 0#,
in Fig. 5 for comparison.

B. The running coupling l„µ…

In the OMS renormalization scheme, the parameterl is
defined by the relationl5GFMH

2/A2 to all orders in per-
turbation theory@9,20#. We will choose the starting valuel0
of the running couplingl(m) to have this value. What re-
mains to be decided is the energy scalem0 at which this
relation should be taken to hold. The natural energy scale
would appear to bem05MH . However, other choices have
been made. Thus, in an early investigation, Sirlin and Zuc-
chini @19# calculated the one-loop corrections to the four-
point Higgs-boson scattering amplitude and defined the pa-
rameters in the theory so that large electromagnetic effects
appear only in such standard relations as that betweenGF
and the muon decay rate. With this definition, the high mass
limit of the four-point function gives@19#

h~m!5l0F11
l0

16p2S 24 ln
m

MH
12523A3p D G . ~17!

The logarithm in the expression above is just that which
appears in the expansion of the one-loop expression for
l(m),

3The known value ofb2 in the OMS scheme is smaller than that
in the MS scheme by roughly a factor of 3@11,18#. Nierste and
Riesselmann@11# have found similar reductions in the coefficients
in the expansion of physical amplitudes. We assume that the reduc-
tions in the size of the coefficients persist at higher orders.

FIG. 5. Plots of the two- and three-loop Pade´ approximates
b @0, 1# andb @1, 1# for b in the OMS scheme. The functions are
identical on the scale of the figure. The functionb @1, 2# obtained
using a coefficientb3 five times as large as that estimated from
b @1, 1# is shown to indicate a range of uncertainty. The three-loop
perturbation seriesb @2, 0# is shown for comparison.
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l~m!5l0S 12b0

l0

16p2
ln

m

m0
D 21

~18!

for b0524 andm05MH . The ambiguity in the choice ofm0
is in the treatment of the remaining constants in Eq.~17!.
These have been incorporated in the running coupling
by some authors @19,8,9# by redefining m0 as m0

5MHexp@(22513A3p)/24#. However, the constants do
not appear naturally in the expression for the four-point func-
tion at two loops@9#. It is probably most reasonable, there-
fore, to treat them as separate ‘‘radiative corrections’’ and
write h(m) to one loop ash(m)5l(m)@11d#, with l(m)
the one-loop running coupling defined above, andd incorpo-
rating the remaining scale-independent corrections.

This question has been studied in more detail by Nierste
and Riesselmann@11#, who showed that the convergence of
the perturbation series was improved for several physical
amplitudes by adopting the natural scalem05MH instead of
the choice noted above. They note, furthermore, that in order
to cancel large logarithmic terms in the perturbative result
when one considers two-scale physical processes such as
scattering, the scalem must be related to the energy scale of
the interaction bym5As @11#. We will follow Nierste and
Riesselmann and make the definite, physically motivated
choicesm05MH andm5As in the following analysis. This
specification amounts as already noted to a definite specifi-
cation of the ‘‘radiative corrections’’ in perturbatively calcu-
lated amplitudes once the couplings are expressed in terms of
l(m).

With l0 andm0 specified, and the rangel0<l<lmax of
stability and presumed reliability of theb function estab-
lished, it is straightforward to integrate the renormalization-
group equation and invert the result numerically to obtain
l(m). However, the results will only be reliable form0<m
<mmax, wheremmax is determined implicitly by the condi-
tion l(mmax)5lmax. The behavior ofl(m) for m@mmax is
not determined. The uncertainty inl(m) can be specified in
terms of that inb. With this procedure, it is not necessary to
obtain the solution of the renormalization-group equation as
a series inl0 , or in a different approximate form. We note in
this connection that the ‘‘naive’’ and ‘‘consistent’’ forms for
l(m) in the nomenclature in@11# correspond, respectively,
to the approximatesb @N, 0#, the perturbation series forb,
and b @0,N#, the series obtained by expandingb. Neither
sequence is expected to converge well with increasingN.

Our results forl(m) are shown in Fig. 6 forMH5500
and 800 GeV andm0<m<4 TeV. We find for MH
5500 GeV that all Pade´ approximates, including the pertur-
bation series, agree very well form,5 TeV, a region in
which l0,5. The residual uncertainty inl(m) is small
enough not to affect perturbative results for physical pro-
cesses.

Different Pade´ approximates also give very similar ex-
trapolations forl(m) for MH5800 GeV, even when the
predicted value ofb3 is changed by a large factor. The only
significant deviation involves the perturbation seriesb @2, 0#
which we do not believe is reliable on the basis of our earlier
investigation. Even if we restrict the range ofl in which we

takeb as reliable tol,10 as in Fig. 5, the result forl(m)
remains reliable form,2 TeV, a value well into the energy
region of interest for experiments at the Large Hadron Col-
lider at CERN.

The rapid growth ofl(m) for the perturbative approxi-
mateb @2, 0# in Fig. 6 is the result of a Landau pole atm
52339 GeV. A pole can appear inl(m) if the integral of
1/b converges forl→`, with the position of the pole inm
determined by the condition

ln
m

m0
5 lim

l→`
E

l0

l dl

b
. ~19!

