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Perturbative stability of the Pade-summed Higgs-boson coupling
in the standard electroweak model
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We apply the Padesummation to the8(\) function for the quartic Higgs coupling in the standard
electroweak model. We use th@ function calculated to five loops in the minimal subtraction scheme to
demonstrate the improvement resulting from the summation, and then apply the method to the more physical
on-mass-shell renormalization scheme wheiie known to three loops. We find that the apparent convergence
of the perturbation series fg8 is significantly improved, and apply the result to the study of the running
coupling\ (s). [S0556-282(98)00921-1

PACS numbeis): 12.15-y, 11.10.Hi, 14.80.Bn

[. INTRODUCTION of N by using Padapproximate$12,13 to sum the pertur-
bation series for B(\) [14]. Integration of the

In the standard model of elementary particle physics, theenormalization-group equation then gives an implicit equa-
SU(2)XU(1) symmetry is spontaneously broken to a re-tion for A(u) that can be inverted numerically. The results
sidual U(1)y, generating mass for the&/* and Z gauge can be used to study the validity of perturbation theory for
bosons and the matter fields. A possible cause for the synscattering amplitudes in the region of large Higgs-boson
metry breaking is the presence of an additional scalar fieldnasses and high energies where the running coupl{ng
the Higgs field. Although there is as yet no experimentalis the natural renormalization-group expansion parameter.
evidence for the expected Higgs boson, we can still explor&Ve will not pursue those applications here as a number of
the implications of this symmetry-breaking mechanism usingauthors[4—11,15 have considered them in detail.
radiative corrections to standard-model processes. For ex- We first investigate the Padgoproach in Sec. Il using the
ample, the condition that perturbative calculations be reliableéhe results for3(\) in the minimal subtractioiMS) renor-
provides a theoretical upper bound on the mibs of a  malization scheme for which the perturbation seriesdads
weakly interacting Higgs bosdri—11]. known to five loopd16,17. After establishing the effective-

In a recent papelrl1], Nierste and Riesselmann analyzed ness of the Padapproach, we apply it in Sec. IIl to the more
one- and two-scale processes involving the Higgs field with @hysical on-mass-shel(OMS) renormalization scheme
particular emphasis on the running of the quartic Higgs couwhere 3 is only known to three loopEl1,18. We find that
pling A(x). They assessed the reliability of perturbation Padesummation of the series apparently gives a reliable re-
theory using two criteria: the relative difference of physicalsult for 5(\) for quite large values of the coupling,<10,
quantities calculated in different renormalization schemesand conclude, after inversion of the renormalization-group
and the dependence afon the renormalization scaje. If ~ expression, thak(u) is known reliably in the OMS scheme
perturbation theory is to be reliable, the choices of the renorfor u<4 TeV for My=800 GeV. The region in which
malization scheme and scale should not be important fok(u) is known well extends to very large mass scale¥ jf
physical quantities. To determing(x) in their analysis, is sufficiently small, for example, to 10 GeVv for My,
Nierste and Riesselmann integrated the renormalization=155 GeV.
group equation using the three-logpfunction, and solved
the resulting equation fok iteratively using four different )
approximation schemes. The solutions differed significantly Il. PADE SUMMATION OF THE B FUNCTION
for large values of the coupling or mass scale, and deter-
mined one constraint oM in a perturbative theory. This
uncertainty in\ (u) carries over to physical quantities such  In the following, we deal with the quartic Higgs-boson
as scattering amplitudes and again affects the rangd&sof coupling A defined at tree level in terms d¥fl; and the
and p over which perturbative calculations are reliable. electroweak vacuum expectation value 246 GeV or the

We show here that is is possible to explore the regime ofermi couplingGg by A=M %/2v%=GM /2. We will
large coupling without the ambiguities that arise from thework in the interesting limit of large Higgs-boson masses,
direct iterative solution for the coupling. We approach thecorresponding to the limit of large quartic couplings, and
problem by emphasizing the function 8(\), and show that neglect the effects of couplings with fermions.
it can apparently be determined reliably to rather large values The running coupling\(w) is defined as the solution of

the renormalization-group equation

A. Preliminary considerations
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at the energy scalg. The functionB(\) is given in pertur-
bation theory as a power seriesin

(N)= M > (L) ¥
BN = o2 Prl 162
)\2
=/30167T2 1+n§=)l an”>. 3

The coefficientsg, are renormalization-scheme dependent
beyond two loops. They are known through three loops in

the on-mass-shell renormalization scherh#, 18],
OMS: pBy=24, pB,=-312, B,=4238.23, (4)
and to five loops in the minimal subtraction schefh6,17),

MS: Bo=24, B;=-312, B,=12022.7,

B3=—690759, B,=4.91261x10". (5)

Alternatively, the coefficient8,, are given by

OMS: B,=1, B,;=-0.082323, B,=0.0070816,
(6)

MS: By=1, B,=-0.082323, B,=0.020089,
B;=—0.0073090, B,=0.0032917. 7

To determine the running coupling, one must integrate th
renormalization group equation, E€l), and solve the im-

plicit equation

o :jk(u) dx @®

n— —_—.
Mo In(peB(X)

This equation determines(w) in terms of the initial and
final mass scaleg, and u and the initial value of the cou-

pling at the scalg.,, defined as\g=A(u). Different, typi-
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of terms are known. ThéN, M] Padeapproximate for a
function f(z) defined by a truncated power series

m

f(z)z_Zo ¢;Z+0(z™ 1) 9
=

is a ratio of two polynomials,

N

> a2
n

PIN, M](2)= m—

b,z
0

b0:1, N+M=m.

n

(10

The coefficients,, b, are determined uniquely by the re-
quirement that the series expansionRjfN, M](z) agree
term-by-term with the series fdi(z) through terms of order
zm

The sequence of PadgproximatesP[N, M] is known
to converge td(z) asN, M —o with N—M fixed for large
classes of function§12,13, but the approximates can also
give useful and rapidly convergent asymptotic approxima-
tions for finiteN andM even if the sequence and the original
series forf(z) do not convergg¢l3].

In the present case, the function in questiongié\),
known perturbatively to orders* and \®, that is, to three
and five loops, in the OMS and MS renormalization
schemes, respectively. The perturbation seriesgfas not
expected to converge, but a Paslenmation of the series

ay still be useful forA not too large. Because the pertur-

ative expansion oB(\) starts at ordek?, we will extract
the leading power explicitly, redefine the Pactefficients,
and define thé N, M] approximate for then-loop 8 func-
tion ag

A2 I+ahtah?+ - +aN
162 1+ b A+ b A2+ - - - +byAM’

BIN, M]=p8

N+M=n—1. (12)

cally iterative, methods of solution lead to different resultsNote that the approximate®[n— 1, 0] are just the perturba-

for A(u), with the differences increasing for large vales of

My or Ag and for u> ug [11]. Since theB function is only

known to finite order, the only constraint on this standard
solutions satisfy the
renormalization-group equation, E@), to that order. How-

approach is that the different

ever, the resulting ambiguities for large valueshf, can

compromise tests of the reliability of perturbation theory,
and the determination of limits ol in a weakly interact-
ing theory. It is therefore useful to approach the proble

differently, and concentrate on thgfunction itself. If B(\)
is known accurately for some range Xf the integral in Eq.

(8) will also be accurately determined, and the equation cal

be inverted numerically to findl(w) in that region.

B. Padesummation and B(\)

tion series forB carried ton loops.

The series forB(\) defined by Eq.(3) are alternating
series in which the ratios of coefficienB,, ;/B, change
only slowly in either OMS or MS renormalization in the
range in which theB’s are known. This suggests that the
diagonal approximate@ [N, N] with M=N or the subdi-
agonal approximates withl =N+1 may be particularly ef-
fective in estimating the series. In the case of OMS renor-