No pole can actually appear when the integration is restricted
to the finite range ofl in which b is known reliably, but the
likely presence of a pole would be indicated by very rapid
growth of l(m) with increasingm in that region. In the
present case, there is no reason to expect the perturbation
seriesb @2, 0# to be accurate forl large. The results in Fig.
5 indicate, in fact, that the perturbative approximation begins
to fail badly forl'5, while the starting point for the evolu-
tion of l(m) shown in Fig. 6 is atl55.3 for MH
5800 GeV. The remaining approximates do not lead to
poles in the region shown.

C. Conclusions

We have shown that Pade´ summation of theb function
apparently improves the perturbative stability ofb in an in-

FIG. 6. Plots showing the running ofl(m) in the OMS renor-
malization scheme as a function of the mass scalem for different
initial choices of the Higgs-boson massMH . The differences be-
tween the curves obtained using the three-loop Pade´ approximate
b @1, 1# and the functionb @1, 2# obtained using a coefficientb3

five times as large as that estimated fromb @1, 1# is shown to
indicate a range of uncertainty. The perturbative result forb given
by b @2, 0# has a Landau pole atm52.3 TeV for MH

5800 GeV, but is not reliable and is included only to illustrate the
effects of a nearby pole.
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terval l0<l<lmax in which the Pade´ estimates are stable.
The method gives a best estimate forb, and removes much
of the uncertainty associated with different determinations of
the running quartic Higgs couplingl(m) at the three-loop
level @11# in a corresponding intervalm0<m<mmax, but the
behavior ofl(m) for m@mmax is not determined.

We have tested the Pade´ method using theb function in
the MS renormalization scheme, whereb is known to five
loops in the perturbation expansion. The test results suggest
rapid convergence of the diagonal and subdiagonal Pade´ se-
quences. Our applications are to the more physical OMS
renormalization scheme, where the first scheme-dependent
coefficient in the OMS expansion is significantly smaller
than in the MS expansion. This more rapid apparent conver-
gence is reflected in the excellent agreement among the lead-
ing Pade´ approximates forbOMS in the diagonal-subdiagonal
sequence even for rather large values of the first unknown
coefficient,b3 . Calculation ofb3 in the OMS scheme would
give an important test of whether this method captures the
behavior ofb3 at largel as well as it appears to do.
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APPENDIX A: PADÉ APPROXIMATES

The coefficients of the Pade´ forms used in our analysis are
given below. We will state the results in terms of the coef-
ficientsBn5(bn /b0)/(16p2)n.

At two loops,N1M51 and we have only the truncated
perturbation seriesb @1, 0# and the approximateb @0, 1#
with

b @0, 1#: b152B1 . ~A1!

At three loops,N1M52 and we have the new approxi-
mantsb @1, 1# andb @0, 2#. The coefficients are given by

b @1, 1#: a15~B1
22B2!/B1 , ~A2!

b152B2 /B1 ,

b @0, 2#: b152B1 , ~A3!

b25B1
22B2 .

At five loops, N1M54 and we will consider the new
approximantsb @3, 1#, b @2, 2#, b @1, 3#, andb @0, 4#. The
coefficients are given by

b @3, 1#: a15~B1B32B4!/B3 , ~A4!

a25~B2B32B1B4!/B3 ,

a35~B3
22B2B4!/B3 ,

b152B4 /B3 ,

b @2, 2#: a15~B1B2
22B1

2B31B1B42B2B3!/A22,
~A5!

a25~B2
322B1B2B31B1

2B41B3
2

2B2B4!/A22,

b15~B1B42B2B3!/A22,

b25~B3
22B2B4!/A22,

A225B2
22B1B3 ,

b @1, 3#: a15~B1
423B1

2B212B1B31B2
22B4!/A13,

~A6!

b15~2B1
2B21B2

21B1B32B4!/A13,

b25~B1B2
22B2B32B1

2B31B1B4!/A13,

b35~2B1B2B32B2
32B3

21B2B4

2B1
2B4!/A13,

A135B1
322B1B21B3 .

We will also consider the approximatesb @1, 2#, the sub-
diagonal approximate for the four-loop expansion. The coef-
ficients in this case are

b @1, 2#: a15~B1
322B1B21B3!/~B1

22B2!,
~A7!

b15~B32B1B2!/~B1
22B2!,

b25~B2
22B1B3!/~B1

22B2!.

APPENDIX B: ANALYTIC RESULTS

The Pade´ approximates we have used are all integrable
analytically. We will give only the results needed in our
investigation of the OMS renormalization scheme:
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b @0, 1#:
b0

16p2El dl

b @0, 1#

52
1

l
2B1ln l, ~B1!

b @2, 0#:
b0

16p2El dl

b @2, 0#

52
1

l
2B1ln l1

1

2
B1ln~11B1l1B2l2!

1
B1

222B2

A4B22B1
2

arctan
B112B2l

A4B22B1
2

, ~B2!

b @1, 1#:
b0

16p2El dl

b @1, 1#

52
1

l
2B1ln l1B1lnS 11

B1
22B2

B1
l D , ~B3!

b @0, 2#:
b0

16p2El dl

b @0, 2#

52
1

l
2B1ln l1~B1

22B2!l. ~B4!

These expressions are to be equated to (b0/16p2)ln(m/m0).
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