Mmalization, theB’s are known only to three loops, sd

+N=2. The possible choices are thg1, 1] or B[0, 2] if

r\4ve use all the three-loop information, 810, 1] if the per-

Ipadesummation ofB was considered by Yang and [i4], but

without applications to the present problem. Those authors did not

Padeapproximate$12,13 give a very useful way of sum- extract the overall factok?, so use a different labeling of the ap-
ming or extrapolating a series for which only a finite numberproximates, and miss the diagonal approximates used here.
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FIG. 1. A comparison of the sequence of five-loop diagonal and  FIG. 2. Demonstration of the slow convergence of successive
subdiagonal Padapproximates fop(\) in the MS renormalization  perturbative approximations to th& function toward the diagonal

scheme. Note that alternate approximates are too large or too smagiadeapproximates [2, 2] for MS renormalization.
and that the sequence converges rapidly with the final result pre-

sumably in the band betwee®[ 1, 2] and3[2, 2]. .
agreement and the pattern of convergence as strong evidence

for the effectiveness of th@ [N, N] sequence in summing

turbation series is truncated at two loop8[2,0] and : o .
B[1,0] are just the three- and two-loop perturbation seriesj[he series for3()), and conclude that it is unlikely tha

In the case of MS renormalizatiop, is known to five loops, WO[.Jld be found tp differ 5|gn|f|c§ntly frong [2,2] in the

M +N=<4, and we will consider the approximatg§1,2] at  €9on shown if higher-loop contributions were calculated.
the four-loop level, andg3[2, 2] at five loops, keepingV In Fig. 2, we look at the problem from the point of view
=N or M=N+1. The additional five-loop approximates of the purely perturbat_lve approach, and show the sequence
B[1,3], B[3,1], and B[0, 4] are members of sequences of the N-loop per_turba_tlon serleﬁ[N—l, 0] for B. Th_|s is

two or more steps off the diagonal. These are not expected @0t @ sequence in whidi andM increase together with the
converge as rapidly as the sequences we consider. The coélifferenceN—M fixed, so the standard results on Pade-

ficientsa;, b for these approximates are given in Appendix vergence do not apply. The convergence of the sequence is
A. very slow as shown in the figure, with large differences be-

tween successive terms already present\fer3. For com-
parison, we also show the three- and five-loop diagonal ap-
proximatesB[1, 1] andB[2, 2]. These forms interpolate the

The fact that the perturbation series fis known to five  perturbative sequence very well, eliminating the dominance
loops gives us the opportunity to test the Padenmation of the last term in the series foxr large. SinceB[1,1],
procedure using known results. Having established its relig[2, 2], and the four-loop approximaig[1, 2] differ from
ability, we will then apply the method in Sec. Il to the more each other by less than 5% far<10, all are effective in
physical OMS renormalization scheme in which the connecextrapolating the perturbation series. We conclude, in par-
tion betweerh andMy, is known. ticular, that the three-loop approximatg[1,1] already
gives a reasonable extrapolation &\ ).

C. Tests of Padesummation using MS renormalization

1. Convergence of the Padeequence

Based upon the general convergence properties of Pade
approximates and the alternating character of the series at
hand, we expect the sequenggl, 1], B[ 1, 2], andB[2, 2] Padeapproximates often converge to the limit function
to converge as we progress from three to five loops. We ploiaster than the power series used to construct them. In that
these approximates in Fig. 1 to demonstrate that converase, the terms in the expansion of a Pagproximate be-
gence. The convergence of the Paimuence is, in fact, yond the matched order may give reasonable estimates for
relatively fast. For low values af there is excellent agree- the unknown higher-order coefficients in the power series.
ment. Even fon=10, 8[1,1] andB[1, 2] differ by <10%  As a simple test of this expectation in the present case, we
with the diagonal five-loop approximatg[2,2] lying can expand the three- and four-loop approximagdd, 1]
roughly halfway between the other two. We interpret theand 8[1, 2] to one order higher inx than the finite power

2. Estimates of unknown coefficients
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series used to construct them, and compare the new coeffi 1
cient with the known four- and five-loop results. Thus,the N\, 77 BL1, 13, By o
expansion 0.95 - —  BI1,2], actual B,
2 09 F = e B[1 ,21, 5*B39st
Bl1,1]= o2 Bol 1+ B\ +BoA2+(B3/By)A® 085 b . e BL1,21, 10By ogy
+(B3BHN +- -] (12 3 08F
gives the estimates 2075
NR 3
Bi=B3/B;, B,=B3/B?, (13 = o7r
for the four- and five-loop coefficient8; and B,, results 0.65 -
equivalent to o6t T
B4=B31B,=—463286, B,=pB3B7=1.785<10". 055 L
(14 |
. 05 PEETITE IS P A S AP AT TS AT AT AT AT I AT A A AT Ar AT I A
The actual four- and five-loop results are 0o 1 2 3 4 5 6 7 8 9 10
A
Bz=—690759, B,=4.913x10'. (15)

The estimates gB5; and 3, from the three-loop are therefore

FIG. 3. Plots of the Padapproximate8[1,2] to the MS 8
function using the actual value of the four-loop coefficigatand

about 0.67 and 0.36 of the actual coefficients and have thealues five and ten times the estimate obtained from the three-loop

correct signs.

In the case of3[ 1, 2], we can estimate onlg,, with the

result

B,=—(B3—2B1B,B3+B3)/(BI—By). (16
This estimate givesB,=3.48<10’, and a ratio 8,/
=0.71.

The estimates for the first missing terms in the perturba-
tion series are too small in both of the cases considered. W«
can understand this result qualitatively as resulting from the
averaging of an alternating series by the approximates, with
the corresponding tendency to avoid large higher coefficients
in the expansion. We will use this observation below.

The effects of incorrect estimates Bf on the approxi-
mate8[1, 2] are shown in Fig. 3. In these calculations, we
have takerB; as five- and ten times the estimated value, and

calculatedd[ 1, 2] using the new value as input. The result is §

a<10% change irB for A <10 despite the very large values
of the new coefficient.

D. The running coupling A(l) in MS renormalization

The effect of the uncertainty iB(\) on the running of
AM(u) can be studied by integrating the renormaliza-
tion-group equation, Eql), and solving numerically fok
as a function of its initial value.y and the ratio of energy
scalesu/ uo.2> We have done this calculation using the ap-
proximates 8[1,1] and B[1,2], choosing initial values
No=1, 3, 5. The results are shown in Fig. 4. The result for

2In the case of MS renormalizatioR,is connected only indirectly

approximateB[1, 1].

the optimum five-loop approximated[2, 2], lies near the
center of the shaded regions in that figure, as would be ex-
pected from the comparison of the approximates in Fig. 1.
We believe the estimated range of uncertainty is quite gen-
erous given the rapid convergence of the sequence shown
there towardB[ 2, 2].

14

12

10

8 L

B0, 1]

Wiy

FIG. 4. Plots showing the running af(«) as a function of the

ratio of scalesu/u for different initial choices of\y in the MS
renormalization scheme. The differences between the curves ob-
tained using the PadapproximatesB[1,1] and B8[1,2] corre-

to the physical pole mass of the Higgs boson, so we cannot state trgponding to three- and four-loop summations @findicates the

results in terms ofr andM  without using a separate calculation of
the self-energy function.

range of uncertainty in the result. The curves for the five-lgbp
function lie near the center of the band of uncertainty.
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The range of uncertainty in(w) at fixed u/uq is quite L
small for \o=1, 3 over the entire range shown/uy<6. 0.95 ]
The uncertainty is larger fokg=>5, roughly 16%, atu/ug R
=3, but even then the boundary curves differ from the curve 0.9
for B[2,2] by <8%.

The rather small effect of uncertainties ghon \(u) can 085 1
be understood rather simply. The renormalization-group «, 44
equation involves J rather thang. The prefactoi? in the < L N
Padeexpression in Eq(11) leads to a rapid decrease in the § o7sF T
integrand, and the value of the integral is determined mainly ‘% 07
by the region neak,, the lower endpoint of the integration. = ™ |
For N\g small, 8 is well determined in the most important 0.65 |

. T . . BIO, 1], B[1,1]
region, and the uncertainty in the integral is small. The un- ro BI1.2] 5
certainty in the integral, hence the uncertainty\ifu), be- 06 - T et
comes large only for renormalization-group evolution away 0.55 i
from a large starting value faxg. I

05 FPETETE SVITETENE EPAIEE ATATSTATN ANSTATINSS APEPSTErE ATETErArS ATAETArE ATAArAr S AR

Ill. APPLICATIONS: RANGES OF RELIABILITY OF  B(M\)
AND A(p) IN OMS RENORMALIZATION

A. Pade approximates for B(\)owus FIG. 5. Plots of the two- and three-loop Padpproximates

Having tested the use of Padgproximates in the MS _ﬂ[O,_l] andB[1,1] for B in tk_\e OMS scheme_. The functiqns are
scheme, we consider the implications of Padmmation for ~ 'dentical on the scale of the figure. The functifi 1, 2] obtained
the OMS scheme. The most significant difference is the limYSind & coefficientgs five times as large as that estimated from
. . - . B[1,1] is shown to indicate a range of uncertainty. The three-loop
ited order, three loops, to which the perturbation seriegfor . : . :

. . ; erturbation serieg [ 2, 0] is shown for comparison.

is known. We are therefore restricted to two approxmateé)

that use the full information available, the diagonal approxi-
mateB[1, 1] and the subdiagonal approximagg 0, 2]. We
can also use3[0, 1] at the two-loop level. Based upon the
convergence of the Padequence demonstrated for the MS
scheme, and the apparent reduction in the size of the coe
cients in the OMS schenfewe will assume that these ap-
proximates again provide an accurate estimate for ghe
function, with the diagonal approximate probably the mos
reliable.

To determine the range of for which the 8 function is
reliable, we first considered the differences among the three-
loop functionsB[1, 1] and B[ 0, 2], and the two-loop func- In the OMS renormalization scheme, the paramatés
tion B[0,1]. These approximates can barely be distin-defined by the relation =GgM,%/\/2 to all orders in per-
guished over the range af shown in Fig. 5 with the scale turbation theonf9,20]. We will choose the starting valug,
used there, so onlg[1, 1] is shown. This agreement is the of the running coupling\(x) to have this value. What re-
result of the nearly geometric growth of the first coefficientsmains to be decided is the energy scalg at which this
in the perturbation series. The three-loop approximategelation should be taken to hold. The natural energy scale
B[1,1] andB[0, 2] continue to agree well to much larger would appear to be.,=M . However, other choices have
values of\. While one is tempted on this basis to concludebeen made. Thus, in an early investigation, Sirlin and Zuc-
that the OMSg function is reliably known forA<10, the  chini [19] calculated the one-loop corrections to the four-
range of current interest, the geometric character of the lowpoint Higgs-boson scattering amplitude and defined the pa-
order perturbation series may well be accidental. We haveameters in the theory so that large electromagnetic effects
therefore attempted to estimate a wider range of uncertaintgippear only in such standard relations as that betv@en
in the B function in a different way by supposing, in agree- and the muon decay rate. With this definition, the high mass
ment with the results of the MS analysis, that the coefficHimit of the four-point function give$19]

ient B; estimated by expanding[1,1] is too small, and

constructing a new “four-loop” approximatg[ 1, 2] using

a greatly increased value &;. The result obtained using
3=5Bj is shown in Fig. 5. The change in the extrapolation

6f the perturbation series is quite small, with a difference of

less than 2% betweef[1,1] and 8[1, 1] for A<<10. We

also show the perturbation series for fhéunction, 3[ 2, 0],

in Fig. 5 for comparison.

B. The running coupling A(l)

h(u)=No| 1+ . (17

, , , 02(24|ni+25—3\@77)
The known value of3, in the OMS scheme is smaller than that 167 My

in the MS scheme by roughly a factor of[31,18. Nierste and

Riesselmani11] have found similar reductions in the coefficients ~ The logarithm in the expression above is just that which
in the expansion of physical amplitudes. We assume that the redu@ppears in the expansion of the one-loop expression for

tions in the size of the coefficients persist at higher orders. N,
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-1
Ao m

1- B, —2 In
Po om? it

(18) 14 :_ .......... B[2’0]
T — B0 ;
12 o BI1,2] 5.0"B5 ooy

AMp)=No

for Bp=24 andug=My . The ambiguity in the choice gi,
is in the treatment of the remaining constants in Ey). i
These have been incorporated in the running coupling 10
by some authors[19,8,9 by redefining uy as ug I
=Myexf(—25+ 33m)/24]. However, the constants do
not appear naturally in the expression for the four-point func-
tion at two loopg[9]. It is probably most reasonable, there-
fore, to treat them as separate “radiative corrections” and
write h(u) to one loop ah(u)=A(u)[1+ 8], with N(u)
the one-loop running coupling defined above, @idcorpo-
rating the remaining scale-independent corrections. [

This question has been studied in more detail by Nierste 2r M,,=500 Gev
and Riesselmanpl1], who showed that the convergence of L
the perturbation series was improved for several physical ol v o0
amplitudes by adopting the natural scalg= M, instead of 500 1000 1500 2000 2500 3000 3500
the choice noted above. They note, furthermore, that in ordel 1 (GeV)
to cancel large logarithmic terms in the perturbative result i . .
uhen one considers two-scale physical processes such gt Flols 111 e g aly) n e O e
scat.tering, t_he scale must be relateq to the engrgy scale Ofinitial choices of the Higgs-boson mabs . The differences be-
the interaction byu = Vs [11]. we will follow Nierste and  yyeen the curves obtained using the three-loop Resoximate
Riesselmann and make the definite, physically motivates 1 1] and the functiond[1, 2] obtained using a coefficieng,
choicesuo=My and u= s in the following analysis. This five times as large as that estimated frgdi1, 1] is shown to
specification amounts as already noted to a definite specifindicate a range of uncertainty. The perturbative result@aiven
cation of the “radiative corrections” in perturbatively calcu- by B[2,0] has a Landau pole aw=2.3 TeV for My
lated amplitudes once the couplings are expressed in terms ef800 GeV, but is not reliable and is included only to illustrate the
AMu). effects of a nearby pole.

With Ny and uq specified, and the range,<\ <\ 5, Of , -
stability and presumed reliability of th@ function estab- t@kep as reliable ta\ <10 as in Fig. 5, the result for(u)
lished, it is straightforward to integrate the renormalization-"émains reliable fop <2 TeV, a value well into the energy
group equation and invert the result numerically to obtainf€9ion of interest for experiments at the Large Hadron Col-
(). However, the results will only be reliable far,<p ~ llder at CERN. _ _
< fmaxs Where iy is determined implicitly by the condi-  1he rapid growth ofx () for the perturbative approxi-
tion M &ma) =Amax. The behavior of\(w) for 1> pmay iS mate 8[2,0] in Fig. 6 is the result of a'Landa}u pole at
not determined. The uncertainty M(x) can be specified in =2339 GeV. A pole can appear k‘({u.) if the |ntegra[ of
terms of that in3. With this procedure, it is not necessary to /8 converges fon —cc, with the position of the pole i
obtain the solution of the renormalization-group equation aglétermined by the condition

z 8
<

¥ M,=800 GeV

»
— T

a series in g, or in a different approximate form. We note in P rd\
this connection that the “naive” and *“consistent” forms for In—=Iim | —. (19
A(w) in the nomenclature if11] correspond, respectively, Ho  xowdng B

to the approximate@ [N, 0], the perturbation series fga,
and B[0,N], the series obtained by expandiy Neither
sequence is expected to converge well with increabing
Our results for\(«) are shown in Fig. 6 foM =500
and 800 GeV andugsu<4 TeV. We find for My
=500 GeV that all Padapproximates, including the pertur-

bation series, agree very well faa<<5 TeV, a region in - . ; o .
. . : : . 5 indicate, in fact, that the perturbative approximation begins
<5. . . . "
which Ao<5. The residual uncertainty in(n) is small to fail badly for A ~5, while the starting point for the evolu-

h not to affect perturbati Its for physical pro-. T .
222533 not fo afiect perturbative Tesulls Tor physica prO'uon of A(u) shown in Fig. 6 is atA=5.3 for My

Different Padeapproximates also give very similar ex- =800_GeV. The remaining approximates do not lead to
trapolations forA(u) for My=800 GeV, even when the poles in the region shown.
predicted value of3; is changed by a large factor. The only
significant deviation involves the perturbation sefH, 0]
which we do not believe is reliable on the basis of our earlier We have shown that Padeimmation of the3 function
investigation. Even if we restrict the rangefn which we  apparently improves the perturbative stability®in an in-

No pole can actually appear when the integration is restricted
to the finite range ok in which B is known reliably, but the
likely presence of a pole would be indicated by very rapid
growth of A(u) with increasingu in that region. In the
present case, there is no reason to expect the perturbation
seriesB[ 2, 0] to be accurate fok large. The results in Fig.

C. Conclusions
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terval A g< A<\, in Which the Padesstimates are stable. B[3,1]: a;=(ByB3—B,)/B3;, (A4)
The method gives a best estimate fg§rand removes much
of the uncertainty associated with different determinations of
the running quartic Higgs coupliny(u) at the three-loop
level[11] in a corresponding intervaly< u< max, but the
behavior ofA (u) for u> pmax is NOt determined. a3=(B§— B,B,)/Bs,
We have tested the Padeethod using theg function in
the MS renormalization scheme, whegeis known to five
loops in the perturbation expansion. The test results suggest
rapid convergence of the diagonal and subdiagonal Bade
quences. Our applications are to the more physical OMS  g[2,2]: a1:(|31|3§_|3§|33+ B,B,—B,B3)/A,,,
renormalization scheme, where the first scheme-dependent (A5)
coefficient in the OMS expansion is significantly smaller
than in the MS expansion. This more rapid apparent conver- 3 2 2
gence is reflected in the excellent agreement among the lead- ;= (B2~ 2B4B,B3+B1B,+ B3
ing Padeapproximates foBqys in the diagonal-subdiagonal —B,By)/ Ay,
sequence even for rather large values of the first unknown
coefficient,35. Calculation off35 in the OMS scheme would
give an important test of whether this method captures the b1=(B1B4—B2B3)/Az,
behavior of 35 at largeN as well as it appears to do.

a;=(B,B3—B1By4)/B3,

b]_: _B4/BS,

by=( B%— B2B4)/ Ay,
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APPENDIX A: PADE APPROXIMATES by=(— BiBZ"" Bg+ ByBs—B,)/Aqs,

The coefficients of the Paderms used in our analysis are
ﬁ(l:ﬁrr:tsbglnolv('ﬁv:/eﬂ\g/”(igqu:g)ﬁhe results in terms of the coef by=(B;B2—B,Bs— B2Bs+B,B,)/Ays,
At two loops,N+M =1 and we have only the truncated
perturbation serieg3[1,0] and the approximatg8[0, 1] bs=(2B,B,B;—B3—B2+B,B,
with )
—B1B4)/Ass,

0,1: b;=—B;. Al
A0k =By (AD A;3=B3—2B;B,+B;.

At three loopsN+M =2 and we have the new approxi-  yye will also consider the approximat@g 1, 2], the sub-
mantsS[1,1] and 5[0, 2]. The coefficients are given by giagonal approximate for the four-loop expansion. The coef-
ficients in this case are

B[1,1]: a;=(B3-B,)/B,, (A2)
B[1,2]: a;=(B}—2B;B,+By)/(Bf-B,),
(A7)
blz_leBl,
blz(Bs_Ble)/(Bi_Bz),
B[0,2]: by=-By, (A3)
b,=(B3—B,B3)/(Bi—B,).
bzzBi_Bz.

APPENDIX B: ANALYTIC RESULTS

At five loops, N+ M =4 and we will consider the new The Padeapproximates we have used are all integrable
approximants8[3,1], 8[2,2], 8[1,3], and3[0,4]. The analytically. We will give only the results needed in our
coefficients are given by investigation of the OMS renormalization scheme:
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Bo (M dA Bo (* d\
ALOA 16r2) Bro.1] AL 162) BIL
1 1 1~ B2
=~ —Bin\, (B1) =———ByIn\+BIn| 1+ x), (B3)
A B,
~ Bo fk dA
L0k 1e) Br2.0 B0, 2]: Lo P
. ) ’ 1672) B[0,2]
== ~Binr+ EBlln(1+Bl)\+Bz)\2) 1 ,
=—X—Blln)\+(Bl—Bz))\. (B4)
BI-2B, B1+2B,\
+ arctan , (B2)
4B,— B} V4B, — B} These expressions are to be equatedBg16m2)In(u/ o).
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